量子力学第二章小结
量子力学第二章总结
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
量子力学第二章
C (P ,t)(21)1/2
iP x
(x,t)e dx
2021/7/10
27
态叠加原理复习
若 1,2, ,n 是体系的可能状态,则它们
的线性迭加态
c 11 c 22 c nn
也是体系的可能态
物理意义:处在Ψ态上的粒子体系,则仍部
分处在Ψ1、Ψ2…..Ψn上
与经典态叠加原理的区别:经典的叠加态和
德布罗意指出:微观粒子的运动状态可用一个复 函数 (r,t)来描述,函数 (r,t) — 称为波函数。
★ 描述自由粒子的波是具有确定能量和动量的平面波
2021/7/10
4
i(PrEt)
P(r,t)Ae
de Broglie 波
★如果粒子处于随时间和位置变化的力场 U r,t 中 运动,它的动量和能量不再是常量(或不同时为常 量)粒子的状态就不能用平面波描写,而必须用较 复杂的波描写,一般记为:(r,t)
d
可电能子处从在晶体P 表(r面,t)出、射P 后(,r ,t既) 可, 能等处状在态 ,P 按(r,态t)态迭,加也原
理,在晶体表面反射后,电子的状态 可表示成 P
取各种可能值的平面波的线性叠加,即
2021/7/10
24
(r ,t) C (P )P (r ,t)
衍射图样正是这些平面波 叠加干涉的结果
2021/7/10
21
1.电子双缝衍射实验
1
1
P1
P
用缝到 1达表屏示B的粒状子态穿,过用上面 狭2
表示粒子通过下面狭缝到
达屏B的状态,再用 表
S•
D 2
2
示粒子穿过两个狭缝到达B 的状态,则有
P2
c11c22
量子力学第二章
ˆ F r r
ˆ 就称 r 为算符 F 相应本征值 的本征函数
2、本征方程的解 简并
(1)分离解:
ˆ F 本征值 本征函数
1 2
1
2
2、连续解
ˆ F
3、简并、非简并 非简并:一个本征值 m 对应一个本征函数
例题(1 p x是否是厄米算符?(x , 0, 0) :)ˆ
(全微分
d ( * ) *
*
x
dx (
x
)* dx )
ˆ dx * ( i d ) dx Px dx i d ( * ) ( i ) ( i ( * ) (i x
z
2 2
2 ma
2
(1,2,1)
6 2 E111
121
8 a
3
sin
a
2 a
y sin
a
z
(2,1,1)
当能量次低时,发生3重简并
211
8 a
3
sin
2 a
x sin
a
y sin
a
z
例: 绕定轴转动的刚体称为平面转子,假设其转动惯量 用 I 表示,转角用 表示,则其哈密顿算符表示为 ,试求算符 的本征值和本征函数。
4、算符对易
BA ˆˆ ˆˆ AB ˆˆ BA ˆ ˆ A、 B对易 ˆ ˆ A、 B不对易
5、单位算符
ˆ I
例题: ( ) F d , 1 ˆ
量子力学第二章小结.
宽度为a的一维无限深方势阱
势能分布为
0, 0 x a U x , x 0, x a
体系的能量为
2 2n2 En 2 a 2 (n 1, 2, 3,)
2 n n a sin a x, 0 x a, x 0, x a. 0,
式中
i p r 1 (r ) p e 3/ 2 ( 2)
i p r (r , t )e dxdydz
1 C ( p, t ) ( 2)3 / 2
(r ) * ( r , t )dxdydz p
在一维情况下,
1 ( x, t ) ( 2)1 / 2
1 C ( p, t ) ( 2)1 / 2
C ( p, t ) e
i p x
dp
( x, t )e
i p x
dx
展开系数C(p,t)实际上就是以动量为变量的波函数。
§2.3 薛定谔方程
2 2
2 k3 2E / 2
透射系数
D D0 e
2 2 (U 0 E ) a
透射系数随势垒的加宽(增大a)或加高(增大U0) 而减小。
对于任意形状的势垒:
贯穿势垒U(x)的透射系数应等于所有这些方形 势垒的透射系数之积,即
2
D D0 e
其中
a
b
2 (U ( x ) E )dx
U ( a) U (b) E
2
dxdydz 1
波函数的标准条件:单值、连续、有限。
对于归一化波函数Ψ: 几率密度
量子力学第二章知识点
量子力学第二章知识点基本概念波粒二象性量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。
这种既是粒子又是波动的性质被称为波粒二象性。
波函数波函数是量子力学中描述粒子状态的数学函数。
波函数的模的平方表示在某一位置发现粒子的概率密度。
叠加原理量子力学中,两个波函数的线性叠加仍然是一个有效的波函数。
这个原理被称为叠加原理。
量子态所有可能的状态(波函数)构成了量子力学中的量子态。
一个量子态可以通过线性叠加得到另一个量子态。
算符和测量算符算符是描述量子系统性质变化的数学操作。
在量子力学中,算符通常用来描述物理量的测量和演化。
算符的本征值和本征态对于一个算符,它的本征值是测量该物理量时可能得到的值;而本征态是对应于这些本征值的一组特定的波函数。
观测量和平均值观测量是指用来测量物理量的实际实验装置,而平均值则是对同一量子态进行多次测量得到的结果的平均值。
不确定性原理不确定性原理是量子力学的基本原理之一,它描述了在某些物理量的测量中,有些对应物理量无法同时精确确定的限制。
氢原子壳层和轨道氢原子中,电子围绕原子核运动的轨道被称为壳层。
氢原子的壳层用主量子数 n 来标记。
能级和能量氢原子中电子的能量是量子化的,称为能级。
能级由主量子数 n 决定,能级越高,能量越大。
轨道角动量氢原子中,电子的轨道运动导致了其具有轨道角动量。
轨道角动量用量子数 l 来标记。
磁量子数氢原子中,轨道角动量的分量在某一方向上的投影用磁量子数 m 来标记。
自旋和电子态自旋自旋是粒子固有的一种角动量,与粒子的旋转运动无关。
电子具有自旋角动量。
自旋量子数自旋量子数用 s 来标记,对于电子,其自旋量子数为 1/2。
自旋态自旋态是描述粒子自旋状态的波函数。
对于电子,自旋态可以是自旋向上的态,记作|↑⟩,也可以是自旋向下的态,记作|↓⟩。
自旋磁量子数自旋磁量子数用 m_s 来标记,对于电子,其自旋磁量子数可以是 1/2 或 -1/2。
总结本文介绍了量子力学第二章的知识点,包括波粒二象性、波函数、叠加原理、量子态、算符和测量、算符的本征值和本征态、观测量和平均值、不确定性原理、氢原子的壳层和轨道、能级和能量、轨道角动量、磁量子数、自旋和电子态等内容。
第二章 量子力学基础知识
第二讲 绪论课的主要目的是让同学们了解结构化学的大概情况,并在学习方法和重视程度上有所准备。
下面讲些预备知识。
第二章 量子力学基础知识 关于经典物理学,我们早有基础,为什么有了经典物理后还要有量子力学呢?2.1 量子力学的提出2.1.1 经典物理学的困难 经典物理学包括牛顿力学以及在电磁光热等方面建立起的电学、磁学、电磁学、电动力学、光学和热力学等一些学科,这些学科早在19世纪就比较成熟了,到了19世纪末就建立了完整的体系,对于当时所有的宏观物理现象,都可以进行解释,甚至连哈雷彗星多少年可以回归一次,都可以精确地计算出来,所以当时有很多科学家尤其是物理学家认为:物理学的大厦已经建成了,后辈物理学家只要作一些修修补补的工作就行了,如焦耳劝普朗克改行,开尔文在20世纪新年献词中讲到"在清朗洁净的的物理太空中,还只剩下两朵乌云,一朵是麦克尔逊的实验,一朵是黑体辐射,到了20世纪初又发现了光电效应和氢原子光谱等难以用经典物理学解释的现象。
2.1.2 氢原子光谱与波尔学说 光谱:光之谱线,类歌谱。
当用电弧、电火花灼热物质时,即发射谱线 特征谱线 进行元素分析。
H原子光谱是线状光谱,无法用经典物理学来解释。
按经典物理学,H原子核外电子的运动为带电体的圆周运动,应不断有辐射能放出,即为连续光谱,另外应不断放出能量。
最终电子运动不足以克服核的吸引能而掉于核上,这均与实验事实不符合。
1913年丹麦年仅28岁的波尔提出了学说解释,1922年获得诺贝尔奖。
波尔学说的基本要点:(1) 电子于核外只能在某些特许的轨道上运动,且不吸放E(不吸放能量,能量不会降低,则电子不会掉在核上)。
(2)只有在不同的轨道间跃迁时才吸放能量,且有(E不连续,υ不连续,λ不连续 线性光谱) 此假说对H光谱得到了满意的解释。
对别的有误差,说明这种圆形轨道理论没有普遍意义,后来又提出了索莫菲椭圆形轨道理论,结果还是没有普遍意义,这就说明要很好地解决微观世界的问题,必须完全摆脱经典物理的束缚,去建立新的学说,而随后发展起来的量子力学就是这样一种学说。
原子物理学各章节小结(1-4).
2
)
14
rm 3.07 10 m
上一页 下一页
目录
结束
玻尔氢原子理论小结
1、氢原子光谱的实验规律
1 1 RH ( 2 2 ) T ( m ) T ( n) m n m 1, 2, 3 n m 1, m 2, RH 1.0967758 107 m 1
总共有:2l+1个
上一页
下一页
目录
结束
6、夫兰克-赫兹实验
结果表明:原子体系的内部能量是量
子化的,原子能级确实存在。
上一页
下一页
目录
结束
例题:1、试计算一次电离的He+的第一玻尔轨道半 径,电离电势,第一激发电势和赖曼系第一条谱线 波长。
解:当不考虑原子核的运动时,由玻尔理论有 Z=2 ◆(1)第一玻尔轨道半径:
b ctg
2
Ze 2 2
代入数值,可得
b 64.8 fm
上一页
下一页
目录
结束
1.5 一个5MeV的α粒子射向金原子核,瞄准距离 b=260fm,试求散射角θ。
Mv 2 b ) 2 解:由公式 ctg 4 0 ( 2 2 Ze
1 5 1.6 1019 106 15 ctg 260 10 2 9 109 79 (1.6 1019 )2
原子物理学各章节小结
原子位形小结 玻尔氢原子理论小结
量子力学初步小结
碱金属原子光谱小结
塞曼效应小结
上一页
下一页
目录
结束
原子位形小结
一、原子的质量和大小 原子的线度 r 为10
量子力学第二章
ν , λ 一定
Ψ(x, t) = Ψ e 0
i − ( Et− px ⋅x) ℏ
推广 :三维自由粒子波函数
二、波函数的物理意义 波函数的物理意义
Ψ(r , t ) = Ψ0e
i − ( Et− p⋅r ) ℏ
如何理解波函数和粒子之间的关系? 如何理解波函数和粒子之间的关系? 1 物质波就是粒子的实际结构?即三维空间连续分 物质波就是粒子的实际结构? 布的物质波包,那就会扩散,粒子将会越来越胖。 布的物质波包,那就会扩散,粒子将会越来越胖。再 衍射时,电子就会被分开。夸大了波动性, 者,衍射时,电子就会被分开。夸大了波动性,抹煞 了粒子性。 了粒子性。 2 大量粒子空间形成的疏密波?电子衍射实验, 大量粒子空间形成的疏密波?电子衍射实验, 电子流很弱时,时间足够长,仍会出现干涉图样。 电子流很弱时,时间足够长,仍会出现干涉图样。单 个电子就具有波动性。 个电子就具有波动性。 3 波函数的统计解释(Born 1926):波函数在空间 波函数的统计解释( ) 波函数在空间 某点的强度(振幅绝对值的二次方) 某点的强度(振幅绝对值的二次方)和该点找到粒子 的几( 率成比例。即物质波是几率波。 的几(概)率成比例。即物质波是几率波。
2 2 x 2
2 2
i ( p⋅r − Et ) ℏ
2 px = − 2Ψ ℏ
pz2 ∂ 2Ψ = − 2Ψ 2 ∂z ℏ
2
p ∂Ψ ∂Ψ ∂Ψ 2 + 2 + 2 = ∇ ψ = − 2Ψ 2 ℏ ∂x ∂y ∂z
由
p2 E= 2µ
(2.3-3)
得
i i p2 i − ℏ2 2 ∂Ψ Ψ =− = − EΨ = − ∇Ψ ℏ ℏ 2µ ℏ 2µ ∂t
量子力学2-3
ω=
k 对经典谐振子
它是角频率。 µ 它是角频率。
线性谐振子的定态薛定谔方程为: 线性谐振子的定态薛定谔方程为:
ℏ d 1 2 2 (− + µω x )ψ ( x) = Eψ ( x) 2 2µ dx 2
它是变系数二阶常微分方程,可解。 它是变系数二阶常微分方程,可解。
2.7-1
引进参量
ξ 和λ
∵ψ n ( x ) = ψ n ( − x )
为偶数时, 线性谐振子处于偶宇称。 可见当n为偶数时,称线性谐振子处于偶宇称。 n为奇数时 为奇数时
∵ψ n ( x ) = −ψ n ( − x )
为奇数时, 线性谐振子处于奇宇称。 可见当n为奇数时,称线性谐振子处于奇宇称。
例题: 例题:求基态微观线性谐振子在经典界限之外被发现 的几率。 的几率。 解:基态微观线性谐振子的波函数是
12
e
−ξ 2
dξ =
2
π
12
[∫
∞
0
e
−ξ 2
dξ − ∫0 e
1
−ξ 2
dξ
]
2 π π p= − × 0.84 = 0.16 2 π 2
• • • • • • • • •
小结) 第二章 波函数和薛定谔方程 (小结) 一.波函数统计解释 波函数统计解释 二.态迭加原理 态迭加原理 三.薛定谔方程 薛定谔方程 四.粒子流密度和粒子数守恒定律 粒子流密度和粒子数守恒定律 五.定态薛定谔方程 定态薛定谔方程 六.一维无限深势阱 一维无限深势阱 七.线性谐振子 线性谐振子 八.势垒贯穿 势垒贯穿
若选取线性谐振子平衡位置为坐标原点, 若选取线性谐振子平衡位置为坐标原点,并选取其为 势能的零点,则线性谐振子的势能表示为: 势能的零点,则线性谐振子的势能表示为:
(完整版)量子力学知识点小结,推荐文档
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。
宇称算符:表示空间反演运算的算符。
宇称守恒:体系状态的宇称不随时间改变。
量子力学 第二章
当 m = 2n, k′a = nπ 时,R = 0, T =1 无反全 透。——共振透射 这正是经典的结论
2
当 m = 2n +1, k′a = (2n +1)π / 2 时,反射率取极大 值 经典认为,此时没有反射 V02 2
R = (2E −V0 )2 E−
共振透射是各透射波产生 相长干涉
2π 2a = nλ = n, k′a = nπ k′
规则势场 定
理 7 定 理 4 4
B=F=0 i. 偶宇称态 Aeβx , x < −a / 2 ψ (x) = 2C cos kx, x ≤ a / 2 Ae−βx , x >a/ 2
a / 2处 ′ /ψ连 ψ 续
k tan(ka / 2) = β
ii. 奇宇称态Aeβx , x < −a / 2 ψ (x) = 2iC sin kx, x ≤ a / 2 − k cot(ka / 2) = β
定理6 定理 若 ψ1(x),ψ2 (x) 是 Eq. S对应同一E 的解, 对应同一 的解,
ψ1 ψ2 则 =c ′ ′ ψ1 ψ2
证明: ψ ψ ′′ + (2m/ h2 )[E −V(x)] ψ = 0 证明: ψ2 1 1 2
′ - ψ2ψ1′+ (2m/ h )[E −V(x)]ψ1ψ2 = 0
对于低能入射,E 较小
ex −e−x shx ≡ 2
16E(V0 − E) 16k κ e T≈ 2 = e 2 2 2 (k +κ ) V0
2 2 −2κa
−
2a 2m(V0 −E) h
16E(V0 − E) = e 2 V0
2 − h
∫
量子力学第二章2.7
H n (αx )
n = 0,1,2,...
H 0 ( ξ) = 1
n = 1,
n = 2,
H1 (ξ) = 2ξ,...
H 2 (ξ) = 4ξ 2 − 2
(4) ψ n 有 n + 1 个极大值,有 n 个零点(与经典分 布不同),分布关于 x = 0 对称。
2
3. 与经典振子的比较 (1) 以上特点不同于经典振子的性质,是源于微观粒子 的波粒二象性。 因量子振子要在一定范围内形成驻波,故波长、 动量和能量必分立,ψ 有一系列的极大和零点,故有 波动性,不可能静止于原点,固有零点振动,有零点 能的存在。而对于经典振子,能量很大,对应于量子 振子的 n 很大的态,这时 ΔE n 和 E 0 都小到可以忽略, 能量趋于连续,零点能无显著作用。
n = 0,1,2,...
(8)
dH d2H + (λ − 1)H = 0 的解为厄密多项式,即: 其中 2 − 2ξ dξ dξ
d n −ξ 2 H n (ξ) = (−1) n e ξ e n dξ
2
(9)
其中n表示 H n (ξ) 的最高次幂,并且 H n (ξ)的最高次数 项的系数为 2n 。
该式对任意ξ都成立, 故ξ同次幂前的系数均应为 零,
只含偶次幂项
由上式可以看出: b0 决定所有角标k为偶数的系数; b1 决定所有角标k为奇数的系数。 因为方程是二阶微分方程,应有两个 线性独立解。可分别令: 则通解可记为:
b0 ≠ 0, b1=0. → Heven(ξ); b1 ≠ 0, b0=0. → Hodd(ξ).
其渐进解为:ψ(ξ) ∝ e
1 2 ± ξ 2
—渐近方程
(4)
。
2011-09级量子力学第2章
量子力学 第二章
Ψ= C1Ψ1 + C2Ψ2 也是电子的可能状态。 空间找到电子的几率则是:
|Ψ|2 = |C1Ψ1+ C2Ψ2|2 = (C1*Ψ1*+ C2*Ψ2*) (C1Ψ1+ C2Ψ2) = |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
A
=
A1 A2 A3
=
1 [2πh]3 / 2
= e δ hi [E′−E ]t ( pr − pr′) = δ ( pr − pr′)
Ψ pr ( rr , t )
=
1 [2πh ]3 / 2
ei h
[
pr
•
rr
−
Et
]
=
Φ
pr
(
rr
)e
−
i h
Et
其中
Φ
pr ( rr )
=
1 [2π h ]3 / 2
(2) 平方可积
由于粒子在空间总要出现(不讨论粒子产生和湮灭情
况),所以在全空间找到粒子的几率应为一,即:
C|Ψ(r,t)|2 dτ= 1, 从而得常数 C 之值为:
C = 1/∫∞|Ψ(r,t)|2 dτ
这即是要求描写粒子 量子状态的波函数Ψ 必须是绝对值平方可 积的函数。
积分是有限值
14
量子力学 第二章
因为在t时刻,空间任意两点r1和r2 处找到粒子的相对
几率之比是:
CCΨΨ((rrrr12
, ,
t) t)
2
=
ΨΨ((rrrr12
, ,
t t
) )
2
可见,Ψ(r,t) 和 CΨ(r,t)描述的是同一几率波,所以 波函数有一常数因子不定性。
大学物理量子力学总结(范本)
大学物理量子力学总结大学物理量子力学总结篇一:大学物理下必考15量子物理知识点总结15.1 量子物理学的诞生—普朗克量子假设一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2hν, …分立值,其中n = 1,2,3…,h =6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时,辐射和吸收的能量是hν的整数倍。
15.2 光电效应爱因斯坦光量子理论一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时,光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
1 mvm2?eU2二、爱因斯坦光子假说和光电效应方程1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子;频率为v 的每一个光子所具有的能量为??h?, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv,如果hv 大于该金属的电子逸出功A,这个电子就能从金属中逸出,并且有 1上式为爱因斯坦光电效应方程,式中mvm2为光电子的最大初动能。
量子力学 第二章
1 V0 k ( x a )2 2
0
V0
xa
•
取新坐标原点为(a, V0),则势可表示为标 准谐振子势的形式:
1 2 V(x) = kx 2
可见,一些复杂的势场下粒子的运动往 往可以用线性谐振动来近似描述。
(二)一维线性谐振子
• (1)方程的建立 (2)求解 (3)应用标准条件 (4)厄密多项式 (5)求归一化系数 (6)讨论
1 2 2 1 constant.
定理7:设V(x)是规则场( V(x)无奇点 ), 则方程(3)的束缚态必定不间併。
(13)
证明:对束缚态(∞)→ 0,所以(13)式中的常数=0
1 2 2 1
1 1 2 2
Ln 2 ) Ln 1 )
(三)实 例
(一)引言
(1)何谓谐振子
在经典力学中,当质量为 的粒子,受弹性力F = - kx 作用,由牛顿第二定律可以写出运动方程为:
d2x 2 kx x 2 x 0 其中 dt 其解为 x = Asin(ωt + δ)。这种运动称 为简谐振动,作这种运动的粒子叫谐振子。
2
n a n , a
2 又因 2 E
n 2 2 n2 2 所以 E En a 2 2 2 2 a ( n 0, 1, 2,)
2 2 2
n En 2 2 a
2 2
2
II n
n En = , 2 2 a
2 2 2 I III
n 1, 2, 3,
ψ = ψ = 0 ψ n = II 2 n sin x, n 1, 2, 3, ψ = a a
量子力学知识点小结
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰. 已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。
曾谨言量子力学第二章习题解答
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m 2i )(m 2i J e )r ( )t (f )r ()t r (**Et iEt i**Et iEt i**Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见tJ 与无关。
2.2 由下列定态波函数计算几率流密度:ikrikrer er -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψrJ 1 与同向。
表示向外传播的球面波。
r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m 2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ 可见,rJ 与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikxex =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。
其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。
量子力学讲义 第二章(2)
•
在讨论了状态或波函数随时间变化的规律后
, 进一步讨论粒子在一定空间区域内出现的概 率将 怎样随时间变化。
设描写粒子状态的波函数是: (r , t ) 在时刻t 在r点周围单位体积内粒子出现的概率(概 2 率密度): ( r , t ) ( r , t ) ( r , t ) | ( r , t ) | (1)
将(2)代入 (1)式中:
一、定态薛定谔方程
i [ 2 U r ] 2m t
(2)
2
2
(1)
i (r )
d f (t ) f (t )[ 2 U r ] 2 m dt 上式两边除以 ( r ) f (t )
(3)
2 i df 1 [ 2 U r ] f dt 2m
j k 其中 i x y z
(称为动量算符)
(向量算符)
问:p x
?
p x i
x
利用关系式(8)、(9)来建立在力场 中粒子波函数所满足的微分方程。 设粒子在力场中的势能为 U r ,则:
2、薛定谔方程:
三、薛定谔方程
2 p 两边乘以 p U r (10) E E U r 2m r , t 2m 2 E i t 代入上式得 i 2 U r 将 t 2m p i (11)
定态的特点 1)粒子的概率密度和概率流密度
与时间无关 因为
2 Et ( r , t ) ( r )e
t
i 2
一、定态薛定谔方程
2 (r )
显然, 0
2)能量具有确定的值 3)各力学量的平均值不随时间变化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i Et
定态薛定谔方程
2 2 U r r E r 2
可写为
ˆ r E r H
ˆ H r ,t E r ,t
能量本征方程
n 以 E n 表示体系能量算符的第n个本征值, 是与 E n 相应的波函数,则体系的第n个定态波
2
波函数有一个常数因子不定性: Φ 与CΦ 描述的是同一个状态。 归一化
2
dxdydz 1
波函数的标准条件:单值、连续、有限。
对于归一化波函数Ψ: 几率密度
w x, y, z x, y, z , t
2
t 时刻,在 x x dx,y y dy,z z dz小 区 间 内 找到粒子的几率为
§2-8 势垒贯穿
方形势垒
U 0 , U ( x) 0, 0 xa ( x 0, x a )
透射系数
D D0 e
2 2 (U 0 E ) a
透射系数随势垒的加宽(增大a)或加高(增大U0) 而减小。
对于任意形状的势垒:
贯穿势垒U(x)的透射系数应等于所有这些方形 势垒的透射系数之积,即
p2 2 2 ˆ T T 2 2
§2.5
定态薛定谔方程
薛定谔方程:
2 2 i r , t r , t U r , t t 2
若U不显含时间, 则方程解的形式为
r , t r f t r e
函数是
n (r , t ) n (r )e
i Ent
含时薛定谔方程的一般解,可以写为这些 定态波函数的线性叠加: i Ent (r , t ) Cn n (r )e
n
§2.4 粒子流密度和粒子数守恒定律
设描写粒子状态的归一化波函数是 (r , t ) ,
体系的能量为
2 2n2 En 2 8a
(n 1, 2, 3,)
1 n sin x a , n a 2a 0,
对应的波函数为
x a, x a.
宽度为a的一维无限深方势阱
势能分布为
0, 0 x a U x , x 0, x a
其中
2 (U 0 E ) k 2
2 1
2 ( U 1 E ) k 2
2 2
2 k3 2E / 2
几个力学量算符
ˆ, E i H 能量算符: t 2 2 ˆ E U H 2
哈米顿算符
动量算符:
ˆ p i p
ˆ ˆ ˆz 动量分量算符: i x p x , i y p y , i z p
动能算符:
i
因为动量可以连续变化,就可以用积分来代替 求和。
(r )dp dp dp (r , t ) C ( p, t ) p x y z
式中
i p r 1 (r ) p e 3/ 2 ( 2)
i p r (r , t )e dxdydz
dp
( x, t )e
i p x
dx
展开系数C(p,t)实际上就是以动量为变量的波函数。
§2.3 薛定谔方程
量子力学的第二个基本假设:
微观粒子状态的变化遵从薛定谔方程。
2 2 i r ,t r ,t U r ,t t 2
体系的能量为
2 2n2 En 2 a 2 (n 1, 2, 3,)
2 n n a sin a x, 0 x a, x 0, x a. 0,
对应的波函数为
求解定态薛定谔方程的步骤
①根据物理问题确定出粒子的势能表达式(有的 问题是直接给出的)。 ②列出定态薛定谔方程,引入参数,简化方程,求 出方程的通解。 ③利用波函数的标准条件,求出能量本征值和本 征函数。
2
D D0 e
其中
a
b
2 (U ( x ) E )dx
U ( a ) U ( b) E
作业:2.8
答案:
k1 e k1a e k1a k 2 k1 e k1a e k1a tgk2 (b a) (1 ) ( ) k1a k1a k1a k1a k3 e e k3 k2 e e
dW x, y, z , t x, y, z , t dxdydz
2
在有限空间V中找到粒子的几率为:
W x, y, z, t dW x, y, z, t dxdydz
2 V V
在整个空间找到粒子的几率为:
dW x, y, z , t
则粒子在空间出现的几率密度是
* w(r , t ) (r , t ) (r , t )
i * * 几率流密度矢量: J ( ) 2
w J 0 t
§2.6 一维无限深方势阱
势能分布为
0, x a U x , x a
12
, Nn n 2 n !
厄密多项式的一般形式可用一个简单公式表示:
H n ( ) (1) e
n
2
d n 2 e n d
满足两个递推公式:
dHn 2nHn1 ( ) d
H n1 ( ) 2H n ( ) 2nHn1 ( ) 0
§2.1 波函数的统计解释
量子力学的第一个基本假设:
微观粒子的状态用波函数来描述。
波函数的统计解释:
波函数在某一点的强度 和在该点找 到粒子的几率成正比。
2
在x x dx,y y dy,z z dz小区 间内 的几 率为
dW x, y, z, t C x, y, z, t dxdydz
ˆ i r ,t H r ,t t
2 ˆ H 2 U 2
——哈密顿算符
薛定谔方程反映了微观粒子的运动规律。
多粒子体系的薛定谔方程
N 2 2 i i U t i 1 2 i
pi i
2
2
2
i i j k xi yi zi
④利用波函数的归一化条件,将波函数归一化。
§2.7
势能分布 能量本征值
线性谐振子
1 U x 2 x 2 2
1 E n ( n ) 2
(n 0, 1, 2, 3,)
能量本征函数
其中
n ( x) N n e
2 x 2 / 2
H n ( x)
1 C ( p, t ) ( 2)3 / 2
(r ) * ( r , t )dxdydz p
在一维情况下,
1 ( x, t ) ( 2)1 / 2
1 C ( p, t ) ( 2)1 / 2
C ( p, t ) e
i p x
2
dxdydz 1 ——归一化条件
§2.2 态叠加原理
设1, 2, , n, 是粒子的各种可能状态,那 么,各种可能状态的线性叠加 C11 C22 Cnn Cnn
也是粒子的可能状态。 任意波函数都可以用平面波函数(动量本征函数) 进行展开,即 C ( pi , t ) p i