《运筹学》课堂作业及答案
最全运筹学习题及答案
最全运筹学习题及答案运筹学习题答案第⼀章(39页)1.1⽤图解法求解下列线性规划问题,并指出问题是具有唯⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。
(1)max 12z x x =+ 51x +102x ≤501x +2x ≥1 2x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解:(1)(图略)有唯⼀可⾏解,max z=14 (2)(图略)有唯⼀可⾏解,min z=9/4 (3)(图略)⽆界解(4)(图略)⽆可⾏解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x ⽆约束(2)k i z =1mk x=-∑ik x ≥(1Max s. t .-41x x 1x ,2x(2)解:加⼊⼈⼯变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.m(1)max z=21x +32x +43x +74x 21x +32x -3x -44x =8 1x -22x +63x -74x =-31x ,2x ,3x ,4x ≥0(2)max z=51x -22x +33x -64x1x +22x +33x +44x =721x +2x +3x +24x =31x 2x 3x 4x ≥0(1)解:系数矩阵A 是:23141267----?? 令A=(1P ,2P ,3P ,4P )1P 与2P 线形⽆关,以(1P ,2P )为基,1x ,2x 为基变量。
(完整版)运筹学》习题答案运筹学答案
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学部分课后习题解答
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
《运筹学》课后答案
《运筹学》课后答案《运筹学》是一门研究如何在有限资源下做出最佳决策的学科,它涉及到数学、统计学、经济学等多个学科的知识。
掌握运筹学的方法和技巧对于解决实际问题具有重要意义。
下面是《运筹学》课后习题的答案:1. 什么是线性规划问题?线性规划问题是指在一组线性约束条件下,求解一个线性目标函数的最优值的问题。
线性规划问题具有优化的特点,即找到一组满足约束条件的解,使得目标函数取得最大(最小)值。
2. 线性规划问题的标准形式是什么?线性规划问题的标准形式是指将目标函数和约束条件都写成标准形式,即目标函数为最大化(最小化)一个线性函数,约束条件为一组线性不等式和线性等式。
3. 线性规划问题的解的存在性和唯一性是什么?线性规划问题的解的存在性和唯一性是由线性规划问题的特殊结构决定的。
如果线性规划问题有有界解(即目标函数有最大(最小)值),则存在解;如果线性规划问题的目标函数有最大(最小)值,且该最大(最小)值只有一个解,则解是唯一的。
4. 什么是单纯形法?单纯形法是一种解线性规划问题的常用方法,它通过迭代计算来逐步接近最优解。
单纯形法的基本思想是从一个初始可行解出发,通过一系列变换(包括基变换、基可行解的改进等)来逐步接近最优解。
5. 什么是对偶理论?对偶理论是线性规划问题的一个重要理论基础,它通过将原问题转化为对应的对偶问题来研究线性规划问题。
对偶理论可以帮助我们理解线性规划问题的性质和结构,并且可以通过对偶问题的解来得到原问题的解。
6. 什么是整数规划问题?整数规划问题是指在线性规划问题的基础上,将决策变量的取值限制为整数的问题。
整数规划问题具有更为复杂的性质,其解的搜索空间更大,求解难度更大。
7. 什么是分支定界法?分支定界法是解整数规划问题的一种常用方法,它通过将整数规划问题分解为一系列线性规划子问题,通过不断分支和约束来逐步缩小解的搜索空间,最终找到最优解。
8. 什么是动态规划?动态规划是一种解决多阶段决策问题的方法,它通过将问题分解为一系列子问题,并且利用子问题的解来构建整体问题的解。
(完整版)运筹学》习题答案运筹学答案
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学(胡运权)第五版课后答案-运筹作业
运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
运筹学第三版课后习题答案 (2)
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
中南大学现代远程教育平台—运筹学课程作业答案(可打印修改)
销地 产地
B1
B2
B3
A1 A2 列差值
6(1) 8(2)
2,2
4(╳) 5(3)
1,1
2(3) 7(╳)
5
需求量
3
3
3
行差值
2,2 2,3
供应量
4 5
(2)用位势法求检验数:对基变量有: Rij
cij
(ui
vj )
0
,并令
u1=0,求出行列位势,如下
表。
销地 产地
A1 A2 列位势 vj 需求量
x1 ' 3x2 ' x3 2 (1)
s.t.
4x2 ' x3 x1 ' 2x2
1 ' x3
1
(2)
,
(3)
x1 ' 4x2 ' x3 1 (4)
x1 ', x2 ', x3 0或1
用目标函数值探索法求最大值:
c j x1’ x2’ x3
是否满足约束方程 (1) (2) (3) (4) Z
式 Rj C j CB P j )。
解:(1)图解如下:
2
解。
所有基本可行解:O(0,0),Q1(6,0),Q2(4,2),Q3(2,3),Q4(0,3)共五个基可行
从上图知:最优解为点 Q2(4,2),目标函数值为 Z=20。 (2)模型标准化为:
max z 3x1 4x2
x1 x2 x3 6 ( 1)
项目
电
视
广播 报纸
一般时间 黄金时间
每个广告单元的费用(元) 每个广告单元所接触的顾客数(万人) 每个广告单元所接触的女顾客数(万人)
4000 40 30
运筹学课后习题答案
6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5
⑤
2
0
2②
15 0
6⑧
2
3
③
④
⑦
⑥
①
x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解
最全运筹学习题及答案
最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。
运筹学课后习题及答案
运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。
在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。
下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。
1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。
以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。
2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。
以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。
3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。
以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。
边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。
在该例中,最小费用为5,最大流量为3。
《运筹学》习题与答案
《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。
2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。
3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。
4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。
5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。
二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。
2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。
3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。
4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。
5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。
三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。
A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。
《运筹学》课堂作业及相应答案解析
第一部分绪论第二部分线性规划与单纯形法1 判断下列说法是否正确:(a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b)线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c)线性规划问题的每一个基解对应可行域的一个顶点;(d)如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e)对取值无约束的变量x i,通常令其中,在用单纯形法求得的最优解中有可能同时出现(f)用单纯形法求解标准型的线性规划问题时,与对应的变量都可以被选作换入变量;(g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h)单纯形法计算中,选取最大正检验数δk对应的变量x k作为换入变量,将使目标函数值得到最快的增长;(i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j)线性规划问题的任一可行解都可以用全部基可行解的线性组合表示;(k)若x1,x2分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中λ1,λ2可以为任意正的实数;(1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为X ai为人工变量),但也可写为,只要所有k i均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为个;(n)单纯形法的迭代计算过程是从一个可行解转转换到目标函数值更大的另一个可行解;(o)线性规划问题的可行解如为最优解,则该可行解一定是基可行解;(p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r)将线性规划约束条件的“≤”号及“≥”号变换成“=”号,将使问题的最优目标函数值得到改善;(s)线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t)一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解;(v)一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
运筹学第三版课后习题答案
运筹学第三版课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涉及到数学、统计学、经济学等多个学科的知识,可以应用于各个领域,如物流管理、生产调度、供应链优化等。
而《运筹学》第三版是一本经典的教材,它系统地介绍了运筹学的基本概念、方法和应用。
本文将针对该教材的课后习题进行解答,帮助读者更好地理解和掌握运筹学的知识。
第一章:线性规划1. 习题1.1:求解线性规划问题的常用方法有哪些?答:求解线性规划问题的常用方法包括单纯形法、对偶理论、整数规划等。
其中,单纯形法是最常用的方法,它通过迭代寻找目标函数值最小(或最大)的解。
2. 习题1.2:什么是线性规划的对偶问题?如何求解线性规划的对偶问题?答:线性规划的对偶问题是指通过原始问题的约束条件构造一个新的问题,该问题的目标是最大化(或最小化)原始问题的目标函数值。
求解线性规划的对偶问题可以使用对偶理论,通过将原始问题转化为对偶问题的等价形式,再利用对偶问题的特性进行求解。
第二章:整数规划1. 习题2.1:什么是整数规划问题?与线性规划问题有何不同?答:整数规划问题是指决策变量的取值必须为整数的线性规划问题。
与线性规划问题相比,整数规划问题的解空间更为有限,求解难度更大。
整数规划问题在实际应用中常常涉及到资源的离散分配、路径选择等问题。
2. 习题2.2:列举几个整数规划问题的应用场景。
答:整数规划问题的应用场景包括生产调度、物流路径优化、设备配置等。
例如,在生产调度中,需要确定每个生产批次的数量和时间,以最大化产能利用率和最小化生产成本。
第三章:动态规划1. 习题3.1:什么是动态规划?它的基本思想是什么?答:动态规划是一种通过将问题划分为多个子问题,并保存子问题的解来求解原问题的方法。
其基本思想是利用子问题的解构建全局最优解,从而避免重复计算和提高求解效率。
2. 习题3.2:动态规划在哪些问题中有应用?答:动态规划在最短路径问题、背包问题、序列比对等问题中有广泛的应用。
运筹学课后习题及答案
运筹学课后习题及答案在运筹学这门课程中,课后习题是帮助学生巩固理论知识和提高解决实际问题能力的重要环节。
以下是一些典型的运筹学课后习题及答案,供学生参考和练习。
习题1:线性规划问题问题描述:一个工厂需要生产两种产品A和B,每种产品都需要使用机器1和机器2。
产品A每单位需要机器1工作3小时,机器2工作2小时;产品B每单位需要机器1工作2小时,机器2工作4小时。
机器1每天最多工作24小时,机器2每天最多工作20小时。
如果产品A每单位的利润是500元,产品B每单位的利润是600元。
假设工厂希望最大化利润,问应该生产多少单位的产品A和B?解答:首先,设产品A的产量为x,产品B的产量为y。
根据题目条件,我们可以得到以下两个约束条件:\[ 3x + 2y \leq 24 \]\[ 2x + 4y \leq 20 \]目标函数是利润最大化,即:\[ \text{Maximize} \ P = 500x + 600y \]通过图解法或单纯形法,我们可以得到最优解为x=4,y=3。
此时,利润最大化为\( P = 500 \times 4 + 600 \times 3 = 3800 \)元。
习题2:网络流问题问题描述:一个供水系统由多个泵站和水库组成,需要确保每个水库都有足够的水量供应。
已知每个泵站的供水能力以及每个水库的需求量。
如何分配泵站的供水量,以满足所有水库的需求?解答:首先,需要构建一个网络流图,其中节点代表泵站和水库,边代表供水路径。
每条边的容量表示泵站的供水能力,每条边的流量表示实际供水量。
目标是找到满足以下条件的网络流:- 每个泵站的总流出量等于其供水能力。
- 每个水库的总流入量等于其需求量。
- 网络中没有负流量。
使用最大流算法,如Ford-Fulkerson算法或Edmonds-Karp算法,可以找到满足上述条件的最大网络流。
习题3:整数规划问题问题描述:一个公司需要决定是否投资于三个不同的项目,每个项目都需要一定的资金和人力资源。
运筹学课程作业答案
工厂5
工厂9 工厂6
工厂3
8
线性规划 Linear Programming(LP)
3. 河流污染治理规划问题
曾几何时长江水, 哺育华夏代代人, 谁知后代疏珍惜, 清清江水黑如泥。
工厂2 工厂8
工厂7
工厂1 工厂3
工厂4
工厂5
工厂9
工厂6
今日认识未为晚, 吾辈齐心治环境, 线性规划大有用, 定让江水绿如蓝。 9
10
线性规划 Linear Programming(LP)
背景资料:
表-1 污水排放量
单位:万m3
化工厂1
1.2
化工厂4
2
化工厂7
2
化工厂2
1
化工厂5
1
化工厂8
0.8
化工厂3
3
化工厂6
1
化工厂9
1.5
表-2 流经各化工厂的河流流量
单位:万m3
化工厂1
500
化工厂4 1200 化工厂7 1200
化工厂2
6
第一章作业
3. 河流污染治理规划问题 曾几何时长江水, 哺育华夏代代人, 谁知后代疏珍惜, 清清江水黑如泥。
7
线性规划 Linear Programming(LP)
案 例 河流污染治理规划问题
曾几何时长江水, 哺育华夏代代人, 谁知后代疏珍惜, 清清江水黑如泥。
工厂1
工厂2 工厂8
工厂7
工厂4
5
▪ ▪
对化工厂7应有—— 3 (2-X7)+ 0.8(1.5-X9) / 1200 ≦ 0.2%
13
线性规划 Linear Programming(LP)
▪ 对化工厂4应有——
《运筹学》课后习题答案 EX15_解答_排队论2
第十五次作业解答习题6:(P221)9;(9)某汽车修理部有4个修理工,每个修理工可以单独修理汽车,也可以和其他修理工合作共同修理汽车。
前来修理部寻求修理的汽车按泊松流到达,平均每天到达2辆。
当修理部内有4辆汽车时,后来的汽车将离去。
修理一辆汽车所需时间服从负指数分布,若一个修理工修理一辆汽车,则平均需3天;若两个修理工修理1辆汽车,则平均需2天;若3或4个修理工修理一辆汽车,则平均需1.5天。
试求: ①画出系统状态转移图; ②求系统状态概率; ③求系统损失率;④求系统中平均的汽车数量;⑤求每辆汽车在系统中逗留的时间。
解:依题意,因为修理工可以相互合作也可以单独工作,可以把他们看成最多有4个服务台的一个修理小组,所以该系统为M/M/4/4/∞/FCFS 损失制排队系统。
2λ=辆/天,修理部的修理速度μ是一个变化的参数,具体如下:11(1/1.5)2/3μ=⨯=;22(1/2)1μ=⨯=;32(1/3)1(1/2)7/6μ=⨯+⨯=;44(1/3)4/3μ=⨯=。
150.75210c λρμ===⨯ (1)状态转移速度图:(2)系统状态概率:011103p p p p λμ=⇒=;022112100()8/326p p p p p p p λμμλ+=+⇒=-=;133223210()(32)(7/6)72/7p p p p p p p λμμλ+=+⇒=-=;244334320()(19/62)/3)108/7p p p p p p p λμμλ+=+⇒=-=。
由41kk p==∑可得,10[13672/7108/7]7/2500.028p -=++++==;120.084;0.168;p p ==340.288;0.432p p ==。
(3)系统损失率40.432p p ==损。
(4)系统中平均的汽车数量4110.08420.16830.28840.4320.0840.3360.864 1.728 3.012s n n L np ===⨯+⨯+⨯+⨯=+++=∑。
运筹学第五版课后答案,运筹作业
47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1.2(b)约束方程的系数矩阵 A= 1 2 3 4( )2 1 1 2P1 P2 P3 P4最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:用LINDO求解:LP OPTIMUM FOUND AT STEP 3OBJECTIVE FUNCTION VALUE1) 118400.0VARIABLE VALUE REDUCED COST Z 0.000000 1.000000 X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.000000 1500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
《运筹学》课后习题答案 EX12_第12次作业解答_最大流问题
第十二次作业解答:P178:9),10)9)求图7.20网络中,从S V 到t V 的最大流。
解:用Ford-Fulkerson 标记化方法(标号法)。
步骤一、先确定初始可行流(可以是零流)如下:步骤二、标号过程如下:步骤三、调整可行流流量,增广链上弧的流量调整量为ε=4,即正向弧流量增加4,反向弧流量减少4。
修正流量后的网络图如下。
重复步骤二,得到新的流量修正路线为:Vs → V3 → V6 → V4 → V2 → Vt, ε=4。
修正流量后的网络图如下。
重复步骤二,得到新的流量修正路线为:Vs → V3 → V6 → V4 → V7 → V5 → Vt, ε=1。
修正流量后的网络图如下。
重复步骤二,顶点标记到Vs → V6 → V4 → V1 → V3 → V6 后不能再标记,因此上图已经是最大流网络图。
由网络图可知最大流量为: 8+5+12=25。
10)有1V 、2V 两口油井经管道将油输送到脱水处理厂10V ,中间需经过几个泵厂,如图7.21所示。
边上的数字为相应管道通过的最大能力(吨/小时),求每小时从油井输送到脱水处理厂的最大流。
解:方法1: 用电子表格求解(参照答案)方法2: 用Ford-Fullkerson 标记方法求解(1)初始可行流为零流, 可以找到三条增广链,调整流量;V 5V 154 631034 V 4V 3V 2V 6V 8 V 9V 10V 7685 35 910423(3)再找增广链并调整流量,得最大流max 20f =。
运筹学课程作业答案
线性规划 Linear Programming(LP)
背景资料: 长江流域某区域内有9个化工厂,各厂每月产生的工业污水量如
表-1,流经各化工厂的河流流量如表-2,各化工厂治理工业污 水的成本如表-3。上游厂排放的污水流到相邻下游厂以前,有 20%可自然净化。 根据环保标准河流中此种工业污水的含量不 应超过0.2%。从该区域整体考虑,各化工厂应该分别处理多少 工业污水才能既满足环保要求,又使9个化工厂治理工业污水的 总费用最少。
运筹学 Operations research
作业答案
1
第一章
线性规划
Linear Programming
2
第一章作业(第一次)
1.用长8m的角钢切割钢窗,每付钢窗含长 1.5m的料2根,1.45m的料2根,1.3 m的料6 根,1.35m的料12根,若需要100付这样的钢 窗,问最少切割8m长的角钢多少根?(余料 ≥0.8m长的角钢去掉)试建立该问题的数学 模型。
C6
b`
X6
C3 X 3 0 α1+12/ α3
1 0 α2+16/ α3
- 4/ α3 e-12/ α3
C4 X 4 0 -5-3/ α3 0 1 -1 -4/ α3 1/ α3 2+3/ α3
C1 X 1 1 -3/ α3
0 0 -4/ α3
1/ α3 3/ α3
δj
0
00
29
Z = C3 ×e + C4×2+ C6 ×3 = e C3 + 2C4+ 3C6
X2 X1 +0.8X2
2 8
X8 +0.8X8
9 ≥ 0.4
≥ 0.4 ≥ 1.64
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分绪论第二部分线性规划与单纯形法1 判断下列说法是否正确:(a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b)线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c)线性规划问题的每一个基解对应可行域的一个顶点;(d)如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e)对取值无约束的变量x i,通常令其中,在用单纯形法求得的最优解中有可能同时出现(f)用单纯形法求解标准型的线性规划问题时,与对应的变量都可以被选作换入变量;(g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h)单纯形法计算中,选取最大正检验数δk对应的变量x k作为换入变量,将使目标函数值得到最快的增长;(i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j)线性规划问题的任一可行解都可以用全部基可行解的线性组合表示;(k)若x1,x2分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中λ1,λ2可以为任意正的实数;(1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为X ai为人工变量),但也可写为,只要所有k i均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为个;(n)单纯形法的迭代计算过程是从一个可行解转转换到目标函数值更大的另一个可行解;(o)线性规划问题的可行解如为最优解,则该可行解一定是基可行解;(p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r)将线性规划约束条件的“≤”号及“≥”号变换成“=”号,将使问题的最优目标函数值得到改善;(s)线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t)一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解;(v)一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
【答案】1.1(a)(b)(f)(g)(i)(J)(1)(q)(t)正确,(c)(d)(e)(h)(k)(m)(n)(o)(p) (r)(s)(U)(v)不正确。
2用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。
【答案】(a)唯一最优解,z*=3,x1=1/2,x2=0;(b)无可行解;(c)有可行解,但max z无界;(d)无穷多最优解,z*=66。
表1.6【答案】1.25(a)d≥0,C 1<0,C 2<0;(b)d≥0,c 1≤0,C 2≤o,但c 1,C 2中至少一个为零;(c)d=0,或d>0,而c 1>0且d /4—3/a 2;(d)C 1>0,3/a 2<d /4; (e)C 2>0,a 1≤0;(f)x 5为人工变量,且c 1≤0,C 2≤o。
3 某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油消耗量限制为48000 1、重型炸弹48枚、轻型炸弹32枚。
飞机携带重型炸弹时每升汽油可飞行2 km ,带轻型炸弹时每升汽油可飞行3 km 。
又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每升汽油可飞行4 km)外,起飞和降落每次各消耗100 1。
有关数据如表1—17所示。
表1—17为了使摧毁敌方军事门标的可能性最大,应如何确定飞机轰炸的方案。
要求建立这个问题的线性规划模型。
【答案】用i=1,2分别代表重型和轻型炸弹,j=1,2,3,4分别代表四个要害部位, x ij 为投到第J 部位的i 种型号炸弹的数量,则问题的数学模型为式中目标函数非线性,但rain z 等价于max 1g(1/z),因此目标函数可改写为4用单纯形法求解下列线性规划(1)123 123123max342312230,1,2,3jZ x x xx x xx x xx j=++⎧++≤⎪++≤⎨⎪≥=⎩(2)1234 123412341234max23553730 310 264200,1,,4jZ x x x x x x x xx x x xx x x xx j=+-+++-≤⎧⎪-++≤⎪⎨--+≤⎪⎪≥=⎩【解】单纯形表:因为λ7=3>0并且a i7<0(i=1,2,3),故原问题具有无界解,即无最优解。
线性规划的对偶理论与灵敏度分析2.1写出下列线性规划问题的对偶问题:【答案】2.2已知线性规划问题:用单纯形法求解得最终单纯形表如表2~2所示。
(a) 求和b l ,b 2;(b)求表2—2【答案】【解析】(1)由题意可设初始单纯形表的增广矩阵为最终单纯形表的增广矩阵为对矩阵22()A B 作初等行变换,使其第4,5列组成单位矩阵由单纯形运算法则可知,1133()()A B A B =所以,111213212223129/2,1,4,5/2,1,2,8,5a a a a a a b b ======== (2)由检验数的计算式可知()()()1323232/230/200/224c c c c c c c -+=-⎧⎪--=⎨⎪--+=-⎩ 求解上述方程组得:1237,4,8c c c ===2.3已知线性规划问题:用单纯形法求得最终表如表28所示。
表2-3试用灵敏度分析的方法分别判断:(a)目标函数系数C1或c2分别在什么范围内变动,上述最优解不变;(b)当约束条件右端项b1,b2中一个保持不变时,另一个在什么范围内变化,上述最优基保持不变;(c)问题的目标函数变为时上述最优解的变化;(d)约束条件右端项由变为【答案】2.4 已知表2—4为求解某线性规划问题的最终单纯形表,表中x4,x5为松弛变量问题的约束为≤形式。
表2-4(a)写出原线性规划问题;(b)写出原问题的对偶问题;(c)直接由表2—4写出对偶问题的最优解。
【答案】(a)原线性规划问题如下:(a)原线性规划问题如下:(b)略;(c)对偶问题最优解为Y*=(4,2)。
2.5已知线性规划问题:用单纯形法求解时,其最优解见表2—7。
表2-5要求:(a)直接写出上述问题的对偶问题及其最优解。
(b)若问题中x2列的系数变为(3,2,3)T,试问表2~7中的解是否仍为最优解?(C)若增加一个新的变量x4,其相应系数为(2,3,2)T。
试问增加新变量后表2—7中的最优解是否发生变化?【答案】(a)其对偶问题为其最优解为(b)zz系数变化后,对偶问题第(2)个约束将相应变为2y1+3y2≥3,将y1*,一¥2*代入不满足,故原问题最优解将发生变化;(C)相应于新变量x4,因有,故原问题最优解将发生变化。
2.6已知线性规划问题:要求:(a)写出它的对偶问题;(b)应用对偶理论证明原问题和对偶问题都存在最优解。
【答案】(a)略;(b)容易看出原1"3题和其对偶问题均存在可行解,据对偶理论,两者均存在最优解。
第三部分运输问题3.6某玩具公司分别生产三种新型玩具,每月可供量分别为l 000件、2000件和2000件,它们分别被送到甲、乙、丙三个百货商店销售。
已知每月百货商店各类玩具预期销售量均为1500件,由于经营方面原因,各商店销售不同玩具的赢利额不同(见表3—6)。
又知丙百货商店要求至少供应C玩具l 000件,而拒绝进A种玩具。
求满足上述条件下使总赢利额为最大的供销分配方案。
表3-6解:用16减去利润表上的数字,使之变成一个运输问题。
由于表3-6中产大于销,因此需要增添一个假想的销地“丁”,其运价为0,其销售量为500,由于C玩具至少要供给丙百货商店1000件,故将C玩具拆成两个玩具,如表3-6(1)所示。
表3-6(1)利用位势法求出表3-6(2)中各空格的检验数,如表3-6(3)。
问题的最优调运方案,表中将A调拨给丁500件,表明玩具A有500件销不出去。
(a)求最优调拨方案;(b)如产地Ⅲ的产量变为130,又B 地区需要的115单位必须满足,试重新确定最优 调拨方案。
解:第一步:用伏格尔法求初始可行解,求得的初始解,如表3A-3所示。
第二步:用位势法进行最优解的判断。
在对应于表3A-3的数字格处填入单位运价,并增加一行一列,在行中填入j v ,在列中填入i u 。
令10u =,按照i j ij u v c +=(,i j B ∈)求出所有的i u 和j v ,并依据()ij ij i j c u v σ=-+(,i j N ∈)计算所有空格处的检验数,计算结果如表3A-3(1)所示。
表3A-3(1)由表3A-3(1)可知,所有空格处的检验数均为非负。
所以,表3A-3(1)中的运输方案即为此问题的最优调运方案,最小运价为7225。
(b)根据题设条件重新列出这个问题的产销平衡表与单位运价表见表3A 一4。
重新求出最优调拨方案见表3A一5。
第四部分目标规划给定目标规划问题:(a)求该目标规划问题的满意解;(b)若约束右端项增加,问满意解如何变化?(c)若目标函数变为则满意解如何改变?(d)若第二个约束右端项改为45,则满意解如何变化?【答案】(a) 用单纯形法解上面的标准形式。
解题过程的单纯形表见表4A-4(1)满意解为最终单纯形表如表4A 一3所示。
(b)51151616'-13205112016160-1==000=00-5b B b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪∆∆∙ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭满意解为(C)将+2d 的新系数反映到最终单纯形表中,所有变量的检验说都不小于0 ,故上述变化不影响最优解。
满意解为(d)满意解为其余第五部分 整数规划将下述非线性整数规划问题改写成线性0—1整数规划问题:【答案】,则问题可改写为【解析】参见胡运权《运筹学教程》中的第四节 0-1型整数规划 P 135-142某钻井队要从以下l0个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。
若l0个井位的代号为s 1,S 2,…,s 10,相应的钻探费用为C 1,C 2,…,C 10,并且井位选择方面要满足下列限制条件:①或选择S 1和S 7,或选择钻探S 8;②选择了S 3或s 4就不能选S 5,或反过来也一样;③在最多只能选两个;是建立这个问题的整数规划模型。
解:设10110118357845567811,2,8051+1..1+121,0,j j jj j j j j j x j j z c x x x x x x s t x x x x x x x x s x ==⎧==⎨⎩=⎧⎪=⎪⎪+=⎪⎪≤⎪+=⎨⎪≤⎪⎪+++≤⎪⎧⎪⎪=⎨⎪⎪⎩⎩∑∑ 若生产第种产品()若不生产第种产品min 选择钻探第井位否则第六部分 非线性规划6.7已知要求: (a)计算的值;(b)利用f(x)的导数及(a)的结果求f(x)在x=7的值。