DS18B20温度测量设计实验报告2

合集下载

数字温度计DS18B20课程设计报告

数字温度计DS18B20课程设计报告

数字温度计DS18B20课程设计报告1. 课程设计背景数字温度计是一款可以测量温度并输出数字信号的电子设备。

它具有高精度、可编程、低功耗等优点,因此在很多领域都有广泛应用,比如环境温度监测、工业控制、食品加工等。

DS18B20是一款数字温度传感器,它以数字方式输出采集到的温度值,精度高达±0.5℃,提供了多种通信协议,应用灵活。

在本次课程设计中,我们将学习如何使用DS18B20来制作一款数字温度计。

2. 课程设计目标在本次课程设计中,我们的目标是:1.学习数字温度计的工作原理和基本构成;2.掌握DS18B20的使用方法和通信原理;3.制作一款数字温度计,并进行温度测量和数据传输。

3. 课程设计内容3.1 数字温度计的工作原理数字温度计的工作原理是利用温度传感器采集温度信息,然后通过模数转换器(ADC)将模拟信号转换成数字信号,并且通过数字信号处理单元进行处理,并显示在屏幕上。

温度传感器一般分为两种类型,即模拟温度传感器和数字温度传感器。

3.2 DS18B20的使用方法和通信原理DS18B20可以通过多种通信协议与主控板进行通信,如1-wire协议、I2C协议等。

1-wire协议是一种仅使用单个总线的串行协议,利用单总线实现数据传输。

3.3 制作数字温度计我们可以通过编程语言来控制DS18B20进行温度采集,并用LCD屏幕显示温度值。

首先要准备所需的材料和工具,包括Arduino开发板、DS18B20传感器、LCD显示屏、杜邦线、面包板等。

具体步骤如下:•连接DS18B20传感器•连接LCD显示屏•编写程序4. 课程设计成果经过学习和实际操作,我们可以掌握数字温度计的工作原理和基本构成,以及DS18B20的使用方法和通信原理。

同时,我们可以独立制作一款数字温度计,在温度测量和数据传输方面有了实际经验。

这些知识和技能对于我们学习和研究电子技术都非常有帮助。

5.通过本次课程设计,我们学习了数字温度计的工作原理和基本构成,以及DS18B20的使用方法和通信原理。

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言温度传感器在现代生活中扮演着重要的角色,它们被广泛应用于各种领域,包括工业、医疗、农业等。

DS18B20是一种数字温度传感器,具有精准的测量能力和数字输出,因此备受青睐。

本实验旨在通过对DS18B20温度传感器的测试和分析,探讨其性能和应用。

实验目的1. 了解DS18B20温度传感器的工作原理和特性。

2. 测试DS18B20温度传感器的测量精度和响应速度。

3. 探讨DS18B20温度传感器在实际应用中的优缺点。

实验器材1. DS18B20温度传感器2. Arduino开发板3. 4.7kΩ电阻4. 连接线5. 电脑实验步骤1. 将DS18B20温度传感器连接到Arduino开发板上,并接入4.7kΩ电阻。

2. 编写Arduino程序,通过串口监视器输出DS18B20传感器的温度数据。

3. 将DS18B20传感器置于不同的温度环境中,记录其输出的温度数据。

4. 分析DS18B20传感器的测量精度和响应速度。

5. 探讨DS18B20传感器在实际应用中的优缺点。

实验结果经过实验测试,DS18B20温度传感器表现出了较高的测量精度和响应速度。

在不同温度环境下,其输出的温度数据与实际温度基本吻合,误差较小。

此外,DS18B20传感器具有数字输出,易于与各种微控制器和单片机进行连接,应用范围广泛。

然而,DS18B20传感器在极端温度环境下可能出现测量误差,且价格较高,需要根据实际需求进行选择。

结论DS18B20温度传感器具有较高的测量精度和响应速度,适用于各种温度测量场景。

然而,在选择和应用时需要考虑其价格和适用范围,以确保满足实际需求。

希望本实验能够为DS18B20温度传感器的应用提供参考和借鉴,推动其在各个领域的发展和应用。

DS18B20温度测量设计实验报告

DS18B20温度测量设计实验报告

课程设计说明书(论文)题目: 温度测量课程名称: 单片机课程设计专业: 电子信息工程班级: 电信0901学生姓名:学号: 31 16 10设计地点: 3#北603指导教师:设计起止时间:2012年5月2日至2012年5月22日目录一、设计功能要求: (3)二、系统总体设计方案: (5)1、基本设计思想: (5)2、实施方案论述: (6)三、系统分析与设计: (6)1、程序流程图及说明 (6)2、温度计的的电路设计 (9)四、源码清单: (12)五、改进意见与收获体会: (18)六、主要参考资料: (19)一、设计功能要求:本次的设计主要是利用了数字温度传感器DS18B20测量温度信号,计算后可以在LCD数码管上显示相应的温度值。

其温度测量范围为-55~125℃,精确到0.5℃。

本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

数字温度计所测量的温度采用数字显示,控制器使用单片机89C51,测温传感器使用DS18B20,用LCD1602实现温度显示。

从温度传感器DS18B20可以很容易直接读取被测温度值,进行转换即满足设计要求。

本次使用的单片机89C51和MCS-51是完全兼容的,是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压、高性能CMOS8位微处理器。

其主要特点如下:• 8位CPU。

•工作频率最高为24M。

• 128B数据存储器。

• 4KB程序存储器。

•程序存储器的寻址空间为64KB。

•片外数据存储器的寻址空间为64KB。

• 128个用户位寻址空间。

• 21个字节特殊功能寄存器。

• 4个8位的并行I/O接口:P0、P1、P2、P3。

•两个16位定时/计数器。

•两个优先级别的5个中断源。

• 1个全双工的串行I/O接口,可多机通信。

• 111条指令,喊乘法指令和除法指令。

DS18B20温度测量与控制实验报告

DS18B20温度测量与控制实验报告

课程实训报告《单片机技术开发》专业:机电一体化技术班级: 104201 学号: ******** *名:***浙江交通职业技术学院机电学院2012年5月29日目录一、DS18B20温度测量与控制实验目的……………………二、DS18B20温度测量与控制实验说明……………………三、DS18B20温度测量与控制实验框图与步骤……………………四、DS18B20温度测量与控制实验清单……………………五、DS18B20温度测量与控制实验原理图…………………六、DS18B20温度测量与控制实验实训小结………………1.了解单总线器件的编程方法。

2.了解温度测量的原理,掌握DS18B20 的使用。

本实验系统采用的温度传感器DS18B20是美国DALLAS公司推出的增强型单总线数字温度传感器。

Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20 内部结构DS18B20 内部结构主要由四部分组成:64 位光刻ROM、温度传感器、非挥发的温度报警触发器TH 和TL、配置寄存器。

DS18B20 的管脚排列如下:DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM 中的64 位序列号是出厂前被光刻好的,它可以看作是该DS18B20 的地址序列码。

DS18B20温度测量与控制实验报告

DS18B20温度测量与控制实验报告

课程实训报告《单片机技术开发》专业:机电一体化技术班级: 104201学号: 10420134姓名:杨泽润浙江交通职业技术学院机电学院2012年5月29日目录一、DS18B20温度测量与控制实验目的……………………二、DS18B20温度测量与控制实验说明……………………三、DS18B20温度测量与控制实验框图与步骤……………………四、DS18B20温度测量与控制实验清单……………………五、DS18B20温度测量与控制实验原理图…………………六、DS18B20温度测量与控制实验实训小结………………一、实验目的1.了解单总线器件的编程方法。

2.了解温度测量的原理,掌握 DS18B20 的使用。

二、实验说明本实验系统采用的温度传感器DS18B20是美国DALLAS公司推出的增强型单总线数字温度传感器。

Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20 内部结构DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。

DS18B20 的管脚排列如下: DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻 ROM 中的 64 位序列号是出厂前被光刻好的,它可以看作是该DS18B20 的地址序列码。

实验报告DS18B20温度检测控制

实验报告DS18B20温度检测控制

实训五 DS18B20温度检测控制实训一、实训目的1.温度传感器电路的工作原理。

2.了解温度控制的基本原理。

3.掌握一线总线接口的使用。

二、实训说明1.DALLAS最新单线数字温度传感器DS18B20简介Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校训码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

DS18B20温度传感器课程设计报告

DS18B20温度传感器课程设计报告

传感器课程设计设计题目:DS18B20温度传感器班级:电子(2)班姓名:梁玉杰,韦小门,李军伟学号:201140620223指导教师:XXX调试地点:509目录一、概述 (2)二、内容 (3)1、课程设计题目 (3)2、课程设计目的 (3)3、设计任务和要求 (3)4、正文 (3)(一)、方案选择与论证 (3)三、系统的具体设计与实现 (5)(1)、系统的总体设计方案 (5)(2)、硬件电路设计 (5)a、单片机控制模块 (5)b、温度传感器模块 (6)四、软件设计 (12)1、主程序 (12)2、读出温度子程序 (12)3、温度转换命令子程序 (12)4、计算温度子程序 (13)五、完整程序如下: (13)六、设计体会 (18)七、参考文献 (19)一、概述随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。

本文主要介绍了一个基于89S51单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。

对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

关键词:单片机AT89C51、DS18B20温度传感器、液晶显示LCD1602。

二、内容1、课程设计题目基于DS18B20的温度传感器2、课程设计目的通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。

DS18B20实训报告

DS18B20实训报告

绵阳职业技术学院信息工程系单片机应用实训时间 2011年12月26日——31日项目题目 DS18B20数字温度计的设计地点实验楼405 、406、102二O一一年十二月29 日摘要本项目以单片机AT89S52、DS18B20为控制中心,通过DS18B20在—55度~125度的范围内采集不同的数据,将其采集的信号通过通过三线与单片机相连,进行传递。

单片机通过转换输出信号,使用9012PNP三级管作驱动,将输出来的信号通过4共阳数码管显示。

关键词:AT89S52 DS18B20 9012 数码管显示目录一.设计任务及要求 (4)1.1设计目的 (4)1.2设计任务 (4)1.3功能要求 (4)二.方案论证 (5)2.1. 方案一: (5)2.2. 方案二: (6)2.3 两种方案比较 (6)三.电路模块设计与分析 (6)3.1单片机89C52模块 (6)3.2 DS18B20的设计电路 (8)3.1.1、DS18B20简介 (8)3.1.2 DS18B20接线原理图 (10)3.1.3 DS18B20时序图 (10)3.1.4 数据处理 (11)3.1.5 温度传感器的工作原理 (12)四.系统程序的设计 (13)4.1 主程序 (13)4.2 读出温度子程序 (13)4.3 温度转换命令子程序 (14)4.4计算温度子程序 (15)4.5显示数据刷新子程序 (15)五.仿真与调试 (16)5.1 Proteus软件 (16)5.1.1 Proteus简介 (16)5.1.2 4大功能模块 (17)5.1.3 Proteus简单应用 (18)5.1.4 Proteus软件运行流程 (18)5.1.5 硬件调试结果 (20)5.2 Keil软件 (20)5.2.1 Keil软件简介 (20)5.2.2 Keil软件调试流程 (21)六.设计总结与心得体会 (22)七.附录 (23)附录一: (23)附录二: (29)附录三: (30)一.设计任务及要求1.1设计目的以单片机为核心,设计单片机最小系统,构成数字式温度计,能够实现实时温度的显示巩固所学知识、加强综合能力、提高软、硬件设计调试方面的能力、启发创新思维,使将相关专业课程知识综合起来,融会贯通,形成系统的概念,从而实现理论与实践相结合提高设计能力、电子线路的组装调试能力和创新能力,通过查阅资料、选定方案、设计电路、调试软件并下载到芯片中、写出完整的报告等过程.步骤:根据教学内容和实验设备的情况设计课程设计内容。

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言:温度传感器是一种用于测量环境温度的设备,它在许多领域都有广泛的应用,如气象学、工业控制、冷链物流等。

本实验报告将介绍DS18B20温度传感器的原理、实验装置和实验结果,并对其性能进行评估。

一、实验原理DS18B20温度传感器是一种数字温度传感器,采用单总线接口进行通信。

它采用了最新的数字温度传感器技术,具有高精度、低功耗、抗干扰等特点。

其工作原理是利用温度对半导体材料电阻值的影响,通过测量电阻值的变化来确定温度。

二、实验装置本实验使用的实验装置包括DS18B20温度传感器、Arduino开发板、杜邦线和计算机。

Arduino开发板用于读取传感器的温度数据,并通过串口将数据传输到计算机上进行处理和显示。

三、实验步骤1. 连接电路:将DS18B20温度传感器的VCC引脚连接到Arduino开发板的5V 引脚,GND引脚连接到GND引脚,DQ引脚连接到Arduino开发板的数字引脚2。

2. 编写代码:使用Arduino开发环境编写代码,通过OneWire库和DallasTemperature库读取DS18B20传感器的温度数据。

3. 上传代码:将编写好的代码上传到Arduino开发板上。

4. 监测温度:打开串口监视器,可以看到DS18B20传感器实时的温度数据。

四、实验结果在实验过程中,我们将DS18B20温度传感器放置在不同的环境中,记录了其测得的温度数据。

实验结果显示,DS18B20温度传感器具有较高的精度和稳定性,能够准确地测量环境温度。

五、实验评估本实验评估了DS18B20温度传感器的性能,包括精度、响应时间和抗干扰能力。

实验结果表明,DS18B20温度传感器具有较高的精度,能够在0.5℃的误差范围内测量温度。

响应时间较快,能够在毫秒级别内完成温度测量。

同时,DS18B20温度传感器具有较好的抗干扰能力,能够在干扰环境下保持稳定的测量结果。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。

二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。

2. 使用Arduino软件编写读取温度传感器数据的程序。

3. 通过串口监视器读取传感器采集到的温度数据。

4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。

四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。

五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。

在不同环境温
度下,传感器能够稳定地输出准确的温度数据。

六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。

温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。

通过本次实验,我们对温度传感器的性能
有了更深入的了解。

七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。

温度传感器实验报告

温度传感器实验报告

一、实验目的1. 了解温度传感器的原理和分类。

2. 掌握温度传感器的应用和特性。

3. 学习温度传感器的安装和调试方法。

4. 通过实验验证温度传感器的测量精度。

二、实验器材1. 温度传感器:DS18B20、热电偶(K型、E型)、热敏电阻(NTC)等。

2. 测量设备:万用表、数据采集器、温度调节器等。

3. 实验平台:温度传感器实验模块、单片机开发板、PC机等。

三、实验原理温度传感器是将温度信号转换为电信号的装置,根据转换原理可分为接触式和非接触式两大类。

本实验主要涉及以下几种温度传感器:1. DS18B20:一款数字温度传感器,具有高精度、高可靠性、易于接口等优点。

2. 热电偶:利用两种不同金属导体的热电效应,将温度信号转换为电信号。

3. 热敏电阻:利用温度变化引起的电阻值变化,将温度信号转换为电信号。

四、实验步骤1. DS18B20温度传感器实验1. 连接DS18B20传感器到单片机开发板。

2. 编写程序读取温度值。

3. 使用数据采集器显示温度值。

4. 验证温度传感器的测量精度。

2. 热电偶温度传感器实验1. 连接热电偶传感器到数据采集器。

2. 调节温度调节器,使热电偶热端温度变化。

3. 使用数据采集器记录热电偶输出电压。

4. 分析热电偶的测温特性。

3. 热敏电阻温度传感器实验1. 连接热敏电阻传感器到单片机开发板。

2. 编写程序读取热敏电阻的电阻值。

3. 使用数据采集器显示温度值。

4. 验证热敏电阻的测温特性。

五、实验结果与分析1. DS18B20温度传感器实验实验结果显示,DS18B20温度传感器的测量精度较高,在±0.5℃范围内。

2. 热电偶温度传感器实验实验结果显示,热电偶的测温特性较好,输出电压与温度呈线性关系。

3. 热敏电阻温度传感器实验实验结果显示,热敏电阻的测温特性较好,电阻值与温度呈非线性关系。

六、实验总结通过本次实验,我们了解了温度传感器的原理和分类,掌握了温度传感器的应用和特性,学会了温度传感器的安装和调试方法。

基于ds18b20的数字温度计设计报告

基于ds18b20的数字温度计设计报告

基于ds18b20的数字温度计设计报告
一、引言
随着科技的进步,温度的测量和控制变得越来越重要。

DS18B20是一款数字温度传感器,具有测量准确度高、体积小、接口简单等优点,广泛应用于各种温度测量场合。

本报告将介绍基于DS18B20的数字温度计设计。

二、DS18B20简介
DS18B20是一款由美国Dallas公司生产的数字温度传感器,可以通过数据线与微处理器进行通信,实现温度的测量。

DS18B20的测量范围为-55℃~+125℃,精度为±0.5℃。

三、数字温度计设计
1.硬件设计
数字温度计的硬件部分主要包括DS18B20温度传感器、微处理器、显示模块等。

其中,DS18B20负责采集温度数据,微处理器负责处理数据并控制显示模块显示温度。

2.软件设计
软件部分主要实现DS18B20与微处理器的通信和控制显示模块显示。

首先,微处理器通过数据线向DS18B20发送命令,获取温度数据。

然后,微处理器将数据处理后发送给显示模块,实现温度的实时显示。

四、测试结果
经过测试,该数字温度计的测量精度为±0.5℃,符合设计要求。

同时,该温度
计具有测量速度快、体积小、使用方便等优点,可以广泛应用于各种温度测量场合。

五、结论
基于DS18B20的数字温度计具有高精度、低成本、使用方便等优点,可以实现高精度的温度测量和控制。

随着科技的发展,数字温度计的应用将越来越广泛,具有广阔的市场前景。

基于51单片机的DS18B20温度检测_设计报告

基于51单片机的DS18B20温度检测_设计报告

课程名称:微机原理课程设计题目:温度检测课程设计随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的温度检测仪。

本设计使用简便,功能丰富。

可以实现温度采集,温度报警,重设上下限温度值等功能。

在现代化的工业生产中,需要对周围环境的温度进行检测和控制。

本设计对温控报警问题展开思考,设计一个能根据需求设置低温到高温进行报警并通过数码管显示的系统。

该系统使用STC89C51单片机,同时运用单线数字温度传感器DS18B20,四位共阴数码管显示,按键控制等模块可实现温度的检测与设置。

课题经过实验验证达到设计要求,具有一定的使用价值和推广价值。

本作品使用四位共阴数码管显示,可以清晰地显示当前的报警温度,一定程度避免使用者使用时出错,安全可靠,可使用于各种食品储存室,植物养殖所等地方,实用性很高。

关键字:温度报警器 STC89C51单片机数码管 DS18B20一、课程设计目的和要求 (1)1.1 设计目的 (1)1.2 设计要求 (1)二、总体设计方案 (1)三、硬件设计 (2)3.1 DS18B20传感器 (2)3.2 STC89C51功能介绍 (6)3.3 时钟电路 (8)3.4 复位电路 (8)3.5 LED显示系统电路 (9)3.6 按键控制电路 (11)3.7 蜂鸣器电路 (11)3.8 总体电路设计 (12)四、软件设计 (14)4.1 keil软件 (14)4.2 系统主程序设计 (14)4.3 系统子程序设计 (15)五、仿真与实现 (18)5.1 PROTEUS仿真软件 (18)5.2 STC-ISP程序烧录软件 (19)5.3 使用说明 (20)六、总结 (21)一、课程设计目的和要求1.1 设计目的熟悉典型51单片机,加深对51单片机课程的全面认识和掌握,对51单片机及其接口的应用作进一步的了解,掌握基于51单片机的系统设计的一般流程、方法和技巧,为我们解决工程实际问题打下坚实的基础。

DS18B20数字温度计设计实验报告

DS18B20数字温度计设计实验报告
读岀温度值
温度计酸处理
显示数据刷新
发温度转换开始命令
读出温度子程序 读出温度子程序的主要功能是读出RAM中的9字节。在 读出时须进行CRC校验,校验有错时不进行温度数据的改写。得出温度子程序 流程图如下图所示。
发读取温度指令
4.
系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温 度子程序和显示数据刷新子程序等。
4.1主程序
主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量温
度值。温度测量每1s进行一次。主程序流程图如图4.1所示。
4.2读出温度子程序
读出温度子程序的主要功能是读出RAM中的9字节。在读出时必须进行CRC校验,校验有错时不能进行温度数据的改写。读出温度子程序流程图如下图所示:
3、P1口:P1口是一个8位双向
I/O口。口引脚P1.2~P1.7提供内部上拉电阻,P1.0和P1.1要求外部上拉电阻。P1.0和P1.1还分别作为片内精密模拟 比较器的同相输入(ANI0)和反相输入(AIN1)。P1口输出缓冲器可吸收
20mA电流并能直接驱动LED显示。当P1口引脚写入T”时,其可用作输入端, 当引脚P1.2~P1.7用作输入并被外部拉低时,它们将因内部的写入“1”时,其可用 作输入端。当引脚P1.2~P1.7用作输入并被外部拉低时,它们将因内部的上拉电 阻而流出电流
5、温范围—55C〜+125C,在-10〜+85C时精度为土05C。
6可编程 的分辨率为9〜12位,对应的可分辨温度分别为0.5C、0.25C、
0.125C和0.0625C,可实现高精度测温。
7、在9位分辨率时最多在93.75ms内把温度转 换为数字,12位分辨率时最多在750ms内把温度值转 换为数字,速度更快。

(完整word版)基于单片机的DS18B20设计实验报告

(完整word版)基于单片机的DS18B20设计实验报告

第1章引言在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。

其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。

因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。

本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。

本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。

该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.第2章任务与要求2.1测量范围-50~110°C,精确到0.5°C;2.2利用数字温度传感器DS18B20测量温度信号;2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;第3章方案设计及论证3.1温度检测模块的设计及论证由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。

而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。

3.2显示模块的设计及论证LED是发光二极管Light Emitting Diode 的英文缩写。

LED显示屏是由发光二极管排列组成的一显示器件。

51单片机DS18B20温度传感器原理及实验

51单片机DS18B20温度传感器原理及实验

51单片机DS18B20温度传感器原理及实验一、引言温度传感器是一种常用的传感器器件,它的作用是将物体的温度变化转换为电信号输出,以实现温度的监测和控制。

DS18B20是一种数字温度传感器,采用数字信号输出,具有体积小、精度高、线性度好等特点,被广泛应用于各种温度控制系统中。

本文将介绍DS18B20的工作原理及实验方法。

二、DS18B20的工作原理DS18B20是一种基于一线传输协议的数字温度传感器,其工作原理如下:1.接口电路:DS18B20具有三个引脚,分别是VDD、DQ和GND。

其中,VDD是供电引脚,DQ是数据引脚,GND是地引脚。

2.传感器原理:DS18B20内部包含一个温度传感器和一个数字转换器。

温度传感器采用热敏电阻的原理,通过测量热敏电阻的电阻值来反映物体的温度变化。

数字转换器将传感器测得的电阻值转换为数字信号输出。

三、实验流程以下是使用51单片机对DS18B20温度传感器进行实验的详细流程:1.硬件准备:-将DS18B20的VDD引脚连接到单片机的VCC引脚,DQ引脚连接到单片机的任意IO引脚,GND引脚连接到单片机的GND引脚。

-确保DS18B20的供电电压和单片机的工作电压一致。

2.初始化:-在程序中定义DS18B20的DQ引脚所对应的单片机的IO引脚。

-初始化DS18B20,即发送初始化指令给DS18B20。

3.温度转换:-发送温度转换指令给DS18B20,DS18B20开始测量温度。

-等待一定的延时,确保DS18B20完成温度转换。

4.读取温度:-发送读取温度指令给DS18B20,DS18B20将温度的原始数据发送给单片机。

-单片机通过计算将原始数据转换为温度值。

-温度值可以通过串口或LCD等方式进行显示。

5.循环实验:-以上步骤需要不断重复,以便实时监测温度的变化。

四、总结DS18B20温度传感器是一种常用的数字温度传感器,具有精度高、体积小、线性度好等特点,适用于各种温度控制系统。

DS18B20数字温度计设计实验报告文档推荐

DS18B20数字温度计设计实验报告文档推荐

DS18B20数字温度计设计实验报告文档推荐本实验旨在设计并实现一款数字温度计,利用DS18B20数字温度传感器测量环境温度并通过LCD1602液晶屏幕实时显示温度值。

实验设计1.材料准备:Arduino UNO控制板LCD1602液晶显示屏面包板、面包线10K电阻2.配置DS18B20数字温度传感器将DS18B20数字温度传感器与Arduino UNO控制板连接。

按下面连接方式进行连接: DS18B20传感器的红色线连接到Arduino UNO的+5V输出端口接完线后在Arduino IDE软件中,依次点击工具-示例-DS18B20-Temperature-Resolution,打开示例程序。

将程序复制到新建文本文件中进行修改,此处我将分辨率改为了12位。

然后将程序上传到Arduino UNO控制板中。

LCD1602液晶显示屏的VO引脚连接到一个10K电位器的中间引脚LCD1602液晶显示屏的D4-D7引脚依次连接到Arduino UNO的数字4-7个针脚4.最终的连接方式将连接完DS18B20数字温度传感器和LCD1602液晶显示屏后的Arduino UNO控制板,和面包板和面包线通过另一个10K电阻连接,其中用到的端口引脚如下:Arduino UNO的5V端口连接了一个10K电阻,这个电阻的另一端通过面包线连接到面包板的一个面包网络面包板的另一个面包网络再通过面包线连接到LCD1602液晶显示屏的K端口最后将设备连接完整后,将实验代码上传到Arduino UNO控制板中,然后就可以通过LCD1602液晶显示屏上实时显示环境温度值。

实验总结通过本次实验,我们成功地实现了数字温度计,并能够通过LCD1602液晶显示屏上实时显示温度值。

实验中温度传感器和LCD显示屏的连接更加直观和清晰,容易理解,实验成功率较高。

通过此次实验,我们学习到了数字温度传感器的连接方式、温度检测方法和温度的精度和分辨率等基本知识,同时也熟悉了Arduino UNO控制板和LCD1602液晶显示屏的使用方法,提高了对物联网应用的理解和掌握,为后续学习打下坚实的基础。

数字温度传感器DS18B20报告

数字温度传感器DS18B20报告

DS18B20报告一、DS18B20介绍DS18B20为单总线全双工通信的数字是温度传感器,其温度可以直接转换为9、10、11或12位,具体的位数由使用者通过程序写入指令改变,芯片默认的位数为12位。

芯片的形状如图。

芯片在电路的连接如图:二、读写时序1、复位时序(1)、单片机拉低总线480us~950us,然后释放总线(拉高电平)(2)、这时DS18B20会拉低信号,大约60~240us表示应答(3)、DS18B20拉低电平的60~240us之间,单片机读取总线的电平,如果是低电平,表示复位成功,否则不成功(此时一般要重负操作,直到成功为止,编程是要进行判断)(4)、DS18B20拉低电平60~240us之后,会释放总线。

2.写数据操作(1)、单片机拉低电平大约10~15us.(2)、加入要写入的时高电平,要将电平拉高,否则拉低电平。

此时要维持20~45us的时间(3)、释放总线写‘1’操作时序写‘0’操作时序3、读操作时序(1)、单片机拉低电平大约1us(2)、单片机释放总线,然后读取总线电平(3)、这时候DS18B20如果相应位是’1’会拉高电平,反之会拉低电平(4)、读取电平过后延迟大约40~45us读‘1’操作时序读‘0’操作时序三、温度读取函数步骤DS18B20开始转换:1.DS18B20复位2.写入跳过ROM的字节命令,0XCC.3.写入开始转换的功能命令,0X44.4.延迟大约750~900毫秒DS18B20读暂存数据1.DS18B20复位。

2.写入跳过ROM的字节命令,0XCC.3.写入读暂存功能命令,0XBE.4.读入第0个字节LS Byte,转换结果的低八位。

5.读入第1个字节MS Byte,转换结果的高八位。

6.DS18B20复位,表示读取暂存结束。

程序流程图:。

DS18B20温度显示报告

DS18B20温度显示报告

单片机原理及应用课程设计课题名称:数字温度计设计专业:测控技术与仪器班级:学号:姓名:指导教师:2015年6月22 日摘要DS18B20的特点:DS18B20 单线数字温度传感器,即“一线器件”,其具有独特的优点:( 1 )采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与 DS18B20 的双向通讯。

单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

( 2 )测量温度范围宽,测量精度高 DS18B20 的测量范围为 -55 ℃ ~+ 125 ℃ ; 在 -10~+ 85°C范围内,精度为± 0.5°C 。

( 3 )在使用中不需要任何外围元件。

( 4 )持多点组网功能多个 DS18B20 可以并联在惟一的单线上,实现多点测温。

( 5 )供电方式灵活 DS18B20 可以通过内部寄生电路从数据线上获取电源。

因此,当数据线上的时序满足一定的要求时,可以不接外部电源,从而使系统结构更趋简单,可靠性更高。

( 6 )测量参数可配置 DS18B20 的测量分辨率可通过程序设定 9~12 位。

( 7 ) 负压特性电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

( 8 )掉电保护功能 DS18B20 内部含有 EEPROM ,在系统掉电以后,它仍可保存分辨率及报警温度的设定值。

DS18B20 具有体积更小、适用电压更宽、更经济、可选更小的封装方式,更宽的电压适用范围,适合于构建自己的经济的测温系统,因此也就被设计者们所青睐。

本课程设计以DS18B20与AT89C51单片为基础,通过AT89C51单片机控制DS18B20进行温度测量,并将测得温度在四位共阴数码管上显示出来。

关键字:DS18B20,AT89C51单片机,四位共阴数码管,单总线控制。

目录一.数字温度计设计思想二.原理图2.1显示单元2.2主要元器件选择2.2.1 74HC154简介2.2.2 74HC595简介2.2.3 AT89C51简介2.3 软件设计2.3.1 往74HC595写一字节子程序2.3.2 主程序三.制作与调试3.1软件调试总结程序清单一、数字温度计设计思想本课程设计以DS18B20与AT89C51单片为基础,通过AT89C51单片机控制DS18B20进行温度测量,并将测得温度在四位共阴数码管上显示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息工程学院成绩课程设计说明书(论文)题目: 温度测量课程名称: 单片机课程设计专业: 电子信息工程班级: 电信0901学生姓名:学号: 31 16 10设计地点: 3#北603指导教师:设计起止时间:2012年5月2日至2012年5月22日目录一、设计功能要求: (3)二、系统总体设计方案: (5)1、基本设计思想: (5)2、实施方案论述: (6)三、系统分析与设计: (6)1、程序流程图及说明 (6)2、温度计的的电路设计 (9)四、源码清单: (12)五、改进意见与收获体会: (18)六、主要参考资料: (19)一、设计功能要求:本次的设计主要是利用了数字温度传感器DS18B20测量温度信号,计算后可以在LCD数码管上显示相应的温度值。

其温度测量范围为-55~125℃,精确到0.5℃。

本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

数字温度计所测量的温度采用数字显示,控制器使用单片机89C51,测温传感器使用DS18B20,用LCD1602实现温度显示。

从温度传感器DS18B20可以很容易直接读取被测温度值,进行转换即满足设计要求。

本次使用的单片机89C51和MCS-51是完全兼容的,是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压、高性能CMOS8位微处理器。

其主要特点如下:•8位CPU。

•工作频率最高为24M。

•128B数据存储器。

•4KB程序存储器。

•程序存储器的寻址空间为64KB。

•片外数据存储器的寻址空间为64KB。

•128个用户位寻址空间。

•21个字节特殊功能寄存器。

•4个8位的并行I/O接口:P0、P1、P2、P3。

•两个16位定时/计数器。

•两个优先级别的5个中断源。

•1个全双工的串行I/O接口,可多机通信。

•111条指令,喊乘法指令和除法指令。

•较强的位处理能力。

•采用单一+5V电源。

对于89C52而言,不同之处在于:有256B的数据存储器、8K的程序存储器、全双工串行I/O接口、6个中断源、3个16位定时/计数器,工作频率可升直33Mhz。

比51拥有更高的性能。

单片机要对DS18B20进行读写,主要通过如下子程序进行驱动。

(1)复位:在使用DS18B20时,首先需要对单片机进行复位。

复位时,单片机给DS18B20的单总线至少480us的低电平信号。

当DS18B20检测到此复位信号后会在15-60us内给出一个一个存在脉冲。

该存在脉冲是是一个60-240us的低电平信号。

为了能够接收到此低电平,需要单片机在复位电平结束之后将总线拉高。

(2)ROM指令:包括读ROM指令,指定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。

ROM指令为8位长度,功能是对片内的64位光刻ROM 进行操作。

其主要目的是为了分辨总线上的多个器件。

不过,在本系统中由于只有一个DS18B20,所以不需要进行ID辨识,所以可以采用一条特殊的跳过指令。

具体指令可以参看其datasheet。

(3)发送存储器操作指令:在ROM指令发送给DS18B20后,紧接着需要向它发送存储器操作指令,操作指令同样为8位,共六条,分别是写RAM 数据、读RAM数据、将RAM数据复制到EEPROM、温度转换、将EEPROM 中的报警值复制到RAM、工作方式切换。

(4)执行和读写操作:一个存储器操作指令结束后则将进行指令执行或数据读写。

如果是进行温度转换,需要等待DS18B20执行其指令,转换时间一般为500us。

DS18B20温度值格式默认的12位转化后得到的12位数据,存储在18B20的两个8比特的RAM 中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

如图:DS18B20常用ROM指令:指令约定代码功能二、系统总体设计方案1、基本设计思想基本设计方案:根据DS18B20的通讯协议,单片机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位操作,复位成功后发送一条ROM 指令,最后发送RAM 指令,这样才能对DS18B20进行预定的操作。

复位要求主CPU 将数据线下拉500微秒,然后释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU 收到此信号表示复位成功。

于是,给DS18B20不同的时序,可以读取温度传感器的值,根据温度算法算出当时的温度值,在给显示部分,通过LCD 显示出来。

读ROM 33H 读DS1820温度传感器ROM 中的编码(即64位地址符合 ROM 55H 发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。

搜索 ROM 0FOH 用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。

为操作各器件作好准备。

跳过 ROM 0CCH 忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。

适用于单片工作。

告警搜索命令0ECH执行后只有温度超过设定值上限或下限的片子才做出响应。

2、实施方案论述这个课题主要实现温度的检测以及通过数码管显示这两个大功能,以及读取这个相对较为容易的功能。

因此在温度检测这一模块上,利用DS18B20这一目前比较先进的温度传感器,可以很精确地感测实时温度,对于DS18B20的通讯协议的控制,读取测量的温度值,经过一定的算法,可以把温度转化为十进制,分别为高位和低位,先暂存起来。

经显示模块调用,最终在LCD 上显示。

电路方框图二、系统分析与设计1、程序流程图及说明主函数完成对DS18B20的初始化,读取温度的转换值,调用数据处理的子程序然后再生成显示代码,再将温度显示出来,然后根据温度显示的代码判断温度值可以判断它的值是否超出了预设的范围。

然后返回到主函数开始的位置,无论温度值是否超出预设值,程序都会返回开始的位置,重复循环。

时钟电路C51主控电路 DS18B20复位电路 显示电路开始始初始化、设置常量调用DS18B20初始化子程序读温度转换值调用数据处理子程序生成显示码显示温度值主函数流程图DQ置1DS18B20复位FLAG=?1发送OCCH 命令,跳过ROM 匹配发送温度转换命令44H延时750us以上DS18B20初始化跳过ROM匹配发送温度命令OBEH调用读数据子程序返回DS18B20复位子程序DQ置1DQ置0延时至少573msDQ置1短延时等待DS18B20回应DQ=?0F L A G置0FLAG置1延时DQ置1温度值子程序2、温度计的的电路设计温度计采用AT89C51单片机作为微处理器,温度计系统的外围接口电路由晶振、LCD显示电路、复位电路、温度检测电路、LCD驱动电路。

温度计系统的的硬件电路图如下图所示。

温度计的工作过程是:初始化其接收需要检测的温度,并一直处于检测状态,并将检测到的温度值读取,并转化为十进制数值,通过LCD显示出来,再显示温度,方便用户来读数使用记录数据。

具体实现方法是:单片机将从P2.2管脚读进来的数据进行处理,P0.1到P0.7为数码管的段选端口,通过RP1的驱动对LCD进行驱动。

硬件电路原理图时钟电路复位电路显示电路温度检测电路三、源码清单#include <reg52.h>#include <intrins.h>#define uint unsigned int#define uchar unsigned char#define delayNOP() {_nop_();_nop_();_nop_();_nop_();}sbit DQ = P3^3;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "};uchar code Temperature_Char[8] ={0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x00};uchar code df_Table[]={0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9};uchar CurrentT = 0;uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0};bit DS18B20_IS_OK = 1;void DelayXus(uint x){uchar i;while(x--){for(i=0;i<200;i++);}}bit LCD_Busy_Check(){bit result;LCD_RS = 0;LCD_RW = 1;LCD_EN = 1;delayNOP();result = (bit)(P0&0x80);LCD_EN=0;return result;}void Write_LCD_Command(uchar cmd) {while(LCD_Busy_Check());LCD_RS = 0;LCD_RW = 0;LCD_EN = 0;_nop_();_nop_();P0 = cmd;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void Write_LCD_Data(uchar dat) {while(LCD_Busy_Check());LCD_RS = 1;LCD_RW = 0;LCD_EN = 0;P0 = dat;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void LCD_Initialise(){Write_LCD_Command(0x01);DelayXus(5);Write_LCD_Command(0x38);DelayXus(5);Write_LCD_Command(0x0c);DelayXus(5);Write_LCD_Command(0x06);DelayXus(5);}void Set_LCD_POS(uchar pos){Write_LCD_Command(pos|0x80); }void Delay(uint x){while(--x);}uchar Init_DS18B20() {uchar status;DQ = 1;Delay(8);DQ = 0;Delay(90);DQ = 1;Delay(8);DQ = 1;return status;}uchar ReadOneByte() {uchar i,dat=0;DQ = 1;_nop_();for(i=0;i<8;i++){DQ = 0;dat >>= 1;DQ = 1;_nop_();_nop_();if(DQ)dat |= 0X80;Delay(30);DQ = 1;}return dat;}void WriteOneByte(uchar dat){uchar i;for(i=0;i<8;i++){DQ = 0;DQ = dat& 0x01;Delay(5);DQ = 1;dat >>= 1;}}void Read_Temperature(){if(Init_DS18B20()==1)DS18B20_IS_OK=0;else{WriteOneByte(0xcc);WriteOneByte(0x44);Init_DS18B20();WriteOneByte(0xcc);WriteOneByte(0xbe);Temp_Value[0] = ReadOneByte();Temp_Value[1] = ReadOneByte();DS18B20_IS_OK=1;}}void Display_Temperature(){uchar i;uchar t = 150, ng = 0;if((Temp_Value[1]&0xf8)==0xf8){Temp_Value[1] = ~Temp_Value[1];Temp_Value[0] = ~Temp_Value[0]+1;if(Temp_Value[0]==0x00)Temp_Value[1]++;ng = 1;}Display_Digit[0] = df_Table[Temp_Value[0]&0x0f];CurrentT = ((Temp_Value[0]&0xf0)>>4) | ((Temp_Value[1]&0x07)<<4); Display_Digit[3] = CurrentT/100;Display_Digit[2] = CurrentT%100/10;Display_Digit[1] = CurrentT%10;Current_Temp_Display_Buffer[11] = Display_Digit[0] + '0';Current_Temp_Display_Buffer[10] = '.';Current_Temp_Display_Buffer[9] = Display_Digit[1] + '0';Current_Temp_Display_Buffer[8] = Display_Digit[2] + '0';Current_Temp_Display_Buffer[7] = Display_Digit[3] + '0';if(Display_Digit[3] == 0)Current_Temp_Display_Buffer[7] = ' ';if(Display_Digit[2] == 0&&Display_Digit[3]==0)Current_Temp_Display_Buffer[8] = ' ';if(ng){if(Current_Temp_Display_Buffer[8] == ' ')Current_Temp_Display_Buffer[8] = '-';else if(Current_Temp_Display_Buffer[7] == ' ')Current_Temp_Display_Buffer[7] = '-';elseCurrent_Temp_Display_Buffer[6] = '-';}Set_LCD_POS(0x00);for(i=0;i<16;i++){Write_LCD_Data(Temp_Disp_Title[i]);}Set_LCD_POS(0x40);for(i=0;i<16;i++){Write_LCD_Data(Current_Temp_Display_Buffer[i]);}Set_LCD_POS(0x4d);Write_LCD_Data(0x00);Set_LCD_POS(0x4e);Write_LCD_Data('C');}void main(){LCD_Initialise();Read_Temperature();Delay(50000);Delay(50000);while(1){Read_Temperature();if(DS18B20_IS_OK)Display_Temperature();DelayXus(100);}}五、改进意见与收获体会:可以加入自动报警系统,方便用于实际的用途,可以在实际的应用中达到自动检测报警的效果,方便人们对于温度的检测。

相关文档
最新文档