中考真题圆综合大题.pptx

合集下载

中考数学总复习之与圆有关的综合题课件【优质PPT】

中考数学总复习之与圆有关的综合题课件【优质PPT】

根,以OB为直径的⊙M 与AB交于C, 连结CM并延长交x轴于N. 1、求直线AB的解析式。
B
.c M
2、求线段AC的长
N
o
Ax
3、求证: CN 2= ON • AN
4、若点D是OA的中点,求证CD是⊙M 切线
2021/10/10
4
如图,已知直线AB与x轴、y轴分别 交于点A、点B,OA=4,且OA、OB是 关于x的方程 x2 -mx + 12 = 0 的两个根, y 以OB为直径的⊙M 与AB交于 C ,连结 CM并延长交x轴于N.
P、Q,PM ⊥ BC于M,QN ⊥ BC于N 求证: PQ ∥ BC
A T
证明:
过A点作⊙o 的切线AT 因为A是两圆的切点, 则AT是⊙o′的切线
∠APQ= ∠ TAC ∠ABC= ∠ TAC
∠APQ =∠ABC B
PQ ∥ BC
P
o' • D Q
O•
M
DN
C
2021/10/10
13
例二: ΔABC中,BC=12,高线AD=8, ⊙o是ΔABC的 外接圆, ⊙o 与⊙o'相内切于点A,交AB、AC 于P、Q,PM ⊥ BC于M,QN ⊥ BC于N
B
1、求直线AB的解析式。
分 析: 直线AB的解析式是: y = kx + b (k≠0)
A(4 , 0)
B(x , y)
OA OB = 12
o
OA=4 ∴ OB = 3 B ( 0 , 3 )
解: ∵ OA、OB是关于x的方程 x2 -mx + 12 = 0 的两个根
由韦达定理得: OA OB = 12
· P
M

人教中考数学 圆的综合综合试题及答案

人教中考数学 圆的综合综合试题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)23【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC2=AG•AB=12,∴AC33.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.4.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 2=8313 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331n n + .5.已知A (2,0),B (6,0),CB ⊥x 轴于点B ,连接AC画图操作:(1)在y 正半轴上求作点P ,使得∠APB=∠ACB (尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan ∠APB 12=,求点P 的坐标 ②当点P 的坐标为 时,∠APB 最大拓展延伸:(3)若在直线y 43=x+4上存在点P ,使得∠APB 最大,求点P 的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,23)(3)(953 5-,125)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC22AC AB-3,∴C(6,3∴K(4,2),∴P(0,3案为:(0,3(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP5PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK35,∴PK=55,MK 95∴OK95﹣3,∴P95﹣3125).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.6.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3333 3.r +≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果;(3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3,∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a ︒=-,解得333.2a -=∴ 点A 的横坐标为33333111.x a --=+=+= ∴331.x -≤综上 3311.2x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53 即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5, 则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:OE=332, ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.7.如图1,在Rt △ABC 中,∠ABC=90°,BA=BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC+AD= BD . (2)探究证明将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD 之间的数量关系,并证明 (3)拓展延伸在直线MN 绕点A 旋转的过程中,当△ABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1. 【解析】 【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系 (2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O , 证明CDB AEB ∆∆≌,得到CD AE =,EB BD =, 根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案. 【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌,∴AE=CD ,BE=BD , ∴CD+AD=AD+AE=DE , ∵BDE ∆是等腰直角三角形, ∴DE=2BD , ∴DC+AD=2BD , 故答案为2. (2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠, ∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠, ∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =, ∴CDB AEB ∆∆≌, ∴CD AE =,EB BD =, ∴BD ∆为等腰直角三角形,2DE BD =.∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,∴21BD AD ==+.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.8.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =.由勾股定理得: CH = ∵OH ⊥DC ,∴2CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO = n =,解得:23m n =,即23n 23812n n-=,解得n : ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得n :综上所述:n 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.如图,点B 在数轴上对应的数是﹣2,以原点O 为原心、OB 的长为半径作优弧AB ,使点A 在原点的左上方,且tan ∠AOB C 为OB 的中点,点D 在数轴上对应的数为4.(1)S 扇形AOB = (大于半圆的扇形);(2)点P 是优弧AB 上任意一点,则∠PDB 的最大值为 °(3)在(2)的条件下,当∠PDB 最大,且∠AOP <180°时,固定△OPD 的形状和大小,以原点O 为旋转中心,将△OPD 顺时针旋转α(0°≤α≤360°)①连接CP ,AD .在旋转过程中,CP 与AD 有何数量关系,并说明理由; ②当PD ∥AO 时,求AD 2的值;③直接写出在旋转过程中,点C 到PD 所在直线的距离d 的取值范围.【答案】(1)103π(2)30(3)①AD =2PC ②20+83或20+83③1≤d ≤3 【解析】 【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.解直角三角形即可解决问题. (3)①结论:AD =2PC .如图2中,连接AB ,AC .证明△COP ∽△AOD ,即可解决问题. ②分两种情形:如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .求出PC 即可.如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得. ③判断出PC 的取值范围即可解决问题. 【详解】(1)∵tan ∠AOB =3, ∴∠AOB =60°,∴S 扇形AOB =23002103603ππ⋅⋅=(大于半圆的扇形), (2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.∵PD 是⊙O 的切线, ∴OP ⊥PD , ∴∠OPD =90°,∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°,同法当DP ′与⊙O 相切时,∠BDP ′=30°, ∴∠PDB 的最大值为30°. 故答案为30.(3)①结论:AD =2PC . 理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∵BC =OC , ∴AC ⊥OB ,∵∠AOC =∠DOP =60°, ∴∠COP =∠AOD ,∵2AO ODOC OP==, ∴△COP ∽△AOD ,∴2AD AOPC OC ==, ∴AD =2PC .②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°, ∴△OPK 是等边三角形, ∵PD ∥OA ,∴∠AOP =∠OPD =90°, ∴∠POH +∠AOC =90°, ∵∠AOC =60°,∴∠POH=30°,∴PH=12OP=1,OH=3PH=3,∴PC=2222PH CH1(13)523+=++=+,∵AD=2PC,∴AD2=4(5+23)=20+83.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得:PC2=12+(3﹣1)2=5﹣23,AD2=4PC2=20﹣83.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.10.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=25,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求CGEF的值.【答案】(1)见解析;(2)2,65(3)CG:EF=4:7【解析】试题分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;(2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cosA==,求出AE=,然后由BE=AB﹣AE即可求解.试题解析:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;(2)解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cosA===,∴AE=,∴BE=AB﹣AE=﹣=2.【点睛】本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.。

专题9圆的综合题ppt课件

专题9圆的综合题ppt课件
(1)试判断 DE 与⊙O 的位置关系,并说明理 由.
(2)过点 D 作 DF⊥AB 于点 F,若 BE=3 3,DF=3,求图 中阴影部分的面积.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题九 圆的综合题
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题九 圆的综合题
数学
典题剖析
(2017·呼和浩特)如图,点 A,B,C,D 是

直径为 AB 的⊙O 上的四个点,C 是劣弧BD 的中点, AC 与 BD 交于点 E.
专题九 圆的综合题
数学
(2)∵∠ABC 的平分线交⊙O 于点 D,DE⊥
BE,DF⊥AB,∴DE=DF=3.∵BE=3 3,∴
BD= 32+3 32=6.∵sin∠DBF=36=12,∴∠
DBA=30°.∴∠DOF=60°.∴sin 60°=DDOF=D3O
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题概述 典题剖析 真题演练
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题九 圆的综合题
数学
专题概述
圆的综合题在中考中主要有三个方面的考查点:一是圆的基本元 素的考查,包括运用垂径定理的有关计算,运用圆周角定理及推论的 有关证明及计算,还可能与三角形的相似和解直角三角形相联系;二 是切线的证明与计算,也往往与三角形的相似和锐角三角函数相联 系;三是与面积相关的计算,注意扇形的面积计算公式的熟练应 用.解决此类问题的方法灵活,三角形的全等与相似、中位线等等都 是在题目中常用的方法,在解题时要学会抓解题的线索,层层深入来 解决题目.

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)
2
P在半圆弧AB上运动(不与A,B两点重合),过点C作直线PB的垂线CD交PB于点D.
(1)如图1,求证:△PCD∽△ABC.
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由.
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
28
【解析】(1)∵AB是☉O的直径,
∴∠BCD=30°.
31
本课结束
∴BF=BE=5.
∵∠ABE=∠AMF=90°,∠BAE=∠MAF,
∴△AMF∽△ABE,


∴ = ,即 = = =2.


设MF=x,则AM=2x,
∴BM=10-2x.
5
∵BM2+MF2=BF2,
∴(10-2x)2+x2=52,解得x=3,x=5(不符合题意,舍去),即MF=3.
∴∠PCD=60°.
∵四边形ABDC内接于☉O,
∴∠B=∠PCD=60°.
9

(2)∵点C为的中点,
∴∠CAD=∠CDA,∴AC=CD.
∵∠ADB=90°,
∴∠CDA+∠CDP=90°.
在Rt△ADP中,∠CAD+∠P=90°,
∴∠CDP=∠P,
∴CD=PC=2 ,
∴AC=CD=PC=2 ,
෽ ,对角线AC为☉O

【例2】(2024·济南三模)如图,四边形ABCD内接于☉O,=
的直径,延长BC交过点D的切线于点E.
(1)求证:DE⊥BE;
3
(2)若☉O的半径为5,tan∠DAC= ,求DE的长.
4
12
【自主解答】(1)连接DO并延长交AB于F,

浙教版中考数学复习:圆的综合 (共45张PPT)

浙教版中考数学复习:圆的综合 (共45张PPT)


∴直线EO垂直平分AC,∴ AG=CG

∵ ∠AFC=90°,∴ FG=12AC即2FG=AC
解析:
• 解析:(3)连接OA,∵EG⊥AC,∴∠CGE=90°,∴∠ECG+∠CEG=90°

∵ FGニ12AC=AG,∴∠AFG=∠FAG

∵ ∠ECG=∠FAG=∠AFG,∴∠AFG+∠CEG=90°

求出∠CDB=∠CBD;

②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出

∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及

三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是
• 解.
三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=DC-CI计算即可得
• (1)如图(1),求证:EA=EC; • (2)如图(2),连接EO并延长交AC于点G,求证:2FG=AC; • (3)如图(3),在(2)的条件下,若sin∠FGE=13,DF=2,求四边形FECG的面积.
解析:
• 【分析】(1)要证EA=EC即需证∠EAC=∠ECA,∠EAC有互余的∠OCA,连接 OA得∠OAC=∠OCA,构造∠OAC的余角.由点A为弧BC中点和半径OA,根据 垂径定理推论,平分弧的直径(半径)垂直于弧所对的弦,故延长AO交BC于H有 ∠AHC=90°,∠OAC的余角即为∠ECA,根据等角的余角相等,得证.
=
������������ ������������
,
������������ ������������
=
������������ ������������

人教中考数学 圆的综合综合试题及详细答案

人教中考数学 圆的综合综合试题及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF =2242+=25.∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF =25,∴DE =25×22=10. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴10•GE =8,即GE =4105,则GD =GE +ED =9105. ∴119101109222S GD DF GD DE =⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.3.如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点,并且∠BMC=60°.(1)求证:AB 是⊙O 的切线;(2)若E ,F 分别是边AB ,AC 上的两个动点,且∠EDF=120°,⊙O 的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)证明见试题解析;(2)BE+CF 的值是定值,为等边△ABC 边长的一半. 【解析】试题分析:(1)连结OB 、OD ,如图1,由于D 为BC 的中点,由垂径定理的推理得OD ⊥BC ,∠BOD=∠COD ,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB 是⊙O 的切线;(2)作DM ⊥AB 于M ,DN ⊥AC 于N ,连结AD ,如图2,由△ABC 为正三角形,D 为BC 的中点,得到AD 平分∠BAC ,∠BAC=60°,利用角平分线性质得DM=DN ,得∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF ,于是有△DME ≌△DNF ,得到ME=NF ,得到BE+CF=BM+CN ,由BM=12BD ,CN=12OC ,得到BE+CF=12BC ,即可判断BE+CF 的值是定值,为等边△ABC 边长的一半.试题解析:(1)连结OB 、OD ,如图1,∵D 为BC 的中点,∴OD ⊥BC ,∠BOD=∠COD ,∴∠ODB=90°,∵∠BMC=12∠BOC ,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC 为正三角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB ⊥OB ,∴AB 是⊙O 的切线; (2)BE+CF 的值是为定值.作DM ⊥AB 于M ,DN ⊥AC 于N ,连结AD ,如图2,∵△ABC 为正三角形,D 为BC 的中点,∴AD 平分∠BAC ,∠BAC=60°,∴DM=DN ,∠MDN=120°,∵∠EDF=120°,∴∠MDE=∠NDF ,在△DME 和△DNF 中,∵∠DME=∠DNF .DM=DN ,∠MDE=∠NDF ,∴△DME ≌△DNF ,∴ME=NF ,∴BE+CF=BM ﹣EM+CN+NF=BM+CN ,在Rt △DMB 中,∵∠DBM=60°,∴BM=12BD ,同理可得CN=12OC ,∴BE+CF=12OB+12OC=12BC ,∴BE+CF 的值是定值,为等边△ABC 边长的一半.考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.4.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.5.如图,已知在△ABC 中,∠A=90°,(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积. 【答案】(1)作图见解析;(2)3π 【解析】 【分析】(1)与AB 、BC 两边都相切.根据角平分线的性质可知要作∠ABC 的角平分线,角平分线与AC 的交点就是点P 的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积. 【详解】解:(1)如图所示,则⊙P 为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:AP=3,∴S⊙P=3π6.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.7.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E 作EN ⊥AC 于点NRt △ENC 中,EC=4,∠ECA=45°,∴EN=NC=Rt △ENA 中,EN =又∵∠EAF=45° ∠CAF=∠CEF=15°(等弧对等角) ∴∠EAC=30°∴AE=Rt △AFE 中,AE== EF ,∴AF=8 AE 所在的圆O 半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数8.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.(2)若2ABD BDC ∠=∠.①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒,CE DB ⊥,90DEC ∴∠=︒,//CF AD ∴,180DAC ACF ∴∠+∠=︒.(2)①如图,连接OC .OA OC =,12∴∠=∠.312∠=∠+∠,321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥,OC CF ∴⊥.又OC 为O 的半径,CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.9.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1)求证:EF 与⊙O 相切;(2)若AE =6,sin ∠CFD =35,求EB 的长.【答案】(1)见解析(2)32【解析】【分析】 ()1如图,欲证明EF 与O 相切,只需证得OD EF ⊥.()2通过解直角AEF 可以求得AF 10.=设O 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2===,所以153EB AB AE 622=-=-=. 【详解】(1)如图,连接OD ,OC OD =,OCD ODC ∠∠∴=.AB AC =,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥,ODF AEF 90∠∠∴==,OD EF ∴⊥, OD 是O 的半径,EF ∴与O 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.10.如图,已知,,BAC AB AC O ∆=为ABC ∆外心,D 为O 上一点,BD 与AC 的交点为E ,且2·BC AC CE =.①求证:CD CB =;②若030A ∠=,且O 的半径为33+,I 为BCD ∆内心,求OI 的长.【答案】①证明见解析; ②3【解析】【分析】①先求出BC CE AC BC=,然后求出△BCE 和△ACB 相似,根据相似三角形对应角相等可得∠A =∠CBE ,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A =∠D ,然后求出∠D =∠CBE ,然后根据等角对等边即可得证;②连接OB 、OC ,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC =60°,然后判定△OBC 是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC 经过点I ,设OC 与BD 相交于点F ,然后求出CF ,再根据I 是三角形的内心,利用三角形的面积求出IF ,然后求出CI ,最后根据OI =OC ﹣CI 计算即可得解.【详解】 ①∵BC 2=AC •CE ,∴BC CE AC BC=. ∵∠BCE =∠ECB ,∴△BCE ∽△ACB ,∴∠CBE =∠A .∵∠A =∠D ,∴∠D =∠CBE ,∴CD =CB ;②连接OB 、OC .∵∠A =30°,∴∠BOC =2∠A =2×30°=60°.∵OB =OC ,∴△OBC 是等边三角形.∵CD =CB ,I 是△BCD 的内心,∴OC 经过点I ,设OC 与BD 相交于点F ,则CF =BC ×sin30°12=BC ,BF =BC •cos30°32=BC ,所以,BD =2BF =232⨯BC 3=,设△BCD 内切圆的半径为r ,则S △BCD 12=BD •CF 12=(BD +CD +BC )•r ,即123•12BC 12=3+BC +BC )•r ,解得:r 3223=+()233-=,即IF 233-=,所以,CI=CF﹣IF12=BC2332--BC=(23-)BC,OI=OC﹣CI=BC﹣(23-)BC=(3-1)BC.∵⊙O的半径为33+,∴BC=33+,∴OI=(3-1)(33+)=33+3﹣3323-=.【点睛】本题是圆的综合题,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.。

第二部分 专题六 圆综合题型-2020中考数学一轮复习课件(共17张PPT)

第二部分 专题六 圆综合题型-2020中考数学一轮复习课件(共17张PPT)

图 Z6-8
∴△AFD∽△BAD.∴ADDF=ABDD,即 DF·BD=AD2①. 又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
∴△AED∽△OAD.∴OADD=ADDE,即 OD·DE=AD2②.
由①②可得 DF·BD=OD·DE,即ODDF=DBDE. 又∵∠EDF=∠BDO,
∴△EDF∽△BDO,∴OEFB=EBDD. ∵BC=1,
(1)证明:∵OC=OB,∴∠OCB=∠OBC. ∵PF 是⊙O 的切线,CE⊥AB,
∴∠OCP=∠CEB=90°,
∴∠BCP+∠OCB=90°,∠BCE+∠OBC=90°,
∴∠BCE=∠BCP,
∴BC 平分∠ECP.
(2)证明:连接 AC,如图 Z6-4. ∵AB 是直径,∴∠ACB=90°,
图 Z6-4
图 Z6-1 (1)尺规作图:作弦 CD,使 CD=BC(点 D 不与 B 重合),连 接 AD;(保留作图痕迹,不写作法) (2)在(1)所作的图中,求四边形 ABCD 的周长.
解:(1)如图 Z6-2,线段 CD 即为所求. (2)连接 BD,OC 交于点 E,设 OE=x. ∵AB 是直径,∴∠ACB=90°, ∴BC= AB2-AC2= 102-82=6. ∵BC=CD, ∴ BC = CD ,∴OC⊥BD 于 E,∴BE=DE. ∵BE2=BC2-EC2=OB2-OE2, ∴62-(5-x)2=52-x2,解得 x=75. ∵BE=DE,BO=OA,∴AD=2OE=154,
专题六 圆综合题型
圆是平面几何的重要图形,也是中考的热点与必考内容. 它综合三角形、四边形于一体,知识点多,覆盖面广,具有极 强的综合性,对学生思维能力要求较高.这类试题通常借助圆的 对称性和旋转不变性,考查与圆有关的概念、性质、位置关系(尤 其是切线的性质与判定),进行相关问题(正多边形、弧、扇形 等)的计算、作图、证明与探究.

中考数学圆的综合的综合题试题及答案

中考数学圆的综合的综合题试题及答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且点C 是的中点,过点C 作⊙O 的切线交AB 的延长线于点D ,交AF 的延长线于点E .(1)求证:AE ⊥DE ;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF 为等边三角形,∴AF=OA=AB ,在Rt △ACB 中,AC=2,tan ∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.3.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=.①求C ∠的正切值;②若ABC 为等腰三角形,求ABC 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==,OB OC AB ∴==,AOB ∴是等边三角形,AOB 60∠∴=, 1ACB AOB 302∠∠∴==, 故答案为30;()2①如图2,连接AO 并延长交O 于D ,连接BD ,AD 为O 的直径,AD 10∴=,ABD 90∠=,在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=,ACF AOG ∠∠∴=, 在Rt AOG 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF 中,3sin ACF 5∠=, 318AF AC 55∴==,24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=.【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.4.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC .将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b(b<a),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.【答案】(1) S 阴影=(a 2-b 2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB 逆时针旋转90°可与△PAB 重合,此时阴影部分面积=扇形BAC 的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C 是直角三角形,进而可根据勾股定理求出PC 的长.试题解析:(1)∵将△PAB 绕点B 顺时针旋转90°到△P′CB 的位置,∴△PAB ≌△P'CB ,∴S △PAB =S △P'CB ,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.5.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)10.【解析】分析:(1)要证DE是⊙O的切线,必须证ED⊥OD,即∠EDB+∠ODB=90°(2)要证AOED是平行四边形,则DE∥AB,D为AC中点,又BD⊥AC,所以△ABC为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O、D与B、D两点,∵△BDC是Rt△,且E为BC中点,∴∠EDB=∠EBD.(2分)又∵OD=OB且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE是⊙O的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=2k ,AE=5k , ∴sin ∠CAE=10EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.6.如图,在以点O 为圆心的两个同心圆中,小圆直径AE 的延长线与大圆交于点B ,点D 在大圆上,BD 与小圆相切于点F ,AF 的延长线与大圆相交于点C ,且CE ⊥BD .找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE 是小⊙O 的直径,可得OA=OE ,连接OF ,根据切线的性质,可得OF ⊥BD ,然后由垂径定理,可证得DF=BF ,易证得OF ∥CE ,根据平行线分线段成比例定理,可证得AF=CF ,继而可得四边形ABCD 是平行四边形,则可得AD=BC ,AB=CD .然后连接OD 、OC ,可证得△AOD ≌△EOC ,则可得BC=AD=CE=AE .试题解析:图中相等的线段有:OA=OE ,DF=BF ,AF=CF ,AB=CD ,BC=AD=CE=AE .证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.7.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

中考总复习第七单元圆ppt、中考真题及模拟(附答案)

中考总复习第七单元圆ppt、中考真题及模拟(附答案)

考点4 垂径定理及其推论
垂径 定理 垂直于弦的直径__________ 平分弦 ,并且平分弦所对 的两条弧 (1)平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧;(2)弦的垂直平分线经过圆 心,并且平分弦所对的两条弧;(3)平分弦所对 的一条弧的直径,垂直平分弦,并且平分弦所 对的另一条弧 简言之,对于①过圆心;②垂直弦;③平分弦; ④平分弦所对的优弧;⑤平分弦所对的劣弧中 的任意两条结论成立,那么其他的结论也成立
圆周角 定义 圆周角 定理
推论1
推论2 推论3
考点7
圆内接多边形 如果一个多边形的所有顶点都在同一 个圆上,这个多边形叫做圆内接多边 形.这个圆叫做这个多边形的外接圆 对角互补 圆内接四边形的_____________
圆内接 四边形 圆内接 四边形 的性质
考点8
反证法 不直接从命题的已知得出结论,而是假设命题的 结论不成立,由此经过推理得出矛盾,由矛盾断 定所作假设不正确,从而得到原命题成立,这种 方法叫做反证法 (1)假设命题的结论不正确,即提出与命题结论相 反的假设; (2)从假设的结论出发,推出矛盾; (3)由矛盾的结果说明假设不成立,从而肯定原命 题的结论正确
考点2 确定圆的条件及相关概念
确定圆 不在同一直线的三个点确定一个圆 的条件 垂直平分线 的交点,即三角 三角形的 三角形三边____________ 形外接圆的圆心 外心 锐角三角形的外心在三角形的内部,直角 防错提醒 三角形的外心在直角三角形的斜边上,钝 角三角形的外心在三角形的外部 考点3 圆的对称性 圆既是轴对称图形又是________ 中心 对称图形,圆还具 有旋转不变性.
第七单元 圆
第33课时 圆的有关概念与性质 第34课时 与圆有关的位置关系 第35课时 圆的切线的性质与判定

专题五圆的综合题 PPT资料共17页

专题五圆的综合题 PPT资料共17页

=13; (2)在△ABC的外部取一点P(直线BC上的点除外),分别连
接PB,PC,∠BPC与∠BAC的大小关系怎样?(不要求证明)
图T5-3
典例探究
专题五┃圆的综合题

(1)证明:∵∠ADE和∠AED是圆内接四边形DBCE的
外角,
∴∠ADE=∠C,∠AED=∠B. ∴△ADE∽△ACB,
∴S△ADE∶S△ACB=DE2∶BC2=14,
在Rt△ADC中,AC=2 3,DC= 3,
所以AD= AC2-DC2= (2 3)2- 32=3.
所以△ABC面积的最大值为2 3×3×12=3 3.
典例探究
专题五┃圆的综合题
变式题
(1)已知:如图T5-3,过B,C两点的圆与△ABC的边AB,
AC分别相交于点D和点E,且
DE BC

1 2
,求证:S△ADE∶S四边形DBCE
直角三角形中,应用三角函数进行求解,也可以作直径BD,连 接CD,使∠BAC转化为∠BDC.
4.由于△ABC中的边BC的长不变,所以底边上的高最大 时,△ABC面积的最大值,即点A是BAC的中点时,△ABC的 面积最大.
典例探究
专题五┃圆的综合题 【解题思路】 构造圆心角及直角三角形 ↓ 由垂径定理→求CD的长度 ↓ 由锐角三角函数→求∠DOC ↓ 由圆周角定理→求∠BAC ↓ △ABC面积的最大时点A的位置 ↓ 由勾股定理→求△ABC中BC边上高的最大值
典例探究
专题五┃圆的综合题
【点拨交流】 1.本题考查了切线的判定、全等、相似、勾股定理、等面积
法求边长、点的坐标、待定系数法求函数解析式等. 2.①如果这条直线与圆有交点,则只需要说明该直线与过该

人教中考数学圆的综合的综合题试题含详细答案

人教中考数学圆的综合的综合题试题含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。

(2)解:作MG⊥y轴于G,MC⊥x轴于C,∵AM=BM∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5∴在点P运动的过程中,点M到x轴的距离始终为4.5则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,HB=9-3=6,设OP=HQ=x由△BOP∽△QHB,得x2=3×6=8,x=2∴点Q的坐标为(2,9)(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)∴M1M2=92-3=32, Q1Q2=6-4=2线段QM扫过的图形为梯形M1M2Q2Q1其面积为:12×(32+2)×4.5=638.【解析】【分析】根据已知可得出三角形APQ和三角形BPQ都是直角三角形,再根据这个条件结合题意直接解答此题.【详解】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。

2020年九年级数学中考专题:圆的综合题(五) 课件(共21张PPT)

2020年九年级数学中考专题:圆的综合题(五)  课件(共21张PPT)

∵∠AOE=60°,∴∠EOC=120°. ∴S 扇形 OEC=1203π6×0 22=43π. ∴S 阴影=S 四边形 OCBE-S 扇形 OEC=4 3-43π. 即阴影部分的面积为 4 3-43π.
谢谢观看
Exit
(2)当出现半圆弧的三等分点C,D时,容易出 现60°的圆心角和30°的圆周角,构造含有特殊 角30°的直角三角形和等边三角形;
(3)当出现半径OA的中点E时,考虑过点E作 CD⊥AO,连接OC,构造含有特殊角30°的直 角三角形,或者再连接AC,构造等边三角形 .
CONTEபைடு நூலகம்T S
目 录
基础练 典例分析
三角形.∴∠DEO=∠EDO=60°,DE=DO.
∵AD=OD,∴AD=DE.∴∠A=∠AED.
又∠EDO=∠A+∠AED=60°, ∴∠A=∠AED=30°. ∴∠AEO=∠DEO+∠AED=90°,即
OE⊥AE. 又OE是⊙O的半径,∴AB是⊙O的切线.
解:如答图2,连接OB.
∵(3B)C求⊥阴AC影, O部C分是 ⊙的O面的积半.
径, ∴BC是⊙O的切线. ∵BE是⊙O的切线,
∴BE=BC.
答图2
在 Rt△ABC 中,AC=AD+CD=6, ∴BC=AC·tan A=6× 33=2 3. ∴BE=BC=2 3. ∴S 四边形 OCBE=S△OCB+S△OEB=12OC·BC+12OE·BE =12×2×2 3+12×2×2 3=4 3.
基础练
︵︵
1.如图1,AB是⊙O的直径, AC = BC ,连接 AC,则∠CAB=___4_5_°___.
图1
2.如图2,若AD是⊙O的直径,AB=BC=CD,

第六章《圆》综合考试测试卷-2020届广东九年级数学中考总复习课件 (共24张PPT)

第六章《圆》综合考试测试卷-2020届广东九年级数学中考总复习课件 (共24张PPT)

(1)证明:如答图S1-6-2,连接OD.∵四边形 EBOC是平行四边形, ∴OC∥BE.∴∠1=∠3,∠2=∠4. ∵OB=OD,∴∠3=∠4.∴∠1=∠2. 在△ODC和△OAC中,
∴△ODC≌△OAC(SAS).∴∠ODC=∠OAC=90°. ∴OD⊥CD. ∴CF是⊙O的切线.
(2)解:∵∠F=30°,∴∠FOD=60°. ∴∠1=∠2=60°. ∵四边形EBOC是平行四边形,∴OC=BE=8. 在Rt△AOC中,∵∠ACO=30°, ∴OA= OC=4,AC= OA=4 . ∴图中阴影部分的面积为S四边形AODC-S扇形AOD=2× ×4×4 -
(2)解:连接BF.∵AB为直径,∴∠AFB=90°.
∵∠BAC=∠CBE,∴tan∠BAC=tan∠CBE= .
在Rt△ACB中,tan∠BAC=
,设BC=x,则
AC=2x.
∴AB=
∴BC= ,AC=2 .∴BD=2BC=2 .
∵∠DBF=∠DAC=∠BAC,∴△BDF∽△ABC.

∴DF=2.
A.100° B. 110° C. 140° D. 130°
10. 如图S1-6-8,△ABC为⊙O内接等边三角形, 将△ABC绕圆心O旋转30°到△DEF处,连接AD, AE,则∠EAD的度数为( C )
A. 150° B. 135° C. 120° D. 105°
二、填空题(本大题7小题,每小题4分,共28分) 11. 同圆中,已知 所对的圆周角是80°,则
课时导学案·中考总复习·数学·配人教版
第六章《圆》综合测试卷
一、选择题(本大题10小题,每小题3分,共30分)
1. 如图S1-6-1,AB是⊙O的直径,弦CD⊥AB于点E,

人教版初中数学中考复习课件 专题5 与圆有关的综合题(共17张PPT)

人教版初中数学中考复习课件  专题5  与圆有关的综合题(共17张PPT)

试题分析
(1)根据弧长公式l=nπ r/180进行计算即可; (2)证明△POE≌△AOD可得OD=OE; (3)连接AP,PC,证出PC为EF的中垂线,再利用 △CEP∽△CPA找出角的关系即可得证.
满分解答
变式训练
1.(2015•广西)如图-3,已知⊙O是以AB为直径 的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点 E,连接AD,BD,BD交AC于点F. (1)求证:BD平分∠ABC; (2)延长AC到点P,使PF=PB,求证:PB是⊙O的 切线; (3)如果AB=10,cos∠ABC=35,求AD.

真题回顾
例 (2014•广东)如图-1,⊙O是△ABC的外接圆 ,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O 于点P,过点P作PE⊥AC于点E,作射线DE交BC的延 长线于点F,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长(结 果保留π ); (2)求证:OD=OE; (3)求证:PF是⊙O的切线.
专题5 与圆有关的综合题
方法指导 真题回顾 试题分析 满分解答 变式训练
方法指导
关于圆的综合性问题,往往是中考试题中的中等难度题 ,考查内容涉及方程、三角形全等与相似、特殊四边形 的性质及其圆的相关知识点,解决这类问题要求学生必 须稳固各方面的数学知识,熟练把握有关推理证明、计 算分析、动态变化、分类讨论等多方面的类型题.这类问 题在考查过程中往往涉及方程思想、转化思想、数形结 合思想.近年来,有关圆的综合题综合的内容越来越广泛 ,解题技巧要求越来越高,因此,解决此类问题往往采 用的主要方法是借助题目中的已知条件,联想并运用其 所体现的知识点,从而探寻解题的突破口.
2.(2015•福建)AB是⊙O的直径,点P在线段AB的 延长线上,BP=OB=2,点Q在⊙O上,连接PQ. (1)如图-4①,线段PQ所在的直线与⊙O相切, 求线段PQ的长; (2)如图-4②,线段PQ与⊙O还有一个公共点C, 且PC=CQ,连接OQ,与AC交于点D. ①判断OQ与AC的位置关系,并说明理由; ②求线段PQ的长.

题型(五) 圆的综合题-中考数学一轮复习知识考点ppt(51张ppt)

题型(五)   圆的综合题-中考数学一轮复习知识考点ppt(51张ppt)

(1)解:四边形AMCD是菱形.理由如下:
∵M是Rt△ABC中斜边AB的中点,∴CM=AM.
∵CM为⊙O的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN.
∵ND=MN,∴四边形AMCD是菱形.
上一页 下一页
(2)求证:ND=NE.
(2)证明:∵四边形CENM为⊙O的内接四边形, ∴∠CEN+∠CMN=180°. ∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN. ∵四边形AMCD是菱形,∴CD=CM,∴∠CDM=∠CMN, ∴∠DEN=∠CDM,∴ND=NE.
上一页 下一页
(2)若tanA= 3 ,AD=2,求BO的长.
4
解:设⊙O的半径为3x,则OH=OD=OC=3x.
在Rt△AOH中, tan A 3,
OH
3 ,即
3x
3,
4
∴AH=4x,
AH 4 AH 4
AO OH 2 AH 2 (3x)2 (4x)2 5x,
∵AD=2,∴AO=OD+AD=3x+2,
上一页 下一页
解:(1)BC与⊙O相切.理由如下:连接OD. ∵OA=OD,∴∠OAD=∠ODA. ∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD, ∴OD∥AC. ∵∠C=90°,∴∠ODC=90°,∴OD⊥BC. ∵OD为⊙O的半径,∴BC是⊙O切线.
上一页 下一页
(2)若AD=8,AE=10,求BD的长.
∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,
∴∠EBF=∠BAF.
在△ABE与△BCG中,BAE CBG,
AB
BC,
ABE BCG,
∴△ABE≌△BCG(ASA).
上一页 下一页

备战中考数学一轮专项——圆的大综合一优秀课件

备战中考数学一轮专项——圆的大综合一优秀课件
图5
证明:设直线 OE 交 CD 于点 H,如答图 5, ∵AB,CD 分别与⊙O 相切于点 E,G, ∴OE⊥AB 于点 E,OG⊥CD 于点 G. ∵AB∥CD,∴OE⊥CD 于点 H,∴点 G 与 H 重合, ∴点 O,E,G 在同一条直线上.
(2)∠BOC=90°;
证明:如答图 5,连接 OF.
(1)求 BC,AD,BD 的长;
图4
解:∵AB 为⊙O 的直径,∴∠ACB=∠ADB=90°. ∵CD 是∠ACB 的平分线,∴∠ACD=∠BCD=45°, ∴A︵D=B︵D,∴AD=BD,∴∠ABD=∠BAD=45°. 在 Rt△ABD 中,∵AB=10,∴AD=BD=AB·sin∠ABD=5 2. 在 Rt△ABC 中,∵AC=6,AB=10,∴BC= AB2-AC2=8.
备战中考数学一轮专项——圆的大综 合一精 品ppt优 秀ppt 课件
备战中考数学一轮专项——圆的大综 合一精 品ppt优 秀ppt 课件
类型3 圆中的线段问题 例 3 如图 3,等边三角形
ABC
是⊙O
的内接三角形,动点
P
在A︵B
上,连接 PA,PB,PC,PC 交 AB 于点 D.
(1)求证:∠APC=∠BPC=60°; 证明:∵等边三角形 ABC 是⊙O 的内接三角形,
∵AB,BC 分别与⊙O 相切于点 E,F,
答图5
∴OE⊥AB 于点 E,OF⊥BC 于点 F,OE=OF,BE=BF.
∴∠OEB=∠OFB=90°.
∴△OBE≌△OBF,
∴∠BOE=∠BOF. 同理∠COF=∠COG. ∵点 O,E,G 在同一条直线上, ∴∠BOC=12(∠EOF+∠FOG)=90°.
∵∠EDA+∠BDF=∠ADB=90°,∠EDA+∠EAD=90°, ∴∠BDF=∠EAD. 又∵AD=BD,∠AED=∠BFD=90°,∴△AED≌△DFB(AAS), ∴FD=EA=EC=3 2,DE=FB=FC=4 2, ∴EF=CF-EC= 2. ∵AE⊥CD,BF⊥CD,∴AE∥BF, ∴△APE∽△BPF,∴AP∶BP=EP∶FP=AE∶BF=3∶4,

2025年中考数学总复习专题突破课件:专题六 圆的综合题

2025年中考数学总复习专题突破课件:专题六 圆的综合题

【解决问题】 (1)如图 2,AP 与A︵CB交于点 D,请你用已学知识判断∠α与“危险角”
∠ACB 的大小关系. 解:如图2,连接BD. 由同弧所对的圆周角相等,可知∠ACB=∠ADB. ∵∠ADB是△BDP的外角,∴∠APB<∠ADB. ∴∠APB<∠ACB,即∠α<∠ACB.
【问题探究】 (2)如图 3,在A︵CB上还有一个灯塔 E,经测量,“危险角”∠ACB 的大小
5.(2021·河南第20题)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘 的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物 理学上称这种动力传输工具为“曲柄连杆机构”. 小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连 杆”AP,BP的连接点P在⊙O上,当点P在⊙O上转动时,带动点A,B分别在射线 OM,ON上滑动,OM⊥ON.当AP与⊙O相切时,点B恰好落在⊙O上,如图2. 请仅就图2的情形解答下列问题:
图2
证明:如图2,连接OE. ∵OE=OA,∴∠OAE=∠OEA. ∵AC平分∠BAD,∴∠OAE=∠DAE. ∴∠DAE=∠OEA.∴OE∥AD. ∵EF与⊙O相切,∴EF⊥OE.∴EF⊥AD.
图2
②若⊙O的半径为3,AE=4,求EF的长.
解:如图2,连接NE.
∵⊙O的半径为3,AN为直径,
∴AN=6,∠AEN=90°.
解:如解图,连接OF,OG,过点G作GH⊥AB于点H,则四边形BOGH 是矩形. ∵FE是⊙O的切线,∴∠OFE=90°. ∵∠DEF=37°,DE=2, ∴sin∠DEF=OOFE=ODO+D 2.
∴ODO+D 2≈35,解得 OD≈3.
∴BH=OG=OD=3,HG=BO=BC+CO=8.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 (1)求证: BC 是⊙ O 的切线;
(2)若 sin B 3 ,⊙ O 的半径为r ,求 EHG 的面积 5
(用含r 的代数式表示).
6.(2017 年高新区•26 题 10 分) 如图,在⊙O 的内接四边形 ACDB 中,AB 为直径,AC:BC
12.(2015 年苏州第 26 题满分 10 分)如图,已知 AD 是△ABC 的角平分线,⊙O 经过 A、 B、D 三点,过点 B 作 BE∥AD,交⊙O 于点 E,连接 ED.
1 求证:ED∥AC;
2 若 BD=2CD,设△EBD 的面积为 S ,△ADC 的面积为 S ,且 S 2 16S 4 0 ,
学 海 无涯
2017 年圆综合大题 8.(2011 年苏州市•第 26 题 8 分)如图,已知 AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦 AB 上的任意一点(不与点A、B 重合),连接 CO 并延长 CO 交于⊙O 于点 D,连接 AD.
(1)弦长 AB 等于 ▲ (结果保留根号); (2)当∠D=20°时,求∠BOD 的度数; (3)当 AC 的长度为多少时,以 A、C、D 为顶点的三角形与以B、C、O 为顶点的三角形
2 若 CE=4,CB=4 ,tan∠CAB= ,求 FD 的长.
5.(2017 年吴江区•26 题 10 分) 如图,在 ABC 中,C 90, D 、F 是 AB 边上的两点,
以 DF 为直径的⊙ O 与 BC 相交于点 E ,连接 EF ,过 F 作 FG BC 于点 G ,其中 OFE 1 A.
(1)如图 1,若 BD 2 5 , AC 6 .
①求证: BE 是⊙ O 的切线; ②求 DE 的长;
(2)如图 2,连结CD ,交 AB 于点 F ,若 BD 涯
4.(2017 年工业园区区•26 题 10 分) 如图,在△ABC 中,CD⊥AB,垂足为点 D.以 AB 为直径的半⊙O 分别与 AC、CD 相交于点E、F,连接 AF、EF. 1 求证:∠AFE=∠ACD;
(2)当 x 为何值时PD·CD 的值最大?最大值是多少?
10.(2013 年苏州第 27 题 8 分)如图, Rt△ABC 中,∠ACB=90°,点 D 是 AB 边上一点, ( 以1B)D求为证直:径B的D⊙=BOF;与边 AC 相切于点 E,连接 DE 并延长 DE 交 BC 的延长线于点 F. (2)若 CF=1,cosB= ,求⊙O 的半径.
3若弧 DB 为半圆的三分之一,把 AOC 绕着点O 旋转,使点C 、 O 、 B 在一直线上 时
,如图 2.①证明 FH : BG 1: 2 ;②若⊙O 的半径为 4,直接写出 FH 的长.
2.(2018 年蔡老师预测•第 26 题 10 分)如图,在 Rt△ABC 中,∠A=90°,点 D、E 分 别在 AC、BC 上,且 CD·BC=AC·CE,以 E 为圆心,DE 长为半径作圆,⊙E 经过点
值.
学海无涯
模拟训练:
1.(2017 年常熟市•本题满分 10 分)如图 1 , DE 是⊙ O 的直径,点 A 、 C 是直径 DE 上方 半圆上的两点,且 AO CO .连接 AE,CD 相交于点 F .点 B 是直径 DE 下方半圆上的任意
一点,连接 AB 交 CD 于点G ,连接CB 交 AE 于点 H . 1 求 ABC 的度数; 2 证明: CFH CBG ;
相似?请写出解答过程.
9.(2012 年苏州市第 27 题满分 8 分)如图,已知半径为 2 的⊙O 与直线 l 相切于点 A,点 P 是直径 AB 左侧半 圆上的动点,过点 P 作直线 l 的垂线,垂足为 C,PC 与⊙O 交于点 D,连 接 PA、PB,设 PC 的长为x(2<x<4).
(1)当 x= 5 时,求弦 PA、PB 的长度; 2
1
2
1
2
求△ABC 的面积.
13.(2016 年苏州第 26 题 10 分 ) 如 图 , AB 是 ⊙ O 的 直 径 , D、 E 为 ⊙ O 上 位 于
AB 异 侧 的 两 点 , 连 接 BD 并 延 长 至 点 C, 使 得 CD=BD, 连 接 AC 交 ⊙ O 于 点 F( (,12))连证若接明∠AE:E=、5∠5DE° ,=E∠、求CD;∠FB.DF 的 度 数 ; ( 3) 设 DE 交 AB 于 点 G, 若 DF=4, cosB= , E 是 的 中 点 , 求 EG•ED 的
B,与 AB、BC 分别交于点 F、G. (1)求证:AC 是⊙E 的切线; (2)若 AF=4,CG=5, ①求⊙E 的半径; ②若 Rt△ABC 的内切圆圆心为 I,则 IE=
B .
FA D
E
GC
(第 26 题)
3.( 2017 年张家港•26 题 10 分)如图,已知⊙O 是VABC 的外接圆, AD 是⊙ O 的直径, 且 BD BC .延长 AD 到 E ,使得EBD CAB .
11.(2014•苏州第 27 题 8 分)如图,已知⊙O 上依次有 A、B、C、D 四个点, = ,连 接 AB、AD、BD,弦 AB 不经过圆心 O,延长 AB 到 E,使 BE=AB,连接 EC,F 是 EC 的中 点,连接 BF.
学海无涯
1 若⊙O 的半径为 3,∠DAB=120°,求劣弧 的长; 2 求证:BF= BD; 3设 G 是 BD 的中点,探索:在⊙O 上是否存在点 P(不同于点 B),使得 PG=PF?并 说 明 PB 与 AE 的位置关系.江南汇教育网
值.
14.(2017 年苏州市第 27 题 10 分)如图,已知△ABC 内接于⊙O,AB 是直径,点 D 在⊙ O 上,OD∥BC,过点 D 作 DE⊥AB,垂足为 E,连接 CD 交 OE 边于点F.
学海无 涯
1 求证:△DOE∽△ABC; 2 求证:∠ODF=∠BDE; (3)连接 OC,设△DOE 的面积为 S1,四边形 BCOD 的面积为 S2,若 = ,求 sinA 的
相关文档
最新文档