氨氮对厌氧发酵的影响

合集下载

氨氮对厌氧菌的抑制作用 Microsoft Word 文档

氨氮对厌氧菌的抑制作用 Microsoft Word 文档

氨氮对厌氧菌的抑制作用在进水COD的质量浓度为7000mg/L,有机负荷为48kg[COD]/(m3·d),水力停留时间为3.5h,回流比为12,水力上升流速为3.38m/h 的条件下,当氨氮的质量浓度小于200mg/L 时,对厌氧反应器中的微生物有刺激作用;当氨氮的质量浓度在200~500mg/L 时,氨氮浓度的增加对微生物无不利影响,反应器趋于稳定状态,COD去除率为96%左右;当氨氮的质量浓度在500~2 000 mg/L 时,氨氮浓度的变化会对微生物产生短暂的抑制作用,但经过短期的驯化之后即可恢复到原来的状态,此阶段系统运行不稳定;氨氮的质量浓度大于2000mg/L 时,则有明显的抑制作用;氨氮的质量浓度达到2736mg/L时,产气量降为47.59L/d,为初始产气量的一半,挥发性有机酸的质量浓度急剧升高至265mg/L,系统出现明显的酸化现象。

整个试验过程中,碱度、pH值以及SS随着氨氮浓度的增加稍有增加,但pH值变化不大,基本维持在6.8~7.5。

厌氧条件下,高浓度蛋白质和氨基酸废水降解将会产生高浓度的氨氮。

氨氮对厌氧菌的厌氧消化过程是有毒的,将会减少厌氧消化的效率和干扰厌氧消化过程。

国外许多学者研究了氨氮浓度对厌氧消化过程中厌氧微生物的影响。

Koster等研究了氨氮的质量浓度在0.68~2.60g/L 时,氨氮浓度对污泥产甲烷活性的影响,发现当氨氮的质量浓度在1. 60 ~1.70 g/L 时,污泥的产甲烷活性急剧降低。

EGSB反应器是在UASB反应器基础上发展起来的第3代厌氧反应器。

它采用较大的高径比,相比第2代厌氧反应器,占地面积更小,投资更省,并采用了出水回流,增强了传质过程,在处理低温低浓度的污水以及高浓度或有毒性工业废水方面有着其它厌氧反应器所不可比拟的优势。

目前,EGSB反应器主要集中在低温低浓度废水、含硫酸盐废水以及有毒、难降解有机废水的治理与研究。

但是,对于含氨氮废水的研究,国内外鲜有报道,如何有效地处理高浓度氨氮废水,预防工程应用中出现不可估量的损失,有必要对EGSB 处理高浓度有机废水的过程中氨氮浓度对运行效果影响进行研究,为工程实践提供宝贵的试验数据。

厌氧生物处理的影响因素

厌氧生物处理的影响因素

厌氧生物处理的影响因素厌氧生物处理的基本原理三阶段论——1979年由Bryant提出1) 水解阶段:碳水化合物(脂肪、蛋白质)在水解发酵菌作用下转化为糖类、挥发性脂肪酸VFA、(较高级有机酸)氨基酸、水和二氧化碳;2) 酸化阶段(产酸产乙酸阶段):挥发性脂肪酸在产氢产乙酸菌作用下转化成H2、CO2、乙酸: CH3CH2COOH→CO2↑+CH3COOH+H2↑3) 产甲烷阶段:最后两组生理不同的产甲烷菌,有共同的产物:4H2+CO2→CH4↑+2H2O —— (28%)CO2被还原的反应2CH3COOH→2CH4↑+2CO2↑ —— (72%)乙酸脱羧的反应 ,CH3COOH脱羧。

厌氧生物处理的影响因素(1) 温度。

存在两个不同的最佳温度范围(55℃左右,35℃左右)。

通常所称高温厌氧消化和低温厌氧消化即对应这两个最佳温度范围。

甲烷菌对温度的适应性很差,根据其生存的适宜温度范围,甲烷菌可分为两类,即中温甲烷菌(适宜温度33-35℃)和高温甲烷菌(适宜温度50-53℃)。

当温度超出适宜温度范围时,厌氧消化反应速率则急剧下降。

厌氧消化的允许温度波动范围为±1.5-2.0℃。

当波动范围为±3℃时,就会严重抑制消化速率。

当波动范围超过±5℃时,就会使有机酸大量积累而破坏厌氧消化过程的正常运行。

(2) pH值。

厌氧消化最佳pH值范围为6.8~7.2。

产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5-8.0之间。

产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0-7.2,pH6.6-7.4较为适宜。

在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5-7.5(最好在6.8-7.2)的范围内。

(3) 有机负荷。

① 厌氧生物反应器的有机负荷通常指的是容积负荷,其直接影响处理效率和产气量。

厌氧生物处理的制约因素

厌氧生物处理的制约因素

厌氧生物处理的制约因素在厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等。

在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。

那么厌氧生物处理的制约因素是什么呢?生物处理是指什么呢?今天就带大家来了解一下这些固体废弃物安全小知识。

影响厌氧生物处理的主要因素有如下:pH、温度、生物固体停留时间、搅拌和混合、营养与C/N比、氧化还原电位、有机负荷、厌氧活性污泥、有毒物质等。

(1)温度。

存在两个不同的最佳温度范围(55℃左右,35℃左右)。

通常所称高温厌氧消化和低温厌氧消化即对应这两个最佳温度范围。

甲烷菌对温度的适应性很差,根据其生存的适宜温度范围,甲烷菌可分为两类,即中温甲烷菌(适宜温度33-35℃)和高温甲烷菌(适宜温度50-53℃)。

当温度超出适宜温度范围时,厌氧消化反应速率则急剧下降。

厌氧消化的允许温度波动范围为±1.5-2.0℃。

当波动范围为±3℃时,就会严重抑制消化速率。

当波动范围超过±5℃时,就会使有机酸大量积累而破坏厌氧消化过程的正常运行。

(2)pH值。

厌氧消化最佳pH值范围为6.8~7.2。

产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5-8.0之间。

产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0-7.2,pH6.6-7.4较为适宜。

在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5-7.5(最好在6.8-7.2)的范围内。

(3) 有机负荷。

(4)营养物质。

厌氧法中碳:氮:磷控制为200-300:5:1为宜。

在碳、氮、磷比例中,碳氮比例对厌氧消化的影响更为重要。

研究表明,合适的C/N为10-18:1。

(5)氧化还原电位。

氧化还原电位可以表示水中的含氧浓度,非甲烷厌氧微生物可以在氧化还原电位小于+100mV的环境下生存,而适合产甲烷菌活动的氧化还原电位要低于-150mV,在培养甲烷菌的初期,氧化还原电位要不高于-330mV。

厌氧生物处理的特点

厌氧生物处理的特点

厌氧生物处理的特点厌氧生物处理,也称为厌氧消化或厌氧发酵,是一种在无氧环境下利用微生物将有机废弃物转化为甲烷、二氧化碳等小分子有机物和无机物的生物技术。

这种处理方法在环境保护、能源利用以及农业废弃物处理等领域具有广泛的应用前景。

本文将详细介绍厌氧生物处理的特点。

厌氧生物处理具有高效性。

在无氧环境下,微生物通过厌氧呼吸将有机物转化为能量和新的细胞物质。

由于没有氧气竞争,厌氧微生物能够更有效地利用有机物中的能量,使得处理效率高于传统的好氧处理方法。

厌氧生物处理能够产生能源。

在转化有机物的过程中,厌氧微生物会产生大量的甲烷和二氧化碳等小分子有机物,这些物质可以用于生产燃料和化工产品。

因此,厌氧生物处理不仅解决了废弃物处理问题,还为能源生产提供了新的途径。

再者,厌氧生物处理对环境的影响较小。

由于处理过程中不需要氧气,因此不会产生大量的氧化还原产物,对环境造成的污染较小。

同时,由于厌氧处理能够产生甲烷等可燃性气体,可以减少温室气体的排放,对气候变化产生积极影响。

厌氧生物处理能够促进农业废弃物的利用。

农业废弃物如畜禽粪便、秸秆等是丰富的有机资源,通过厌氧消化技术可以将其转化为能源和有机肥,促进农业废弃物的资源化利用。

厌氧生物处理具有高效性、能源产生、环境友好和促进农业废弃物利用等特点,使得它在废弃物处理、能源生产和环境保护等领域具有广泛的应用前景。

然而,厌氧生物处理也存在一些挑战,如启动慢、对水质和气候的适应性差等问题,需要进一步研究和改进。

未来,随着科技的进步和环保意识的增强,厌氧生物处理将在更多领域得到应用和发展。

污水厌氧生物处理的新工艺——IC厌氧反应器引言随着城市化进程的加快,污水处理已成为一个重要的环境问题。

厌氧生物处理作为一种污水处理技术,通过微生物的作用将有机污染物转化为无机物,具有节能、环保等优点。

然而,传统厌氧生物处理工艺存在处理效率低、效果差等问题,因此研发新型的厌氧生物处理工艺势在必行。

硝化细菌脱氨氮预处理对鸡粪和玉米秸秆混合厌氧发酵的影响

硝化细菌脱氨氮预处理对鸡粪和玉米秸秆混合厌氧发酵的影响

硝化细菌脱氨氮预处理对鸡粪和玉米秸秆混合厌氧发酵的影响翟佳宁;刘博林;车一一;董晓莹;王晓明;于美玲;周岩;邵丽杰;寇巍【摘要】在发酵温度为40℃,发酵底物TS含量分别为12%,16%和20%的条件下,将经过硝化细菌脱氨氮预处理的鸡粪以及未经预处理的鸡粪分别与玉米秸秆进行混合厌氧发酵,并研究发酵过程中沼气日产量、沼气累计产量、氨氮浓度、TS和VS 降解率等参数的变化规律.研究结果表明:在发酵过程的前15 d,当发酵底物的TS含量分别为12%,16%,20%时,经过预处理的试验组的沼气日产量平均值分别为593.1,550.9,355.1 mL/d,未经预处理的试验组的沼气日产量平均值分别为420.8,379.2,433.4 mL/d;与未经预处理的试验组相比,经过预处理的试验组的累积沼气产量更高;在整个发酵过程中,各试验组的氨氮浓度均呈现出逐渐上升的变化趋势;脱氨氮预处理能够提高发酵前物料的挥发性脂肪酸浓度;当发酵底物的TS含量分别为12%,16%和20%时,相比于未经预处理的试验组,经过预处理的试验组的TS降解率分别提高了1.9%,7.9%和17.4%,VS降解率分别提高了2.2%,3.3%和28.4%,纤维素降解率分别提高了1.1%,4.6%和26.0%,半纤维素降解率分别提高了0.1%,1.3%和25.5%.【期刊名称】《可再生能源》【年(卷),期】2019(037)006【总页数】7页(P796-802)【关键词】鸡粪;秸秆;硝化细菌;预处理;厌氧发酵【作者】翟佳宁;刘博林;车一一;董晓莹;王晓明;于美玲;周岩;邵丽杰;寇巍【作者单位】沈阳航空航天大学能源与环境学院, 辽宁沈阳 110136;辽宁省能源研究所有限公司, 辽宁营口115003;中国人民解放军空军工程大学信息与导航学院, 陕西西安 710077;沈阳农业大学工程学院,辽宁沈阳 110866;辽宁省能源研究所有限公司, 辽宁营口115003;辽宁省能源研究所有限公司, 辽宁营口115003;辽宁省能源研究所有限公司, 辽宁营口115003;沈阳航空航天大学能源与环境学院, 辽宁沈阳 110136;辽宁省能源研究所有限公司, 辽宁营口115003;辽宁省能源研究所有限公司, 辽宁营口115003;辽宁省能源研究所有限公司, 辽宁营口115003【正文语种】中文【中图分类】TK6;S216.40 引言我国是一个养殖大国,随着养殖业规模化和集约化地发展,每年产生了大量的畜禽粪便。

水体中氨氮超标的原因

水体中氨氮超标的原因

水体中氨氮超标的原因
水体中氨氮的超标是指水体中氨氮浓度高于规定的标准限值。

水体中氨氮超标
可能导致水质恶化,对生态系统和人类健康造成威胁。

以下是造成水体中氨氮超标的一些常见原因:
1. 农业污染:农业活动中使用的化肥和农药可能含有氮化合物,如尿素和氨基
甲酸酯。

这些化合物可以通过径流和农田排水进入水体,导致水体中氨氮超标。

2. 工业排放:许多工业过程中产生氨氮废水,如冶金、制药和化工等行业。


些废水未经适当处理直接排放到水体中,会导致水体中氨氮超标。

3. 厌氧发酵过程:在厌氧发酵过程中,有机物质会分解产生氨氮。

如果处理废
水的厌氧处理过程不充分或出现故障,会导致废水中氨氮浓度升高,进而超过水体的容忍限值。

4. 生活污水:城市和农村居民的污水排放中也含有氨氮。

如果污水处理厂的处
理效果不理想,或者没有进行适当的预处理,污水中的氨氮就可能超标。

5. 动植物排泄物:动物的尿液和粪便中含有氨氮,当农田和养殖场的废物直接
进入水体时,会导致水体中氨氮超标。

以上是导致水体中氨氮超标的一些常见原因。

为了减少水体污染和氨氮的超标,我们应该加强废水处理和排放控制,推广有机农业和环保农业技术,加强生活污水处理设施的建设和管理。

此外,加强环境监测和监管也是改善水质的关键措施。

影响UASB性能的主要因素

影响UASB性能的主要因素

影响UASB性能的主要因素1、温度厌氧废水处理分为低温、中温和高温三类,其温度范围与相应的微生物生长范围相对:应。

迄今大多数厌氧废水处理系统在中温范围运行,以30℃~40℃最为常见,其最佳处理温度在35℃~40℃。

高温工艺多在50℃~60℃间运行。

低温厌氧工艺污泥活力明显低于中温和高温,其反应器负荷也相对较低,但对于某些温度较低的废水,低温工艺也是可供选择的方案。

2、PH值PH值是废水厌氧处理最重要的影响因素之一。

厌氧处理中,水解菌与产酸菌对PH有较大范围的适应性,但对PH敏感的甲烷菌适宜的生长PH为6.5~7.8,这也是通常情况下厌氧处理所应控制的PH值。

3、营养物与微量元素厌氧废水处理过程由细菌完成,因此应维持良好的细菌生长环境,保证细菌有足够的合成自身细胞物质的化合物。

依据组成细胞的化学成分,其中主要包括营养物氮、磷、钾和硫以及钙、镁、铁等其他的生长必须的少量的或微量的元素。

BOD5:N:P可控制在200:5:1,或C:N=12~16.4、碱度和挥发酸浓度传统理论认为要保证颗粒污泥的形成,反应器内碱度应维持在1000~5000mgCaCO3/L的范围内,如果反应器内的碱度小于1000mgCaCO3/L时,会导致其PH值下降;唐一等人在其研究中已经证实,保证UASB反应器内的污泥颗粒化的最低碱度是750mgCaCO3/L。

在UASB 反应器中,挥发酸的安全浓度控制在2000mg/L(以HAC计)以内,当VFA的浓度小于200mg/L 时,一般是最好的。

5、进水中悬浮固体浓度的控制对进水中悬浮固体(SS)浓度的严格控制要求是UASB反应器处理工艺与其他厌氧处理工艺的明显不同之处。

一般来说,废水中的SS/COD的比值应控制在0.5以下。

6、有毒有害物质的控制①氨氮浓度的控制氨氮浓度的高低对厌氧微生物产生2种不同影响。

当其浓度在50~200mg/l时,对反应器中的厌氧微生物有刺激作用;浓度在1500~3000mg/l时,将对微生物产生明显的抑制作用。

厌氧消化过程氨氮抑制解除方法

厌氧消化过程氨氮抑制解除方法

厌氧消化过程氨氮抑制解除方法有机废物厌氧消化过程中,特别是针对高氮原料(餐厨垃圾、粪便、食品加工废物等)而言,氨氮是一个十分重要的控制条件,在厌氧消化过程中,由于厌氧微生物的细胞增殖很少,因此只有很少量的氮被转化成为细胞物质,大部分可生物降解的有机氮都被还原为消化液中的氨氮,氨氮是微生物重要的氮源,并且在反应过程中能够中和厌氧消化产生的挥发性有机酸,对系统的pH具有缓冲作用,但若其浓度过高,将会影响微生物的活性、抑制甲烷菌的活性。

对于接触氨氮抑制的方法,目前主要通过不同反应器类型、不同发酵温度、不同微生物种群和添加外源物这四个方面进行研究。

一、不同反应器类型解除氨氮抑制单相厌氧反应器和两相厌氧消化反应器所能承受的氨氮抑制浓度不同,对于单相反应系统而言,由于反应器中的液体是出于高度混合的状态,小生境容易遭到破坏,所以微生物极易受到高浓度物质的抑制;另外,混合完全的溶液会溶出更多的氮,所以单相反应器易受到氨氮的一直,而两相厌氧反应器是把水解酸化微生物和产乙酸产甲烷微生物分别放置于各自最优的生态环境中,最大程度的提高了系统的稳定性。

因此,两相消化系统对于氨氮抑制有更强的抵制作用。

对于两种反应器能承受的最大氨氮浓度,有研究表明,对于能够产生5g/L NH4+的固体废物进行厌氧消化研究,在单相反应器中,当有机负荷率达到4kgVSm³/d时,系统受到破坏,反应失败;而对于两相消化反应器而言,最大的有机负荷率可达到8kgVSm³/d,此时甲烷菌也未受到抑制。

厌氧消化是由多种菌群参与作用的生物过程,这些微生物种群的有效代谢是互相影响、相互联结的,而两相厌氧消化会将这一有机联系的过程分开,这势必会改变中间代谢产物成分,对整个消化过程产生一定程度的影响。

所以,如选择两相反应器进行氨氮抑制解除,必须要采取的适当的相分离,从而创造有利于不同细菌的生态环境。

此外,由于高氮原料厌氧消化对反应器的最大有机负荷有一定的限制要求,因此在反应器和实验的设计过程中要考虑到发酵浓度和氨氮作用的敏感性。

厌氧消化出水中氨氮浓度对乙醇发酵的影响研究

厌氧消化出水中氨氮浓度对乙醇发酵的影响研究

厌氧消化出水中氨氮浓度对乙醇发酵的影响研究摘要:酒糟在厌氧消化过程中,其中所含蛋白质等有机氮物质会降解产生氨而留在厌氧消化出水中。

当厌氧消化出水回用于乙醇发酵配料水时,氨可作为酵母生长的氮源,但也可影响酵母代谢,从而影响乙醇产量。

本论文旨在研究氨对乙醇发酵的影响及提出可能的解决办法。

关键词:厌氧消化水氨氮浓度乙醇发酵影响研究全球对石油储备量的担忧以及化石燃料过度消耗造成的环境问题使得开发一种可再生和环境友好型燃料迫在眉睫。

生物质燃料就是其中一种化石燃料替代品(Zi et al.,2013)。

而在目前,燃料乙醇是其中一种最重要的生物质燃料,主要可以用糖或淀粉原料发酵生产(Bai et al., 2008)。

在淀粉质原料中,玉米由于其淀粉含量高、产量大等优点,无疑是一种很好的燃料乙醇生产原料,在美国和中国主要以玉米为原料生产乙醇(黄宇彤et al., 2002)。

但是,在木薯乙醇生产过程中,会产生大量高COD、高固形物含量的酸性废水(酒糟)(吴建华et al., 2006),正在限制乙醇工业的发展。

在国内的乙醇厂中,酒糟的处理工艺一般为“固液分离-厌氧消化-好氧消化-深度处理-排放”。

但是好氧消化和深度处理能耗大,而且还会产生大量剩余污泥需要额外处理,造成该工艺成本极高,降低了企业的效益(尹军et al., 2001)。

为了解决木薯乙醇酒糟处理面临的问题,我们提出将厌氧消化出水回用于乙醇发酵过程配料,而不再经好氧消化处理。

这样既可降低能耗和水耗,同时可实现废水的零排放。

但是,厌氧消化出水中含有大量的有机物和无机物,可能会对乙醇发酵产生潜在的抑制作用。

因此,有必要通过分析厌氧消化出水中潜在的抑制性物质来验证厌氧消化出水作为乙醇发酵配料水的可行性。

1 材料与方法1.1 材料菌种:安琪酵母。

玉米:购自南阳当地市场。

中温厌氧消化出水:取自河南天冠企业集团厌氧消化罐。

酶制剂:液体耐高温α-淀粉酶(20000 U/mL)、液体糖化酶(130000 U/mL),由无锡杰能科生物工程有限公司提供;其他所用试剂均为分析纯。

好氧堆肥与厌氧发酵异同点精选文档

好氧堆肥与厌氧发酵异同点精选文档

好氧堆肥与厌氧发酵异同点精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-好氧堆肥与厌氧发酵异同点陈蔷(轻工 12环1 09)摘要:好氧堆肥与厌氧发酵都是在微生物作用下有机物的降解过程,他们既有相同点又有不同点。

下面我将从原理、工艺流程、发酵阶段、影响因素等方面详细说明。

关键词:好氧堆肥、厌氧发酵正文:相同点:都是作用下的降解过程,需要的条件,包括营养元素合理分配、温度、pH等;降解有机污染物,杀灭病原体,提高N、P的比例,使生肥变成植物更易于吸收的熟肥。

不同点:原理不同:好氧堆肥是在有氧条件下,好氧菌对废物进行吸收、氧化、分解。

微生物通过自身的生命活动,把一部分被吸收的有机物氧化成简单的无机物,同时释放出可供微生物生长活动所需的能量,而另一部分有机物则被合成新的细胞质,使微生物不断生长繁殖,产生出更多生物体的过程。

厌氧发酵是废物在厌氧条件下通过微生物的代谢活动而被稳定化,同时伴有甲烷和CO2产生。

过程不同:好氧堆肥工艺流程主要是:前处理~主发酵~后发酵~后处理~贮存。

原料的预处理:包括分选、破碎以及含水率及碳氮比的调整。

首先去除废物中的金属、玻璃、塑料和木材等杂质,并破碎到40毫米左右的粒度,然后选择堆肥原料进行配料,以便调整水分和碳氮比,可以使用纯垃圾,垃圾和粪便之比为7:3或者垃圾与污泥之比为7:3进行混合堆肥。

原料的发酵阶段:我国大都采用一次发酵方式,周期长达30天,目前采用二次发酵方式,周期一般用20天。

一次发酵是好氧堆肥的中温与高温两个阶段的微生物代谢过程,具体从发酵开始,经中温、高温然后到达温度开始下降的整个过程,一般需要10—12天,高温阶段持续时间较长。

二次发酵指物料经过一次发酵后,还有一部分易分解和大量难分解的有机物存在,需将其送到后发酵室,堆成1—2米高的堆垛进行二次发酵并腐熟。

当温度稳定在40℃左右时即达腐熟,一般需20—30天。

餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述

餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述

的餐厨垃圾 固 相 C / N 为 10. 6 ~ 15. 6
,显著低于生
抑制作用比氢营养型产甲烷菌大,且乙酸营养型产甲烷
除油后的餐厨垃圾 在 较 高 有 机 负 荷 下 进 行 厌 氧 消 化
更敏 感,因 为 Methanosarcinaceae 在 高 FAN 条 件 下 也
[ 8]
积,最终导致系统崩溃。 本文对餐厨垃圾厌氧消化氨
和途径,对于餐厨垃圾厌氧消化的正常稳定运行具有重要 意 义。 通 过 文 献 调 研 阐 明 了 餐 厨 垃 圾 厌 氧 消 化 出 现 氨 氮 抑
制的微生物机理,总结了缓解氨氮抑制的相关方法,包括 提 高 物 料 C / N、运 行 参 数 优 化、氨 氮 去 除 和 微 生 物 驯 化,提 出
了未来缓解氨氮பைடு நூலகம்制的研究方向,为餐厨垃圾处理的实际工艺改进提供科学思路。
Therefore, feasible methods and possible pathways of alleviating ammonia inhibition was of great significance for the normal
and stable operation of anaerobic digesters treating food waste. In this paper, the ammonia inhibition mechanism of food waste
mg / L;T 为 热 力 学 温 度,K。 由 式 ( 2) 可 知:FAN 的 浓
1. 1 氨氮抑制微生物活性的原理
应器内甲烷产量大幅下降甚至不再产气
构会从乙酸营养型向互营乙酸发酵型转变 [ 12] 。

厨余垃圾厌氧消化处理难点及调控

厨余垃圾厌氧消化处理难点及调控

厨余垃圾厌氧消化处理难点及调控厨余垃圾厌氧消化处理难点及调控厨余垃圾产量⼤、有机物含量⾼、营养元素丰富,对其进⾏适当处理后资源化利⽤是厨余垃圾处理的发展⽅向。

厌氧消化可实现⽣物质能的⾼效利⽤,是厨余垃圾资源化、⽆害化处理的主要⽅法之⼀。

提升餐厨垃圾厌氧消化效率获得清洁能源及对消化产物的综合利⽤是⽬前研究的热点。

介绍了厨余垃圾的基本特性、厌氧消化的机理,总结厨余垃圾厌氧消化各阶段⾯临的问题,分析对应的国内外调控策略的优缺点及研究进展,并对今后厨余垃圾厌氧消化的调控新策略及产物再利⽤进⾏展望。

01厨余垃圾厌氧消化存在的问题1.厨余垃圾特性厨余垃圾的含⽔率较⾼,⼀般在80%左右,其余⼲物质以可降解有机物为主。

⼲物质中包括碳⽔化合物、蛋⽩质、脂肪、⽊质纤维素、油脂和少量的⾦属元素等。

其中,碳⽔化合物、蛋⽩质、脂肪的含量通常超过⼲物质的70%,具有较⾼的产甲烷潜⼒,使厨余垃圾的厌氧消化成为可能。

厨余垃圾的碳氮⽐(C/N)⼀般在10~30,符合厌氧消化C/N值在20~25的要求。

2.厌氧消化机理厌氧消化过程可分成⽔解、酸化、产⼄酸和产甲烷4个阶段。

⽔解阶段厨余垃圾中的碳⽔化合物、蛋⽩质和脂肪等悬浮颗粒有机质被微⽣物⽔解成如多糖、多肽和有机酸等可溶有机质;酸化阶段短链有机质被产酸菌降解成如葡萄糖、氨基酸、VFAs(挥发性脂肪酸)、NH3和H2S等;⼄酸化阶段葡萄糖和氨基酸被产⼄酸菌利⽤⽣成⼄酸、H2和CO2;甲烷化阶段产甲烷菌将⼄酸、H2转化成CH4和CO2。

3.厨余垃圾厌氧消化存在问题厨余垃圾的营养物质丰富,C/N符合厌氧消化的要求,但是总结近年国内外⽂献发现,厨余垃圾的厌氧消化仍然⾯临许多问题:1)厨余垃圾的颗粒较⼤,且其中复杂的有机质,如⽊质素和⾓蛋⽩在厌氧条件下⼏乎不可⽣物降解,⽽化合物如⽊质纤维素和细胞壁虽可⽣物降解,却很难被⽣物利⽤,这些因素都会减慢厨余垃圾的⽔解速度,延长厌氧消化的停滞时间。

2)与产酸菌相⽐,产甲烷菌的时代周期长,消耗有机酸的能⼒有限,且易受环境因素波动和重⾦属等有毒物质的影响,故当系统有机负荷较⾼时,VFAs的产⽣和消耗不平衡,易有系统酸化的情况出现。

氨氮对厌氧发酵的影响

氨氮对厌氧发酵的影响

氨氮对厌氧发酵的影响厌氧发酵是处理有机废弃物并实现其资源化利用的有效手段,然而厌氧发酵作为生物处理技术一种,必然存在着生化抑制反应。

存在的生化抑制反应主要有:pH抑制、氢抑制、挥发性有机酸(VFA)和氨氮的抑制等。

高浓度的氨氮就是有机废弃物厌氧生物处理中常遇到的一个难题。

本文阅读大量文献,集中研究氨氮在厌氧发酵过程中的产生机理、抑制浓度等规律,以期待解决或者避免氨氮在产甲烷发酵过程中的抑制反应情况,为今后的厌氧发酵提供理论和技术支持。

1氨氮的产生机理在有机垃圾厌氧消化的过程中,氮的平衡是非常重要的因素,尽管进入消化系统中的硝酸盐能被还原成氮气,但其仍将存在于系统中。

由于厌氧微生物细胞的增殖很少,只有很少的氮转化为细胞,大部分可生物降解的有机氮在厌氧发酵降解过程中形成水解产物-氨氮,主要以铵离子NH4+-N和游离氨NH3形式存在。

因此消化液中氨氮的浓度都高于进料的氨氮浓度,系统中的总氮是守恒的。

氨态氮主要是通过氨基酸的降解产生,其分解主要通过偶联进行氧化还原脱氮反应,这需要两种氨基酸同时参与,其中一个氨基酸分子进行氧化脱氮,同时产生的质子使另外一个氨基酸的两个分子还原,两个过程同时伴随着氨基酸的去除。

如丙氨酸和甘氨酸的降解:CH3CHNH2COOH(丙氨酸)+2H2O→CH3COOH+CO2+NH3+4H+CH2NH2COOH(甘氨酸)+4H+→2CH3COOH+2NH3两个反应合并即为:CH3CHNH2COOH+2CH2NH2COOH+2H2O→3CH3COOH+CO2+3NH3由于氨基酸的降解的能够产生NH3,因此在这一过程会影响到溶液的pH值。

NH3的存在对厌氧过程非常重要,一方面,NH3是微生物的营养物质,细菌利用氨氮作为其氮源,另一方面,NH3如果其浓度过高就会快速抑制甲烷菌的活性。

氨的存在形式有NH3和NH4+,两者的浓度决定于pH值。

NH3+H2O→NH4++OH-35℃时,K1×10-5 (1-1)K2×10-14 (1-2)两式相除,[NH3]=1.13×10-9有机酸积累,pH值降低,平衡向右移动,NH3离解为NH4+。

厌氧生物处理的影响因素

厌氧生物处理的影响因素

三、厌氧生物处理的影响因素——产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;——主要因素有:温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。

1、温度:●温度对厌氧微生物的影响尤为显著:●厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55︒C左右)和中温消化(35︒C左右);●高温消化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;●当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;●随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25︒C)进行,以节省能量和运行费用。

2、pH值和碱度:●pH值是厌氧消化过程中的最重要的影响因素;●重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.8~7.2,在<6.5或>8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;●厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;●厌氧体系是一个pH值的缓冲体系,主要由碳酸盐体系所控制;●一般来说:系统中脂肪酸含量的增加(累积),将消耗`HCO_3^-`,使pH下降;但产甲烷菌的作用不但可以消耗脂肪酸,而且还会产生`HCO_3^-`,使系统的pH值回升。

●碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;●厌氧体系一旦发生酸化,则需要很长的时间才能恢复。

3、氧化还原电位:●严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;●非产甲烷菌可以在氧化还原电位为+100~ -100mv的环境正常生长和活动;●产甲烷菌的最适氧化还原电位为-150~ -400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;4、营养要求:●厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P = 200:5:1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;②微量元素Ni、Co、Mo、Fe等;③有机微量物质:酵母浸出膏、生物素、维生素等。

厌氧氨氧化反应原理及工艺影响因素与应用

厌氧氨氧化反应原理及工艺影响因素与应用

厌氧氨氧化反应原理及工艺影响因素与应用厌氧氨氧化反应原理及工艺影响因素与应用厌氧氨氧化反应是一种利用厌氧细菌将氨氮转化为亚硝酸盐的过程。

这种反应在自然界中普遍存在,是氮循环的重要环节之一。

近年来,该反应在水处理和环境保护领域得到了广泛应用和研究,具有重要的理论和应用价值。

反应原理厌氧氨氧化反应是一种细菌通过代谢将氨氮转化为亚硝酸盐的过程。

该反应主要由两步反应组成,分别是氨氧化和反硝化反应。

1.氨氧化反应NH4+ + 1.5 O2 -> NO2- + 2H+ + H2O该反应由厌氧氨氧化细菌实现,通过将氨氮转化为亚硝酸盐,同时释放出能量。

这个过程与硝化反应不同之处在于,厌氧氨氧化反应需要氧气参与,但是氧气不是电子受体,而是提供能量的氧化剂。

2.反硝化反应2NO2- + 4H+ -> N2O +2H2O该反应由反硝化细菌实现,通过将亚硝酸盐还原为氧气。

这个过程也是一种代谢反应,因为反硝化细菌利用生成的电子来合成ATP,从而提供能量。

反应影响因素由于厌氧氨氧化反应受到多种因素的影响,因此实现厌氧氨氧化反应的条件也比较苛刻和复杂。

主要影响因素包括:1.厌氧菌生长条件:厌氧菌具有适宜的生长条件,包括温度、pH和氧化还原电位等。

2.氨氮浓度:在较低浓度下,厌氧氨氧化反应速率较快。

3.线性负荷:线性负荷是指单位时间内处理量的多少,该参数影响了反应的稳定性和效率。

4.系统反应器设计:反应器的形状、大小和分离装置等设计因素也会影响反应效率。

应用厌氧氨氧化反应在水处理和环境保护领域具有重要的应用价值。

主要应用于以下方面:1.氨氮的去除:厌氧氨氧化反应可实现氨氮的高效转化,可以有效地缓解城市污水处理厂中氮排放的问题。

2.生物氮去除的增强:厌氧氨氧化反应可结合其他生物处理方法实现氮的高效去除,提高处理系统的性能。

3.厌氧氧化反应用于工业废水处理,是一种高效、经济的处理方法。

4.氨氮沉积物的利用:反硝化反应产生的氮气可以被用于肥料生产,从而实现废水的再利用。

氨氮对厌氧氨氧化过程的抑制规律及调控策略

氨氮对厌氧氨氧化过程的抑制规律及调控策略

氨氮对厌氧氨氧化过程的抑制规律及调控策略袁砚;周正;林兴;王凡;李祥;顾澄伟;朱亮【摘要】氨氮是厌氧氨氧菌主要基质之一,但常常因浓度过高而产生脱氮速率不稳定,甚至微生物活性抑制的现象.为了有效避免氨氮对厌氧氨氧化菌活性的抑制,从抑制物形态、主要影响因素和抑制规律探讨了氨氮对厌氧氨氧化菌活性的影响及调控.结果表明,温度、pH值变化对氨氮、游离氨的形态及浓度变化产生重要影响.在恒定进水氨氮浓度500mg/L的情况下,将抑制状态下的pH值从7.9下降到7.3,经过44h运行厌氧氨氧化菌活性获得恢复.在不同进水氨氮浓度下,FA对厌氧氨氧菌活性的半抑制浓度不一样.半抑制浓度与抑制时间存在一定的曲线关系(y=732.38x-0.89).因此,恒定氨氮浓度的条件下,可以通过改变pH值避免FA对厌氧氨氧化菌活性的影响.在不同进水氨氮浓度下,除了考虑降低pH值,还可以通过缩短HRT来避免FA对厌氧氨氧化菌活性的影响.%NH4+-N was one of the important substrate for ANAMMOX bacteria. But instable nitrogen removal process often occurred and microbial activity even had inhibited by using ANAMMOX bacteria, because of high substrate concentration. In order to effectively avoid NH4+-N inhibition to anammox bacteria activity, the effect of NH4+-N on the activity of anammox bacteria was analysis by inhibitor morphology, main influence factors and inhibiting regularity. The results showed that temperature and pH were important impact on morphology and concentration changes between NH4+-N and FA. The ANAMMOX activity was recovered after 44h operation when the pH was decreased from 7.9 to 7.3under the influent concentration of NH4+-N was fixed at 500mg/L. Half maximal inhibitory concentration (IC50) of FA onANAMMOX was different when the influent concentration of NH4+-N was variety. IC50 of FA and inhibitory time under different NH4+-N concentrations have relationship (y=732.38x-0.89). Thus, we avoided the effect of FA on activity of anammox bacteria by changing the pH when the influent concentration of NH4+-N was constant. Besides pH decreased, HRT can also be shortened to avoid the effect of FA on activity of ANAMMOX bacteria, when the influent concentration of NH4+-N was fluctuate.【期刊名称】《中国环境科学》【年(卷),期】2017(037)009【总页数】6页(P3309-3314)【关键词】厌氧氨氧化;游离氨;半抑制浓度;控制策略【作者】袁砚;周正;林兴;王凡;李祥;顾澄伟;朱亮【作者单位】苏州科技大学环境科学与工程学院,江苏苏州 215002;苏州科技大学环境生物技术研究所,江苏苏州 215002;苏州科技大学环境科学与工程学院,江苏苏州 215002;苏州科技大学环境生物技术研究所,江苏苏州 215002;苏州科技大学环境科学与工程学院,江苏苏州 215002;苏州科技大学环境生物技术研究所,江苏苏州215002;苏州科技大学环境科学与工程学院,江苏苏州 215002;苏州科技大学环境生物技术研究所,江苏苏州 215002;苏州科技大学环境科学与工程学院,江苏苏州215002;苏州科技大学环境生物技术研究所,江苏苏州 215002;苏州科技大学环境科学与工程学院,江苏苏州 215002;苏州科技大学环境生物技术研究所,江苏苏州215002;苏州科技大学环境科学与工程学院,江苏苏州 215002;苏州科技大学环境生物技术研究所,江苏苏州 215002【正文语种】中文【中图分类】X703.1由于厌氧氨氧化反应在废水生物脱氮过程中显现出高效的脱氮效能和廉价的处理成本,而受到研究者广泛关注.近二十年来,研究者们对厌氧氨氧化反应及其功能微生物进行了大量而又深入的研究.结果表明,厌氧氨氧化反应广泛存在于自然界中,包括:海洋[1]、河流[2-3]、湖泊[4]、湿地[5]等等.只要环境适宜,接种不同性质的活性污泥(普通活性污泥[6]、甲烷化污泥[7]、海洋底泥[8-9]等)均能成功驯化出以厌氧氨氧化反应为主导的厌氧氨氧化污泥.但是研究者在富集培养过程中发现,厌氧氨氧化菌倍增时间较长,生长环境严格[10],导致厌氧氨氧化菌的驯化时间较长,严重制约着其工程化的运用[11].为了尽可能地缩短驯化时间,研究者对厌氧氨氧化菌反应机理及生长因子(温度[12-13]、pH[14]、DO[15-16]等等)进行了大量研究,寻求较短时间内尽快地富集更多厌氧氨氧化菌的控制参数,以便快速提高 NH4+-N与NO2--N 反应速率.NH4+-N是废水中主要的氮素形态,也是厌氧氨氧化菌的主要基质,但是过高的浓度又会对反应的稳定性产生影响,甚至会对生物活性产生完全抑制[14,17].一旦厌氧氨氧化菌活性受到抑制,一般需要较长的时间才能够得到恢复.虽有众多研究者发现并报道了过高 NH4+-N对厌氧氨氧化菌产生的抑制现象,但是产生抑制时对应的NH4+-N值相差甚大[17].同时很少考虑温度、pH值等运行参数与之联系,导致能够参考和利用的信息很少.因此本文在众多研究者所报道现象的基础之上,剖析NH4+-N对厌氧氨氧化菌生化反应过程影响及调控策略.旨在为今后厌氧氨氧化菌富集及高NH4+-N浓度下厌氧氨氧化反应稳定运行的控制参数选择及稳定运行提供一点参考.1.1 实验装置与控制条件实验装置采用内径16cm、有效体积4L的细胞培养罐(INFORS Labfors 3),由圆柱型玻璃制成,如图1所示.反应器外设有水浴夹套,通过控制循环水的温度将反应控制在(32±1)℃.反应器内设置DO和ORP电极(METTLER 4800)用于监测反应器内的溶解氧环境;设置 pH 电极(METTLER 405)在线实时监测反应过程中pH的变化,在必要的情况下,通过控制系统自动添加稀HCl(1mol/L)或 NaOH溶液(1mol/L)调节反应器内的 pH环境.反应器顶端设有搅拌装置,通过控制搅拌速度使得泥水充分混合,有利于反应完全.1.2 接种污泥接种污泥为经过 10a培养的厌氧氨氧化颗粒污泥,外观为鲜艳的红色,厌氧氨氧化特征明显.每次实验的厌氧氨氧化污泥接种量为120mL(量筒内10min沉淀后的体积).厌氧氨氧化污泥接种入反应器前经过超纯水清洗3次.1.3 模拟营养液营养液的主要成分为NH4+-N(由NH4HCO3按需配制)、NO2--N (由 NaNO2按需配制)、KH2PO427mg/L、CaCl2·2H2O 92mg/L、MgCl2·7H2O16.5mg/L,微量元素浓缩液1.25mL/L.微量元素浓缩液组分为:EDTA5000mg/L, ZnSO4·7H2O 430mg/L, CoCl2·6H2O 240mg/L, CuSO4·5H2O 250mg/L, NaMoO4·2H2O 220mg/L, NiCl2·6H2O 190mg/L, NaSeO4·10H2O 210mg/L, H3BO414mg/L.1.4 测定方法分析方法参见《水和废水检测分析方法》[18]. NH4+-N:纳氏试剂分光光度法;NO2--N 和NO3--N:戴安ICS-900/AS23离子色谱; pH值和ORP由在线监测探头测定.1.5 批式实验方法将等量的厌氧氨氧化污泥(120mL)分别接种入多组细胞培养罐,控制反应器的进水亚硝酸盐浓度为 100mg/L,不同进水氨氮浓度(500,1000,1500,2000,3000,4000,5000mg/L).同时控制反应器内pH值8.0,温度(32±1)℃,探讨不同进水氨氮浓度下,厌氧氨氧化菌活性的抑制情况.2.1 温度、pH值变化对水中 NH4+、游离氨(Free Ammonium,FA)浓度变化的影响水中 FA浓度的计算过程如式(1)所示[19],浓度变化除了与所处环境的 NH4+-N浓度有关,同时还与环境中温度、pH值变化密切关联.在含有200mg/LNH4+-N的水环境中,pH的变化对FA浓度变化产生巨大的影响(如图2A所示).当pH为6.5时,FA的浓度为 0.73mg/L;而当 pH上升到10.5时,FA的浓度为235.09mg/L.由此可见,在固定NH4+-N浓度的水环境中,pH对FA浓度的影响幅度相差近百倍,变化范围主要集中在 pH值为6.5~10.5.厌氧氨氧化反应是一个消耗H+,产生OH-的过程,pH值在厌氧氨氧化反应过程中随着底物的消耗一直处于不断上升的状态[20].一旦控制不好,将会造成厌氧氨氧化过程中 NH4+、FA浓度的巨大波动.温度对FA的影响趋势与pH相同,但变化幅度较小.在其他条件不变的条件下,当温度从20℃上升到40℃时, FA浓度的变化幅度仅相差3倍左右.因此温度和pH值对水环境中NH4+、FA的浓度变化起着重要作用,其中pH对FA的影响明显高于温度和NH4+-N浓度.因此研究 NH4+-N浓度对厌氧氨氧化菌活性影响时,必须考虑到当时环境中pH值的变化.式中:CFA为FA的浓度,mg/L;CtNH3为总NH4+-N浓度,mg/L; T为温度,℃. 2.2 NH4+-N存在形态及浓度对厌氧氨氧化反应的影响及解决方法FA对传统的生物脱氮反应(亚硝化反应、硝化反应)的影响已经得到研究者的广泛认同,并且通过控制环境中FA浓度可以很好地实现亚硝化和硝化过程分离[21].厌氧氨氧化作为一个新型的生物脱氮反应,NH4+-N存在形态及浓度对厌氧氨氧化反应的影响也受到广泛关注.Cema等[22]和 Dapena等[23]通过研究发现,对厌氧氨氧化菌产生抑制的物质不是离子态的 NH4+,而是NH4+所形成的FA.随后,Jung 等[24]发现当进水中FA浓度达到1.7mg/L就会对厌氧氨氧化过程产生抑制,当FA 浓度达到32mg/L时厌氧氨氧化反应将会完全终止.依据 Jung等[24]和 Jaroszynski等[25]的有关FA对厌氧氨氧化菌活性影响的研究结果,以 pH值为变量,NH4+-N浓度为因变量,绘制出FA浓度2mg/L(设定为出现抑制时浓度)和 35mg/L(设定为完全抑制浓度)的pH值与NH4+-N浓度的关系图,如图 3所示.由图 3可以看出,在不同的进水NH4+-N浓度下,当FA值小于2mg/L,即处于区域(A)时,厌氧氨氧化菌最适宜;而当 FA值大于2mg/L而小于35mg/L,即处于区域(B)时,厌氧氨氧化菌活性开始出现抑制,并随着 FA浓度的增加甚至产生完全抑制;而当FA值大于35mg/L,即处于区域(C)时,厌氧氨氧化菌将不适应此时的FA环境.并且从图 3中可以看出,在同样的进水NH4+-N浓度下,不同的pH值环境可以将厌氧氨氧化菌对 FA的适应性控制在不同的区域.同样甚至在较低的 NH4+-N浓度下也会产生抑制厌氧氨氧化菌活性的 FA浓度.同时也说明在保证pH值处于厌氧氨氧化菌活性范围内,可以通过调控pH值环境来避免FA对厌氧氨氧化的影响.为了探讨高NH4+-N浓度下,通过调节pH能否避免 FA对厌氧氨氧化菌活性的抑制.设定进水NH4+-N浓度500mg/L,NO2--N浓度100mg/L,反应器内pH值恒定在7.9.研究了反应器内厌氧氨氧化菌活性变化,如图 4所示.随着进水NH4+-N 浓度的提高,NO2--N开始不断积累.当反应器运行至 68h时,出水 NH4+-N浓度达到472mg/L,而NO2--N浓度累积到79.45mg/L,此时反应器内FA达到33.34mg/L,说明反应器内厌氧氨氧化菌活性产生了抑制.其他条件不变,当反应器运行至72h,仅将反应器内的pH值下降到7.3,此时反应器内的 FA 浓度下降到8.6mg/L, NH4+-N和NO2--N浓度也开始出现下降.当反应器运行至116h时,出水NH4+-N和NO2--N浓度分别为418.9mg/L和10mg/L,说明通过pH值的调控使得 FA浓度下降后,厌氧氨氧化菌的活性可以得到了恢复.因此通过 pH的调控可以实现厌氧氨氧化处理高NH4+-N浓度废水.2.3 NH4+-N对厌氧氨氧化反应的抑制规律及相应解决方法目前,在厌氧氨氧化污泥富集培养过程中,可以通过缩短HRT和提高基质浓度的方式提高反应器氮容积负荷.研究者在采用后者富集培养微生物时发现基质浓度过高而导致厌氧氨氧化菌活性受到抑制现象[26].Jaroszynski等[25]通过实验表明当FA浓度达到2mg/L时就会对厌氧氨氧化菌活性产生影响.Fernández等[27]发现当环境中FA浓度突然达到38mg/L时,厌氧氨氧化菌活性仅被抑制 50%;而将长期处于FA浓度为 35~40mg/L的环境时,厌氧氨氧化反应会变的极不稳定,反应速率甚至可能降到 0mg/L.Niu等[28]通过重复的抑制和恢复实验表明FA对厌氧氨氧化菌活性的半抑制浓度为 16~20mg/L.因此,众多研究者所报道的抑制值不一样,范围太大,并将其原因归咎于生物活性的不同.但是很少有研究者在研究过程中考虑到pH、温度等环境变化对 FA浓度的影响,研究过程并未做到环境因子的恒定.也未对抑制规律进一步阐述,因此无法供其他研究者参考.在进水pH值8.0,温度32℃的条件下研究了高 NH4+-N对厌氧氨氧化活性的抑制,设定进水NO2--N恒定在 104mg/L, NH4+-N初始浓度2000mg/L,如图5所示.经过9h的运行,反应器内FA浓度150mg/L,出水NO2--N上升到50mg/L以上.说明厌氧氨氧化菌活性受到抑制.在运行的10h,将进水氨氮浓度下降到1000mg/L,随着反应器内 FA的逐步下降,出水亚硝氮出现明显的下降.但是随着反应器持续运行至15h时,出水亚硝酸盐开始逐步上升,最终又上升到 50mg/L.在反应器运行的21h,将进水氨氮浓度下降到500mg/L,出水亚硝酸盐同样出现下降的现象,最低下降到18.2mg/L,但是随着运行时间的延长,反应器内的亚硝酸盐仍然有上升趋势.说明 FA对厌氧氨氧化菌活性的抑制并没有一个固定的值.为此,本实验在控制温度,pH值恒定的条件下,采用等量、等性能的厌氧氨氧化污泥,并且以半抑制浓度为参考指标,研究了不同 NH4+-N浓度对厌氧氨氧化菌活性的影响.当厌氧氨氧化菌活性达到半抑制时所对应的FA浓度和所需要的时间(简称“抑制时间”)存在明显差异.随着进水NH4+-N浓度的增加,出现相同抑制效果时,存在半抑制浓度增大而抑制时间缩短的现象.为此,对数据进行拟合后发现,抑制浓度和出现抑制的时间存在一定的曲线关系:y=732.38x-0.89,R2=0.99,如图5所知.因此在利用提高NH4+-N浓度方式提高反应器脱氮效能或者利用厌氧氨氧化处理高NH4+-N废水时,遇到水质波动较大的情况,除了通过降低pH值的方法降低反应器内的FA,同时可考虑相应缩短高 NH4+-N浓度与厌氧氨氧化菌的接触时间,避免厌氧氨氧化菌活性的抑制.3.1 pH值和温度是影响水中NH4+-N和FA形态和浓度的重要影响因素,但是 pH 值的影响大于温度.3.2 在恒定进水NH4+-N浓度500mg/L的条件下,将pH值从7.9降低到7.3,可以避免FA对厌氧氨氧化菌活性的影响.因此通过 pH调节可实现高含氨废水的厌氧氨氧化脱氮处理.3.3 不同进水NH4+-N浓度下,厌氧氨氧化菌活性达到半抑制状态所对应的FA浓度和时间不同,并呈现良好的曲线关系.因此当反应器内氨氮浓度增高时,除了通过降低pH值避免FA对厌氧氨氧化活性的影响,还需要缩短厌氧氨氧化污泥与基质的接触时间.[1]Han Ping, Gu Ji-Dong. Further Analysis of Anammox Bacterial Community Structures Along an Anthropogenic Nitrogen-Input Gradient from the Riparian Sediments of the Pearl River Delta to the Deep-Ocean Sediments of the South China Sea [J]. Geomicrobiology Journal,2015,32(9):789-798.[2]Wang S Y, Zhu G B, Peng Y Z, et al. Anammox Bacterial Abundance, Activity, and Contribution in Riparian Sediments of the Pearl River Estuary [J]. Environmental Science Technology, 2012,46(16):8834-8832.[3]Osaka T, Kimura Y, Otsubo Y, et al. Temperature dependence for anammox bacteria enriched from freshwater sediments [J]. Journal of Bioscience and Bioengineering, 2012,114(4):429-434.[4]沈李东,胡宝兰,郑平,等.西湖底泥中厌氧氨氧化菌的分子生物学检测 [J]. 环境科学学报, 2011,31(8):1609-1015.[5]HumbertS, Zopfi J, Tarnawski S. Abundance of anammox bacteria in different wetland soils [J]. Environmental Microbiology Reports,2012,4(5):484-490.[6]Ding Z J, Ventorino V, Panico A, et al. Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity [J]. Water Air Soil Pollution, 2017,228(1): 108-119.[7]Ni S Q, Meng J. Performance and inhibition recovery of anammox reactors seeded with different types of sludge [J]. Water Science Technology, 2015,63(4):710-718.[8]Nakajima J, Sakka M, Kimura T, et al. Enrichment of anammox bacteria from marine environment for the construction of abioremediation reactor [J]. Applied Microbiology and Biotechnology, 2008,77(5):1159–1166. [9]kawagoshi Y, Nakamura Y, Kawashima H, et al. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria from sediment of sea-based waste disposal site [J]. Journal of bioscience andbioengineering, 2009,107(1):61- 63.[10]胡勇有,雒怀庆,陈柱.厌氧氨氧化菌的培养与驯化 [J]. 华南理工大学学报, 2002,30(11):160-163.[11]郝晓地,仇付国,van der Star WRL,等.厌氧氨氧化技术工程化的全球现状及展望 [J]. 中国给水排水, 2007,30(18):15-19.[12]Jung J Y, Kang S H, Chung Y C, et al. Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor [J]. Water Science Technology, 2007,55(1):459-468.[13]Jaroszynski L W, Cicek N, Sparling, et al. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor [J]. Chemosphere, 2012,88(2):188-195.[14]李祥,黄勇,袁怡.生物膜反应器厌氧氨氧化脱氮效能研究 [J]. 环境科学与技术, 2010,33(11):133-137.[15]李祥,黄勇,郑宇慧,等.温度对厌氧氨氧化反应器脱氮效能稳定性的影响 [J]. 环境科学, 2012,33(4):1288- 1292.[16]Awata T, Tanabe K, Kindaichi T, et al. Influence of temperature and salinity on microbial structure of marine anammox bacteria [J]. Water Science Technology, 2012,66(5):958-964.[17]He S L, Zhang Y L, Niu Q G, et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock [J]. Ecological Engineering, 2016,90:50-56.[18]李祥,黄勇,袁怡.DO在厌氧序批式生物膜反应器中对氨氧化反应启动的影响[J]. 环境污染与防治, 2009,31(10):43-47.[19]Cema G, Piaza E, Trela J, et al. Dissolved oxygen as a factor influencingnitrogen removal rates in a one-stage system with partial nitritation and Anammox process [J]. Water Science Technology, 2011,64(5):1009-1015.[20]Lotti T, van der Star W R L, Kleerebezem R, et al. The effect of nitrite inhibition on the anammox process [J]. Water Research, 2012,46(8):2559-2569.[21]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.中国环境科学出版社, 2002.[22]Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal of Water Pollution Control Federation, 1976,48(5):835-852.[23]van der Star W R, Dijkema C, Waard P, et al. An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR [J]. Applied Microbiology and Biotechnology, 2010,86(1):311-317.[24]Kim J H, Guo X J, Park H S. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation [J]. Process Biochemistry, 2008,43(2):154-160.[25]Cema G, PlazaE, Surmacz-Gorska J, et al. Study onevaluation of kinetic parameters for Anammox process [J]. In: IWA 2005 Proceed-ing Specialty Conference, 2005. Krakow, Poland, September 18-21.[26]Dapena-Mora A, Fernadez I, Campos JL, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme & Microbial Technology,2006,40(4):859-865.[27]Fernández I, Dosta J, Fajardo C, et al. Short and long-term effects of ammonium and nitrite on the Anammox process [J]. Journal of Environmental Management, 2012,95:170-174.[28]Niu Q G, He S L, Zhang Y L, et al. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation [J]. Bioresource Technology, 2016,203:132-141.【相关文献】[1]Han Ping, Gu Ji-Dong. Further Analysis of Anammox Bacterial Community Structures Along an Anthropogenic Nitrogen-Input Gradient from the Riparian Sediments of the Pearl River Delta to the Deep-Ocean Sediments of the South China Sea [J]. Geomicrobiology Journal, 2015,32(9):789-798.[2]Wang S Y, Zhu G B, Peng Y Z, et al. Anammox Bacterial Abundance, Activity, and Contribution in Riparian Sediments of the Pearl River Estuary [J]. Environmental Science Technology, 2012,46(16):8834-8832.[3]Osaka T, Kimura Y, Otsubo Y, et al. Temperature dependence for anammox bacteria enriched from freshwater sediments [J]. Journal of Bioscience and Bioengineering, 2012,114(4):429-434.[4]沈李东,胡宝兰,郑平,等.西湖底泥中厌氧氨氧化菌的分子生物学检测 [J]. 环境科学学报, 2011,31(8):1609-1015.[5]HumbertS, Zopfi J, Tarnawski S. Abundance of anammox bacteria in different wetland soils [J]. Environmental Microbiology Reports, 2012,4(5):484-490.[6]Ding Z J, Ventorino V, Panico A, et al. Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity [J]. Water Air Soil Pollution, 2017,228(1): 108-119.[7]Ni S Q, Meng J. Performance and inhibition recovery of anammox reactors seeded with different types of sludge [J]. Water Science Technology, 2015,63(4):710-718.[8]Nakajima J, Sakka M, Kimura T, et al. Enrichment of anammox bacteria from marine environment for the construction of abioremediation reactor [J]. Applied Microbiology and Biotechnology, 2008,77(5):1159–1166.[9]kawagoshi Y, Nakamura Y, Kawashima H, et al. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria from sediment of sea-based waste disposal site [J]. Journal of bioscience and bioengineering, 2009,107(1):61- 63.[10]胡勇有,雒怀庆,陈柱.厌氧氨氧化菌的培养与驯化 [J]. 华南理工大学学报, 2002,30(11):160-163.[11]郝晓地,仇付国,van der Star WRL,等.厌氧氨氧化技术工程化的全球现状及展望 [J]. 中国给水排水, 2007,30(18):15-19.[12]Jung J Y, Kang S H, Chung Y C, et al. Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor [J]. Water Science Technology, 2007,55(1):459-468.[13]Jaroszynski L W, Cicek N, Sparling, et al. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor [J]. Chemosphere,2012,88(2):188-195.[14]李祥,黄勇,袁怡.生物膜反应器厌氧氨氧化脱氮效能研究 [J]. 环境科学与技术,2010,33(11):133-137.[15]李祥,黄勇,郑宇慧,等.温度对厌氧氨氧化反应器脱氮效能稳定性的影响 [J]. 环境科学,2012,33(4):1288- 1292.[16]Awata T, Tanabe K, Kindaichi T, et al. Influence of temperature and salinity on microbial structure of marine anammox bacteria [J]. Water Science Technology,2012,66(5):958-964.[17]He S L, Zhang Y L, Niu Q G, et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock [J]. Ecological Engineering, 2016,90:50-56.[18]李祥,黄勇,袁怡.DO在厌氧序批式生物膜反应器中对氨氧化反应启动的影响 [J]. 环境污染与防治, 2009,31(10):43-47.[19]Cema G, Piaza E, Trela J, et al. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process [J]. Water Science Technology, 2011,64(5):1009-1015.[20]Lotti T, van der Star W R L, Kleerebezem R, et al. The effect of nitrite inhibition on the anammox process [J]. Water Research, 2012,46(8):2559-2569.[21]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法 [M]. 4版.中国环境科学出版社, 2002.[22]Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal of Water Pollution Control Federation,1976,48(5):835-852.[23]van der Star W R, Dijkema C, Waard P, et al. An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR [J]. Applied Microbiology and Biotechnology, 2010,86(1):311-317.[24]Kim J H, Guo X J, Park H S. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation [J]. Process Biochemistry, 2008,43(2):154-160.[25]Cema G, PlazaE, Surmacz-Gorska J, et al. Study onevaluation of kinetic parameters forAnammox process [J]. In: IWA 2005 Proceed-ing Specialty Conference, 2005. Krakow, Poland, September 18-21.[26]Dapena-Mora A, Fernadez I, Campos JL, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme & Microbial Technology, 2006,40(4):859-865.[27]Fernández I, Dosta J, Fajardo C, et al. Short and long-term effects of ammonium and nitrite on the Anammox process [J]. Journal of Environmental Management, 2012,95:170-174.[28]Niu Q G, He S L, Zhang Y L, et al. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation [J]. Bioresource Technology, 2016,203:132-141.Inhibiting regularity and control strategy of NH4+-N on ANAMMOX Process.YUAN Yan1,2, ZHOU Zheng1,2, LIN Xin1,2, WANG Fan1,2, LI Xiang1,2*, GU Chen-wei1,2, ZHU Liang1,2(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2150l1, China). China Environmental Science, 2017,37(9):3309~3314Abstract:NH4+-N was one of the important substrate for ANAMMOX bacteria. But instable nitrogen removal process often occurred and microbial activity even had inhibited by using ANAMMOX bacteria, because of high substrate concentration. In order to effectively avoid NH4+-N inhibition to anammox bacteria activity, the effect of NH4+-N on the activity of anammox bacteria was analysis by inhibitor morphology, main influence factors and inhibiting regularity. The results showed that temperature and pH were important impact on morphology and concentration changes between NH4+-N and FA. The ANAMMOX activity was recovered after 44h operation when the pH was decreased from 7.9 to 7.3under the influent concentration of NH4+-N was fixed at500mg/L. Half maximal inhibitory concentration (IC50) of FA on ANAMMOX was different when the influent concentration of NH4+-N was variety. IC50of FA and inhibitory time under different NH4+-N concentrations have relationship (y=732.38x-0.89). Thus, we avoided the effect of FA on activity of anammox bacteria by changing the pH when the influent concentration of NH4+-N was constant. Besides pH decreased, HRT can also be shortened to avoid the effect of FA on activity of ANAMMOX bacteria, when the influent concentration of NH4+-N was fluctuate.。

厌氧发酵介绍

厌氧发酵介绍

厌氧发酵是废物在厌氧条件下通过微生物的代谢活动而被稳定化,同时伴有甲烷和CO2产生。

原理液化阶段主要是发酵细菌起作用,包括纤维素分解菌和蛋白质水解菌,产酸阶段只要是醋酸菌起作用,产甲烷阶段主要是甲烷细菌,他们将产酸阶段产生的产物降解成甲烷和CO2同时利用产酸阶段产生的氢将CO2还原成甲烷。

影响厌氧发酵的影响因素有:原料配比,厌氧发酵的碳氮比以20—30为宜,当碳氮比在35时产期量明显下降;温度在35—40℃为宜;PH值对于甲烷细菌来说,维持弱碱环境是绝对必要的,它的最佳PH范围为6.8—7.5,PH值低,它使CO2大增,大量水溶性有机物和H2S产生,硫化物含量的增加抑制了甲烷菌的生长,可以加石灰调节PH,但是调整PH的最好方法是调整原料的碳氮比,因为底质中用以中和酸的碱度主要是氨氮,底质含氮量越高,碱度越大,当VFA(挥发性脂肪酸)>3000时,反应会停止。

厌氧发酵 - 三阶段理论第一阶段为水解发酵阶段,是指复杂的有机物在微生物胞外酶的作用下进行水解和发酵,将大分子物质破链形成小分子物质如:单糖、氨基酸等为后一阶段做准备。

第二阶段为产氢、产乙酸阶段,该阶段是在产酸菌如胶醋酸菌、部分梭状芽孢杆菌等的作用下分解上一阶段产生的小分子物质,生成乙酸和氢。

这一阶段产酸速率很快,致使料液pH值迅速下降,使料液具有腐烂气味。

第三阶段为产甲烷阶段,有机酸和溶解性含氮化合物分解成氨、胺、碳酸盐和二氧化碳、甲烷、氮气、氢气等。

甲烷菌将乙酸分解产生甲烷和二氧化碳,利用氢将二氧化碳还原为甲烷,在此阶段pH值上升。

这三个阶段当中有机物的水解和发酵为总反应的限速阶段。

一般来说,碳水化合物的降解最快,其次是蛋白质、脂肪,最慢的是纤维素和木质素。

联合厌氧发酵的这几种原料当中粪便是反应最快的物质几乎看不到酸化过程,剩余污泥次之,因为剩余污泥经过了污水处理的过程,这就相当于给了它一个预处理过程,接下来是生活垃圾当中分离出来的有机物,反应最慢的是厨余物。

猪粪干式厌氧消化系统氨氮变化规律及影响

猪粪干式厌氧消化系统氨氮变化规律及影响

猪粪干式厌氧消化系统氨氮变化规律及影响曹秀芹;张达飞;盛迎雪;郭非凡;李彩斌【摘要】在中温(36℃)条件下,进行了猪粪干式厌氧消化中试试验,以探索系统运行过程中氨氮的变化规律.研究表明,厌氧微生物没有足够的驯化时间,对氨氮的耐受力较低.为促进厌氧微生物对高浓度氨氮的耐受力,进行消化液回流以逐渐提高氨氮浓度.但是持续快速升高的氨氮浓度会造成氨氮抑制,为防止这种现象的发生,对出料进行固液分离后只进行沼渣回流,氨氮浓度稳定在5000 mg·L-1.为了进一步考察氨氮的变化规律再次变为回流消化液,系统氨氮浓度逐渐升高达到6000 mg·L-1,沼气产量由38 m3·d-1降为28 m3·d-1.说明沼渣回流比消化液回流对系统氨氮浓度能起到更好地控制作用.另外,酸碱比(VFA/TA)是否能作为系统稳定性指标,也会受到氨氮浓度的影响.%A pilot experiment of swine manure dry anaerobic digestion was carried out under the mesophilic (36 ℃) co ndition, to explore the change rule of ammonia nitrogen concentration in the system .The results showed the anaerobic microbes cannot tolerant high ammonia nitrogen because short of domestication time .Digestion liquid was at first back-flowed to improve the tolerance to ammonia nitrogen gradually .However , sustained rapid increase in ammonia concentration will cause ammonia inhibition .To prevent the occurrence of this phenomenon .only the biogas residue was recycled after the solid-liquid separation of discharging for the inhibition of high ammonia nitro-gen.Finally, ammonia nitrogen concentration was around 5000 mg· L-1 .To further investigate the variation rule of ammonia nitrogen , digestion liquid was back-flowed again and ammonia nitrogen reached to 6000 mg· L-1 gradual-ly.Then thebiogas production dropped from 38 m3· d -1 to 28 m3· d-1 .It displayed that the return of biogas residue could be better to control total ammonia nitrogen concentration comparing to the return of digestion liquid .In addi-tion, whether the ratio ( VFA/TA) can be used as the stability index of the system will also be affected by the con-centration of ammonia nitrogen .【期刊名称】《科学技术与工程》【年(卷),期】2017(017)032【总页数】6页(P181-186)【关键词】猪粪;干式厌氧消化;氨氮抑制;沼渣回流;消化液回流【作者】曹秀芹;张达飞;盛迎雪;郭非凡;李彩斌【作者单位】北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室 ,北京100044;北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室 ,北京100044;北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室 ,北京100044;北京中持绿色能源环境技术有限公司 ,北京100192;北京中持绿色能源环境技术有限公司 ,北京100192【正文语种】中文【中图分类】X713畜禽粪便不仅是农村环境污染的主要污染源,也是我国生物质能重要来源,如果大量流失或弃之不用,不仅会造成严重环境污染,也是资源的巨大浪费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~氨氮对厌氧发酵的影响厌氧发酵是处理有机废弃物并实现其资源化利用的有效手段,然而厌氧发酵作为生物处理技术一种,必然存在着生化抑制反应。

存在的生化抑制反应主要有:pH抑制、氢抑制、挥发性有机酸(VFA)和氨氮的抑制等。

高浓度的氨氮就是有机废弃物厌氧生物处理中常遇到的一个难题。

本文阅读大量文献,集中研究氨氮在厌氧发酵过程中的产生机理、抑制浓度等规律,以期待解决或者避免氨氮在产甲烷发酵过程中的抑制反应情况,为今后的厌氧发酵提供理论和技术支持。

1氨氮的产生机理在有机垃圾厌氧消化的过程中,氮的平衡是非常重要的因素,尽管进入消化系统中的硝酸盐能被还原成氮气,但其仍将存在于系统中。

由于厌氧微生物细胞的增殖很少,只有很少的氮转化为细胞,大部分可生物降解的有机氮在厌氧发酵降解过程中形成水解产物-氨氮,主要以铵离子NH4+-N和游离氨NH3形式存在。

因此消化液中氨氮的浓度都高于进料的氨氮浓度,系统中的总氮是守恒的。

氨态氮主要是通过氨基酸的降解产生,其分解主要通过偶联进行氧化还原脱氮反应,这需要两种氨基酸同时参与,其中一个氨基酸分子进行氧化脱氮,同时产生的质子使另外一个氨基酸的两个分子还原,两个过程同时伴随着氨基酸的去除。

如丙氨酸和甘氨酸的降解:CH3CHNH2COOH(丙氨酸)+2H2O→CH3COOH+CO2+NH3+4H+CH2NH2COOH(甘氨酸)+4H+→2CH3COOH+2NH3]两个反应合并即为:CH3CHNH2COOH+2CH2NH2COOH+2H2O→3CH3COOH+CO2+3NH3由于氨基酸的降解的能够产生NH3,因此在这一过程会影响到溶液的pH值。

NH3的存在对厌氧过程非常重要,一方面,NH3是微生物的营养物质,细菌利用氨氮作为其氮源,另一方面,NH3如果其浓度过高就会快速抑制甲烷菌的活性。

氨的存在形式有NH3和NH4+,两者的浓度决定于pH值。

NH3+H2O→NH4++OH-35℃时,K1=][]][[34NHOHNH-+=×10-5 (1-1)K 2=][]][[2OHOHH-+=×10-14 (1-2)两式相除,[NH3]=×10-9】有机酸积累,pH值降低,平衡向右移动,NH3离解为NH4+。

同时,也有研究表明:除了有机氮在厌氧发酵时被氨化外,发酵余液回流利用也会因此加重氨积累[1]。

2氨氮的抑制机理和抑制模式对于在厌氧发酵过程中氨氮产生抑制性的原因,目前还存在争议。

大多数学者认为,游离氨(NH3)是氨氮产生抑制作用的主要原因,因为游离氨能自由透过细胞膜[2,3]。

但认为,甲烷菌的活性取决于NH4+的浓度,而不是非离子化NH3的浓度[4]。

而且NH4+和NH3在驯化和非驯化的系统中的影响是不同的[5]。

目前关于氨毒性的抑制机理所知的还十分有限,少数纯培养条件下的研究表明,氨可能以两种方式影响产甲烷菌:(1) 铵离子直接抑制甲烷合成酶的活性;(2) 游离氨为疏水性分子,通过被动扩散作用进入细菌细胞,引起质子不平衡和钾的缺乏[6,7]。

Benabdallah El Hadj etal.研究了不同游离氧(NH3-N)和铵离子(NH4+-N)浓度下城市有机固体废弃物中温和高温厌氧发酵的产气性能[8],结果表明游离氨和铵离子均能抑制产甲烷活性,对两者单独试验,结果中温和高温下造成甲烷产量减少50%的NH3-N浓度分别为215和468mg/L,而3860和5600 mg/L NH4+-N浓度同样造成了中温和高温下甲烷产量减少50%。

Kaare Hvid Hansen等在研究猪粪厌氧消化的过程中总结了氨氮抑制产气的四阶段模式[2]。

Poggi-Varaldo在中温消化中应用未驯化的产乙酸产甲烷菌群[9],Angelidaki和Ahring在应用经过驯化的高温产乙酸产甲烷菌群进行厌氧消化的过程中也得到了相近的模式[10]。

结合试验结果和数据分析,Hansen et al.总结出了氨氮抑制产气的四阶段模型:NH3-N浓度低于阈值L时,沼气生产过程不受抑制;NH3-N浓度超过L时,抑制发生,形成初始抑制的第一相;然后是抑制的稳定状态;之后进入抑制阶段,随着NH3-N浓度的增加,表观比生长速率下降。

该四阶段模型可如下表述:Stage1 0<[NH3]<,μr= (2-1)Stage2 <[NH3]<,μr=128.0][6.713NH+-(2-2)Stage3 <[NH3]<,μr= (2-3)Stage4 <[NH3],μr=0995.0][1213NH+-(2-4)在模型中,[NH3]为NH3-N浓度(g/L),μr为产甲院微生物的相对表观比生长速率。

定义表观比生长速率为μ,各试验组NH3-N浓度为L时的表观比生长速率为μref ,其他NH3-N浓度条件下的表观比生长速率μ相对于μref进行归一化处理,即μr=μ/μref。

随着NH3-N浓度的增加,μr呈现不同形式的下降。

当NH3-N浓度小于L时,恒定为;当NH3-N浓度由L增加到L时,μr由降至;当NH3-N浓度在~L之间时,μr 以的下降率稳定降低;在第4阶段,随着NH3-N浓度的增加,μr以近乎恒定的速率下降。

非离子化NH3的浓度主要取决于三个因素:总的氨氮浓度、温度和pH。

pH 对氨氮中游离氨所占的比例有很大影响,研究表明当pH为7时,游离氨仅占总氨氮的1%,当pH上升至8时,游离氨的比例上升10倍。

、3 氨氮浓度对于厌氧发酵的影响国内外已有氨氮对厌氧发酵影响的研究,但氨氮对产甲烧菌产生抑制作用的浓度还具有不确定性。

普遍认为,发酵液中的氨氮浓度为50~200 mg/L时,对厌氧发酵有促进作用[11],因为氮是厌氧微生物的必需营养元素[12],同时也有利于维持稳定的pH。

何仕均[16]等研究发现,当氨氮浓度小于 400mg/L时,对体系表现为促进产甲烷作用,当氨氮浓度大于800mg/L时开始表现为抑制产甲烷作用,抑制浓度为7%,并且抑制作用强度与氨氮浓度呈正相关。

一般认为,当氨氮质量浓度为1500~3000 mg/L时,开始对厌氧发酵过程产生一定的抑制作用[13]。

研究表明,即使是驯化过的长期运行反应系统,只要氨氮浓度达到1700mg/L 就会使产甲烷箘活性下降10%,同时产气量会开始下降[14,15]。

当发酵液中氨氮质量浓度超过3000mg/L时,会对厌氧发酵产生毒害抑制作用[13]。

高浓度的氨氮会严重影响产甲烷过程,当氨氮浓度为4051~5734mg/L时,可使产甲烷菌的活性下降%[17]。

"文献中关于氨氮的抑制浓度之间显著的差异可归因于底物和接种物,环境条件(温度,pH),驯化周期等方面的差异[18,19]。

参考文献[1]Benabdallah El Hadj T., Astals S.,Gali A.,et al, 2009. Ammoniainfluence in anaerobic digestion of OFMSW. Water Science and Technology, 5; 1153-1158.[2]Hansen K.,Angelidaki I.,Ahiing B” 1998. Anaerobic digestion of swinemanure: Inhibition by ammonia. Water Research, 32: 5-12.[3]Műller T., Walter B.,Wirtz A.,et al., 2006. Ammonium toxicity inbacteria. CurrentMicrobiology, 52: 400-406.[4]JJLay, etal. Analysis of environmental factors affecting methaneproduction from high-solids organic wate [J]. Wat Sci Tech, 1997,36(6-7): 493~500;[5] Velsen van of methanogenic sludge to high ammonia-nitrogenconcentrations[J]. Water research, 1979,13:995~999;}[6] Gallert C.,Bauer S” Winter J., 1998. Effect of ammonia on theanaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Applied Microbiology and Biotechnology, 50: 495-501.[7] Rajagopal R.,Masse ., Singh G., 2013. A critical review on inhibitionof anaerobic digestion process by excess ammonia. Bioresonrce Technology, 143: 632-641.[8]Benabdallah El Hadj T.,Astals S.,Gali A.,et al,2009. Ammoniainfluence in anaerobic digestion of OFMSW. Water Science and Technology, 5; 1153-1158.[9]Poggi-Varaldo H M, Tingley J, Oleszkie wicz J A. Inhibition of growthand acetate uptake by ammonia in batch anaerobic digestion [J]. Jchem Tech Biotechnol, 1991, (52): 135~143;[10]Angelidaki I,Ahring thermophilic digestion of manure at differentammonia loads: effect of temperature[J].Wat Res,1994,(28):727~731;[11]McCarty P L. Anaerobic waste treatment fundamentals-part -toxicmaterials and their control[J].Public Works. 1964, 95(9): 91-94.[12] Liu T.,Sung S.,2002. Ammonia inhibition on thermophilic aceticlasticmethanogens. Water Science and Technology, 45: 113-120.[13] Wujcik W J, Jewell W J. Dry anaerobic fermentation[J]. Biotechnologyand Bioengineering Symposium, 1980, 10: 43~65.>[14] 蒋建国,王岩,隋继超,等.厨余垃圾高固体厌氧消化处理中氨氮浓度变化及其影响 [J]. 中国环境科学, 2007,27(6):721- 726.[15] 任南琪,赵丹,陈晓蕾,等.厌氧生物处理丙酸产生和积累的原因及控制对策 [J]. 中国科学 b 辑, 2002,23(1):83-89.[16] 何仕均,王建龙,赵璇. 氨氮对厌氧颗粒污泥产甲烷活性的影响[J]. 清华大学学报(自然科学版),2005,09:1294-1296.[17] Koster I W, Lettinga G. Anaerobic-digestion at extreme ammoniaconcentrations [J]. Biological Wastes, 1988,25(1): 51-59.[18] Hashimoto ,1986. Ammonia inhibition of methanogenesis from cattlewaste.Agricultural Wastes, 17; 241-261.[19] Angelidaki I.,Ahring .,1994. Anaerobic thermophilic digestion ofmanure at different ammonia loads: Effect of temperature. Water Research, 28: 727-731.。

相关文档
最新文档