第四章 方差分析

合集下载

第四章+方差分析

第四章+方差分析

§4 方差分析¾问题的提出[引例1] 为研究光照条件对某种有机物降解速度的影响,在人工控制的六种不同光强条件下,测定了该有机物24小时内的降解速度。

光强条件重复测定结果117.724.827.925.224.3219.422.62722.123320.72120.518.818.6417.319.419.116.920.851719.49.111.915.8614.312.411.811.614.2光照条件是否影响该有机物的降解速度?-不同的光照条件下降解速度是否存在显著性差异?单因素方差分析¾问题的提出[引例2] 为比较3种松树在4个不同地区的生长情况有无差别,在每个地区对每种松树随机地选取5株,测量它们的胸径。

在不同地区松树的胸径是否存在显著性差异?双因素等重复方差分析¾问题的提出[引例3]为研究3种不同作物对污泥中镉吸收能力的差别,选择了4个地块进行栽培试验。

将每一个地块划分成三个小区,三种作物随机地分种在每个地块的三个小区上。

在所有地块上施用同等数量的污泥,作物收获后分别测定了其中镉的积累量(ug/kg):不同作物对镉的吸收是否有显著性差异?不同地块下作物对镉的吸收是否有显著性差异?双因素无重复方差分析§4 方差分析¾研究论文¾利用t 检验进行2个以上总体均值比较的弊端¾检验过程烦琐¾无统一的试验误差,犯第I类错误的概率增大=2510C ααα−10.4’10=0.05=(1-)=¾方法的提出英国统计学家R.A.Fisher于1923年提出方差分析方法(analysis of variance,ANOVA)。

方差分析的基本思想是:把全部数据关于总均值的离差平方和分解成几部分,每一部分表示某因素诸水平作用所产生的效应,将各部分均方与误差均方相比较,从而确认或否认某些因素或交互作用的重要性。

方差分析可用于多个样本均值的比较、分析多个因素的交互作用、方差的同质性检验、回归方程的显著性检验。

spass课件,教程,第四章_方差分析

spass课件,教程,第四章_方差分析

95% 置信区间
下限
上限
-.641 2.934
.676 4.251
-2.934
.641
-.388 3.021
-4.251 -.676
-3.021
.388
多重比较结果,从表中可知密度1和密度3两两之间差异显著;密度1和2, 2和3之间差异不显著。
第四章 方差分析
(analysis of variance, 简称为ANOVA)
温度 30℃ 101
79 60
35℃ 89 80 67
第四章 方差分析
(analysis of variance, 简称为ANOVA)
第四章 方差分析
(analysis of variance, 简称为ANOVA)
第四章 方差分析
(analysis of variance, 简称为ANOVA)
单变量单因子方差分析
单变量方差分析属于广义线性模型(General Linear Model)中的 一部分, 本分析包括的范围非常广泛,既可以分析单因子,也可 以分析多因子,还可以进行协方差,最后给出方差分析表,并可 以进行多重比较。和单因子方差分析(One way ANOVA)相比, 单因子方差分析中的都可以在本分析中实现。
从表中可知,p=0.047<0.05,说明三个不同密度的燕麦产量差异显著。 进而可以进行多重比较。
多重比较结果,从表中可知密度1和密度3两两之间差异显著;密度1和2, 2和3之间差异不显著。
第四章 方差分析
(analysis of variance, 简称为ANOVA)
因变量: 温度
5.2 三个不同温度处理下的盆栽小麦的重量(g)分 别如下表所示,并且每一温度处理下的盆数(重复) 不相同,试问三种不同温度处理的小麦重量有无差 异。

第4章 方差分析(anova)实验设计和分析

第4章 方差分析(anova)实验设计和分析

第4章方差分析(ANOV A)实验设计和分析Catherine Potvin4.1生态学问题弄懂生态学问题需要将各种环境因子的影响分开,生态工作者用实验来解决这个问题。

不论在野外还是在控制环境条件下,可控实验都可以让生态工作者们只变化一个因子来检验其影响。

例如,生长箱能使生物体生长在完全相同的温度而不同的光周期的条件下,或相同的光强而不同温度条件下的实验成为可能。

在控制实验中,通常最希望的情况是环境‘背景’,即所有的影响因子, 不是自由地变化,而是精确地得到控制,这样就能够保证在改变目标变量时,观测的反应不会受到其它因素的影响。

因而控制环境条件, 例如使用生长箱和温室,成为植物生态学的一个常用的方法,如同动物生态学中使用的生长柜和水族槽一样。

本章第一部分,我要讲一下作为实验生态学基本工具的方差分析(ANOV A)。

本章重点放在实验设计上。

虽然人们一般认为生长箱会提供同一环境条件,但不论在一个生长箱内还是生长箱间都存在环境异质性(Lee和Rawlings 1982;Potvin等1990a),因而能够充分处理环境异质性的实验设计将在本章中述及。

尽管我的论述主要是以生长箱实验为基础,其原理在其它类型的控制或野外环境的实验研究中同样适用(第5,15和16章)。

我还要讨论错误实验设计的代价。

本章应视为实验设计的起步点,这个起步点就是要考虑各种影响因素。

实验者通常进行的实验比这里展开的要复杂。

但是一旦懂得了基本原理,讨论各种实验设计就相对简单一些。

更详细的论述请见Cochran & Cox(1957)和Winter(1991)。

4.2 统计问题:环境变化与统计分析正如Underwood(1997)建议的一样,生态实验设计的第一步是建立一个线性模型使研究者能够将感兴趣的变量(因素)独立出来。

由于实验设计支配误差项,建立线性模型取决于所研究的因子以及具体的实验设计。

在任何一个实验开始时,最基本的是要检验空间与时间变化的格局。

第四章协方差分析

第四章协方差分析

MSe
1 n
xi• x•• E XX
2
(4 18)
即:各处理的方差应具备齐性,它们都是从具有 同一方差的正态总体中的来的;个处理的回归系
数i均等于以及反应变量与协变量之间的回归 系数≠0。因此,在对一组数据做协方差分析时,
首先要对以上各个条件做检验。只有以上条件得 到满足时,才能做协方差分析。
yij i (xij x•• ) ij
i 1,2,, a
j
1,2,, n
(4 1)
其中yij是第 i 次处理所得到的反应变量的第 j 次
观察值。cij是相当于yij的协变量值。c··是cij的 平均数,是总平均数,i是第i次处理效应, 是yij在cij上的线性回归系数,ij是随机误差成份。 做协方差分析,需要满足以下几个条件:ij是 服从正态分布的独立随机变量;≠0,即yij与cij
变差来源
平方 和
回归 处理
误差 总和
S2XY/SXX SS’e-SSe=(SYY-S2XY/SXX)
-(EYY-E2XY/EXX) SSe=EYY-E2XY/EXX
SYY
自由度 1
a-1
a(n-1)-1 an-1
均方 (SS’e-SSe)/(a-1)
F (SS’e-SSe)/ (a-1)/MSe
MSe=SSe/[a(n-1)-1]
2
a i1
n j 1
yi2j
y•2• an
SXX
a i 1
n j 1
xij
x••
2
a i 1
n j 1
xi2j
x•2• an
a n
S XY
xij x••
i1 j1
yij y••

第四章 方差分析课件

第四章 方差分析课件




24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
5054
2050
608
7712
X
26
18
6
22.8
SS组内
(xij xi )2
ij
v组 内nk
组内均方 MS组内= SS组内/ 组内
三者关系:
1. SS总= SS组间+ SS组内 2. 总 = 组间 +组内
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
5054
2050
608
7712
X
26
18
6
22.8
表 5 .1 三 种 方 案 治 疗 后 血 红 蛋 白 增 加 量 ( g / L )



24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
6 108
8 48
21 338

STATA第四章t检验和单因素方差分析命令输出结果说明

STATA第四章t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。

原假设:H0:各组总体均数相同。

在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。

例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。

STATA第四章t检验和单因素方差分析命令输出结果说明

STATA第四章t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。

原假设:H0:各组总体均数相同。

在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。

例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。

第四章 方差分析2

第四章 方差分析2
得误均方 Se 估计,不同与两样本 t 检验仅用两组数据计
算标准误;
(2)同样都利用 t 分布临界表,该检验所用的自由度为误 差均方的自由度,而不是被比较的两个均数所确定的自由 度。
LSD检验的特点: (1)此方法实质上是 t 检验,这样会提高犯第一类错误的 概率。
(2)t 检验是适用于检验两个相互独立的样本平均数,因 此各被比较的两样本平均数在实验前已经指定,比如各试 验处理与对照的比较。
均数间的多重比较
SAS系统提供了14种不同的多重比较检验的方法, 各种比较检验的差别在于如何控制实验误差率 (EER)。某些方法是从整体上控制实验误差率, 而另一些方法只是将实验误差率控制在较小的范 围内。之所以出现不同的多种比较方法,实际上 是在I型错误和II型错误概率之间权衡利弊,因为 控制EER越严格,显著性检验的效能越低。
4.62
4.88
5.00
6.79
6.97
LSR0.05 1.50943.08 4.65 LSR0.01 1.5094 4.32 6.52
用上表的LSR值可进行不同M跨距的平均数间差异显 著性的检验。 如:大白与沈黑,M=4,极差=6.8>5.00,P<0.05
差异显著; 大白与沈花,M=2,极差=3.0<4.65,P>0.05 差异不显著。
k
数不是kn,而是 ni次,在计算平方和时公式稍有改变
(表8)。
i 1
表8 组内观测次数不相等的方差分析
变异来源
df
SS
s2
F
处理间
k 1
SSt
Tt2 C ni
st2
st2 se2
处理内
ni k SSe SST SSt

第四章方差分析2

第四章方差分析2

H A0 : µ1 = µ2 = L = µr ; H A1 : 至少存在一对µi ≠ µ j ,
1 s 1 设 : x i ⋅ = ∑ x ij , ( i = 1, 2, L , r ), x ⋅ j = s j =1 r 1 x = rs
H B 0 : µ1 = µ 2 = L = µr ; H B1 : 至少存在一对µi ≠ µ j ,
Y i ~ N ( µ i , σ 2 ), ( i = 1, 2 , L , r ), 且 相 互 独 立 , y ij 是 Y ij的 样 本 值 , 在 同 一 Y i 下 , 样 本 Y ij ~ N ( µ i , σ 2 )( j = 1, 2 , L , n i ) 也 相 互 独 立 ,
∴ µ i的 1 − α 置 信 区 间 为 : Yi ⋅ − tα / 2 ( n − r )
2 SE , Yi ⋅ + tα / 2 ( n − r ) ni ( n − r ) 2 SE ni ( n − r )
9
结束
就例1而言 就例 而言, 而言
αˆ 1 = y 1 ⋅ − y = 1 7 3 . 5 − 1 9 0 . 3 3 = − 1 6 . 8 3 , αˆ 2 = y 2 ⋅ − y = 1 8 7 . 7 5 − 1 9 0 . 3 3 = − 2 . 5 8 , αˆ 3 = y 3 ⋅ − y = 2 0 9 . 7 5 − 1 9 0 . 3 3 = 1 9 . 4 2 .
2 A
2 A
( r − 1) , S = S
2 E
2 E
2 SA ( n − r ) , F = 2 ~ F ( r − 1, n − r ). SE
6

第四章多个样本均数比较的方差分析

第四章多个样本均数比较的方差分析

第四章多个样本均数比较的方差分析方差分析的基本思想是通过比较各组或处理的均值差异与各组内的个体间差异来判断是否存在显著差异。

在进行方差分析之前,需要满足一些前提条件,如对总体的抽样是简单随机抽样、各样本之间是独立的等。

这些前提条件的满足保证了方差分析的可靠性。

多个样本的方差分析是通过计算组间离差平方和(SSTr)、组内离差平方和(SSE)和总离差平方和(SST)来比较各组或处理之间的差异。

计算公式为:SSTr = Σni(x̄i - x̄)²SSE = ΣΣ(xij - x̄i)²SST=SSTr+SSE其中,n是每组或处理的样本个数,ni是第i组或处理的样本个数,x̄i是第i组或处理的样本均值,x̄是全部样本的均值,xij是第i组或处理的第j个样本值。

通过计算SSTr和SSE,可以得到均方值(MS):MStr = SSTr / (r - 1)MSE=SSE/(N-r)其中,r是组或处理的个数,N是总样本个数。

接下来,需要计算F值,用于判断各组或处理均值是否有显著差异:F = MStr / MSE根据F值和自由度,可以查找F表来确定是否存在显著差异。

如果F 计算值大于F临界值,则拒绝原假设,表示均值之间存在显著差异。

方差分析还可以进行多重比较,用于确定具体哪些组或处理之间存在显著差异。

常用的多重比较方法有Tukey的HSD(最大均值差异)和Bonferroni方法。

方差分析的优点是可以同时比较多个样本的均值差异,具有较好的统计效应。

然而,方差分析也存在一些限制,如对正态性和方差齐性的要求较高。

总之,多个样本均数比较的方差分析是一种常用的统计方法,在科学研究和实验设计中得到广泛应用。

它可以帮助研究人员确定不同处理或组之间的差异,为决策提供支持。

正交检验的极差分析和方差分析(教学课堂)

正交检验的极差分析和方差分析(教学课堂)

(Yij i )2
(Yij i )2
i1 j1
令下列各偏导数为零
S 0,
S 0
i
(i=1,2,…,k)
特选课堂
2
第四章 方差分析
4.1 方差分析的基本概念和原理
表 4-1 对6种型号生产线维修时数的调查结果
序号 型号
A型 B型 C型 D型 E型 F型
1
9.5 4.3 6.5 6.1 10.0 9.3
2
8.8 7.8 8.3 7.3 4.8 8.7
特选课堂
3
11.4 3.2 8.6 4.2 5.4 7.2
第四章 方差分析
4.2.1 数学模型和数据结构
其中:
i 纯属Ai作用的结果,称为在Ai条件下Yi的真值(也称为
在Ai条件下Yi的理论平均). i是实验误差(也称为随机误差)。
i ~ N (0, 2 ) (4-2)
Yi ~ N (i , 2 )
其中, 和 都是未知参数(i=1,2,…,k).
i 2
i 1
Mean),它是比
较作用大小的一个基点;
特选课堂
14
第四章 方差分析
4.2.1 数学模型和数据结构
并且称
i i
为第i个水平Ai的效应.它表示水平的真值比一般
水平差多少。满足约束条件
1 2 k 0
(4-6)
可得
Yij i ij ;
i 0
i=1,2,…,k ;j=1,2,…,m

Ykj

Ykm
特选课堂
合计
T1 T2

Ti

Tk
平均
Y1 Y2

Yi

第4章 方差分析

第4章 方差分析
4/46
浙江科技学院本科课程《化工数据处理》
方差分析基本思想:
方差分析,是按变异的不同来源,将全部观察值总的
离均差平方和和自由度分解为两个或多个部分,除随机误 差外,其余每个部分的变异可由某个因素的作用加以解释, 通过比较不同来源变异的均方(MS),借助F分布做出统 计推断,从而了解该因素对观察指标有无影响。
1 k i , i i k i 1
xij i ij
(4-1)
若令
则(4-1)式可以改写为
xij i ij
(4-2)
其中, 为全试验观测值总体平均数; 显然有
i 是第i个处理的效应,表示处理i对试验结果产生的影响。

i 1
k
1. 假定从第i个总体中抽取一个容量为ni的简单 2.
随机样本,第i个总体的样本均值为该样本的 全部观察值总和除以观察值的个数 计算公式为
xi
x
j 1
ni
ij
ni
(i 1,2,, k )
18/46
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
浙江科技学院本科课程《化工数据处理》
12/46
浙江科技学院本科课程《化工数据处理》
三、问题的一般提法
1. 设因素有k个水平,每个水平的均值分别用 1 , 2, , k 表示 2. 要检验k个水平(总体)的均值是否相等,需要提 出如下假设: H0 : 1 2 … k H1 : 1 , 2 , ,k 不全相等
2. 3. 4.
差平方和 反映各总体的样本均值之间的差异程度,又称组 间平方和 该平方和既包括随机误差,也包括系统误差 计算公式为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差分析法的内容丰富,本章仅讨论单因素试 验、双因素试验的方差分析.
6
第一节 单因素试验的 方差分析
7
在统计学中我们把要考察的试验结果称为指标, 把影响指标取值的可以控制的试验条件称为因素,
因素常用大写的英文字母 A , B , C 等来表示.
每个因素在试验中所处的不同状态称为水平.如
因素 A 有 r 个水平,则用
考察的指标为 X ,影响指标的因素 A 有 r 个水平: A1, A2, , Ar .
Ai 水 平 所 对 应 的 总 体 X i ~ N i , 2 ,
i 1, 2, , r .其中 i 与 2 都未知,但这 r 个总体
X1, X2, , Xr 的方差相等,这是方差分析的前提假
设.
14
从总体 X i 中抽取容量为 ni 的样本:
SE nr
n r.
34
SA
于是 F
r 1 SE
可作为假设 H0 的检验统计量.对于给定的
nr
显著性水平 ,由
PF F1 r 1, n r ,
得到检验的拒绝域为
W F F1 r 1, n r.
如果 F F1 r 1, n r ,则拒绝原假设 H0 ,即认为
因素 A 的 r 个水平的效应有显著差异;如果
r 1 SE

nr
SA
接近于1.反之,如果假设 H0 不成立,比值
r 1 SE
将有变大
nr
的趋势.这就启发我们,通过比较 S A 与 SE 的大小来比较假
设 H0 .
31
我们记
SA F r 1 SA ,
SE SE
nr
这里 SA
SA r 1

S
E
SE nr
.下面我们将导出当假设
SA
H0 成立时,统计量 F
10
例 1 某商店要进一批一号电池,由甲乙丙三个电池厂提供货
源.为评价其质量,商店进货员从三个电池厂生产的电池中各随机
抽取 4 只,经试验测试寿命(单位: h )数据如下表:
表 1 电池寿命数据
试验序号
厂家 A
A1
A2
A3
1
74
79
82
2
69
81
85
3
73
75
80
4
67
78
79
试问在显著性水平 0.05下,各厂生产的电池的寿命有无显著性
Xi1, Xi2, , Xini , i 1, 2, , r .
并设这 r 个样本相互独立.于是
Xij ~ N i, 2 , j 1, 2, , ni .
15
Xij 与 i 的差值可以看作是一个随机误差: 的一些因素所引起的,这样 X ij 就有如下的数据结构:
和.它反映了全部观测数据之间的差异,即 X ij 之间的波
动程度. 21
若令
ni
Xi Xij j 1
则有
1 ni
Xi ni
X ij
j 1
r
ST
ni
Xij X 2
i1 j 1
r ni
X ij X i Xi X 2
i1 j1
r
ni
Xij Xi 2 2 r
r
ST
ni
r
X ij X i 2
ni
Xi X 2
i1 j1
i1 j1
r
ni
r
X ij X i 2 ni X i X 2
i1 j1
i 1
23
若记
r
SA ni X i X 2 ,
i 1
r
SE
ni
Xij Xi 2 ,
i1 j 1
则有
ST SA SE ,
差异?
11
在这个例子中,厂家是影响寿命指标 X 的因 素,记作 A ,三个不同的工厂就是该因素 A 的
三个不同的水平,分别记作 A1, A2, A3 .可
以认为一个水平的电池水平的电池寿命就是一
总体,记为 X i ,
12
假设
Xi ~ N i, 2 , i 1, 2, 3.
其中 i 与 2 都未知,但方差相等.由题意知,要检验假设
39
例 2 某试验室对钢锭模进行选材试验时, 将 4 种成分的生铁做成试样作热疲劳测定.其 方法是将试样加热到 700℃后投入到 20℃的 水中急冷,这样反复进行直至试样断裂,最后 看试样经手的次数.显然经受的次数越多,质 量就越好.
试验结果列于下表,试检验 4 种生铁的试样 的抗疲劳性能是否有显著差异?
ni
Xij Xi Xi X
r
ni
Xi X 2 ,
i1 j 1
i1 j 1
i1 j 1
22
对于固定的 i ,有
ni
ni
ni
X ij X i X ij X i
j 1
j 1
j 1

ni
X ij ni X i ni X i ni X i 0
j 1
因此上式中的第二项为 0 ,所以有
r
方和 ni X i X 2 正是这种差异大小的度量.而式中
i 1
每一项前面的系数 ni ,则反映了第 i 个总体样本容量的
大小在平方和 S A 中的作用.通常称 S A 为因素 A 的效应
平方和或者组间离差平方和. 26
上述表明,平方和分解公式将总离差平方和
ST 按其来源分解成两部分:一部分是 SE ,即
A1, A2, , Ar
表示.
8
如果在一项试验中只有一个因素在变化,其他 可以控制的试验条件不变,则称这种试验为单因 素试验.
在单因素试验中,如果只有两个水平,就是上 章讲过的两总体均值的比较问题;超过两个水平 时,就是多个总体均值的比较问题,这可用本节 将要讨论的单因素试验的方差分析来解决.
9
1、数学模型
H1 : 1, 2, , r 不全相等
17
为便于讨论,我们记
r
n ni , i 1
1 n
n i 1
ni i

称 n 为样本总容量,称 为总平均.又记
i i , i 1, 2, , r .
称 i 为因素 A 的第 i 个水平 Ai 对指标 X 的效应.易见,这 r 个效应
1, 2, , r 应满足
F F1 r 1, n r ,则接受原假设 H0 ,即认为因素 A
的 r 个水平的效应没有显著差异.
35
上述分析结果场总结成下表的形式,称为方差分析表. 方差分析表
方差来源 平方和
因素 A
SA
误差
SE
总和
ST
自由度
r 1 nr n 1
均方
SA
SA r 1
SE
SE nr
F值 F SA
SE
临界值
H0 : 1 2 3 ,
H1 : 1, 2, 3 不全相等
是否成立,如果否定 H0 ,则认为三家工厂的电池寿命有显著差异;如
果接受 H0 ,则认为三家工厂的电池寿命没有显著性差异,其差异只是
随机因素引起的.以下我们将会看到,方差分析法是处理假设上述检验 问题的有效方法.
13
单因素试验方差问题的一般提法是:设在单因素试验中所
r
r
r
r
nii ni i nii ni n n 0 ,
i 1
i 1
i 1
i 1
18
则(8.1.3)式等价于
H0 : 1 2 r 0 ,
H1 : 1, 2, , r 不全为零
这样模型(8.1.2)式就可表示为
Xijij~N
i ij 0, 2 ,
j 1,
4
方差分析是我们在第六章已提到过的 英国大统计学家 Fisher 在 20 世纪 20 年 代创立的.方差分析法首先被应用于农 业试验,其后被应用于工业,生物学, 医学等许多方面,在这诸多领域的数据 分析工作中,取得了很大的成功.
5
方差分析本质上是关于多个具有方差齐性的 正态总体,对其均值作检验与估计的统计方 法.因其统计分析的依据是通过分析离差平方和 给出的,故习惯上称之为方差分析.
我们称上式为平方和分解式.
24
这里,SE 表示了随机误差(因素)的影响.因为对于
固定的 i ,所有的观测值
Xi1, X i 2, , Xi ni 都是来自同一正态总体 N i , 2 的样本,因此它们之
间的差异完全由随机误差( ij X ij i )所至.而
ni Xij Xi 2 是这 ni 个数据的变动平方和,正是它们
ni
X
2 ij
2

j1
SE ST SA .
37
当 n1 n2 nr s 时,称为等重复试验,并有
ST
r i 1
s j 1
X
2 ij
1 n
i
r 1
s j 1
2 Xij ;
2
2
SA
1 s
r i 1
s j 1
X ij
1 n
r i 1
s j 1
X
2 ij

38
3、应用举例
r 1 SE
SA SE
的分布.
nr
32
定理 在单因素试验的方差分析模型中, SE
2 服从自由度为 n r 的 2 分布,即
SE
2
~
2n r .
33
进一步我们还可以证明,当假设 H0 为真
时,有
SA
2
~
2r
1,
并且 S A 与 SE 相互独立.因此,当假设 H0 成
立时,有
相关文档
最新文档