路基上板式无砟轨道设计及计算设计
CRTSI型板式无砟轨道结构
CRTS Ⅰ型板式无砟轨道结构西南交通大学 王其昌(2009.05)1、结构组成CRTS Ⅰ型板式无砟轨道结构由钢轨、弹性扣件、轨道板、水泥乳化沥青砂浆充填层、混凝土底座、凸型挡台及其周围填充树脂等组成。
图1.1(a )、(b )为平板式、框架式板式无砟轨道,图1.2和图1.3分别为其横纵断面图。
(a ) (b )图1.1 CRTS Ⅰ型板式无砟轨道路基基床表层桥梁保护层隧底填充层C40C50钢轨扣件41轨道板CAM层50底座300(路)200(桥隧仰)757(路)657(桥隧仰)815(隧无仰)24002800(桥隧)I型板式无碴轨道横断面图358(隧无仰)图1.2 CRTS Ⅰ型板式无砟轨道横断面图图1.3 CRTS Ⅰ型板式无砟轨道纵断面图时速200~250公里及时速300~350公里客运专线CRTS Ⅰ型板式无砟轨道通用参考图[图号:通线(2008)2201及通线(2008)2301],已经铁道部经济规划设计院2008年7月发布。
2、路基地段CRTSⅠ型板式无砟轨道图2.1为路基地段CRTSⅠ型板式无砟轨道,设计应符合下列规定:图2.1 路基地段CRTSⅠ型板式无砟轨道(1)底座在路基基床表层上设置。
(2)底座每隔一定长度,对应凸形挡台中心位置,设置横向伸缩缝。
(3)线间排水应结合线路纵坡、桥涵等线路条件具体设计。
当采用集水井方式时,集水井设置间隔应根据汇水面积和当地气象条件计算确定。
严寒地区线间排水设计应考虑防冻措施。
(4)线路两侧及线间路基表面以沥青混凝土防水材料封闭,路基面防水材料的性能应符合相关规定。
3、桥梁地段CRTSⅠ型板式无砟轨道图3.1为桥梁地段CRTSⅠ型板式无砟轨道,设计应符合下列规定:(1)底座在梁面上构筑,底座通过梁体预埋套筒植筋与桥梁连接。
在底座一定宽度范围内,梁面应进行拉毛或凿毛处理设计。
(2)底座对应每块轨道板长度,在凸形挡台中心位置,设置横向伸缩缝。
(3)底座范围内,梁面不设防水层和保护层;底座范围以外,根据桥梁设计的相关规定设置防水层和保护层。
CRTSⅡ型板式无砟轨道
2 防水层施工
基层交接 基层处理(抛丸、打磨) 喷、涂腻子底涂 满刮PU修补腻子 喷、涂聚脲底涂 修补针眼 基层质量自检 喷涂(纯)聚脲防水涂料 防水涂层检验、验收
防水层现场施工照片
抛丸
底涂
3 CPⅢ测设及底座板放样 Ⅲ
1、在梁端固定制作上方的防撞墙顶部安装CPⅢ埋 件,路基上埋设在接触网支柱的基础上。 2、使用全站仪通过CPⅢ点进行底座板放样(CPⅢ 的测设及成果提交由中铁咨询完成)。 3、底座板的边线测设的一般为控制线,距底座板 边缘向外15cm,便于施工。
水 泥 乳 化 沥 青 砂 浆 灌 注
水泥乳化沥青砂浆灌注
BZ砂浆搅拌采用移动式水泥乳化沥青砂浆车 搅拌,施工时将搅拌车停靠在施工地点,用 吊车将从仓库运送来的原料(干料、乳化沥 青)加料,泵送加水,进行搅拌。 灌注前要对砂浆进行现场试验,符合要求 后方可灌注。 砂浆上桥采用自带搅拌装置的中间灌将砂 浆车的成品料斗中砂浆倒运上桥,再通过叉 车或三轮车桥上纵向运输至灌注地点。
后浇带定义:底座板混凝土浇筑采用分段浇 筑,在两个混凝土浇筑段之间有后浇混凝土 接缝,称此接缝为后浇带。后浇带的分类如 下:
Hale Waihona Puke 钢筋加工 钢筋连接器及剪力钉提前外委 加工,运至施工现场安装。
轨道板粗铺
轨道板粗铺前粘贴非吸水性发泡材料,即精调爪保 护套。 安放木质垫块,待精调爪安放完成后抽出。 轨道板上桥可通过悬臂铺板门吊或80t履带吊。 轨道板粗铺采用铺板门吊,该设备和实现垂直 提升、横向移动、纵向运输、姿态调整、点动微调, 高效快捷的实现了轨道板一次精确就位。 在跨河、跨路地段,采用行走在底座板上的双 向运板车纵向运输。 轨道板粗铺后惊恐控制在1cm范围内。
明 1 3 为 座 边 ,、点 座 放 点 说 :、点 底 板 缘 4 5 底 板 样 。
CRTSⅢ型板式无砟轨道结构及造价分析
a nd r e a s o n a b l e s t r u c t u r e,c o n v e n i e n t c o ns t uc r t i o n,ma i n t e n a n c e,a nd wi t h i n d e p e nd e nt i n t e l l e c t u a l p r o p — e r t y ig r h t s s t u di e d o n t h e b a s i s o f s u mma iz r i n g s e v e r a l d o me s t i c b a l l a s t l e s s t r a c k t e c hn o l o g y a n d e x p e r i —
t h e CR T S 1 1 1 t y p e t r a c k p l a t e ,t h e c o s t i s a n a l y z e d,a n d t h e c o s t o f C R T S I, I 1 we r e c o mp a r e d .
板式无砟轨道
板式无砟轨道板式无碴轨道板式无砟轨道是用双向预应力混凝土轨道板及CA砂浆(乳化沥青水泥砂浆)替换传统有砟轨道的轨枕和道砟的一种新型轨道形式,由板下混凝土底座、CA砂浆垫层、轨道板、长钢轨及扣件等四部分组成。
日本板式轨道特点(一)结构整体性能日本板式轨道具有无碴轨道所具有的线路稳定性、刚度均匀性好、线路平顺性、耐久性高的突出优点,并可显著减少线路的维修工作量。
从轨道结构每延米重量看,小于有碴轨道,而板式轨道结构高度低,道床宽度小,重量轻。
框架式板式较轨道为非预应力结构,便于制造。
可节省钢筋和混凝土材料,降低桥梁的二期恒载,造价低廉,但没有降低轨道板实际承受列车荷载的有效强度、不影响列车荷载的传递。
在隧道内应用时可减小隧道的开挖断面。
与德国博格板式轨道相比,日本板式轨道在基础上设置了凸形挡台,因此,纵向与博格板的连接不同。
凸形挡台与基础混凝土板一起建造,依靠凸形挡台对轨道板进行定位,施工更为简便。
日本板式轨道用的轨道板,没有在工厂内机械磨削的工序,制造相对简单。
(二)制造和施工板式轨道结构中的轨道板(RC或PRC)为工厂预制,其质量容易控制,现场混凝土施工量少,施工进度较快;道床外表美观;由于其采用“由下至上”的施工方法,施工过程中不需工具轨;在特殊减振及过渡段区域,通过在预制轨道板底粘贴弹性橡胶垫层,易于实现下部基础对轨道的减振要求(如日本板式轨道结构中的防振G型)。
但在桥上铺设时,受桥梁不同跨度的影响,需要不同长度的轨道板配合使用,无形中增加了制造成本;曲线地段铺设时,线路超高顺坡、曲线矢度的实现对扣件系统的要求较高;板式轨道结构中CA砂浆调整层的施工质量直接影响轨道的耐久性;板式轨道的制造、运输和施工的专业性较强,包括:轨道板的制造、运输、吊装、铺设;CA砂浆的现场搅拌、试验、运输和灌注;轨道状态整理过程中的充填式垫板树脂灌注等。
(三)线路维修由于板式轨道水泥沥青(CA)砂浆调整层的存在,受自然环境因素的影响较大,在结构凸形挡台周围及轨道板底边缘的CA砂浆存在破损现象,特别是在线路纵向力较大的伸缩调节器附近。
CRTSⅢ型板式无砟轨道结构概况
CRT SⅢ型板式无砟轨道结构概况
1.桥梁地段无砟轨道结构
桥梁地段CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自密实混凝土层、隔离层、底座等部分组成。
轨道结构高度为762mm。
轨道板宽2500mm,厚210mm;自密实混凝土层厚100mm,宽度2500mm,采用C40混凝土;底座C40钢筋混凝土结构,宽度2900mm,直线地段厚度200m。
轨道板与自密实层间设门型钢筋。
自密实层设凸台,与底座凹槽对应设置,凹槽尺寸为1000×700mm,凹槽周围设橡胶垫板。
桥梁直线地段无砟轨道断面图
桥梁曲线地段无砟轨道断面图
32m梁上无砟轨道布置图
2.路基地段无砟轨道结构
路基地段CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自密实混凝土层、隔离层、底座等部分组成。
轨道结构高度为862mm。
轨道板宽2500mm,厚210mm;自密实混凝土层宽度2500mm,厚100mm,采用C40混凝土;底座C40钢筋混凝土结构,宽度3100mm,直线地段厚度300m,每3块板下底座为一块,相连底座间设传力杆结构。
轨道板与自密实层间设门型钢筋。
自密实层设凸台,与底座凹槽对应设置,凹槽尺寸为1000×700mm,凹槽周围设橡胶垫板。
路基直线地段无砟轨道断面图
路基曲线地段无砟轨道断面图
路基地段无砟轨道布置图。
CRTSⅢ型无砟轨道设计
CRTSⅢ型无砟轨道设计来源:中铁二院发表时间:2010-4-9 作者:二院摘要:CRTSⅢ型无砟轨道设计,CRTSⅢ型板式无砟轨道设计相关的理论。
一、结构组成及特点(一)结构组成CRTSⅢ型无砟轨道主要有60kg/m钢轨、弹性有挡肩扣件、轨道板、自密实混凝土填充层、钢筋混凝土底座或支承层等部分组成。
路基上轨道结构组成如下:路基面上铺设一层水硬性支承层,支承层上架设轨道板,在轨道板和支承层间预留100mm的间隙,用于填筑自密实混凝土,自密实混凝土通过板下预埋的两列门型钢筋与预制轨道板形成复合结构。
路基采用纵连方案。
但板端需要预留连接系统。
轨道板为预应力结构,可保证不开裂,增强了结构本身的耐久性。
通过连接器将轨道板纵向连接,板间灌注树脂砂浆,在整体降温情况下,避免轨道板开裂。
为控制自密实混凝土的裂缝,在自密实混凝土层设置了细钢筋网,使自密实混凝土层与预制轨道板紧密连结,形成一个厚度为290mm的复合单元板结构。
图4-6-1路基地段CRTSⅢ型无砟轨道横断面图桥梁地段借鉴双块式无砟轨道结构特点,桥上采用单元式轨道结构型式,为使结构尽可能简单,桥上与路基采用相同外型尺寸的轨道板。
在桥面上设置钢筋混凝土底座,底座通过梁面预埋钢筋与梁连接在一起,底座上设置两个限位凹槽,限制轨道的纵、横向位移。
底座上铺设隔离层。
底座上架设双向预应力轨道板,在隔离层和轨道板间用自密实混凝土填筑,为防止轨道板与自密实混凝土分离,在轨道板预制时预留和下部结构连接的门型钢筋。
为控制自密实混凝土的裂缝,在自密实混凝土层设置了细钢筋网,使自密实混凝土层与预制轨道板紧密连结,形成一个厚度为290mm的复合单元板结构。
图4-6-2桥梁地段CRTSⅢ型无砟轨道横断面图隧道地段与桥梁地段相比,基础刚度相近,因此桥梁地段CRTSⅢ型无砟轨道结构型式同样适用于隧道地段,且轨道结构高度相同。
图4-6-3 隧道地段CRTSⅢ型无砟轨道横断面图(二)结构特点CRTSⅢ型无砟轨道继承和发扬了目前各种无砟轨道的优点,客服了其不足之处,结构设计遵循“路基纵连、桥上单元”的原则,其主要特点如下:1、CRTSⅢ型无砟轨道采用“路基纵连,桥上单元”的设计思路;路基地段轨道板纵连,延续了连续式无砟轨道结构整体性好、线路平顺、刚度均匀的优点;桥梁地段采用单元式结构,延续了桥上双块式轨道受力简单、施工方便、可维修性好、投资降低的特点。
CRTSⅡ型板式无砟轨道
目录一、概 述 (1)二、路基上CRTSⅡ型板式无砟轨道 (3)(一)结构组成 (3)(二)形式尺寸及相关技术要求 (5)三、桥梁上CRTSⅡ型板式无砟轨道 (6)(一)结构组成 (6)(二)形式尺寸及相关技术要求 (8)四、隧道内CRTSⅡ型板式无砟轨道 (13)(一)结构组成 (13)(二)形式尺寸及相关技术要求 (13)五、岔区板式无砟轨道 (15)(一)结构组成 (15)(二)形式尺寸及相关技术要求 (17)六、过渡段设计技术 (19)(一)设计原则 (19)(二)技术措施 (19)一、概 述2005年,我国系统引进了德国博格板式无砟轨道设计、制造、施工、养护维修及工装、工艺等成套技术。
在铁道部“引进、消化、吸收、再创新”的战略部署下,通过京津城际铁路的工程实践,无砟轨道系统技术总结、系统技术再创新工作,已经形成了我国CRTSⅡ型板式无砟轨道系统成套技术。
图1.1 运营中的京津城际铁路目前,京沪高速铁路以及国内的大部分客运专线铁路均采用了CRTSⅡ型式无砟轨道,其主要结构特点如下:CRTSⅡ型板式无砟轨道与其他类型无砟轨道的明显区别在于全线轨道板和桥上底座板均为纵向连续结构,这是CRTSⅡ型板式无砟轨道系统的主要特点。
1.轨道板采用工厂化预制,通过布板软件计算出轨道板布设、制作、打磨、铺设等工序所需的全部轨道几何数据,实现了设计、制造和施工的数据共享;2.轨道板相互之间通过纵向精轧螺纹钢筋连接,较好地解决了板端变形问题,提高了行车舒适度;3.轨道板采用数控机床打磨工艺,打磨精度可达0.1mm,通过高精度的测量和精调系统,轨道板铺设后即可获得高精度的轨道几何,最大限度的降低铺轨精调工作,大幅度提高综合施工进度。
4.桥上底座板不受桥跨的限制,为跨越梁缝的纵向连续结构, 桥上的轨道板与路基、隧道内的一致,均为标准轨道板,利于工厂化、标准化生产,便于质量控制,同时简化轨道板的安装和铺设;5.摩擦板、端刺结构是桥上CRTSⅡ型板式无砟轨道系统的锚固体系,通过摩擦板和端刺将温度力和制动力传递到路基;6.梁面设置设置滑动层,隔离桥梁与轨道间的相互作用,以减小桥梁伸缩引起的钢轨和板内纵向附加力,实现大跨连续梁上取消伸缩调节器;7.一般情况下,在桥梁固定支座上方,桥梁和底座板间设置剪力齿槽、预埋件,将制动力和温度力及时向墩台上传递;8.在梁缝处设置高强度挤塑板,减小梁端转角对无砟轨道结构的影响;9.在底座板两侧设置侧向挡块进行横向、竖向限位;10.支承层采用水硬性材料或素混凝土,不需要配筋,结构简单,施工方便,同时可减少工程投资。
CRTSI型板式无砟轨道结构
CRTS Ⅰ型板式无砟轨道结构西南交通大学 王其昌(2009.05)1、结构组成CRTS Ⅰ型板式无砟轨道结构由钢轨、弹性扣件、轨道板、水泥乳化沥青砂浆充填层、混凝土底座、凸型挡台及其周围填充树脂等组成。
图1.1(a )、(b )为平板式、框架式板式无砟轨道,图1.2和图1.3分别为其横纵断面图。
(a ) (b )图1.1 CRTS Ⅰ型板式无砟轨道路基基床表层桥梁保护层隧底填充层C40C50钢轨扣件41轨道板CAM层50底座300(路)200(桥隧仰)757(路)657(桥隧仰)815(隧无仰)24002800(桥隧)I型板式无碴轨道横断面图358(隧无仰)图1.2 CRTS Ⅰ型板式无砟轨道横断面图图1.3 CRTS Ⅰ型板式无砟轨道纵断面图时速200~250公里及时速300~350公里客运专线CRTS Ⅰ型板式无砟轨道通用参考图[图号:通线(2008)2201及通线(2008)2301],已经铁道部经济规划设计院2008年7月发布。
2、路基地段CRTSⅠ型板式无砟轨道图2.1为路基地段CRTSⅠ型板式无砟轨道,设计应符合下列规定:图2.1 路基地段CRTSⅠ型板式无砟轨道(1)底座在路基基床表层上设置。
(2)底座每隔一定长度,对应凸形挡台中心位置,设置横向伸缩缝。
(3)线间排水应结合线路纵坡、桥涵等线路条件具体设计。
当采用集水井方式时,集水井设置间隔应根据汇水面积和当地气象条件计算确定。
严寒地区线间排水设计应考虑防冻措施。
(4)线路两侧及线间路基表面以沥青混凝土防水材料封闭,路基面防水材料的性能应符合相关规定。
3、桥梁地段CRTSⅠ型板式无砟轨道图3.1为桥梁地段CRTSⅠ型板式无砟轨道,设计应符合下列规定:(1)底座在梁面上构筑,底座通过梁体预埋套筒植筋与桥梁连接。
在底座一定宽度范围内,梁面应进行拉毛或凿毛处理设计。
(2)底座对应每块轨道板长度,在凸形挡台中心位置,设置横向伸缩缝。
(3)底座范围内,梁面不设防水层和保护层;底座范围以外,根据桥梁设计的相关规定设置防水层和保护层。
高速铁路无砟轨道(一型板式无砟轨道)设计说明部分
摘要本设计根据高速铁路无砟轨道施工的实际案例为依据,阐述我国高速铁路发展的必然性,重要性以及其对我国经济高速所起的重大作用。
本文以CRTSⅠ型板式无砟轨道的设计与施工作为例,简要阐述其在路基,桥梁等地段的设置与施工。
本设计参照国内高速铁路无砟轨道设计的相关技术规范,以严谨的态度和清晰的思路,给大家展示无砟轨道在铁路高速发展过程中的重大意义以及我国在高速铁路建设领域所取得的成就,从而更加坚定我国以经济建设为中心的发展线路。
本设计以铁路高速发展为背景所展示的CRTSⅠ型板式无砟轨道的设计与施工,意在以此为引,希望更多的人以一种更加客观的,实际的态度来看待中国铁路的高速发展。
铁路是国民经济的大动脉,这众所周知,因此它也是我国经济实力的一种代表。
设计分路基部分、轨道部分、桥涵过渡段三个主要方面,在相关技术规范的前提下,对各部分的尺寸设置,位置安排等方面做了较为详细的叙述。
为提高毕业设计的质量,设计按照相关的格式要求进行统一的设置,力保在内容、格式等方面做到统一化,格式化。
关键词:板式无砟轨道;设计规范化;设计内容;发展必然第一章绪论1.1引言交通运输发展的历史就是一部速度不断提高的历史。
随着时代的发展,交通运输行业日趋激烈的竞争使得修建高速铁路成为铁路发展的必由之路。
尤其是20世纪70年代以来,全球范围内出现了石油能源危机、公路堵塞、车祸频繁、空难迭起、环境恶化等情况,人们呼唤高速、安全、准时、舒适、运量大、污染小、能源省、占地少的公共交通运输方式的出现,高速铁路也因此赢得到了良好的发展契机,它以其高速、安全、节能、舒适和全天候性日益得到社会的青睐。
其中各种无砟轨道在高速铁路上的应用越来越显示出其高稳定性、高平顺性和少维修等优点己逐步成为高速铁路轨道发展的趋势。
近几年,随着我国经济的高速发展,运力紧张已经成为制约经济发展的一个因素。
为了促进国民经济的稳健快速发展,建立健全的高速铁路网已势在必行。
《中长期铁路网规划》描绘了我国铁路发展的宏伟蓝图。
路基上CRTSⅢ型板式无砟轨道设计方案比较分析
化, 完 全有 基 础 和条 件 研 究 开 发一 种 新 型 无 砟 轨 道 结构 , 使该 结构 在受 力状 态 、 经 济性 、 施工性 、 可 维修 性及 耐 久 性 等 方 面 , 兼 备 各 种无 砟 轨 道 结 构 型 式 的
优点 , 并尽 可 能克服 其 缺点. 我 国在 总 结无 砟 轨 道 再 创新 成 果 的 基 础 上 , 提 出了 C R TSⅢ型板 式 无 砟 轨
f o u n d a t i o n et s t l e me n t ef d o r ma t i o n .A n a l y s i s r e s u l t s s h o w t h a t t h e u n i t s t y l e i s r e c o mme n d e d f o r t h e s e v e r e c o l d a r e a d u e t o t h e i n f l u e n c e o f t e mp er a t u r e l o a d a n d ma i n t a i n a b i l i t y o f t r a c k.
路 基 上 CRT SⅢ型 板 式 无砟 轨 道 设 计 方 案 比较 分 析
高 亮, 赵 磊, 曲 村, 蔡 小培
( 北京交通大学 土木建筑工程学院 , 北京 1 0 0 0 4 4 )
摘要 : 路 基上 C RT S ( C h i n a r a i l w a y t r a c k s y s t e m)I l i 型板式 无砟轨道结构存在单元式 和纵 连式两种 设计方 案. 通过建 立
CRTSⅡ型板式无砟轨道设计
采用先进的加工工艺和技术,确保材料的加工质量和性能,如轨道 板的预制、砂浆的搅拌等。
力学性能分析
1 2 3
静力学分析
对轨道结构进行静力学分析,计算其在静载作用 下的应力、应变和位移等参数,以确保其承载能 力和稳定性。
动力学分析
对轨道结构进行动力学分析,计算其在动载作用 下的振动频率、振幅和阻尼等参数,以提高其减 震性能和舒适度。
结合新材料、新技术的发展,探索 CRTSⅡ型板式无砟轨道的创新设计 和优化方案,推动其可持续发展。
THANKS
感谢观看
砂浆垫层的制备与铺设
砂浆配合比设计
根据工程要求和材料性能,设计合理 的砂浆配合比,确保其满足强度、耐 久性等方面的要求。
砂浆垫层铺设
将制备好的砂浆垫层均匀铺设在基础 面上,确保其平整、密实,无气泡和 裂缝。
轨道板的安装与固定
定位测量
使用高精度的测量仪器,对轨道板的位置进行精确测量,确保其符合设计要求。
磁悬浮交通
在某些磁悬浮交通项目中,CRTSⅡ型板式无砟轨道也被选为首选轨 道结构。
成功案例介绍
京沪高铁
作为我国最早的高速铁路之一,京沪高铁采用了CRTSⅡ型板式无砟轨道,实现了列车时速350公里的稳定运行, 为我国高速铁路的发展树立了典范。
京广高铁
京广高铁作为我国南北交通的大动脉,全线采用CRTSⅡ型板式无砟轨道,大大提高了列车的安全性和舒适性。
结构优化设计
根据工程实践和理论分析,对轨 道板、水泥乳化沥青砂浆充填层、 混凝土底座等关键结构进行优化 设计,以提高轨道的承载能力和
减震性能。
材料设计原理
材料选择
选择优质的水泥、砂、石等原材料,确保轨道结构的强度和耐久性。
CRTSⅡ型板式无砟轨道结构设计
CRTSⅡ型板式无砟轨道结构设计
一、引言
二、设计要求
1.载荷要求:按照列车的最大轴重和最大车速确定荷载。
2.立式波浪度要求:保证列车在运行过程中的舒适性。
3.横向波浪度要求:限制铺轨材料在运行过程中的横向移位。
4.噪声和振动要求:减少列车通过时的噪声和振动。
三、结构设计
1.断面设计
2.荷载计算
根据列车最大轴重和最大车速,计算出实际的荷载。
根据经验公式和相关规范,确定设计荷载,并考虑到动态荷载。
3.预应力设计
采用预应力钢筋混凝土T梁作为铺轨材料,需要进行预应力设计。
根据荷载和几何参数计算出所需的预应力值,然后在梁上设置预应力钢筋。
4.弹性黏结垫设计
为了减小轨道与板式无砟轨道之间的冲击和振动,需要在二者之间设置弹性黏结垫。
根据荷载和规范要求计算出所需的弹性黏结垫参数,然后在板式无砟轨道的上部盖板上设置黏结垫。
5.抗滑设计
为了减小列车在运行中轮对与板式无砟轨道之间的滑移,通过调整横截面形状和材料性能,增加横向抗滑能力。
6.排水设计
在板式无砟轨道上设置适当的排水系统,防止雨水或这面水对轨道的影响。
7.UIC401要求
四、结论
CRTSⅡ型板式无砟轨道是一种新型的无砟轨道结构,具有较高的强度和稳定性,并能满足列车的轨道要求。
本文对CRTSⅡ型板式无砟轨道的设计进行了详细介绍,包括断面设计、荷载计算、预应力设计、弹性黏结垫设计、抗滑设计、排水设计和UIC401要求等。
无砟轨道桩板结构路基设计计算
第i 个永久荷载标准值计算的荷载效应值 ; 为永 久荷载个 数 ;7 第 J个 主可 变 荷载 的分 项 系 数 ; 为 s Q 为按第 J 个主可变荷载标准值计算的荷载效应 值 ; 为主可变荷载个数 ; 为第 , 附加 可变 个 荷 载 的分项 系数 ;S 为按 第 , 附加 可变 荷载 标 个 准值计算的荷载效应值 ; 为附加可变荷载 的组 合值系 数 ; 为 附加可变 荷载个 数 。 目前 ,桩 板结 构路基永 久 荷载 和可变 荷载 的分
Vo . 8 No 5 12 .
S p e e ,2 0 e tmb r 0 7
廿
无 砟 轨 道桩 板 结构 路 基 设 计 计 算
秦
(.武汉大学 土木建筑工程学院 ,湖北 武汉 1
摘
立
新
406) 303
■
407 ; .铁 道第四勘 察设计院 地路处 ,湖北 武汉 302 2
要 :鉴于无砟轨道桩板结构路基没有相应 的设计 规范 ,在 分析其结构 特点 和使用 要求 的基 础上 ,借鉴
蝌 n2
对 于承载 能力极 限状 态 ,应按荷 载效应 的基 本
组合或偶然组合进行荷载效应组合 , 并采用下式进 行设 计 J 。
yS≤ R O () 1
S 一∑ +∑sk ∑5k q+
=
( 4 )
1
=1
1
=1
m
式中:s为荷载效应组合 的设计值 ;R为结构构件 抗力的设计值 ;7 为结构重要性系数,考虑到桩 o 板 结构路 基 为变形 有特 殊要求 的重要 建筑 物 ,设 计
桩板结构路基承受频繁 出现 的列车的动力作 用 ,地基 土 与承 载板 之 间容易 产生脱 空现 象 ,借 鉴
最新CRTSⅡ型板式无砟轨道汇总
轨道板精调
❖ 安装精调爪,每块板6个,四角各一个为二维,可进行平面、 高程双向调整,板间两侧各一个为一维,仅能调整高度。
两布一 膜铺设
垫块摆 放
5 底座板施工
❖ 底座板施工主要包括的内容有: ❖ 1、施工单元划分 ❖ 2、钢筋加工 ❖ 3、底座板模板安装 ❖ 4、底座板混凝土浇筑 ❖ 5、底座板张拉
底座板施工单元划分
❖ 由于桥上CRTS II 型板式轨道底座无法一次施工完 成,因此必须划分成几个施工段,施工段的位置及 长度根据施工组织方案确定。一般一个施工段长度 为4~5km,施工段的首尾位置应设置端刺或临时端 刺,临时端刺长约800m,端刺或临时端刺之间的区 段为常规区。常规区一般最短为3 个浇筑段,长度 约480m。
梁面打磨
❖ 1.7桥面排水坡 ❖ 桥面排水坡构成应符合设计要求。对排水坡存在误差的
桥面,应保证设计的汇水、排水能力,不允许反向排水坡的 存在,特别是两线中间部位。对可能造成排水系统紊乱的桥 面应打磨整修处理。
❖ 1.8伸缩缝 ❖ 伸缩缝安装完成且牢靠,不得有脱落现象。 ❖ 1.9梁面净宽 ❖ 满足8.8m净宽及位置要求。 ❖ 1.10防水层施工 ❖ 空鼓现象的存在。防水层空鼓检查可采用拖拽铁链的方
法进行。破损及空鼓的防水接 ❖ 基层处理(抛丸、打磨) ❖ 喷、涂腻子底涂 ❖ 满刮PU修补腻子 ❖ 喷、涂聚脲底涂 ❖ 修补针眼 ❖ 基层质量自检 ❖ 喷涂(纯)聚脲防水涂料 ❖ 防水涂层检验、验收
防水层现场施工照片
抛丸
(完整版)CRTSII型板式无砟轨道
基本知识培训
CRTSII型板式无砟轨道结构
概念:无砟轨道是将预制的轨道板通过水泥沥 青砂浆(CA砂浆)调整层铺设在现场浇筑的钢 筋混凝土(混凝土)底座板(支撑层)上。
无砟轨道结构在桥上和路基上不同
1、路基上结构: 轨道板 CA砂浆调整层 支承层(HGD层)混凝土层
2、桥上结构: 轨道板 CA砂浆调整层 底座板(钢筋混凝土)
桥上无砟轨道结构断面
桥上直线段无砟轨道结构断面
桥梁地段轨道结构,从上而下依次是:
• -钢轨
• -扣件
• -预制轨道板
--200mm
• -乳化沥青水泥砂浆层 --30mm
• -现浇钢筋混凝土底座板--190mm
• -硬质泡沫塑料板 两侧310mm)
--50mm(梁缝
• -滑动层(两布一膜) --粘贴在梁面
1、施工准备 2、桥面验收 3、防水层 4、两布一膜施工 5、底座板施工 6、轨道板粗铺 7、轨道板测量精调 8、CA砂浆灌注 9、轨道板纵连 10、侧向挡块施工及抗剪连接
桥上铺设工艺及要求
1、底座板划分设计 2、底座板施工 3、轨道板粗铺 4、轨道板精调 5、CA砂浆灌注 6、轨道板纵连 7、侧向挡块施工 8、剪切连接
路基上铺设工艺及要求
1、桥面高程 2、端刺及摩擦板施工 3、混凝土支承层施工 4、轨道板粗铺、精调、灌浆 5、两线轨道板间混凝土填充层施工
质量控制要点
工艺及质量要求
1、测量方法和技术要求 2、桥上铺设工艺及要求 3、路基上铺设工艺及要求 4、质量控制要点
测量方法和技术要求
1、测控网的要求 2、支承结构的精度要求 3、测量人员和测量仪器 4、沉降变形控制要求
桥面质量要求
CRTS-III型板式无砟轨道毕业设计
目录第一章绪论 (1)第一节引言 (1)第二节高速铁路的发展及现状 (2)一、国外高速铁路的发展 (2)二、我国高速铁路的发展现状 (3)第三节无砟轨道概况 (3)一、无砟轨道的概念及特性 (3)二、无砟轨道的类型 (4)第四节各国无砟轨道发展概况 (5)一、日本的无砟轨道 (5)二、德国的无砟轨道 (8)三、法国等其他国家的无砟轨道 (11)四、我国的无砟轨道 (11)第五节板式无砟轨道发展现状 (12)一、CRTSⅠ型板式无砟轨道 (13)二、CRTSⅡ型板式无砟轨道 (14)第六节CRTSⅢ型无砟轨道目前研究存在的问题 (16)第七节本文研究的意义、主要内容及方法 (18)一、本文研究的意义 (18)二、主要研究内容及方法 (18)第二章CRTSⅢ型板式无砟轨道结构组成及技术要求 (20)第一节CRTSⅢ型板式无砟轨道结构 (20)一、CRTSⅢ型板式无砟轨道系统简介 (20)二、CRTSⅢ型板式无砟轨道结构组成 (21)三、CRTSⅢ型板式无砟轨道的结构特点 (21)第二节主要结构设计标准 (22)一、轨道板 (22)二、自密实混凝土层 (22)三、支承层 (22)四、底座 (23)第三章计算参数与模型 (24)第一节计算参数的选取 (24)第二节模型的建立 (25)一、单元的定义 (27)二、荷载工况 (28)三、计算结果 (28)四、温度应力计算 (32)第四章轨道板的配筋 (33)第一节轨道板配筋的计算 (33)第二节轨道板设计荷载弯矩值的确定 (33)第三节轨道板纵向配筋计算 (33)一、轨道板采用的混凝土及钢筋 (33)二、轨道板预应力筋的配筋 (33)三、纵向非预应力筋的配筋 (35)四、配置箍筋 (35)第四节轨道板横向配筋计算 (35)一、轨道板采用的混凝土及钢筋 (35)二、轨道板横向预应力筋的配筋 (35)三、轨道板横向非预应力筋的配筋 (36)四、配置箍筋 (37)第五章底座板的配筋 (38)第一节底座板的配筋计算原则 (38)第二节底座板设计弯矩的确定 (38)第三节底座板纵向配筋 (38)一、底座板采用的混凝土及钢筋 (38)二、底座板纵向配筋及复核 (38)三、底座板纵向箍筋配置 (39)第四节底座板横向配筋 (40)一、底座板横向配筋采用的混凝土及钢筋 (40)二、底座板横向配筋计算及复核 (40)三、轨道板横向箍筋配置 (41)第六章CRTSⅢ型板式无砟轨道的施工工艺简介 (42)第一节CRTSⅢ型轨道板预制工艺 (42)一、轨道板生产施工工艺流程 (42)二、轨道板张拉及封锚 (42)三、轨道板湿养、水养和喷淋养护 (44)四、轨道板的存放和运输 (44)第二节CRTSⅢ型板式无砟轨道施工工艺 (45)一、混凝土施工 (45)二、自密实混凝土 (45)结论 (50)致谢 (51)参考文献 (52)第一章绪论第一节引言在20世纪60年代,日本“新干线”的运营速率大于200km/h,这开启了世界高速铁路发展的新篇章。
京沪高速铁路纵连板式无砟轨道设计原理与方法
约束条件:弹簧系数确定依据《混凝土年鉴》(1987 年)规定。 截面信息:采用轨道和HGT换算截面,按刚度等效的原则换算为0.196m厚度。 计算荷载:活载250kN(UIC71)考虑动力效应50%和弯道上20%的附加力。 温度:系统温差40℃。 预应力:两端连接部位,按6×50kN计。
标准轨道板纵向设计计算-活载
活载作用下土压力检算
根据计算结果,最大的支撑反力为107.5kN,HGT支撑层底部宽度为3.25m, 纵向间距取0.6m,下部土压力为: σ土体=107.5/(3.25×0.6)=55.1KPa 在计算中参考《混凝土年鉴2000》(P299),“在计算最大地面压应力时,
如果考虑现已有的冗余,选择动力系数1.17,认为是足够的”
41
[刚度折减概念的应用]
(确定底座混凝土板不同开裂程度时的刚度)
(开裂前)
(充分开裂后)
(纯钢筋状态)
德国规范
底座混凝土板法向力与应变关系图
42
[极限状态法设计]
温度为主组合 活载为主组合
确定最不 利组合
正常使用极限状态检算
[裂缝宽度/适用耐久性]
承载能力极限状态检算
温度为主组合
活载为主组合
43
标准轨道板纵向接缝设计检算
在轨道板接缝部位,只有6Φ20的钢筋连接,根据轨道板内部钢筋受拉检算结果, 检算接缝部位钢筋受力,同时控制裂缝宽度。在降温和收缩共同作用下,轨道板承受 的轴向力为: N=σ钢筋*A钢筋=132.3MPa×3.16×10-3m2=418kN
在截面B(接缝)部位,考虑纵向连接可以共可以提供6×50kN=300kN预压荷载,
۩ 结束语
3
高速铁路轨道结构从总体上分为有砟轨道和无砟轨道。两类轨道结 构在技术经济性方面具有一定的差异,世界各国均根据自己的国情路情 合理选用,以取得最佳的技术经济效益。
板式无砟轨道—CRTSI型板式无砟轨道
《轨道施工技术》
1 CRTSⅡ型板式无砟轨道的结构
《轨道施工技术》
路基与隧道地段CRTSⅡ型板式无砟轨道系统自上至下依次为:钢轨,扣件,轨道板,
沥青水泥砂浆调整层,水硬性支承层,防冻层。(严寒区基层表面铺设的非粘结性碎
石层)
钢轨及扣件
板间连接件
钢筋混凝土轨道板
筋),将纵向力传递至桥梁基础。
2 CRTSⅡ型板式无砟轨道的特点
《轨道施工技术》
➢ 梁缝两侧一定范围内梁面铺设硬泡沫塑料板,减小梁端转角对轨道结构 的影响。
➢ 底座板与梁面为滑动状态,通过设置普通侧向挡块对底座板横向限位; 设置扣压型挡块,保证底座板的压屈稳定性。
➢ 通过在桥台后的路基上设置摩擦板、端刺等锚固体系,使桥上轨道传递 的纵向力不影响路基和无砟轨道结构的稳定性。
5.轨道板的吊装、运输、铺设与状态调整
《轨道施工技术》
2 CRTSI型板式无砟轨道施工要点
5.轨道板的吊装、运输、铺设与状态调整
《轨道施工技术》
2 CRTSI型板式无砟轨道施工要点
5.轨道板的吊装、运输、铺设与状态调整
《轨道施工技术》
2 CRTSI型板式无砟轨道施工要点
6.CA砂浆灌注 ➢ CA砂浆作为板式轨道混凝土底座与轨 道板间的弹性调整层,是一种具有混凝 土的刚性和沥青弹性的半刚性体。 ➢ 灌注前必须进行流动度、可工作时间、 含气量和温度等项目的试验。
下工程的标准化设计。 ➢ 现场混凝土施工量少,水泥沥青砂浆袋装灌注,施工工效高。 ➢ 轨道板为工厂预制,质量易于保证,还可釆用框架结构,经济性好; ➢ 水泥沥青砂浆可实现上下部结构分离,结构可修复性较好。
3 CRTSI型板式无砟轨道的优缺点
路基上纵连板式无砟轨道结构设计分析
6 、 板 内受力钢筋最 小直径 1 2 a r m, 最大间距 1 6 0 a r m . 。
毽 ‘
: :
鸯 Байду номын сангаас
矗
、
板厚度为 0 3 m;
匿 弱 鱼
图1 - 1 轨道板尺 寸图( 单位 : m m ) 1 _ 2无砟轨道结构设计模型及参数
l 2 . 1 无 砟轨 道结构设 计模 型 纵连 板式轨 道 的钢轨 、 轨道板 、 底座 形 成“ 多重叠合 梁理论” 的计算模 型。 扣件简化 为点支承弹簧 ,弹簧刚度为扣件的动刚度。 砂浆层也简化为点支承弹簧, 弹簧刚度依据 砂浆 的弹性模量 和 度来计算 。 底 座下地 基 基础 同样简化 为点支承 弹簧 , 弹簧刚度依 据 地基基础 的弹性模量 和厚度来计算 。 1 2 _ 2无砟轨道结构设计参数 ( i )钢 轨 : 6 0 k g / m ,弹性 模 量 E = 2 . 0 6 x 1 0 “ N / m , 沿 水平 轴惯 性 矩 为 3 2 1 7 c m 4 , 单 根 钢轨面积是 7 7 . 4 5 c m 2 , 钢轨高度 0 . 1 7 6 m 。 ( 2 ) 扣件 刚度 取为 5 0 k N / mm , 扣 件 间距 E = 3 0 %XE = 1 . 0 9 5X 1 0 M p a 横 向 上侧 8 . 4 6 为0 . 6 5 m 。 4 4 . 6 7 6k N ( 3 ) 轨道板 采用 C 6 0 混凝 土 , 弹性模 量 下侧 1 4 . 4 5 5 取为 3 . 6 5 x 1 0 4 MP a , 泊松 比取为 o 2 , 线膨胀系 3路基上纵连板式无砟轨道配筋 数取为 1 . 0 x l 0 - s p C 。 3 . 1 结构总 弯矩计算 表3 - 1 配筋计算时结构总 弯矩 对于纵 向,水平轴惯性矩为 路基上纵连板式无 砟轨道 以 \ 类型 列车荷载 温度梯度翘曲 力 总 弯矩 4 . 3 5 2 x 1 仃 4 m , 面积为 0 . 2 0 4 m 2 ; “ 列 车竖 向设 计 荷载 + 温 度梯 度+ 对于横 向,水平轴惯性矩为 纵向温度力”引起的主体结构的 轨道板 上侧 4 . 8 6 6 6 . 5 5 7 8 7 2 6 . 4 4 . 3 3 3 x 1 0 - 4 m  ̄ , 面积为 0 . 1 3 m  ̄ o 弯矩进行配筋设计。因此结构总 ( 4 ) C A砂浆按高弹模砂浆进 纵 向 下侧 1 8 . 0 7 3 6 . 5 5 7 8 7 5 2 . 8 弯矩将计算结果列于表 l 中。 行设计,弹性模量取为 7 0 0 0 M P a 。 3 2 结构配筋计算 底 座 上侧 4 . 4 3 3 0 8 . 8 6 6 砂浆 层尺 寸为 6 4 5 0 m mx 2 5 5 0 m m x 配 筋 及 计 算结 果列 于 下表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路基上板式无砟轨道设计及计算设计摘要研究目的:轨道是直接承受列车荷载作用并引导列车运行的重要部分,因此轨道需要有足够的强度和稳定性。
随着高速铁路的发展,有砟轨道因自身的缺点而无法适应,因此需要设计合理的无砟轨道结构来满足高速铁路对于高速度的要求。
研究方法:采用有限元理论,建立板式无砟轨道的梁—板—板模型,应用大型有限元分析软件MIDAS对模型进行求解,并对轨道板和底座进行配筋设计和校核。
研究结果:总结了荷载作用位置、扣件刚度、轨道板宽度、CA砂浆弹性模量、地基弹性系数等主要参数对轨道板、CA砂浆和底座的受力影响规律,求得列车竖向荷载作用下轨道板和底座的最不利弯矩。
研究结论:轨下垫层刚度在50~80kN/mm范围内为宜,C A砂浆弹性模量对钢轨与轨道板及底座板的位移影响不是很明显,地基弹性系数宜采用190MPa/m,通过建立路基上板式无柞轨道梁一板有限元模型计算得到的弯矩值,根据容许应力法并结合上述弯矩值对无柞轨道混凝土底座进行配筋计算。
计算结果表明,路基上板式无砟轨道混凝土底座的配筋主要由最小裂缝宽度决定。
关键词:板式无砟轨道;有限元;梁板模型;配筋AbstractThe track is the important part which bears load directly and guide the train running, so the track should have enough strength and stability. Whit he development of high-speed railway, ballasted track cannot adapt to the development because of its own disadvantages. It is necessary to design reasonable ballast-less track structure to meet the high speed requirement of high-speed railway.Research method: Use the Finite Element Analysis to establish beam-slab-slab model of slab ballastless track ,and solve the model with the help of large scale application software-MIDAS, do the work of track slab and base reinforcement design and verification.Research method: Use the Finite Element Analysis to establish beam-slab-slab model of slab ballastless track ,and solve the model with the help of large scale application software-MIDAS, do the work of track slab and base reinforcement design and verification.Research results: Sum up the force influence of the loading position, fastener stiffness, the width of track slab, CA mortar elastic modulus, foundation elastic coefficient and other major parameters,and seek the most unfavorable moment of track plate and base plate under vertical loads.Keywords:Slab ballastless track, Finite element, Beam-slab model, Reinforcement目录1 绪论 01.1 无砟轨道概述 01.2 无砟轨道主要技术特点 01.3 世界各国无砟轨道发展情况 (3)1.4 国内无砟轨道结构研究与工程实践 (4)1.5 板式无砟轨道的结构与类型 (7)2 我国的板式无砟轨道 (15)2.1 我国客运专线主要无砟轨道结构型式介绍 (15)2.1.1 CRTSⅠ型板式无砟轨道 (15)2.1.2 CRTSⅡ型板式无砟轨道 (17)2.1.3 CRTSⅢ型板式无砟轨道 (19)2.1.4 CRTSⅠ型双块式无砟轨道 (20)2.1.5 CRTSⅡ型双块式无砟轨道 (21)2.1.6 岔区轨枕埋入式无砟轨道与岔区板式无砟轨道 (22)2.2 板式轨道的技术要求 (22)2.3 板式无砟轨道设计 (24)2.4 板式无砟轨道结构设计原理 (26)2.4.1 弹性地基梁理论 (26)3.3.2 弹性地基叠合梁理论 (27)3.3.3梁-板-板弹性支承弯曲理论 (28)3.3.4 梁-板-体弹性支承弯曲理论 (29)3 板式无砟轨道的设计和计算 (29)3.1 MIDAS介绍 (29)3.2 模型的选择 (30)3.3 模型的建立 (30)3.4 计算参数 (30)3.5 无砟轨道梁板模型的荷载工况 (31)3.6 MIDAS运行结果及分析 (32)4 板式无砟轨道的底座和轨道板的配筋 (41)4.1 设计原则及规范 (41)4.1.1计算原则 (41)4.1.2设计规范 (41)4.1.3计算方法 (45)4.2 轨道板的配筋及验算 (45)4.2.1轨道板纵向配筋 (45)4.2.2轨道板横向配筋 (48)4.3 混凝土底板配筋及验算 (49)4.3.1混凝土底座纵向配筋 (49)4.3.2混凝土底座横向配筋 (51)结论 (54)致谢 ............................................................................................................. 错误!未定义书签。
参考文献 . (55)1 绪论1.1 无砟轨道概述轨道是铁路线路设备的基础和重要组成部分,它直接承受着列车荷载的作用并引导列车的运行。
列车作用于轨道上的力有垂直压力、横向水平力、纵向水平力,以及因温度变化所产生的温度附加力等。
因此,要求轨道结构有足够的强度和稳定性,各组成部分的结构要合理,尺寸及材质要相互配合、等强配套、弹性连续,以保证列车按规定的速度,安全、平稳和不间断地运行。
随着列车速度的提高,对轨道结构的技术要求越来越高。
1964年建成通车的日本东海道新干线,开创了铁路高速行车的实用化历史。
此后,高速铁路技术不断发展和创新。
目前,日本、法国、德国等发达国家的高速列车最高时速已达300公里/小时以上。
要确保列车在高速行车条件下,安全、平稳地不间断运行,发展新型轨道建筑和维修技术,已成为高速铁路技术研究的重点之一。
传统有砟轨道结构自诞生之日起,就显现出稳定性差的缺点,其原因在于碎石道床在列车荷载长期作用下,产生变形及道砟的磨损和粉化。
由于钢轨支承点的非连续,道床变形沿线路纵向呈现非均匀性特点,对保持良好的轨道几何状态和均衡质量十分不利。
一般情况下,道床维修工作量占线路维修工作量的70%以上,而高速铁路相对于普通既有线路,维修费用要增加2倍,道砟使用周期减少一半。
目前,高速铁路的发展趋势是运营速度≥300km/h,其对轨道结构的平顺性和稳定性要求更高。
日本于20世纪70年代率先开发和使用板式无砟轨道技术,至今,铺设的板式轨道已占日本先干线的60%以上。
与有砟轨道相比,板式轨道具有更好的整体性、稳定性和耐久性,虽然技术较复杂,一次性投资大于有砟轨道,但其使用寿命周期长,通常使用周期为30年,轨道板在使用周期内基本上免维修,运营过程中维修的工作量可坚守70%以上,能够有效缓解高速铁路运营与维修的矛盾,总的成本并不比有砟轨道高,为高速度、高密度的铁路运输提供了有利条件。
1.2 无砟轨道主要技术特点无砟轨道是一种少维护的轨道结构,它利用成型的组合材料代替道砟,将轮轨力分布并传递到路基基础上。
无砟轨道的优点:●良好的结构连续性和平顺性有砟轨道采用均一性比较差的天然道砟材料,在列车荷载作用下其道床肩宽、砟肩堆高、道床边坡、轨枕间距及轨枕在道床中的支承状态相对易于变化,并导致轨道几何变形。
无砟轨道的下部基础、底座、道床板均为现场工业化浇注,双块式轨枕、轨道板、微孔橡胶垫层、轨下胶垫、扣件、钢轨等均为工厂预制件或标准产品,可以保证其性能有较好的均一性。
由此组成的轨道整体结构与有砟轨道相比具有更好的结构连续性和弹性均匀性,为提高轨道的平顺性,改善乘车质量提供了有利条件。
●良好的结构恒定性和稳定性无砟轨道结构中,作为无缝线路稳定性计算参数的轨道横向阻力、轨道纵向阻力不再依赖于材质和状态多变的有砟道床,其整体式轨下基础可为无缝线路提供更高和更恒定的轨道纵、横向阻力,具有更好的耐久性和更长的使用寿命。
●良好的结构耐久性和少维修性能无砟轨道维修工作量大大减少,被称为“省维修”轨道,为延长线路的维修周期以及客运专线列车的高密度、准点正常运行提供重要保证。
客运专线的行车速度高、密度大,所有线路地面检查、维修作业都必须在“天窗”时间内进行。
我国客运专线由于跨线列车多,自身的行车密度又大,不可能完全像国外高速铁路那样白天行车、夜间轨道维修作业。
要在白天、夜间均行车的条件下,安排“天窗”作业就更加困难。
减少线路维修工作量是保证客运专线列车准点正常运行的前提条件。
无砟轨道采用整体式轨下基础。
与采用散粒体结构的有砟道床基础相比,在列车荷载作用下不会产生道砟颗粒磨耗、粉化、相对错位所引起的道床结构变形;在列车荷载反复作用下不会产生变形积累,使轨道几何尺寸的变化基本控制在轨下胶垫、扣件及钢轨的松动和磨损等因素之内,从而大大降低轨道几何状态变化的速率,较少养护维修工作量,延长维修周期和轨道使用寿命。
●工务养护、维修设施减少由于维修工作量减少,可以延长每个综合维修中心和维修工区的管辖范围,从而减少上述维修部门的数量。
同时也可相应减少每个部门配置的维修机械、停车股道数量和房屋等设施。
●免除高速条件下有砟轨道的道砟飞溅我国秦沈客运专线在线路开通之前进行的行车试验表明:行车速度达到250km•h-1时,道心道砟出现飞砟现象,造成车辆转向架部分的车轴、制动缸等被道砟打击的现象。