第三章连续时间信号的变换域分析
信号与线性系统 第四版 管致中 第3章1
11
傅里叶级数的指数形式
可以从三角傅立叶级数直接导出,由欧拉公式:
1 sin nt e jnt e jnt 2j 1 jnt cos nt e e jnt 代入三角形傅氏级数中去, 2
a0 f (t ) an cos nt bn sin nt 2 n 1 n 1
7
例
试将下图所示的方波信号f(t)展开为傅里 f (t) 叶级数。 f (t ) a0 an cos nt bn sin nt 1
2
n 1 n 1
T 2
2 T 2 2 T a0 f (t )dt dt T (1)dt 0 T 0 T 0 T 2
0
T 2
T
n
2
(cos n
T
T 2
8
1)
例
将具有不连续点的周期函数(如 矩形脉冲)进行傅立叶级数展开 后,选取有限项进行合成。当选 取的项数越多,在所合成的波形 中出现的峰起越靠近原信号的不 连续点。当选取的项数很大时, 该峰起值趋于一个常数,大约等 于总跳变值的9%。这种现象称 为吉布斯效应。
______。 B
2
f (t )
周期信号 f (t) 的傅立叶级数中所含有的频率分量是
1
0
T 2
T
t
-1
(A) 余弦项的奇次谐波,无直流 (B) 正弦项的奇次谐波,无直流 (C) 余弦项的偶次谐波,直流 (D) 正弦项的偶次谐波,直流。
奇函数:只含正弦项; 半周镜象对称: 只含奇次谐波
25
例 3 习题3.8
t0
t0+T
信号与系统中的连续时间信号分析
信号与系统中的连续时间信号分析在信号与系统学科中,连续时间信号分析是一项重要的研究领域。
它涉及到对连续时间信号的特性和行为进行深入的研究与分析。
通过对连续时间信号的理解,我们可以更好地理解和应用于实际系统中。
连续时间信号是一种在时间上是连续的信号,与离散信号相对应。
通过对连续时间信号的分析,我们可以研究信号的频谱特性、系统响应以及信号处理等方面的问题。
下面将介绍一些连续时间信号分析的重要概念和方法。
一、连续时间信号的分类在连续时间信号的分析中,我们将信号分为不同的类型,以便更好地理解和处理它们。
常见的连续时间信号类型包括周期信号、非周期信号、能量信号和功率信号。
1. 周期信号周期信号是指信号在时间上具有重复性质的信号。
在数学上,周期信号可以表示为f(t) = f(t ± T),其中T是信号的周期。
周期信号在通信系统中经常出现,例如正弦信号、方波信号等。
2. 非周期信号非周期信号是指无法用周期性来描述的信号。
非周期信号在实际应用中也非常常见,例如脉冲信号、指数信号等。
3. 能量信号能量信号是指信号的总能量有限,即信号在无穷远处的能量为零。
能量信号通常在短时间内集中能量,如方波信号、冲激信号等。
4. 功率信号功率信号是指信号的功率在无穷远处有限,即信号的总功率为有限值。
功率信号通常在长时间内分散能量,如正弦信号等。
二、连续时间信号的频谱分析频谱分析是连续时间信号分析的重要手段,通过对信号的频谱特性进行研究,可以了解信号的频率成分以及频率响应等信息。
1. 傅里叶变换傅里叶变换是一种将信号从时域转换到频域的重要工具。
通过傅里叶变换,我们可以将连续时间信号表示为不同频率分量的叠加。
2. 频谱密度函数频谱密度函数是描述信号功率随频率变化的函数。
通过计算信号的频谱密度函数,我们可以了解信号的频率特性和功率分布等信息。
三、连续时间系统的分析连续时间信号的分析还涉及到对系统的研究和分析。
连续时间系统是通过输入信号产生输出信号的物理系统,例如滤波器、放大器等。
信号与线性系统分析第三章
系统描述 分析方法
连续系统 微分方程 卷积积分 变换域(傅氏、s) 系统函数
离散系统 差分方程 卷积和 变换域(离散傅氏、z) 系统函数
第 2页
§2.1 LTI离散系统的响应
• 差分与差分方程 —前向差分、后向差分以及差分方程
• 差分方程解 —数值解、经典解,以及不同特征根对应的齐 次解和不同激励对应的特解
yzi (-2) = y(-2)
-----------
yzi (n) = ?
----------------yzi (-n) = y(-n)
第 13 页
零输入举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;初始状态 y(–1)=0, y(–2)=1/2 求系统的零输入响应
解:yzi(k)零输入响应满足:
yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0
yzi(–1)= y(–1)= 0 yzi(–2) = y(–2) = 1/2 递推求 yzi(0)、 yzi(1) yzi(k)= – 3yzi(k –1) –2yzi(k –2)
yzi(0)= –3yzi(–1) –2yzi(–2)= –1
yzs(0)、yzs(1)、---yzs(n)=? 借助微分方程
n
若其特征根均为单根: yzk (k ) Czsjkj y p (k ) j 1
第 16 页
零状态举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;求系统的零状态响应 解:零状态响应yzs(k) 满足
第数字信号处理讲义--3章_连续时间信号的采样
图3-6采样内插恢复
3.4连续时间信号的离散时间处理
随着信号传输和处理手段的数字化发展,越来越有必要将连续信号转化为离散信号处理。
一、C/D转换
C/D转换
时域分析频域分析
二、D/C转换
D/C转换
D/C变换整个是C/D变换的逆过程
三、连续时间信号的离散化处理
即:
例1:数字微分器
带限微分
例2:半抽样间隔延时
设带限于,要求
3.6利用离散时间信号处理改变采样频率
3.6.1脉冲串采样
3.5离散时间信号的连续时间处理
离散时间信号的连续时间处理
从时域角度看:
从频域角度看:
3.6.2离散信号抽取与内插
抽取——从序列中提取每第N个点上样本的过程。
令
2.内插
抽取又称为减抽样,内插又称为增抽样。
减抽样使信号的频带扩展,但提高了数据的传输率。
在采样前加一低通滤波器,以滤除高于2倍采样频率成分,以避免高频成分的干扰。
3.7.2 A/D转换中的量化误差
数字信号不仅在时间上是离散的,而且在取值上也不连续,即数字信号的取值必须为某个规定的最小数量单位的整数倍。
因此,为了将模拟信号转换成数字信号,还必须将采样/保持电路输出的采样值按照某种近似方式归并到相应的离散电平上,也就是将模拟信号在取值上离散化,我们把这个过程称为量化。将量化后的结果(离散电平)用数字代码来表示,称为编码。于单极性模拟信号,一般采用自然二进制编码;对于双极性模拟信号,则通常采用二进制补码。经过编码后得到的代码就是A/D转换器输出的数字量。
信号与系统分析PPT电子教案第三章连续时间信号与系统的频谱分析
f (t ) A0 An cos(n1t n ) n1
A0
n1
An 2
[e e ] j(n1t n ) j(n1t n )
A0
1 2
n1
An
e e jn jn1t
1 2
n1
An
e e jn jn1t
上式中第三项的n用–n代换,则上式写为
f (t)
A0
1 2
n1
An e jn e jn1t
T0
因此,信号绝对可积就保证了 ak 的存在。
② 在任何有限区间内,只有有限个极值点,且极值
为有限值。
③ 在任何有限区间内,只有有限个第一类间断点。
其它形式
余弦形式 f (t) A0 An cos n1t n
2
n1
A0 a0
an An cosn
An an2 bn2
bn An sinn
cos
2 1 t
4
,
请画出其幅度谱和相位谱。
化为余弦形式
f (t) 1
5
cos(1t
0.15
)
cos
2 1 t
4
三角形式的傅里叶级数的谱系数
三角函数形式的频谱图
A0 1
0 0
An A1 2.24
A0 1
A2 1
0 1 21
n
0.25
1
0
21
0.15
A1 5 2.236 1 0.15
在时域可以看到,如果一个周期信号的周期趋 于无穷大,则周期信号将演变成一个非周期信 号;反过来,任何非周期信号如果进行周期性 延拓,就一定能形成一个周期信号。我们把非 周期信号看成是周期信号在周期趋于无穷大时 的极限,从而考查连续时间傅立叶级数在 T趋 于无穷大时的变化,就应该能够得到对非周期 信号的频域表示方法。
连续时间信号的时域分析和频域分析
时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计
信号分析31
(有限能量) i为任意整 数
1,如果x(t)在区间内与 gi ( t )正交,则x(t)必属 于这个正交集。
2,若x(t)与 gi ( t )正交,但 gi ( t ) 中不包含x(t), 则此集不完备。
信号表示为正交函数集
4、复变函数的正交特性。 若 f 1( t ) 和 f 2( t )是t 的复变函数,则有关正交特性 的描述如下: 若 f1 (t ) 在区间 ( t 1, t 2 ) 内可由 C 12 f 2( t )来近似, 使均方误差幅度最小的 C12 之最佳值是 f (t ) c f
信号表示为正交函数集
矢量空间的概念可以引申到n维。设n维正交矢量集为
即
则
A C 1V 1 C 2V 2 CrVr CnVn A Vr A Vr Cr Kr Vr Vr
V 1、V 2、V 3Vn Vm Vm Km (Vm不为单位矢量) Vl Vm 0 (l m )
均方误差
t2 t 1 f ( t ) gi ( t )dt Ki
n t 2 2 2 ( t ) [ f ( t ) c r g r ( t )] dt t 2 t1 t1 r 1
1
信号表示为正交函数集
3、用完备正交函数集表示信号
定义1: g 2( t ) t) • 如果用正交函数集 g1( , ,… gn( t ) 在区间 (t1, t 2) 近似 n 表示函数 f ( t ) crgr ( t )
信号表示为正交函数集
定义2: 如果在正交函数集 g1( t ), g 2( t ), gn( t )之外, 不存在有限能量的函数x(t)
t2 2 0 x ( t )dt t1 t2 满足等式 x( t ) gi ( t )dt 0 t1
连续时间信号与系统的频域分析报告
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
第3章 连续信号的频谱——傅里叶变换
• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波
器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。 • 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。 • 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。 • 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
nw1 nw1
0
w
nw1
w1 0 w1
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性
—时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
1 t0 T1 2 f (t )dt P f (t ) t T1 0 1 1 2 2 2 2 2 a0 ( an bn ) c0 cn 2 n 1 2 n 1
其傅里叶级数三角展开式中 仅含基波和奇次谐波
例子
例如:奇谐函数
f (t )
E 2
T1 2
f (t )
E 2
T 1 2
0
E 2
T1 2
t
0
E 2
T1 2
t
sin( w1t )
E 2
f (t )
E 2
T1 2 T 1 2 T1 2
f (t )
0
E 2
t
0
E 2
T1 2
第三、四章连续时间信号与系统的频域分析内容总结
第
连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X
第
连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X
第
连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X
第
连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X
第
连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)
s域与z域的变换关系 -回复
s域与z域的变换关系-回复s域(Laplace域)与z域(Z变换域)是信号与系统分析中常用的数学工具。
s域对连续时间信号进行分析,而z域对离散时间信号进行分析。
在本文中,我们将详细介绍s域与z域之间的变换关系。
首先,让我们先了解一下s域和z域的定义。
s域是用复变量s表示,它将连续时间信号(可以是连续时间函数或连续时间系统的传递函数)转换为复平面上的函数。
而z域是用复变量z表示,它将离散时间信号(可以是离散时间函数或离散时间系统的传递函数)转换为复平面上的函数。
s域变换(Laplace变换)和z域变换(Z变换)是两种不同的数学工具,它们之间的变换关系如下所示:1. 连续时间信号到离散时间信号的变换(模拟到数字的转换):在这种情况下,我们需要将s域函数转换为z域函数。
这个过程被称为脉冲响应不变性方法。
具体的步骤如下:a. 假设我们有一个连续时间信号或系统的传递函数H(s)。
b. 使用部分分式分解等方法将H(s)分解为一个形式为frac{B(s)}{A(s)}的比率函数。
c. 使用z变换的标准转换公式将分解后的B(s)和A(s)转换为B(z)和A(z)。
d. 最后,使用B(z)/A(z)作为离散时间信号或系统的传递函数。
2. 离散时间信号到连续时间信号的变换(数字到模拟的转换):在这种情况下,我们需要将z域函数转换为s域函数。
这个过程被称为双线性变换或者频率采样变换方法。
具体的步骤如下:a. 假设我们有一个离散时间信号或系统的传递函数H(z)。
b. 使用分式分解等方法将H(z)分解为一个形式为frac{B(z)}{A(z)}的比率函数。
c. 使用z变换的逆变换公式将分解后的B(z)和A(z)转换为B(s)和A(s)。
d. 最后,使用B(s)/A(s)作为连续时间信号或系统的传递函数。
需要注意的是,s域与z域之间的变换关系并不是一一对应的。
在进行变换时,我们需要考虑信号或系统的采样频率、采样间隔以及截止频率等因素。
精品文档-信号与系统(第四版)(陈生潭)-第3章
An cos(nt n )
Fne jnt
n 1
n
F0 2 Fn cos(nt n )
其中:
n 1
an
2 T
t0 T t0
fT (t )cosntdt
bn
2 T
t0 T t0
fT (t )sin ntdt
n0,1,2...
1
n1,2...
Fn
T
t0 T t0
fT (t)e jnt dt
fT (t)sin ntdt
A0 a0 An an2 bn2
n 1,2...
n
arctg
bn an
说明:1.周期信号可分解表示为三角函数的线性组合。
2.物理意义:周期信号可分解为众多频率成整数倍
和正(余)弦函数或分量的线性组合。具体有:
a0 A0 直流分量cost, sin t 基波分量 22
fT (t)
Fne jnt
F e j (nt n ) n
F0
2 Fn cos(nt n )
n
n
n1
各谐波分量的角频率nΩ 是基波角频率Ω的n倍且有不同的
振幅和相位,均有傅立叶系数 Fn Fn e jn 反映出来。
为揭示各谐波振幅、初相随角频率变化情况,特画出振幅
及相位随w变化的曲线称其为频谱图。
的模
最小,(此时的C12称为最佳),当C12=0时,Ve的
模最小,此时V1和V2正交。
2.矢量分解
在平面空间里,相互正交的矢量
V1和V2构成一个正交矢量集,而且为
完备的正交矢量集。平面空间中的任
一矢量V都可表示为V1和V2的线性组合 (如上图)。即:
V=C1V1+C2 V2。式中V1、V2为单位矢量,且V1·V2=0。其中:
第三章 Z变换
n
x[n] re
j n
可见,x[n]的z变换:指数序列r-n乘以x[n]后的傅立叶变换。 当︱z︱=1,即 r = 1时,z变换就是傅立叶变换。 z变换是傅立叶变换的推广,傅立叶变换是z变换的特例;
z平面: z 1 称为单位圆 傅立叶变换是z平面单位圆上的z变换 傅立叶变换的周期性解释
1 x [ n ] u[n] 通过比较可直接得到其反变换: 2
n
特点:简单求解
3.3.2 部分分式展开法 对于任意有理函数形式的X(z) -------- 主要方法 通常的X(z)表示形式: (z-1多项式之比)
或: M个零点(分子z的M次多项式) N个极点(分母z的N次多项式) z =0 的多重极点或零点 相同的有限值零点和极点数(包括z = 0,不包括z = ∞)
n
jn x [ n ] e
ejωz,傅立叶变换X (ejω)z变换X(z) 将复变量z表示成极坐标形式:z = rejω z变换可以写成:
X ( z ) X ( re ) 或 X ( re )
j n n -jn x [ n ] r e j
为方便部分分式展开,可将X(z)表示为:
ck -------- M个非零零点; dk -------- N个非零极点; 若M < N,且极点都是一阶的,则可以进行部分分式展开:
式中系数Ak求法:
例子:
1 1 极点:z , z 2 4
(一阶)
零点:z =0 (二阶) 右边序列 部分分式展开:
z变换的收敛域: (region of convergence, ROC) 对给定的序列x[n], 所有满足下列不等式的z值
n
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
信号与系统第三版课后习题答案
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
离散时间信号处理奥本海姆第二版课后答案第三章
第三章连续时间信号的采样3.1 序列[]⎪⎭⎫⎝⎛=n n x 4cos π, ∞<<∞-n , 用采样模拟信号()()t t x c 0cos Ω=, ∞<<∞-t 。
而得到,采样率为1000样本/每秒,问有哪两种可能的0Ω值以同样的采样率能得到该序列[]n x ?解:对模拟信号 ()()()t f t t x c 002cos cos π=Ω=以采样率s f 进行采样产生离散时间序列[]()()n f f nT x n x ss c 02cos π==,又对任意整数k ,⎪⎪⎭⎫⎝⎛+±=⎪⎪⎭⎫ ⎝⎛±n f kf f n f f s ss 002cos 2cos ππ ∴ 当以采样频率为s kf f f +±=0的正弦波都会产生相同的序列,对于[]⎪⎭⎫⎝⎛=n n x 4cos π∴ 420ππ=s f f ∴ 125810==s f f (样本/秒),π2500=Ω或π2250rad/s 均可。
所以0Ω取π250或π2250都能以同样的采样率得到该序列。
3.2 令()t h c 记作某一线性时不变连续时间滤波器的冲击响应,()n h d 为某一线性时不变离散时间滤波器的冲击响应。
()a 若()⎩⎨⎧<≥=-00t t e t h atc 求该连续时间滤波器的频率响应,并画出它的幅度特性。
()b 若()()nT Th n h c d =,()t h c 如()a 所给,求该离散时间滤波器的频率响应,并画出它的幅度特性。
()c 若给定a 的值,作为T 的函数,求离散时间滤波器频率响应的最小幅度值。
解:(a )由连续时间信号的傅氏变换得:()ωωj a j H c +=1()221ωω+=a j H c(b) []()()()∑∞-∞=-==n c c d nT t t Th nT Th n h δ()()∑∞-∞=⎪⎭⎫ ⎝⎛-Ω*⋅=k c j d T jkj Tj H T eH πδπωπω2221 =∑∞-∞=⎪⎭⎫ ⎝⎛-k cT k j T j H πω2 =πωω<⎪⎭⎫ ⎝⎛T jH c=πωω<+Tja 1(c )若a 为定值,当πω=时,幅度最小为:()22min1Ta e H j d πω+=(它是T 的函数)3.3 图P3.3-1表示一种多径信道的简单模型。
《信号与系统》第3章
信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1
Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1
T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章
)
信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1
a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。
连续时间系统的频域分析
第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。
●简化电路分析与运算,总响应=单元响应之和。
1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。
一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。
2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。
令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。
3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。
物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。
二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。
信号与系统实验报告实验三连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频谱。73.1.3 期信号的频谱及其特点例3-1 求题图所示的周期矩形信号的三角形式与指数形式的傅 里叶级数,并画出各自的频谱图。
解:一个周期内 f%(t)的表达式为:
E
f%(t)
2
E 2
0 t T1 2
T1 2
t
T1
a0
1 T1
T1 f%(t)dt 0
0
an
2 T1
T1 0
f%(t) cos n1tdt
2E
(sin
1t
1 3
sin
31t
1 5
sin
51
L
)
或
f%(t)
2E
n 1,3,5L
1 n
cos(n1t
)
2
9
3.1.3 周期信号的频谱及其特点
Fn
1 2 (an
jbn
)
j
bn 2
jE
n
0
n 1,3,5 n 2,4,6
f%(t) jE e j 1t jE e j3 1t L jE e j 1t jE e j3 1t L
Fne jn1t
n
(3)
为了能既方便又明确地表示一个信号中含有哪些频率分量,
各频率分量所占的比重怎样,就可以画出频谱图来直观地表示。
如果以频率为横轴,以幅度或相位为纵轴,绘出 cn 及 n
等的变化关系,便可直观地看出各频率分量的相对大小和相位
情况,这样的图就称为三角形式表示的信号的幅度频谱和相位
现,留下的各项系数的表示式也将变得比较简单。波形的对称 性有两类,一类是对整周期对称;另一类是对半周期对称。
(1)偶函数
f%(t) f%(t)
bn
2 T1
T1
2 T1
f%(t) sin n1tdt
0
2
1 T1
2 T1
a0 T1
2 T1
2
f (t)dt
T1
2 0
f (t)dt
an
2 T1
0
2E
bn
2 T1
T1 0
f%(t) sin n1tdt
n
0
n 1,3,5L n 2, 4, 6L
8
3.1.3 周期信号的频谱及其特点
2E
cn
bn
n
0
n 1,3,5 n 2,4,6
n
arctan(
bn an
)
2
(n 1,3,5 )
因此
f%(t)
2E
n1,3,5L
1 n
sin
n1t
cn
n
arctan(
bn an
)
Fn 为 n1 的偶函数,n为 n1 的奇函数
6
3.1.3 周期信号的频谱及其特点
1. 周期信号的频谱
f (t) a0 (an cos n1t bn sin n1t) n1
f (t) c0 cn cos(n1t n )
(1) (2)
n1
f (t)
T1
2 T1
2
f (t) cos n1tdt
4 T1
T1
2 0
f (t) cos n1tdt
所以,在偶函数的傅里叶级数中只含有(直流)和余弦分量。
3
3.1.1 三角形式的傅里叶级数
设周期信号为
f%(t) ,
其重复周期是T1,角频率
1
2
f1
2
T1
f%(t) a0 (an cos n1t bn sin n1t)
(1)
n1
直流分量:
a0
1 T1
t0 T1 f%(t )dt
t0
余弦分量的幅度:
an
2 T1
t0 T1 t0
f%(t) cos n1tdt
3 5
0 n
Ω1
Ω1
5
3Ω1 5Ω1
3Ω1 5Ω1
5Ω1 3Ω1 Ω1 Ω1
Ω
n
3Ω1 5Ω1
2
Ω1
3Ω1
5Ω1
0
Ω 5Ω1 3Ω1 Ω1
Ω
2
2
11
3.1.3 周期信号的频谱及其特点
2. 周期信号频谱的特点 (1)离散性 -------- 频谱是离散的而不是连续的,这种频谱
称为离散频谱。
3
3
Fn
E
n
(n 1, 3, 5L )
n
2
(n 1,3,5L ) (n 1, 3, 5L
)
2
10
2E
cn
n
n 1,3,5
Fn
E
n
(n 1,3,5 )
0
n
2
n 2,4,6
(n 1,3,5 )
cn 2E
2E
3 2E
n 2
2
(n 1,3,5 )
(n 1,3,5 )
Fn E
EE
1
第3章 傅里叶变换分析
从本章起,我们由时域分析进入变换域分析,即傅里 叶变换(频域)分析和拉普拉斯变换(复频域)分析。在 频域分析中,首先讨论周期信号的傅里叶级数,然后讨论 非周期信号的傅里叶变换及其性质,还要介绍周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。在复频域分析 中,首先介绍从傅里叶变换推广到拉普拉斯变换的概念, 进而引出拉普拉斯变换的定义,然后介绍拉普拉斯变换的 性质及拉普拉斯逆变换。
2
3.1 周期信号的频谱分析——傅里叶级数
任何周期函数在满足狄里赫利的条件下,可以展开成 正交函数线性组合的无穷级数。如果正交函数集是三角函 数集或复指数函数集,此时周期函数所展成的级数就是 “傅里叶级数”。前者称为三角形式的傅里叶级数,后者 称为指数形式的傅里叶级数,它们是傅里叶级数两种不同 的表示形式。
(2)谐波性 -------- 谱线出现在基波频率 1 的整数倍上。
(3)收敛性 -------- 幅度谱的谱线幅度随着 n 而逐渐
衰减到零。
12
3.1.4 波形的对称性与谐波特性的关系
已知信号 f%(t)展为傅里叶级数的时候,如果 f%(t)是实函数而
且它的波形满足某种对称性,则在傅里叶级数中有些项将不出
正弦分量的幅度:
bn
2 T1
t0 T1 t0
f%(t) sin n1tdt
以上各式中的积分限一般取: 0 ~ T1
或 T1 ~ T1 22
4
3.1.1 三角形式的傅里叶级数
三角形式的傅里叶级数也可表示成:
f%(t) c0 cn cos(n1t n )
其中
cn2 an2 bn2
n 1
n
arctan(
bn an
)
(2)
c0 a0
5
3.1.2 指数形式的傅里叶级数
f%(t)
Fne jn1t
n
其中
1
Fn T1
t0 T1 f%(t )e jn1t dt
t0
F0 a0 c0
Fn
Fn
e
j n 1 (a 2
n
jb n)
(3) ------ 复振幅
Fn
1 2
an2
bn2
1 2
第3章 连续时间信号的变换域分析
3.1 周期信号的频谱分析——傅里叶级数 3.2 典型周期信号的频谱 3.3 非周期信号的频谱分析——傅里叶变换 3.4 典型非周期信号的频谱 3.5 傅里叶变换的基本性质 3.6 周期信号的傅里叶变换 3.7 拉普拉斯变换 3.8 拉普拉斯变换的基本性质 3.9 拉普拉斯逆变换 3.10 连续信号的频域与复频域的MATLAB分析