神经网络课件
神经网络专题ppt课件
(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
Hopfield神经网络ppt课件
2)保证所有要求记忆的稳定平衡点都能收敛 到自己;
3)使伪稳定点的数目尽可能的少; 4)使稳定点的吸引域尽可能的大。 MATLAB函数
[w,b]=solvehop(T);
.
23
连续性的Hopfield网络
CHNN是在DHNN的基础上提出的,它的原理
.
34
几点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳 定性;
2)能量函数与李雅普诺夫函数的区 别在于:李氏被限定在大于零的范围内, 且要求在零点值为零;
3)Hopfield选择的能量函数,只是 保证系统稳定和渐进稳定的充分条件, 而不是必要条件,其能量函数也不是唯 一的。
1、激活函数为线性函数时
2、激活函数为非线性函数时
.
29
当激活函数为线性函数时,即
vi ui 此时系统的状态方程为:
U AU B 其中A 1 WB。
R 此系统的特征方程为:
A I 0 其中I为单位对角阵。通过对解出的特征值1, 2,, r 的不同情况,可以得到不同的系统解的情况。
.
霍普菲尔德(Hopfield) 神经网络
1、网络结构形式 2、非线性系统状态演变的形式 3、离散型的霍普菲尔德网络(DHNN) 4、连续性的霍普菲尔德网络(CHNN)
.
1
网络结构形式
Hopfield网络是单层对称全反馈网络,根据激 活函数选取的不同,可分为离散型和连续性两种 ( DHNN,CHNN)。 DHNN:作用函数为hadlim,主要用于联想记忆。 CHNN:作用函数为S型函数,主要用于优化计算。
.
19
权值修正的其它方法
神经网络学习PPT课件
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。
《ANN神经网络》课件
神经网络的训练过程和算法
1 BP算法
2 Adam算法
通过反向传播算法,根据输出误差和梯度下 降法更新网络参数,目标是最小化误差函数。
结合了Ad ag r ad 和RM Sp ro p 优点的一种有效 的优化算法,自适应的调节学习率,以加快 训练速度。
神经网络的激活函数和正则化方法
激活函数
每个神经元的输出需要通过激活函数进行非线性映 射,目前比较流行的有sig mo id 、t an h 和ReLU等。
神经元和生物神经元的异同
1 神经元
是神经网络的基本单位,是一种用于计算的抽象模型,只有输入和输出,以及需要学习 的权重和偏置。
2 生物神经元
是神经系统的基本单位,由轴突、树突、细胞体和突触等结构组成,与其他神经元具有 复杂的生物学表现和相互作用。
神经网络的优势和局限性
优势
具有自主学习、自适应、非线性和可并行处理等优 势,能够处理高维度数据和复杂的非线性问题。
参考文献和拓展阅读建议
参考文献: 1. Bishop, C. M . (1995). Neural Networks for Pattern Recognition. Oxford University Press. 2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. M IT Press. 3. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-444. 拓展阅读建议: 1. 《深度学习》白板推导与Python实战 2. 《Python深度学习》实践指南 3. 《自然语言处理综论》 4. 《计算机视觉综论》
神经网络方法-PPT课件精选全文完整版
信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
神经网络ppt课件
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
第一讲神经网络基本原理ppt课件
人工神经网络基本要素
人工神经网络(简称神经网络)是由人工神经元(简称神经元)互 连组成的网络,它是从微观结构和功能上对人脑的抽象、简化,是模 拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并 行信息处理、学习、联想、模式分类、记忆等。
人工神经网络(ANN)可看成是以人工神经元为节点,用有向加权 弧连接起来的有向图。
20 世 纪 80 年 代 以 来 , 人 工 神 经 网 络 ( ANN , Artificial Neural Network)研究取得了突破性进展。神经网络控制是将神经网络与控制 理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的 分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途 径。
y 是神经元的输出。
神经元的输出 y=f(w*u+θ )
人工神经网络基本要素 —神经元
可见,神经元的实际输出还取决于所选择的作用函数f(x)。神经元的阈值 可以看作为一个输入值是常数1对应的连接权值。根据实际情况,也可以 在神经元模型中忽略它。关于作用函数的选择将在后面详细讨论。在上述 模型中,w和θ是神经元可调节的标量参数。设计者可以依据一定的学习规 则来调整它。
每个神经元的突触数目有所不同,而且各神经元之间的连接强度 和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的 功能。图1.1 生物神经元的结构
人工神经网络基本要素 —神经元
神经生理学和神经解剖学的研究 结果表明,神经元是脑组织的基 本单元,是神经系统结构与功能 的单位。
• 大脑
Brain
在此有向图中,人工神经元就是对生物神经元的模拟,而有向弧则 是轴突—突触—树突对的模拟。有向弧的权值表示相互连接的两个人 工神经元间相互作用的强弱。
神经网络基本介绍PPT课件
神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:
《神经网络电子教案》课件
《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。
智能控制系统 -神经网络-PPT课件
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:
《神经网络理论基础》课件
神经网络起源于20世纪40年代,经过多年的发展和研究,如今广泛应用于人工智能、图 像识别、语音识别等领域。
神经元和神经网络模型
神经元
神经网络的基本单位,接收输入信号,经过处理后 产生输出信号。
神经网络模型
由多个神经元组成的网络结构,具有输入层、隐藏 层和输出层,用于解决复杂的问题。
前馈神经网络与反馈神经网络
《神经网络理论基础》 PPT课件
本课件将介绍神经网络的定义和发展历程,神经元和神经网络模型,前馈神 经网络与反馈神经网络,深度神经网络和卷积神经网络,循环神经网络和长 短期记忆网络,神经网络的训练与优化算法,以及神经网络的应用和前景展 望。
神经网络的定义和发展历程
1 定义
神经网络是由大量相互连接的处理单元(神经元)组成的计算模型,模仿生物神经系统 的运行机制。
循环神经网络和长短期记忆网络
循环神经网络
具有反馈连接的神经网络,可以处理序列数据,如自然语言处理和语音合成。
长短期记忆网络
一种特殊的循环神经网络,通过门控单元来记忆长期依赖关系,适用于处理时间序列数据。
神经网络的训练与优化算法
1 训练
使用反向传播算法根据输入和期望输出调整神经网络的权重和偏差,使其逐渐学习到正 确的映射关系。
2 优化算法
常用的优化算法包括梯度下降、Adam、RMSprop等,用于加速神经网络的训练和提高性 能。
神经网络的应用和前景展望
应用领域
神经网络被广泛应用于人工智能、自动驾驶、金融 预测、医学影像分析等领域。
前景展望
随着技术的不断发展,神经网络在未来将继续发挥 重要作用,带来更多创新和突破。
1
前馈神经网络
信息只能单向传递,无反馈循环,适用于静态问题的处理。
《MLP神经网络》课件
性特性。
反向传播过程
01
02
03
04
误差计算
计算实际输出与目标输出之间 的误差。
权重调整
根据误差调整各层神经元的权 重。
梯度下降
按照梯度下降的方向更新权重 ,减小误差。
学习率
控制权重更新的步长,避免过 拟合或欠拟合。
参数更新过程
02
MLP神经网络的原理
前向传播过程
输入层
输入数据通过输入层进入神经 网络,每个神经元接收一个输
入信号。
隐藏层
隐藏层神经元接收来自输入层 神经元的输出信号,经过激活 函数处理后产生隐藏层的输出 信号。
输出层
输出层神经元接收来自隐藏层 神经元的输出信号,经过激活 函数处理后产生最终的输出结 果。
激活函数
感谢您的观看
THANKS
MLP神经网络的基本结构
总结词
多层感知器的组成
详细描述
MLP神经网络由输入层、隐藏层和输出层组成。输入层负责接收外部输入的数据 ,隐藏层通过非线性变换将输入转化为更有意义的高阶特征表示,输出层则根据 隐藏层的输出做出最终的决策或预测。
MLP神经网络的学习过程
总结词
多层感知器的学习过程
详细描述
MLP神经网络的学习过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入数据通过各层传递,得到输 出结果;在反向传播阶段,根据输出结果与实际结果的误差,调整各层神经元的权重,以逐渐减小误差,提高模 型的准确率。
聚类问题
总结词
MLP神经网络在聚类问题中也有一定的应用,能够将相似的数据点聚集在一起,形成 不同的聚类。
神经网络基础PPT课件
AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。
神经网络理论基础PPT课件
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
神经网络介绍课件
自适应学习率:根 据训练过程自动调 整学习率,提高训 练效果
02
随机梯度下降法: 每次只使用一个样 本进行梯度下降, 提高训练速度
06
正则化:在损失函 数中加入正则项, 防止过拟合
03
批量梯度下降法: 每次使用所有样本 进行梯度下降,提 高训练精度
07
早停法:在训练过 程中监控验证集损 失,当验证集损失 不再下降时停止训 练,防止过拟合
演讲人
目录
01. 神经网络概述 02. 神经网络结构 03. 神经网络预测性 04. 神经网络案例分析
神经网络基本概念
01 人工神经网络(Artificial
02 神经元(Neuron):神经网
Neural Network, ANN):
络的基本单元,接收来自其他
模拟人脑神经网络的结构和功
神经元的输入信号,进行加权
场景
自动驾驶:实现 自动驾驶汽车的
感知和控制
语音识别:将语 音信号转换为文
本
自然语言处理: 理解并生成自然
语言
模型构建
数据预处理:对数据进行清洗、标准化和归一化 等处理
模型选择:根据问题选择合适的神经网络模型, 如卷积神经网络、循环神经网络等
模型训练:使用训练数据训练模型,调整参数以 优化性能
模型评估:使用测试数据评估模型的性能,如准 确率、召回率等指标
04
动量法:在梯度下 降过程中引入动量 项,提高训练速度
数据预处理
A
数据清洗:去除异常值、 缺失值等
B
数据归一化:将不同特征 值缩放到同一范围
C
数据分块:将数据划分为 训练集、验证集和测试集
D
数据增强:通过相关性:选择与目标变量相关的特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
么与第i个神经元联接的权值wij和偏差值bi保持 不变 如果第i个神经元的输出是0,但期望输出为1, 即有ai=0,而ti=1,此时权值修正算法为:新 的权值wij为旧的权值wij加上输人矢量pj;新的 偏差bi为旧偏差bi加上1 如果第i个神经元的输出为1,但期望输出为0, 即有ai=1,而ti=0,此时权值修正算法,新的 权值wij等于旧的权值wij减去输入矢量pj;新的 偏差bi为旧偏差bi减去1
7 10/4/2018
则,几乎所有神经网络的学习规则都可以看作 Hebb学习规则的变形
误差校正规则
用已知样本作为教师对网络进行学习
学习规则可由二次误差函数的梯度法导出
误差校正学习规则实际上是一种梯度方法 不能保证得到全局最优解 要求大量训练样本,收敛速度慢 对样本地表示次序变化比较敏感
6 10/4/2018
Hebb学习规则
Donall Hebb根据生理学中条件反射机理,于
1949年提出的神经元连接强度变化的规则
如果两个神经元同时兴奋(即同时被激活),则它们 之间的突触连接加强
a为学习速率,Vi, Vj为神经元i和j的输出
Hebb学习规则是人工神经网络学习的基本规
感知器的基本功能是将输入矢量转化成0或1的
输出 根据输出值通过测试加权输入和值落在阈值函 数的左右对输入数据进行分类
14 10/4/2018
2.4 功能解释
这一功能可以通过在输人矢量空间里的作图来
加以解释
15 10/4/2018
以输入矢量r=2为例 对选定的权值w1、w2和b,可以在以p1和p2分别作 为横、纵坐标的输入平面内画出W*P+b=w1 p1十 w2 p2十b=0的轨迹 它是一条直线,此直线上及其线以上部分的所有p1、 p2值均使w1 p1十w2 p2十b>0,这些点通过由w1、 w2和b构成的感知器的输出为1;该直线以下部分的 点通过感知器的输出为0
2.5 网络学习与训练
上述用来修正感知器权值的学习算法在
MATLAB神经网络工具箱中已编成了子程序, 成为一个名为1earnp.m的函数。 只要直接调用此函数,即可立即获得权值的修 正量。此函数所需要的输人变量为:输入、输 出矢量和目标矢量(P、A和T) 调用命令为: [dW,dB]=learnp(P,A,T)
2.5 网络学习与训练
22 10/4/2018
训练算法 对于所要解决的问题,确定输入矢量P,目标矢量T, 并确定各矢量的维数及神经元数目:r,s和q; (1)参数初始化 a)赋给权矢量w在(—l,1)的随机非零初始值; b)给出最大训练循环次数max_epoch; ( 2 )初始化网络表达式。根据输人矢量 P 以及最新 权矢量W,计算网络输出矢量A; (3)检查过程。检查输出矢量A与目标矢量T是否相 同。如果是,或已达最大循环次数,训练结束,否 则转入(4) (4)学习过程。根据感知器的学习规则调整权矢量, 并返回(3)
20 10/4/2018
2.5 网络学习与训练
训练思想
在输入矢量P的作用下,计算网络的实际输出
21 10/4/2018
A,并与相应的目标矢量T进行比较,检查A 是否等于T,然后用比较后的误差量,根据学 习规则进行权值和偏差的调整 重新计算网络在新权值作用下的输入,重复 权值调整过程,直到网络的输出A等于目标 矢量T或训练次数达到事先设置的最大值时训 练结束
内容安排
一、内容回顾 二、感知机 三、自适应线性元件 四、内容小结
1 10/4/2018
一、内容回顾
生物神经元
人工神经网络结构
神经网络基本学习算法
2 10/4/2018
一、内容回顾
生物神经元 生物神经元模型 突触信息处理 信息传递功能与特点 人工神经网络结构 神经网络基本学习算法
17 10/4/2018
2.5 网络学习与训练
学习规则
用来计算新的权值矩阵W及新的偏差B
的算法
权值的变化量等于输入矢量 假定输入矢量P,输出矢量A,目标矢量为T
的感知器网络
18 10/4/2018
2.5 网络学习与训练
如果第i个神经元的输出是正确的,即ai=ti,那
19 10/4/2018
2.4 功能解释
Hale Waihona Puke 16 10/4/20182.5 网络学习与训练
当采用感知器对不同的输入矢量进行期望输出
为0或1的分类时,其问题可转化为对已知输入 矢量在输入空间形成的不同点的位置,设计感 知器的权值W和b 感知器权值参数设计目的,就是根据学习法则 设计一条W*P+b=0的轨迹,使其对输入矢量 能够达到所期望的划分
感知器特别适用于简单的模式分类问题,也可
用于基于模式分类的学习控制中 本讲中感知器特指单层感知器
11 10/4/2018
2.2 神经元模型
12 10/4/2018
2.3 网络结构
ni 第i个神经元加权输入和
ai第i个神经元输出,i=1,2,…,s
13 10/4/2018
2.4 功能解释
8 10/4/2018
无教师学习规则
这类学习不在于寻找一个特殊映射的表示,而
9 10/4/2018
是将事件空间分类为输入活动区域,并有选择 地对这些区域响应,从而调整参数一反映观察 事件的分部 输入可以为连续值,对噪声有较强抗干扰能力 对较少输入样本,结果可能要依赖于输入序列 在ART、Kohonen等自组织竞争型网络中采用
二、感知机
2.1 感知机简介 2.2 神经元模型 2.3 网络结构 2.4 功能解释 2.5 学习和训练 2.6 局限性
10 10/4/2018
2.1 感知机简介
感知器由美国计算机科学家罗森布拉特
(F.Roseblatt)于1957年提出 收敛定理
– F.Roseblatt证明,如果两类模式是线性可分的(指 存在一个超平面将它们分开),则算法一定收敛
3 10/4/2018
一、内容回顾
生物神经元模型
4 10/4/2018
一、内容回顾
生物神经元 人工神经网络结构 人工神经网络 人工神经元模型 常见响应函数 人工神经网络典型结构
神经网络基本学习算法
5 10/4/2018
一、内容回顾
生物神经元 人工神经网络结构 神经网络基本学习算法 权值确定 Hebb学习规则 误差校正学习规则 相近(无教师)学习规则