高中数学概念汇总
高中数学基本知识点汇总(2篇)
高中数学基本知识点汇总(2篇)高中数学基本知识点汇总(一)一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同性质的事物的全体。
常见的集合表示方法有列举法和描述法。
列举法:将集合中的元素一一列举出来,例如 \( A = \{1, 2, 3\} \)。
描述法:用集合中元素的共同性质来描述集合,例如\( B = \{x \mid x > 0\} \)。
2. 集合的基本运算并集:两个集合的所有元素的集合,记作 \( A \cup B \)。
交集:两个集合的共同元素的集合,记作 \( A \cap B \)。
补集:全集中不属于某集合的元素的集合,记作 \( C_UA \)。
差集:属于第一个集合但不属于第二个集合的元素的集合,记作 \( A B \)。
3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。
函数的定义域、值域和对应关系是函数的三要素。
定义域:函数中自变量可以取值的集合。
值域:函数中因变量可以取值的集合。
对应关系:自变量与因变量之间的对应法则。
4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。
二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。
指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。
对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。
三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。
5. 函数的性质单调性:函数在某一区间内单调递增或单调递减。
奇偶性:奇函数满足 \( f(x) = f(x) \),偶函数满足 \( f(x) = f(x) \)。
周期性:函数在某一区间内重复出现,例如三角函数。
高中数学概念
高中数学概念
本文档将介绍高中数学中的一些基本概念。
以下是一些重要的数学概念,适用于高中数学研究。
1.实数
实数是指可以用有理数和无理数来表示的数。
有理数是可以表示为两个整数的比,而无理数是无法表示为两个整数的比的数。
实数包括整数、分数、小数和无理数。
2.方程与不等式
方程是含有未知数的等式,可以通过求解未知数找到其解。
不等式是含有不等号的等式,可以确定未知数的取值范围。
3.函数
函数是一种特殊的关系,它将一个数集映射到另一个数集。
函数由定义域、值域和对应关系组成。
4.数列与级数
数列是按照一定规律排列的数的序列,级数是数列各项的和。
通过研究数列和级数,可以了解它们的性质和求解方法。
5.导数与微分
导数是函数变化率的度量,表示函数在某一点的切线斜率。
微分是函数在某一点的局部线性近似。
6.不定积分与定积分
不定积分是导数的逆运算,表示函数的原函数。
定积分是求解函数在一定区间上的面积。
7.几何与三角学
几何研究空间与图形的形状、大小、位置和性质。
三角学研究三角形及其相关的性质和应用。
以上是一些高中数学中的重要概念。
通过学习这些数学概念,可以建立数学思维和解决问题的能力。
高中数学概念公式大全
高中数学概念公式大全1.代数与函数:- 一次函数的方程:y = kx + b- 二次函数的方程:y = ax² + bx + c- 三次函数的方程:y = ax³ + bx² + cx + d-指数函数的方程:y=a^x- 对数函数的方程:y = logₐ(x)-幂函数的方程:y=x^a-绝对值函数的方程:y=,x- 正弦函数的方程:y = A sin(Bx + C) + D- 余弦函数的方程:y = A cos(Bx + C) + D-反比例函数的方程:y=k/x2.平面解析几何:-直线的一般式方程:Ax+By+C=0- 直线的斜截式方程:y = kx + b-直线的点斜式方程:y-y₁=k(x-x₁)-直线的两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁) -圆的标准方程:(x-h)²+(y-k)²=r²-椭圆的标准方程:(x-h)²/a²+(y-k)²/b²=1-双曲线的标准方程:(x-h)²/a²-(y-k)²/b²=1- 抛物线的标准方程:y = ax² + bx + c-平行线的判定:两直线的斜率相等-垂直线的判定:两直线的斜率的乘积为-13.空间解析几何:- 空间直线的参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct -空间直线的对称式方程:(x-x₁)/a=(y-y₁)/b=(z-z₁)/c-空间平面的一般式方程:Ax+By+Cz+D=0-空间平面的点法式方程:(x-x₀)/A=(y-y₀)/B=(z-z₀)/C-两直线的位置关系:平行、异面、交于一点-直线与平面的位置关系:相交、平行、共面、垂直-两平面的位置关系:平行、重合、相交4.三角函数与解三角形:- 任意角的辅助角公式:sin(π - θ) = sinθ, cos(π - θ) = -cosθ, tan(π - θ) = -tanθ-任意角的和差公式:sin(θ₁ ± θ₂) = sinθ₁cosθ₂ ± cosθ₁sinθ₂cos(θ₁ ± θ₂) = cosθ₁cosθ₂∓ sinθ₁sinθ₂tan(θ₁ ± θ₂) = (tanθ₁ ± tanθ₂)/(1 ∓ tanθ₁tanθ₂)-二倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)-三角函数的诱导公式:sin(π ± θ) = ±sinθ, cos(π ± θ) = -cosθ, tan(π ± θ) = ±tanθ-等腰三角形的性质:两底角相等,底边平分顶角,底边上的高相等- 直角三角形的性质:勾股定理(a² + b² = c²),正弦定理(sinθ = a/c),余弦定理(cosθ = b/c),正切定理(tanθ = a/b)。
高中数学概念大全
高中数学第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2)注意:讨论的时候不要遗忘了的情况。
(3)第二部分函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;⑷奇函数在原点有定义,则;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:①在区间上是增函数当时有;②在区间上是减函数当时有;⑵单调性的判定1 定义法:注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性(1)周期性的定义:对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。
所有正周期中最小的称为函数的最小正周期。
高中数学知识点归纳
高中数学知识点归纳高中数学是一门重要的学科,知识点众多且相互关联。
以下是对高中数学主要知识点的归纳。
一、函数函数是高中数学的核心概念之一。
1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质:包括单调性、奇偶性、周期性等。
单调性:如果对于定义域 I 内某个区间 D 上的任意两个自变量的值x₁、x₂,当 x₁<x₂时,都有 f(x₁)<f(x₂)(或 f(x₁)>f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),那么函数f(x)就叫做偶函数;如果对于函数f(x)的定义域内任意一个x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,周期为 T。
3、常见函数:一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数等。
一次函数:y = kx + b(k、b 为常数,k≠0)。
二次函数:y = ax²+ bx + c(a≠0),其图象是一条抛物线。
反比例函数:y = k/x(k 为常数,k≠0)。
指数函数:y = a^x(a>0 且a≠1)。
对数函数:y =logₐx(a>0 且a≠1)。
幂函数:y =x^α (α 为常数)。
二、三角函数三角函数在解决几何和物理问题中有着广泛的应用。
1、角的概念:包括正角、负角、零角,以及角度制与弧度制的换算。
2、三角函数的定义:在平面直角坐标系中,设点 P(x,y)是角α 终边上的任意一点,r =|OP| =√(x²+ y²),则sinα = y/r,cosα = x/r,tanα = y/x。
(精选推荐)高中数学概念大全
(精选推荐)高中数学概念大全1、集合(Set):集合是由一组物体组成的有序容器,其中的每个物体叫做元素,元素之间没有重复。
2、函数(Function):函数是一种特殊的关系,即每个输入只有唯一的输出。
3、排列组合(Permutation and Combination):排列组合是指从某个集合中选取一定数量的元素进行排列或者组合。
4、无穷集(Infinite Set):无穷集是指某类元素可以无限多,本质上是不可数的。
5、空集(Null Set):空集是指某类元素的数量为0,一般用符号{}来表示。
6、复数(Complex Number):复数是数学上的一种特殊数据,其中包括实部和虚部,它不仅可以表示一个数的值,而且可以表示一个数的方向。
7、有理数(Rational Number):有理数是一个由分子和分母组成的有限实数,其值有上限和下限,一般用真分数、假分数、带分数或者整数来表示。
8、幂(Power):幂是指在数学中,把一个数乘以自身的次数,例如a^3表示a乘以自身3次,即a*a*a。
9、图论(Graph Theory):图论是数学的一个分支,用来研究关系图,有助于解决很多现实世界的复杂问题。
10、概率(Probability):概率是衡量某个事件发生的可能性,是一种用于计算未知量的把握手段。
11、矩阵(Matrix):矩阵是数学中一种特殊的结构,它是有限个元素构成的一维数组或二维数组,可以实现复杂的数学运算。
12、微积分(Calculus):微积分是求取函数变化规律的一种数学理论,它研究合理的增量、微分和积分的计算方法,并且开发出一系列的有用的 maclaurin公式。
13、向量(Vector):向量是非常重要的数学概念,它表示某一个方向,通常以箭头和三角形的图示表示。
14、三角函数(Trigonometric Functions):三角函数是数学中一类基础函数,对于任意给定的角度,它可以给出该角度对应的正弦、余弦和正切等三个值。
高中数学基础知识点总结归纳整理
高中数学基础知识点总结归纳整理引言高中数学是学生逻辑思维和解决问题能力培养的重要阶段。
为了帮助学生更好地掌握和复习高中数学知识,本文将对高中数学的主要基础知识点进行系统的总结归纳。
第一部分:代数基础1.1 基本概念数的分类:实数、复数、有理数和无理数代数式的运算:加减乘除和乘方1.2 方程与不等式一元一次方程和不等式的解法一元二次方程的解法和判别式的应用1.3 函数函数的概念:定义域、值域、映射基本初等函数:一次函数、二次函数、指数函数、对数函数和三角函数第二部分:几何基础2.1 平面几何三角形的分类和性质:等边三角形、等腰三角形和直角三角形四边形的分类和性质:平行四边形、矩形、菱形和正方形2.2 解析几何坐标系的引入:平面直角坐标系、极坐标系直线和圆的方程,以及它们的综合应用2.3 空间几何空间图形的基本概念:点、线、面的位置关系棱柱、棱锥和球体的表面积和体积计算第三部分:数列与级数3.1 数列的概念等差数列和等比数列的定义和性质等差数列和等比数列的通项公式和求和公式3.2 级数级数的概念:收敛和发散级数求和:几何级数和调和级数第四部分:概率与统计4.1 概率论基础事件的概率,包括古典概型和几何概型条件概率和独立事件的概念4.2 统计基础数据的收集、整理和描述均值、中位数和众数的计算第五部分:微积分初步5.1 极限与导数极限的概念和运算法则导数的定义和基本导数公式5.2 积分不定积分和定积分的概念积分的基本技巧和应用第六部分:综合应用6.1 函数与方程的综合应用函数与方程结合的问题6.2 几何与代数的综合应用几何与代数结合的问题6.3 数列与极限的综合应用数列与极限结合的问题结语高中数学基础知识点的掌握对于学生的数学素养和未来学术发展至关重要。
通过系统地复习和理解每个知识点,学生可以为进一步的数学学习打下坚实的基础。
希望本文档的总结能够帮助学生构建完整的知识体系,提高解题能力。
高中数学基础知识汇总
三角1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表:4.如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ )(3)角α终边上点P 的坐标为(-12,32),那么sin α=32,cos α=-12;同理角α终边上点Q的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.( × ) (4)α∈(0,π2),则tan α>α>sin α.( √ )(5)α为第一象限角,则sin α+cos α>1.( √ ) 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系终边终边【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ ) 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × ) 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质π【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)y=sin x在第一、第四象限是增函数.(×)(2)常数函数f(x)=a是周期函数,它没有最小正周期.(√)(3)正切函数y=tan x在定义域内是增函数.(×)(4)已知y=k sin x+1,x∈R,则y的最大值为k+1.(×)(5)y=sin |x|是偶函数.(√)(6)若sin x >22,则x >π4.( × ) 1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ ) 1.公式的常见变形 (1)1+cos α=2cos 2α2;1-cos α=2sin 2α2;(2)1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.(3)tan α2=sin α1+cos α=1-cos αsin α.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ), 其中sin φ=b a 2+b 2,cos φ=aa 2+b 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =3sin x +4cos x 的最大值是7.( × ) (2)设α∈(π,2π),则1-cos (π+α)2=sin α2.( × )(3)在非直角三角形中有:tan A +tan B +tan C =tan A tan B tan C .( √ ) (4)设5π2<θ<3π,且|cos θ|=15,那么sin θ2的值为155.( × )(5)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( × ) 1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.在△ABC中,已知a、b和A时,解的情况如下:a=b sin A b sin A<a<b a≥b a>b判断下面结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC中,若sin A>sin B,则A>B.(√)(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b2+c2-a2>0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.(×)(5)在三角形中,已知两边和一角就能求三角形的面积.(√)1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等.3.方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).导数1.导数与导函数的概念(1)函数y=f(x)在x=x0处的瞬时变化率是limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y 对x的导数等于y对u的导数与u对x的导数的乘积.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)与(f(x0))′表示的意义相同.(×)(2)求f′(x0)时,可先求f(x0)再求f′(x0).(×)(3)曲线的切线不一定与曲线只有一个公共点.(√)(4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值一般地,当函数f(x)在点x0处连续时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F(x)叫做f(x)的一个原函数.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f(x)d x<0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.(×)(4)若f(x)是偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(√)(5)若f(x)是奇函数,则ʃa-a f(x)d x=0.(√)(6)曲线y=x2与y=x所围成的面积是ʃ10(x2-x)d x.(×)函数1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.(×)(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.(×)(3)映射是特殊的函数.(×)(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.(×)(5)分段函数是由两个或几个函数组成的.(×)1.函数的单调性(1)单调函数的定义图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f(1)<f (3),则f (x )为增函数.( × ) 1.函数的奇偶性 (1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ )(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质定义域(-∞,+∞)(-∞,+∞)2.(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图象比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图象过定点(1,1);③当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数y =2x 12是幂函数.( × )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × ) 1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n=na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是am n=1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质(1)R【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂a m n可以理解为mn 个a 相乘.( × )(3)(-1)24=(-1)12=-1.( × )(4)函数y =a -x 是R 上的增函数.( × ) (5)函数y =a21+x (a >1)的值域是(0,+∞).( × )(6)函数y =2x-1是指数函数.( × )1.对数的概念如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中 a 叫做对数的底数, N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质 ①alog a N= N ;②log a a N = N (a >0且a ≠1).(3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质图象(1)定义域:(0,+∞)4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 y =x 对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ ) 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1).⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y =f (x )―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × ) 1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个 c 也就是方程f (x )=0的根. 2.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系2(x 0),(x 0)(x 0) 无交点 判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )集合逻辑1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 BA B (或B A )A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁A={x|x∈U,且x∉A}(1)若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n-1个,真子集有2n-1个.(2)A⊆B⇔A∩B=A⇔A∪B=B.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(2)若{x2,1}={0,1},则x=0,1.(×)(3){x|x≤1}={t|t≤1}.(√)(4)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(5)若A∩B=A∩C,则B=C.(×)(6)含有n个元素的集合有2n个真子集.(×)1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分又不必要条件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.(×)(2)命题“α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.( × )(3)若一个命题是真命题,则其逆否命题是真命题.( √ ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(5)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ ) (6)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ ) 1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词和存在量词4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( × ) (2)命题p 和綈p 不可能都是真命题.( √ )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题.( √ ) (4)全称命题一定含有全称量词,特称命题一定含有存在量词.( × ) (5)写特称命题的否定时,存在量词变为全称量词.( √ ) (6)∃x 0∈M ,p (x 0)与∀x ∈M ,綈p (x )的真假性相反.( √ )解析几何1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式判断下面结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( × ) (7)不经过原点的直线都可以用x a +yb=1表示.( × )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.圆的定义在平面内,到定点的距离等于定长的点的集合叫圆.2.确定一个圆最基本的要素是圆心和半径. 3.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 4.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝⎛⎭⎫-D 2,-E2,半径r =D 2+E 2-4F2.5.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 6.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × ) (5)圆x 2+2x +y 2+y =0的圆心是⎝⎛⎭⎫1,12.( × ) (6)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质-a≤x≤a -b≤x≤b【知识拓展】点P(x0,y0)和椭圆的关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(5)y2a2+x2b2=1 (a≠b)表示焦点在y轴上的椭圆.(×)(6)x2a2+y2b2=1 (a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.(√)1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a【知识拓展】 巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n =1 (mn <0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x (或y )的一元方程:ax 2+bx +c =0 (或ay 2+by +c =0).(1)若a ≠0,可考虑一元二次方程的判别式Δ,有 ①Δ>0⇔直线与圆锥曲线相交; ②Δ=0⇔直线与圆锥曲线相切; ③Δ<0⇔直线与圆锥曲线相离.(2)若a =0,b ≠0,即得到一个一元一次方程,则直线l 与圆锥曲线E 相交,且只有一个交点,①若E 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; ②若E 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k 2|x 2-x 1|=1+1k2|y 2-y 1|. 【知识拓展】过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )。
(完整版)高中数学概念汇总
高中数学概念汇总一.集合的概念:1.集合的表示法:(1)列举法:如 {1,2,3,4,5}; (2)描述法:如{x|x ≤2};2.集合间的关系:(1)子集:A 中的任何一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集,记为A ⊆B;任何一个集合是它本身的子集,空集是任何一个集合的子集。
(2)真子集 :如果A 是B 的子集,并且B 中至少有一个元素不属于A,那么集合A 叫做集合B 的真子集,记为B A ≠⊂。
空集是任何一个非空集合的真子集。
(3)两个集合相等:对于两个集合A 与B,如果A ⊆B,同时A B ⊆,那么就说这两个集合相等,记作A=B. 3.集合的运算:(1)交集:=B A I {x|,A x ∈且B x ∈}; (2)并集:B A Y ={x|A x ∈或B x ∈};(3)补集:若全集为U,则集合A 的补集为A C U ={x|U x ∈但A x ∉}。
5.集合中元素的三大属性;(1)元素的确定性;(2)元素的无序性;(3)元素的互异性。
对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足元素的互异性。
6.常用数集的记号:自然数集N;整数集Z;有理数集Q;实数集R;复数集C.空集φ。
二.命题1.四种命题形式:如果一命题条件为A ,结论为B,那么该命题的原命题形式是:若A 成立,则B 成立(即A ⇒B);它的逆命题形式是:若B 成立,则A 成立(即B ⇒A);它的否命题形式是:若A 不成立,则B 不成立(即B A ⇒); 它的逆否命题形式是:若B 不成立,则A 不成立(即A B ⇒)。
等价命题:若甲,乙两命题满足:甲⇒乙,乙⇒甲,则称甲乙两命题是等价命题, 记为甲⇔乙;原命题与逆否命题是等价命题;逆命题与否命题是等价命题。
2.充分条件与必要条件:设条件A 和结论B,如果A B ⇒,那么A 是B 的充分条件,或说B 是A 的必要条件;如果A B ⇒,那么A 是B 的必要条件,或说B 是A 的充分条件;如果B A ⇔,那么A 是B 的充分必要条件,简称充要条件。
高中数学的归纳重点概念与公式总结
高中数学的归纳重点概念与公式总结数学是一门需要严谨思维和逻辑性的学科,对于高中生来说,数学的学习是非常重要的一部分。
在高中数学中,有很多重要的概念和公式需要掌握和理解。
在本文中,将对高中数学中的归纳重点概念和公式进行总结,以帮助学生更好地学习和应用数学知识。
一、集合论与函数1. 集合的概念与运算法则集合是数学中的基础概念之一,其包括集合的基本概念、特殊集合、集合的表示方法以及集合的运算法则等内容。
其中,交集、并集、差集和补集是常用的集合运算法则,需要掌握其定义和性质。
2. 函数的概念与性质函数是数学中的另一个重要概念,它描述了两个数集之间的一种特殊关系。
函数的定义、定义域、值域、图像、性质等是需要理解和掌握的内容。
同时,要熟悉函数的常用表示方法,如映射图、函数图像等。
二、数列与数级数1. 数列的概念与分类数列是数学中的序列,它是按照一定规律排列的数的集合。
常见的数列有等差数列、等比数列等,需要理解其定义和性质。
此外,特殊数列如斐波那契数列也需要掌握。
2. 数列的通项公式和前n项和公式数列的通项公式和前n项和公式是数列理论中的重要内容。
通过推导和归纳,可以得到这两个公式,进而方便地计算数列中任意项的值和前n项的和。
三、立体几何1. 点、线、面的概念与性质立体几何是研究空间中点、线、面及其相互关系的数学分支。
在学习立体几何时,需要掌握点、线、面的定义和性质,并能够应用到解决问题中。
2. 平行线与比例平行线和比例是在立体几何中常见的概念,需要熟悉其定义和性质。
在实际问题中,可以通过利用平行线的性质来解决相关的计算和证明。
四、概率与统计1. 概率的基本概念与计算概率是描述随机事件发生可能性大小的数学概念。
需要掌握概率的基本定义、计算方法以及概率的性质,以便在实际问题中能够准确计算概率。
2. 统计的基本概念与处理统计是研究数据收集、分析和推断的学科。
在学习统计时,需要掌握统计的基本概念、数据处理方法等。
例如,平均数、中位数、众数等统计指标的计算与应用。
高中数学概念大全
1 、元素与集合的关系2 、集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.3 、二次函数的解析式的三种形式:(1)一般式:(2)顶点式:(当已知抛物线的顶点坐标时,设为此式)(3)零点式:(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。
(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4、真值表:同真且真,同假或假5 、常见结论的否定形式;6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)充要条件:(1)则P是q的充分条件,反之,q是p的必要条件;(2)且q ≠> p,则P是q的充分不必要条件;(3) p ≠> p ,且,则P是q的必要不充分条件;(4)p ≠> p ,且则P是q的既不充分又不必要条件。
7、函数单调性:增函数:(1)文字描述是:y随x的增大而增大。
(2)数学符号表述是:设f(x)在上有定义,若对任意的,都有成立,则就叫在上是增函数。
D则就是f(x)的递增区间。
减函数:(1)、文字描述是:y随x的增大而减小。
(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在上是减函数。
D则就是f(x)的递减区间。
单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;(3)、增函数-减函数=增函数; (4)、减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。
复合函数的单调性:等价关系:(1)设,那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.8、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数定义:在前提条件下,若有,则f(x)就是奇函数。
性质:(1)、奇函数的图象关于原点对称;(2)、奇函数在x>0和x<0上具有相同的单调区间;(3)、定义在R上的奇函数,有f(0)=0 .偶函数定义:在前提条件下,若有f(—x)=f(x),则f(x)就是偶函数。
高中数学中的数学概念
高中数学中的数学概念数学作为一门学科,是以符号和抽象的形式研究数量、结构、变化和空间等概念及其相互关系的学科。
在高中数学学习中,我们需要掌握一系列的数学概念,这些概念构成了我们理解和应用数学知识的基础。
本文将介绍一些高中数学中常见的数学概念。
一、集合在高中数学中,集合是一个非常基础的概念。
集合可以被看作是一组具有某种共同特征的事物的集合体。
常用的表示方法有列举法和描述法。
例如,对于大于0小于10的整数集合,可以表示为{1, 2, 3, 4, 5, 6, 7, 8, 9}或者{x | 0 < x < 10}。
二、函数函数是数学中另一个重要的概念。
函数描述了两个集合之间的一种关系,它将一个集合的元素映射到另一个集合的元素上。
函数可以用图像、表格或者公式来表示。
在函数中,输入的值称为自变量,输出的值称为因变量。
函数可以进行各种运算,如加减乘除、复合等。
三、方程和不等式方程和不等式是数学中用来表示等式及不等式关系的表达式。
方程是等式关系,其中含有未知数。
而不等式是不等式关系,其中含有不等号。
通过解方程和不等式,可以求解未知数的值。
在高中数学中,常见的方程和不等式有一元一次方程、二元一次方程、一元二次方程、一元一次不等式、二元一次不等式等。
四、几何几何是数学中研究形状、大小和相对位置的一门学科。
在高中数学中,我们会学习平面几何和立体几何。
平面几何主要研究平面上的图形,如点、线、面、多边形等;立体几何则研究三维空间中的物体,如球体、棱柱、棱锥等。
几何中涉及到的概念有角度、相似、全等、投影等。
五、概率与统计概率与统计是数学中研究事件发生可能性和数据分析的学科。
概率研究随机事件的发生概率,统计则研究数据的收集、整理和分析。
在高中数学中,我们会学习概率的基本概念、事件的排列组合、频率和概率的比较等;统计中会学习到频数、平均数、中位数、众数等统计量以及频率分布、直方图、折线图等统计图形。
六、数列和数学归纳法数列是由一系列有序的数按照一定规律排列而成的序列。
高中数学概念汇总
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数、圆锥曲线
高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算。
高中数学概念总结
高中数学概念总结高中数学概念总结高中数学是中学阶段的一门重要学科,它是一门关于数与其运算、空间与变换、数量和结构规律的学科。
在高中数学学习中,我们会接触到许多的概念,下面就对其中一些重要的概念进行总结。
1. 数集:数集是一组具有共同特征的数的集合。
常见的数集有自然数集、整数集、有理数集和实数集等。
自然数集是由正整数(包括零)组成,整数集包括正整数、负整数和零,有理数集包括整数以及所有可以表示为两个整数的比值,实数集包括所有有理数和无理数。
2. 函数:函数是一种特殊的关系,它将每一个自变量的取值与一个唯一的因变量的取值相对应。
函数可以用多种方式表示,例如在直角坐标系中表示为图形、用公式表示等。
函数的重要性体现在许多数学概念和问题中,如图像的绘制、方程的求解、极限的研究等。
3. 方程与不等式:方程是一个等式,其中包含未知数,而不等式是包含未知数的不等式。
方程和不等式解决了许多实际问题,例如物理学中的运动问题、经济学中的成本问题等。
在解方程和不等式时,我们可以使用各种方法,如代入法、直接法、因式分解法、配方法和图像法等。
4. 几何:几何是研究空间和形状的一门学科。
它涉及直线、面、点、角、三角形、四边形、多边形等概念。
几何的重要性体现在许多实际问题中,例如建筑设计、地图绘制、机械制图等。
在几何中,我们可以使用公式和定理来计算形状的属性,例如周长、面积、体积等。
5. 数列与级数:数列是按照一定规律排列的数的集合,级数是数列元素的和。
数列与级数在数学和应用中有着广泛的应用,例如在数值计算中用来逼近函数值、在金融中用来计算利息等。
数列与级数有着各种性质和收敛条件,我们可以使用递推公式、通项公式和求和公式来求解数列与级数。
6. 概率与统计:概率是描述随机事件发生可能性的一种数学工具,统计是收集、处理和分析数据的一种方法。
概率与统计在现代科学和社会生活中有着广泛的应用,例如在游戏中用来计算胜率、在市场调查中用来分析市场需求等。
高中数学定义的总结归纳
高中数学定义的总结归纳数学是一门研究数量、结构、变化以及空间等概念和关系的学科。
在高中数学中,我们学习了许多重要的定义。
这些定义不仅是我们理解数学概念的基础,也是我们解决问题和进行推理的工具。
本文将总结归纳高中数学中常见的一些重要定义,帮助读者全面理解数学的基本概念。
一、数列与级数定义数列是按照一定规律排列的数的集合。
一般用a1, a2, a3...表示,其中an表示数列的第n项。
数列可以是等差数列、等比数列或者其他类型的数列。
等差数列是指数列中每一项与前一项之差都相等的数列,其中公差是指相邻两项之间的差值。
等比数列是指数列中每一项与前一项之比都相等的数列,其中公比是指相邻两项之间的比值。
级数是指数列各项相加的和。
部分和是指级数的前n项和,记作Sn。
级数可以是收敛的或发散的。
当部分和Sn随着n的增加而趋向于一个有限的数时,级数收敛。
相反,当部分和Sn随着n的增加无限增大或无限逼近于无穷大时,级数发散。
二、函数与极限定义函数是一种数学关系,它将一个集合的元素映射到另一个集合的元素。
函数通常用f(x)来表示,其中x为自变量,f(x)为因变量。
函数可以是线性函数、二次函数、指数函数、对数函数等。
其中,线性函数是指函数的自变量和因变量之间的关系是线性的。
极限是函数在某一点或者无穷远处的趋势。
当自变量趋近于某一点时,函数的值也会趋近于一个特定的值。
如果该特定值存在,则称其为函数在该点的极限。
三、导数与微分定义导数是函数在某一点的变化率。
在一条曲线上,取任意一点P和相邻的另一点Q,当两点之间的距离趋近于0时,P点到曲线的切线的斜率就是函数在该点的导数。
导数可以用来描述函数的变化快慢和曲线的切线。
微分是导数的一种表示形式。
微分dx表示自变量的无穷小增加量,而dy表示函数值的相应无穷小增加量。
函数的微分也可以用来进行近似计算和求解最值等问题。
四、概率与统计定义概率是描述事件发生可能性的数值。
事件的概率是根据事件发生的可能性大小进行度量的,其取值范围在0到1之间。
(完整版)高中数学知识点宝典汇总
①定义法 步骤: a.设 x1, x2 A且 x1 x2 ; b.作差 f (x1 ) f ( x2 ) ; c.判断正负号。
②掌握函数 y ax b a b ac(b ac 0);y x a(a 0) 的图象和性质;
xc
xc
x
函
ax b
b ac
y
a
数
xc
xc
a y x (a 0 )
x
(b –ac≠ 0)
y
图
Y=a
X=-c
象
o X
y
o
x
当 b-ac>0 时 : 单
在 ( , a]和[ a , )
在 ( , c)和 (c, ) 上单调递减;
上单调递增;
调
当 b-ac<0 时 :
在 [ a, 0)和(0, a ] 上单
性
在 ( , c)和 (c, ) 上单调递增。
调递增。
2
③一些有用的结论: .在公共定义域内
五、求函数的值域的常用解题方法: ① 配方法。如函数 y x 4 x 2 1的值域,特点是可化为二次函数的形式;
②换元法:如 y= 1 2 x x ③单调性:如函数 y 2 x log 2 x x ∈ [1,2]
④判别式法(△法)如函数
x 2 2x 3
y=
x2 2x 3
3
⑤利用函数的图像:如函数 ⑦利用基本不等式:如函数
4.等差数列的前 n 项和: ① Sn
n(a1 a n ) 2
② Sn na1 n(n 1) d 2
对于公式②整理后是关于 n 的没有常数项的二次函数(充要条件 )。
5.等差中项 :如果 a , A , b 成等差数列,则有
高中数学基本知识点汇总【推荐】
高中数学基本知识点汇总【推荐】一、函数与导数1. 函数的概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称为f:A→B的一个函数。
(2)函数的定义域、值域、对应法则。
(3)函数的表示法:解析法、表格法、图象法。
2. 函数的性质(1)单调性:增函数、减函数。
(2)奇偶性:奇函数、偶函数、非奇非偶函数。
(3)周期性。
(4)有界性。
3. 基本初等函数(1)常数函数:f(x) = C(C为常数)(2)幂函数:f(x) = x^n(n为实数)(3)指数函数:f(x) = a^x(a > 0且a ≠ 1)(4)对数函数:f(x) = log_a(x)(a > 0且a ≠ 1)(5)三角函数:正弦函数、余弦函数、正切函数等。
4. 导数与微分(1)导数的定义:设函数y = f(x)在点x0处有定义,若极限lim(Δx→0)[f(x0 + Δx) f(x0)]/Δx存在,则称函数y = f(x)在点x0处可导,该极限称为函数y = f(x)在点x0处的导数,记为f'(x0)。
(2)导数的运算法则:四则运算法则、复合函数求导法则、反函数求导法则等。
(3)高阶导数。
(4)微分:设函数y = f(x)在某区间内有定义,若对于该区间内的任意一点x,都有一个非零实数Δy,使得Δy = f'(x)Δx + o(Δx),则称函数y = f(x)在该点可微,Δy称为函数y = f(x)在点x处的微分。
二、三角函数与平面向量1. 三角函数(1)正弦函数、余弦函数、正切函数的定义。
(2)三角函数的图像与性质。
(3)三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理等。
2. 平面向量(1)向量的概念:有大小和方向的量。
(2)向量的表示:几何表示、坐标表示。
(3)向量的运算:加法、减法、数乘、向量积。
高中数学基本知识点汇总(一)
高中数学基本知识点汇总(一)一、函数与极限1. 函数的概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
(2)函数的定义域、值域、对应法则。
(3)函数的表示方法:解析法、表格法、图象法。
2. 函数的特性(1)单调性:函数在某个区间上单调增加或单调减少。
(2)奇偶性:f(x) = f(x)为偶函数,f(x) = f(x)为奇函数。
(3)周期性:f(x + T) = f(x),T为函数的周期。
(4)对称性:函数图象关于x轴、y轴、原点对称。
(5)凹凸性:函数图象在某区间上凹或凸。
3. 初等函数(1)常数函数:f(x) = C(C为常数)(2)一次函数:f(x) = kx + b(k、b为常数)(3)二次函数:f(x) = ax^2 + bx + c(a、b、c为常数,a≠0)(4)幂函数:f(x) = x^n(n为常数)(5)指数函数:f(x) = a^x(a为常数,a > 0且a≠1)(6)对数函数:f(x) = log_a(x)(a为常数,a > 0且a≠1)4. 极限(1)数列极限的定义:设{a_n}是一个数列,如果存在常数A,对于任意给定的正数ε,总存在正整数N,使得当n > N时,|a_n A| < ε,那么就称常数A是数列{a_n}的极限。
(2)函数极限的定义:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当0 < |x x_0| < δ时,|f(x) A| < ε,那么就称常数A是函数f(x)当x趋向于x_0时的极限。
(3)无穷小量与无穷大量:无穷小量表示函数在某点附近的增量趋于0,无穷大量表示函数在某点附近的增量趋于无穷。
(4)极限的性质与运算法则。
高中数学知识点总结50个
高中数学知识点总结50个高中数学是一门基础学科,包括初等代数、数学分析、几何、概率论等内容。
其核心概念包括函数、微积分、方程与不等式、几何图形、概率与统计。
在高中数学的教学中,学生需要掌握这些基本概念和方法,以提高数学素养和解题能力。
一、初等代数初等代数是数学的基础,包括整数、有理数、整式、一元二次方程、一次不等式、二次根式等内容。
学生需要掌握各种运算规则和解题方法,建立数学模型,解决实际问题。
二、数学分析数学分析是高中数学的重要组成部分,包括函数的概念、极限、导数和微分、不定积分和定积分。
学生需要掌握函数的性质和图像,理解极限与无穷小,掌握求导和积分的方法,应用微积分解决实际问题。
三、方程与不等式方程与不等式是高中数学的重要内容,包括一元二次方程、一元高次方程、一次不等式、二次不等式等。
学生需要掌握解方程和不等式的基本方法,建立解题思路,解决各类问题。
四、几何几何是高中数学的重要组成部分,包括平面几何和立体几何。
学生需要掌握平面几何的基本定理和判定,理解几何图形的性质,应用几何知识解决实际问题。
五、概率与统计概率与统计是高中数学的重要内容,包括随机事件、概率、统计量、抽样调查等。
学生需要理解概率和统计的基本概念,掌握计算方法,应用概率与统计解决实际问题。
高中数学知识点总结一、初等代数1. 整数、有理数的性质和运算规则2. 整式的基本概念和运算方法3. 一元二次方程的解法和应用4. 一次不等式的解法和应用5. 二次根式的性质和运算法则6. 实际问题的建模和解决方法二、数学分析7. 函数的概念和性质8. 函数的图像和性态9. 极限的定义和性质10. 无穷小与无穷大11. 导数和微分的概念和计算方法12. 函数的单调性、极值和曲线的凹凸性13. 定积分和不定积分的概念和计算方法14. 积分的应用三、方程与不等式15. 一元二次方程的求解方法16. 一元高次方程的求解方法17. 一次不等式的解法和应用18. 二次不等式的解法和应用19. 方程和不等式的建模和解决方法四、几何20. 直线、平面的性质和定理21. 三角形、四边形的性质和定理22. 圆的性质和定理23. 相似三角形、全等三角形的判定与应用24. 平行线、垂直线的性质和判定25. 圆的切线和切圆性质26. 立体几何的基本概念和性质27. 空间图形的体积和表面积计算五、概率与统计28. 随机事件、概率的基本概念29. 概率的计算法则30. 事件的相互独立、互斥与不独立31. 伯努利概型和概率分布32. 统计量的概念和计算方法33. 概率与统计的应用高中数学知识点总结在学习高中数学的过程中,学生需要掌握这些基本知识点,并能够灵活运用于解题过程中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学概念汇总一.集合的概念:1.集合的表示法:(1)列举法:如 {1,2,3,4,5}; (2)描述法:如{x|x ≤2};2.集合间的关系:(1)子集:A 中的任何一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集,记为A ⊆B;任何一个集合是它本身的子集,空集是任何一个集合的子集。
(2)真子集 :如果A 是B 的子集,并且B 中至少有一个元素不属于A,那么集合A 叫做集合B 的真子集,记为B A ≠⊂。
空集是任何一个非空集合的真子集。
(3)两个集合相等:对于两个集合A 与B,如果A ⊆B,同时A B ⊆,那么就说这两个集合相等,记作A=B. 3.集合的运算:(1)交集:=B A {x|,A x ∈且B x ∈}; (2)并集:B A ={x|A x ∈或B x ∈};(3)补集:若全集为U,则集合A 的补集为A C U ={x|U x ∈但A x ∉}。
5.集合中元素的三大属性;(1)元素的确定性;(2)元素的无序性;(3)元素的互异性。
对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足元素的互异性。
6.常用数集的记号:自然数集N;整数集Z;有理数集Q;实数集R;复数集C.空集φ。
二.命题1.四种命题形式:如果一命题条件为A ,结论为B,那么该命题的原命题形式是:若A 成立,则B 成立(即A ⇒B);它的逆命题形式是:若B 成立,则A 成立(即B ⇒A);它的否命题形式是:若A 不成立,则B 不成立(即B A ⇒); 它的逆否命题形式是:若B 不成立,则A 不成立(即A B ⇒)。
等价命题:若甲,乙两命题满足:甲⇒乙,乙⇒甲,则称甲乙两命题是等价命题, 记为甲⇔乙;原命题与逆否命题是等价命题;逆命题与否命题是等价命题。
2.充分条件与必要条件:设条件A 和结论B,如果A B ⇒,那么A 是B 的充分条件,或说B 是A 的必要条件;如果A B ⇒,那么A 是B 的必要条件,或说B 是A 的充分条件;如果B A ⇔,那么A 是B 的充分必要条件,简称充要条件。
设A={a|a 具有性质α},B={b|b 具有性质β},则B A ⊆与αβ⇒等价。
如果两个命题互为逆否命题,那么它们具有相同的真假值。
如果两个命题为互逆命题或者是互否命题,那么它们的真假没有必然联系。
三.不等式1.实数比较大小的基本方法:即等价关系:0;0;0<-⇔<=-⇔=>-⇔>b a b a b a b a b a b a2.掌握不等式的8个基本性质(1)若a>b,b>c,那么a>c; (2)若a>b,那么a+c>b+c; (3)若a>b.c>0.那么ac>bc;若a>b,c<0,那么ac<bc; (4)若a>b.c>d,那么a+c>b+d; (5)若a>b,c<d,那么a -c>b -d; (6)若a>b>0,那么b a 110<<;若0>a>b,那么011<<ba ;(7)若a>b>0,c>d>0,那么ac>bd; (8)若a>b>0,那么n nb a >,且n n b a >(n +∈N ,n>1)3.含有绝对值不等式的性质b a b a b a -≥±≥+4.基本不等式: (1)当a>0,b>0时,ab ba ≥+2,当且仅当a=b 时等号成立; (2)因为a+b≥ab 2,所以,若积ab 为定值,则a+b 有最小值ab 2; (3)因为2)2(b a ab +≤,所以,若和a+b 为定值,则ab 有最大值2)2(b a + (4)当a>0,b>0时,有ba ab b a b a 1122222+≥≥+≥+(两个正数的平方平均数、算术平均数、几何平均数、调和平均数之间的大小关系)。
5.解不等式(1)一元一次不等式:如果a>0,那么ax>b 的解为abx >;如果a<0,那么ax>b 的解为abx <;如果a=0,b≥0时,不等式无解;b<0时,不等式的解为R.(2)一元二次不等式:任何一个一元二次不等式都可以化为)0(,02>>++a c bx ax 或)0(,02><++a c bx ax 可利用二次函数图像求解,其解的情况如下:(3)含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-(4)形如0>++dcx bax (或<0)的分式不等式与一元二次不等式(ax+b)(cx+d)>0同解;形如0<++dcx bax 的分式不等式与一元二次不等式(ax+b)(cx+d)<0同解。
解分式不等式一般不能去分母。
四.函数1.函数的定义域:当函数是以解析式形式给出时,其定义域就是使函数解析式有意义的自变量的取值集合。
当函数是以实际问题的形式给出时,其定义域不仅要考虑使其解析式有意义,还要考虑实际意义。
2.函数值域的主要求法:(1)利用函数的单调性; (2)利用配方法; (3)利用函数的有界性; (4)利用判别式法:形如hqx px cbx ax y ++++=22(a,p 至少有一个不为零)的函数,求其值域,可利用判别式法; (5)利用换元法; (6)利用基本不等式; (7)几何法:利用数形结合的思想方法,通过函数的曲线图形间的关系,利用平面几何的知识求值域。
3.求函数解析式的四种常用方法:(1)拼凑法:由已知条件()[]()x F x g f =,可将F(x)改写成g(x)的表达式,然后用x 代替g(x),便可得到f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数,二次函数)可用待定系数法;(3)换元法:已知复合函数f[g(x)]的解析式,可用换元法,此时要注意“新元”的取值范围。
(4)解方程组法:已知关于f(x)与)(1x f 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x). 4.函数的奇偶性:对于函数定义域内的任意x ,恒有f(-x)=-f(x)或f(-x)=f(x),那么分别称f(x)是奇函数或偶函数。
奇函数的图像关于原点对称,偶函数的图像关于y 轴对称。
5.函数的单调性:对于区间I 上的函数f(x),若任取I x x ∈21,,且21x x <,恒有()()21x f x f <,则称f(x)在区间I 上是增函数;恒有()()21x f x f >,则称f(x)在区间I上是减函数,这个区间I 叫做f(x)的单调区间。
判断函数单调性的方法:(1)定义法:利用定义法的关键是对()()21x f x f -的整理,化简,变形和符号的判断,其中变形的策略有因式分解,配方法,分子(分母)有理化等。
(2)图像观察法;(3)利用已知函数的单调性;(4)利用复合函数单调性法则:(里外函数单调性一致增;里外函数单调性相反减) 6.函数的零点:对于函数y=f(x),我们把使f (x)=0的实数x 叫做函数y=f(x)的零点。
(1)方程的根与函数零点的关系:方程f(x)=0有实数根,可得出y=f(x)的图像与x 轴有交点,进而得到:函数y=f(x)有零点。
(2)零点存在性定理:如果函数y=f(x)在区间[a,b]上的图像是一条不间断的曲线,且 f(a)f(b)<0,那么函数Y=f(x)在区间[a,b]上有零点,即存在()b a c ,∈,使得f(c)=0,这个c 也是方程f(x)=0的根。
7.一元二次函数:(1)一元二次函数的三种表示方法:①)0(2≠++=a c bx ax y ;②()m n x a y +-=2;③()()21x x x x a y --=,其中a ≠0.8。
.幂函数:形如αx y =(αR ∈)的函数叫做幂函数。
定义域因α而异,当α≠0,1时,幂函数αx y =在区间[0,+∞)上的图像分三类(如图)要作幂函数αx y =在α≠0,1时的图像,可分两步完成:首先根据α的大小,作出该函数在区间[)+∞,0上的图像,然后根据该函数的奇偶性,补全函数在y 轴左側的图像。
9.反函数:(1)若函数y=f(x)()D x ∈的值域为A,则函数f(x)有反函数的充要条件是对应法则使集合D 与集合A 中的元素是一一对应的,其反函数记作()x fy 1-=(A x ∈);(2)求y=f(x)的反函数的步骤分三步:①由方程y=f(x)反解出x=g(y);②互换字母x,y 得y=g(x);③由原函数的值域A 确定g(x)的定义域,于是()()x g x f =-1()A x ∈即为所求函数;(3)Y=f(x)及其反函数()x fy 1-=的图像关于直线y=x 对称;(4)关于互为反函数的两个函数间有如下的性质:①()[]()[]x x f f x f f ==--11;②y=f(x)与()x fy 1-=的奇偶性,单调性相同;(5)在定义域上单调的函数一定有反函数,有反函数的函数不一定是单调函数。
10.指数函数及其性质:(1)形如:)1,0(≠>=a a a y x的函数叫做指数函数;(2)图像:(3)性质可由图直接得到;(4)指数的运算性质:①;βαβα+=aa a ②()αββαa a =;③()αααb a ab =.11.对数函数及性质:(1)对数的概念 ()1,0≠>=a a N a bN b a log =⇒ ,以10为底的对数叫常用对数,记为lgN;以e 为底的对数叫自然对数,记作lnN;(2)对数的性质:N M MN a a a log log log +=; N M NMa a alog log log -=; ()1,0,0,log log ≠>>=a a N M M n M a n a ;换底公式aNN b b a log log log =(a,b>0,a≠1,b≠1) (3)形如:x y a log =(a>0且a≠1)的函数叫做对数函数。
x y a log =与xa y =是互为反函数(4)对数函数的图像和性质: x 性质可由图直接得到。
12.指数方程和对数方程:(1)某些指数方程的解法:①形如()()x g x f a a=的方程可利用指数性质,即同底的幂相等它们的指数相等,化成普通方程f(x)=g(x)来解;②形如()()x g x f b a =的方程可两边取对数,化成()()x g x f b a log log =来解;③形如()0=xa f 的方程,可利用换元法,设y=xa,解方程f(x)=0,求出y,即xa ,再进一步求解。