第一讲§1.1微分方程与解(2课时)
高等数学微分方程的基本概念教学ppt讲解
三、主要问题——求方程的解
微分方程的解:
代入微分方程能使方程成为恒等式的函数.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且 独立的任意常数的个数与微分方程的阶数相同.
独立的任意常数的个数=微分方程的阶数 含有几个任意常数的表达式,如果它们不能合并而使 得任意常数的个数减少,则称这表达式中的几个任意 常数相互独立.
由题意知 t = 0 时,
s 0, v ds 0 dt
(8)
Nanjing College of Information and Technology
8
第六章 常微分方程
第一节 微分方程的基本概念
把(8)式分别代入(6),(7)式,得
C1 = 0 , C2 = 0. 故(7)式为
s 1 gt 2
是该微分方程的特解.
第一节 微分方程的基本概念
Nanjing College of Information and Technology
22
第六章 常微分方程
内容小结
第一节 微分方程的基本概念
本节基本概念: 微分方程; 微分方程的阶; 微分方程的解; 通解,初始条件; 特解; 初值问题; 积分曲线.
Nanjing College of Information and Technology
15
第六章 常微分方程
第一节 微分方程的基本概念
例如y = C1x + C2x + 1 与 y = Cx+1 (C1,C2,
C都是任意常数)所表示的函数族是相同的,
因此y = C1x + C2x + 1中的C1,C2是不独立的;
代入初始条件
常微分方程----第一章-绪论PPT课件
2u x2
2u y2
2u z2
0
注:我们不特别声明,就称常微分方程为微分方程或方程。
方程的阶数:一个微分方程中,未知函数最高阶导 数的阶数,称为方程的阶数。
目录 上页 下页 返回 结束
一般的n阶微分方程的形式为:
F(x,y.ddyx,L,ddxnny)=0
其中:F(x,y.ddyx,L,ddxnny)=0是变量
目录 上页 下页 返回 结束
在实际工作中,常常出现一些特点和以上方程 完全不同的问题。比如:某个物体在重力作用下 自由下落,要寻求下落距离随时间变化的规律; 火箭在发动机推动下在空间飞行,要寻求它飞行 的轨道等,研究这些问题所建立的数学方程不仅 与未知函数有关,而且与未知函数的导数有关, 这就是我们要研究的微分方程。
目录 上页 下页 返回 结束
n 阶方程的通解:把含有 n 个相互独立的任意常数
c1,c2,L ,c n 的解 y= ( x1 , c1 , L, cn)
称为n 阶方程的通解。
若存在 (x,c1,,cn) 的一个邻域,使得
,
, ,
c1
c2
cn
, c1
, c2
,
cn 0
(n1) ,
(n1) ,
,
(n1)
c1
c2
cn
则称 y(x,c1,,cn) 含有n个相互独立的常数。
目录 上页 下页 返回 结束
例:yc1cox sc2sixn是 yy0的通解。 因为 y c1sixn c2co x而s
cosx sinx 10
sinx cosx
特解:在通解中确立了一组任意常数后所得的解称 为特解。
x,
y,
,
高等数学-第7章 微分方程
将上式两端积分,并由
中的函数可写成的函数,即
(引进新的未知函数(
代入方程(),便得方程
分离变量,得两端积分,得
代替
解方程
因此是齐次方程。
令,则
两端积分,得
以代入上式中的
方程
离变量后得,两端积分,得
,这是对应的齐次线性方程(
把上式代入(
.
以除)的两端,再通过上述代换得线性方程
型的微分方程
(
..
,那末而方程就成为
但是,因此又得到一个一阶微分方程
)的通解为
(3)
合函数的求导法则把化为对
)就成为
通解为
)的通解为
如果函数均是方程的解,那末
我们所求得的解是不是方程的通解呢?
,那末称此两函数在区间,否则,即
如果
就是该方程的通解,其中
的任一特解,
就是方程的通解。
.如果
的解,那末
(
的系数(
和它的各阶导数都只相差一个常数因子。
将
把代入方程(
(
)的两个根。
特征方程微分方程
(
型,
(是与
不是特征方程的根,
若
型
,
,)其中、
)的重复次数。
高等数学 常微分方程PPT课件
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项
系
数
法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx
《微分方程 》课件
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。
微分方程及其分类课件
一、微分方程的概念
为了便于阐述微分方程的有关概念,先看下面例子:
例1 一曲线通过点 (1, 2) ,且在该曲线上任一点 M( x, y) 切线的斜率为 2x ,求这曲线的方程。
解 设所求曲线为 y y( x)。则有 y 2x 对上式两边积分有 y x 2 C
由于所求曲线通过点 (1, 2) 即满足 y x1 2 则 C 1. 所求曲线方程为 y x 2 1 .
又因为这个解中含有两个独立的任意常数 C1 ,C 2 , 而方程为二阶微分方程,所以 函数 y C1 sin2x C2 cos 2x, 是原方程的通解。
把条件y x0 0 代入 y C1 sin2x C2 cos 2x, 得 C2 1
把条件y x0 1 代入 y 2C1 cos2x 2C2 sin2x, 得
微分方程的阶数相同,这样的解就叫微分方程的通解 (2)微分方程的特解 当微分方程的通解中各任意常数都取定值时所得的解 (3) 微分方程的初始条件
确定通解中的任意常数的附加条件。 5.微分方程解的几何意义
通解的图象: 积分曲线族.
特解的图象: 微分方程的积分曲线.
d2y
例3 验证: y C1 sin2x C2 cos 2x 是 dx2 4 y 0 的解, 并求满足初始条件 y x0 0, y x0 1 的特解.
,故可推出
.这样就可以任意选取另一个变换,
只要它和
彼此独立,即雅可俾式
即可.这样,方程(10.2.6)就化为
此类方程称为抛物型方程.热传导(扩散)方程就属于 这种类型.
3. 当判别式
时:这时,可以重复上
面的讨论,只不过得到的
和
是一
对共轭的复函数,或者说,偏微分方程(10.2.1)的两条特征线是
第一章 微分方程基础
故 y cos kt sin kt 是所给微分方程的解.
例4、解微分方程y'' 3x2 sin x 5.
解、对两端积分,得
'
'' 2 y dx (3 x sin x 5)dx,
即 y x3 cos x 5 x C1.
1 4 5 2 即 y x sin x x C1 x C2 . 4 2
,并将
,
3 求非齐次线性方程的通解:将求出的u( x)代入y u( x)e
得到非齐次线性方程的通解.
P ( x ) dx
因为P( x) 2 x, Q( x) cos xe , 所以由一阶非齐次 线性方程的通解的公式得
ye
e
2 xdx
x2
x2
cos xe
解
求导,得
dy k sin kt k cos kt , dt
d2y 2 2 k cos kt k sin kt , 2 dt
d2y 将 2 和x的表达式代入所给微分方程中, 得 dt
k 2 (cos kt sin kt ) k 2 (cos kt sin kt ) 0.
dy 2x dx
s 0.2t 2 C1t C2
s 0.2t 2 20t ,
d 2s 0.4 2 dt
定义
如果微分方程的解中含有任意常数,且独立的任 意常数的个数与微分方程的阶数相同,则这样的 解叫做微分方程的通解.
函数y x 2 C C为任意常数 是 dy =2x的通解. dx
F ( x, y, y,, y ( n) ) 0,
( n 1) x , y , y , , y 中的某些变量可以不出现. 其中
常微分方程第一章课件(1)讲义
参 考 书
西华师范大学
《常微分方程》
《常微分方程教程》
由东北师大数学系编
由丁同仁、李承编
高等教育出版社
高等教育出版社
第一章
绪论
西华师范大学
本章分为两节,主要讲两个内容:常微分方程的应用背景及基本概念。 微分方程是一门应用背景很强的学科。诸如物理、化学、生物、医学,社 会学以及其他一些人文科学都有非常广泛的应用(例如:传染病模型,战 争模型等都体现微分方程很好的应用) 限于时间和篇幅,本书仅就《常微分方程》在物理学得几个不同分支 上得一些简单应用作初步的展示,至于它的更深入和广泛的应用,将会在 它的后继课程《数学建模》和《数学物理方程》中作进一步的介绍。
。
引例2:物体冷却过程的数学模型
西华师范大学
为解决上述问题,即建立物体冷却过程的数学模型,需要热力学的 牛顿冷却定理——物体温度变化速度与温差(物体温度与介质温度的差 )成比例。 将牛顿冷却定律翻译成数学语言,即为:
du k (u u k ) dt
上式即为物体冷却过程的数学模型。
引例2:物体冷却过程的数学模型
牛顿的生平简介
牛顿(Newton) 1642.12.15—1727.3.20 英国数学家
西华师范大学
牛顿是一个农民的儿子,他的父亲在他出生之前就去世了,牛顿是不 足月的遗腹子,他是那样的瘦小,仅三磅重,他母亲说一夸克(约一升)的 杯子就能装下他,他的生命似乎已经绝望了饿,以至于两个到附近为他取药 的妇女担心等不到她们回来牛顿就会死了。结果谁也没有想到他竟然活到 85 岁高龄。而且成为世界上出类拔萃的伟大科学家(这是上帝创造的奇迹)。 牛顿三岁的时候,母亲再嫁,他由外祖母抚养,小时候他对功课不感 兴趣,成绩低劣。被同学瞧不起。某日,一个蛮横不讲理的同学欺辱他,一 脚踢在他的肚子上(此同学的成绩在牛顿之上 ), 使牛顿在精神和肉体上受到 了极大痛苦。自那以后牛顿发奋读书,不久成绩便超过该生,而冠于全部。
第一章 常微分方程
寻求变量间的未知函数关系,对于理论研究或实际问题的相互影响因素分 析,都是至关重要的。然而有些问题,我们常常只能先找到变量的变化率
及其相关的变量间存在的间接关系,那么如何求得这些变量间的直接函数
关系,是我们需要解决的问题。
第一节 常微分方程基本概念 第二节 一阶可分离变量的微分方程 第三节 一阶线性微分方程 第四节 二阶线性常系数齐次微分方程
则有数学模型
x k x(t )[ a x(t )]t x(0) b 第一式两边同除t ,并在 t 0 时取极限得
x (t ) k x(t )[ a x(t )] x(0) b
三、形如y(n)=f(x)的微分方程求解
例1 求微分方程 y e 2 x x 的通解. 解 这个方程的特点是右边仅为自变量的表达式,根据 高阶导数的含义,本题求解只须连续积分三次
速度为
a;发动机周围始终保持恒温为b
发动机的温度变化是自身升温与环境冷却的共同 作用结果。冷却定律是说:物体的冷却速率正比于
自身温度与环境的温度差,设 k为正比例系数;
Q a k (Q b) 则定解模型为 Q |t 0 b
例3 一艘质量为M的潜艇从水面开始下沉,所受水的阻力 与下沉速度成正比,建立潜艇下沉的深度随时间变化的定解模型。 解:设潜艇下沉的深度随时间变化的函数关系为
二、微分方程建模举例
微分方程类型十分丰富,并存在许多
特别的解法。当然,寻求微分方程的定解
问题模型是解决问题前提,求出微分方程
的通解则是解决问题的关键。 凡涉及到变量的变化率、变量的增量等
相关问题,我们根据变量因素的联系、结合
第一节 微分方程基本概念
f ( x , y , y , , y
).
(2)微分方程的解:如果将一个函数代入微分方 程能使方程成为恒等式 , 这个函数就称这个微分 方程的解.
例如 y x 1和 y x C 都是
2 2
dy dx
2 x 的解 .
( 1 ) 含任意常数 C ; 微分方程的解有两种形式 ( 2 ) 不含任意常数 C .
故满足初始条件的特解
为 y e e
x
2x
思考: 设 C 1 , C 2 分别为任意常数
y C 1 e 3 C 2 e 是否 y 3 y 2 y 0的通解 ?
x x
y C 1 C 2 e e 是否 y 3 y 2 y 0的通解 ?
x 2x
2x
中不含任意常数,
故为微分方程的特解.
x
C 2e
2x
( C 1 , C 2 为任意常数
)
y 3 y 2 y 0的通解 , y ( 0 ) 0 , y ( 0 ) 1
并求方程满足初始条件 的特解 .
解 y C 1e 2 C 2e
x
2x
C 1 e x 4 C 2 e 2 x y
将 y , y , y 代入方程 y 3 y 2 y 0 左边 ,
y f ( x , y , y ) 二阶: y x x y 0 , y x x y 0 0 0
过定点且在定点的切线的斜率为定值的积分曲线.
例3
验证 y Cx ( C 为任意常数 )为方程 y
2
2y x
的通解 .
并求满足初始条件
y
常微分方程1.1ppt
x x0
n 1 dy d y (1) ( n 1) y y , y , , y 时, 0 0 0 n 1 dx dx
(1.15)
定解问题:求微分方程满足定解条件(初值条件)的解 相应的定解问题就称为初值问题。 这是本课程讨论的重点。
初值问题(柯西Cauchy问题):当定解条件是初值条件时,
1)17世纪至18世纪, 微分方程发展初期, 求通解时代. 2)19世纪初中叶,转向求特解时代,存在唯一性,微分方 程的解析理论,近似解法
3)19世纪末到20世纪50年代,又一次地转向所有解的大 范围的分析,定性和稳定性理论,动力系统(Birkhoff, Arnold,Smale) 4)20世纪六十年代以后到现在,又从求所有解转向求特 解,新性质的新方程和解,混沌、孤立子和分形等。
代表xy平面上的一条曲线,就称之为微分方程的积分 曲线。
而微分方程的通解 y
( x, c) 代表xy平面上的一
族曲线,就称之为微分方程的积分曲线族。
dy 其上每一点 ( x, y )处的切线斜率 刚好等于函数 dx
满足初始条件 y0 ( x0 ) 的特解就是通过点 ( x0 , y0 ) 的一条积分曲线。 y ( x) 为方程(1.17)的积分曲线的充要条件是
du k (u u a ) dt
(1.1)
其中k是比例常数,方程(1.1)就是物体冷却过程的数学模
du 型,它含有未知函数u及它的(一阶)导数 ,这样的方 dt
程,就称为(一阶)微分方程。 将(1.1)改写成
d (u u a ) kdt (u u a )
(1.2)
变量u和t被分离出来了, 对上式两边积分得
dy f ( x) dx
微分方程的基本概念与解法
THANK YOU
汇报人:XX
适用范围:对于某些复杂的微分方程,通过代换可以将方程转化为更易 于解决的形式 步骤:选择适当的代换变量,将原方程中的未知函数和其导数表示为代 换变量的函数,从而简化方程 举例:对于形如dy/dx=f(x/y)的微分方程,可以通过令y=xu来将其转 化为关于u和x的方程
积分因子法
定义:积分因子 是使微分方程左 边成为全导数的 因子
添加标题
添加标题
添加标题
添加标题
判定方法:通过求解微分方程的解, 分析解的性质,如解的收敛性和稳 定性
应用:非线性微分方程的稳定性在 物理学、工程学、经济学等领域有 广泛应用
稳定性判据
定义:稳定性是指微分方程的解在初始条件下的行为 判据:如果微分方程的解在初始条件下的行为是收敛的,则称该解是稳定的 判断方法:通过分析微分方程的解的性质,如导数的符号等,来判断解的稳定性 应用:稳定性理论在物理学、工程学等领域有广泛应用
优缺点:步进法简单易行,但精度不易控制,需要选择合适的步长和迭代公式
微分方程的稳定性
线性微分方程的稳定性
定义:如果一个线性微分方程的解在某 个初始条件下保持恒定或随时间有规律 地变化,则称该微分方程是稳定的。
判别方法:通过计算微分方程的特征根或 利用Routh-Hurwitz定理来判断稳定性。
原理:基于泰勒级数展开, 通过迭代逼近精确解
定义:是一种用于求解常微 分方程初值问题的数值方法
步骤:包括预估、校正和更 新三个步骤
优点:精度高,稳定性好, 适用于多维问题
Hale Waihona Puke 步进法定义:通过逐步逼近的方法求解微分方程的数值解法
原理:将微分方程转化为一系列离散点上的代数方程,逐步求解
微分方程解法.ppt
因 eC1 仍是任意常数,令其为 C,则所求得通解为 y Ce
x3
lny ,但要 以后为了方便起见,我们可把 lny写成
记住结果中的常数C可正可负。 显然y=0也是方程的解,它包含在通解之中,只要取
C=0即可。 2 2 ( 1 y ) dx y ( 1 x ) dy 例2 求微分方程 x 的通解即在条件 y x0 1 下的特解
上述两例中,( 1 )式和( 5 )式都含有未知函数 导数,
2 d y dy p qy f( x ) 2 dx dx
( 11 )
dy y 2x dx dn y 10 n dx
等都是常微分方程。
( 12 ) ( 13 )
微分方程中出现的未知函数的导数或微分的最高 阶数,称为该微分方程的阶(order),例如(1)和 (12)为一阶微分方程,(5)和(11)为二阶微分方程, 而(13)是n阶微分方程。
2
y x 1 只是其中过( 1 , 2 )点的一条积分曲
8.2
可分离变量的一阶微分方程
一阶微分方程(differential equation of first order)
f( y x ,y ) ( 1 ) 如果能化成 g ( y ) dy f( x ) dx ( 2 )
的形式,即可表示为一 端只含 y 的函数和 dy ,而另一端只
e y e ( e dx C ) x x e lnx ln x e ( e dx C ) x 1 x ( edx C ) x 1 x ( e C ) x
1 dx x
x
1 dx x
例2
原方程可化为
这是一阶线性非齐次方
dy 2 y x 1 dx x x2 程,其中
第一讲 微分方程的基本概念
第一讲 微分方程的基本概念教学目的:了解微分方程的有关概念难 点:微分方程解的分类与判定重 点:常微分方程、通解与特解、初始条件与初值问题我们先通过具体的例子来说明微分方程的有关概念.例1 设曲线y = f (x )在其上任一点(x ,y )的切线斜率为3x 2,且曲线过点(0,-1),求曲线的方程.解 由导数的几何意义知在点(x ,y )处,有23x dx dy =. (1) 此外,曲线满足条件 .10-==x y (2) (1)式两边积分,得.332c x dx x y +==⎰ (3)其中c 为任意常数.(3)式表示了无穷多个函 数图(6–1),为得到满足条件(2)的具体曲线,以条件(2)代入(3),得c = -1.故所求曲线的方程为.13-=x y (4)例2 质量为m 的物体在离地面高为0s 米处,以初速0v 垂直上抛,设此物体的运动只受重力的影响,试确定该物体运动的路程s 与时间t 的函数关系.解 因为物体运动的加速度是路程s 对时间t 的二阶导数,由于物体运动只受重力的影响,所以由牛顿第二定律知所求函数)(t s s =应满足g dts d -=22. (5) 这里g 为重力加速度,取垂直向上的方向为正方向.此外,)(t s 还应满足条件:00(0),(0).s s s v =⎧⎨'=⎩ (6)(5)式两端对t 积分,得1C gt dtds +-=.(7) 再对t 积分,得21221C t C gt s ++-=. (8) 把条件(6)代入(7)和(8),得0201,s C v C ==,于是有00221s t v gt s ++-=. (9) 关系式(1)与(5)都含有未知函数的导数,它们都称为微分方程.一般地有 定义1 含有未知函数的导数或微分的方程称为微分方程,未知函数为一元函数的微分方程称为常微分方程.微分方程中出现的未知函数的导数的最高阶数称为这个方程的阶.未知函数为多元函数的微分方程称为偏微分方程.本章只介绍常微分方程,在不致混淆的情况下,也称常微分方程为微分方程或简称为方程.可以看出,方程(1)是一阶微分方程,方程(5)是二阶微分方程.而x y y x y 2sin 4='-''+'''. (10)+'''y x 256)(x y ='. (11)都是三阶微分方程.n 阶常微分方程的一般形式为0),,,;()(=⋅⋅⋅'n y y y x F . (12)其中x 为自变量,y 为未知函数; ),,,;()(n y y y x F ⋅⋅⋅'是)(,,,n y y y x ⋅⋅⋅'的已知函数,且)(n y 的系数不为0.如果方程(12)的左端函数F 为)(,,,,n y y y y ⋅⋅⋅'''的线性函数,则称方程(12)为n 阶线性微分方程.否则称(12)为非线性的.n 阶线性微分方程的一般形式为 )()()()()1(1)(0x f y x a y x a y x a n n n =+⋅⋅⋅++-. (13) 其中)(),(,),(),(10x f x a x a x a n ⋅⋅⋅均为x 的已知函数,且0)(0≠x a .例如方程(1)为一阶线性方程,方程(5)是二阶线性方程,而方程(11) 是三阶非线性方程.定义2 如果将已知函数)(x y ϕ=代入方程(12)后,能使其成为恒等式,则称函数)(x y ϕ=是方程(12)的解.如果由关系式0),(=Φy x 确定的隐函数)(x y ϕ=是方程(12)的解,则称0),(=Φy x 为方程(14)的隐式解.为今后叙述简便起见,将对微分方程的解和隐式解都不再加以区别,统称为方程的解.定义3 若微分方程的解中所含(独立的)任意常数的个数与微分方程的阶数相等,则称这个解为方程的通解.在通解中给任意常数以确定的值得到的解,称为微分方程的特解.例如,函数(3)、(8)分别是方程(1)、(5)的通解,函数(4)、(9)分别是方程(1)、(5)的特解,它们都由通解得到.通常,为确定n 阶方程(12)的某个特解,需给出该特解应满足的附加条件,称之为定解条件.一般地,n 阶微分方程应有n 个定解条件,才能从通解中确定某个具体的特解.n 阶微分方程(14)常见的定解条件是如下形式的条件:10)1(1000)(,,)(,)(--=='=n n y x y y x y y x y .其中1100,,,,-n y y y x 为1+n 个给定的常数,通常称这样的定解条件为初始条件.例如,方程(1)满足初始条件(2)的特解是函数(4),而方程(5)满足初始条件(6)的特解是函数(9).求微分方程满足某定解条件的解的问题,称为微分方程的定解问题; 求微分方程满足某初始条件的解的问题,称为初值问题.例3 验证: 函数at C at C x sin cos 21+=是微分方程x a dtx d 222+= 0. (14) 的通解.解 求出函数at C at C x sin cos 21+=的导数:,cos sin 21at a C at a C dtdx +-= .sin cos 222122at a C at a C dtx d --= 将以上两式代入方程(14)的左端,得(14).因此,函数at C at C x sin cos 21+=是方程(14)的解,又此函数中含有两个任意常数,而方程(14)为二阶微分方程,因此,函数at C at C x sin cos 21+=是方程(14)的通解.例4 验证: 由方程C y xy x =+-22所确定的隐函数是微分方程y x y y x -='-2)2(. (15) 的解,并求出满足初始条件11==x y 的特解.解 在方程C y xy x =+-22两边对x 求导,得022='+'--y y y x y x .即y x y y x -='-2)2(.所以由方程C y xy x =+-22所确定的隐函数是微分方程(15)的解. 以初始条件11==x y 代入方程C y xy x =+-22,得1=C .于是,所求特解为122=+-y xy x .小结:微分方程的概念:阶、解、通解、特解、初始条件与初值问题.第二讲 一阶微分方程教学目的:掌握常见一阶微分方程的求解方法难 点:一阶线性非齐次微分方程的通解重 点:可分离变量的微分方程、齐次方程和一阶线性微分方程.一阶微分方程的一般形式0),,(='y y x F ,或),(y x f y ='.本节将介绍某些特殊类型的一阶微分方程的解法,包括可分离变量的微分方程、齐次方程和一阶线性微分方程.1.可分离变量的微分方程如果一阶微分方程能化为dx x M dy y N )()(=(1)的形式,那么原方程称为可分离变量的微分方程.要解这类方程,先把原方程化为(1)式的形式,称为分离变量,再对(1)式两边积分,得⎰⎰=dx x M dy y N )()(,便可得到所求的通解.如果需要求其特解,可由初始条件00y y x x ==代入通解中定出任意常数C 的值,即可得到相应的特解.例1 求解微分方程xy dxdy 2=. 解 原微分方程可以分离变量,分离变量后得xdx dy y21=. 两边积分 ⎰⎰=xdx dy y21. 12ln C x y +=. 2112x c C x e e e y ⋅==+.21x C e e y ⋅±=.因为1C e ±仍是任意常数,把它记作C ,便得原方程的通解为2x Ce y =. 以后为了运算方便起见,把y ln 写成y ln ,以上解答过程简写为:.ln ln 2C x y += 2x Ce y =.只要记住最后得到的任意常数C 可正可负即可.例2 求微分方程0)1()1(22=+-+dy x xy dx y满足初始条件2)1(=y 的特解.解 分离变量,得dx x x dy y y )1(1122+=+. 即dx x x x dy y y ⎪⎭⎫ ⎝⎛+-=+22111. 两边积分,得 C x x y ln 21)1ln(21ln )1ln(2122++-=+. 即 )ln(1)(1ln(222Cx y x =++). 因此,通解为222)1)(1(Cx y x =++.这里C 为任意常数.把初始条件2)1(=y 代入通解,可得10=C .于是,所求特解为22210)1)(1(x y x =++.例3 实验得出,在给定时刻t ,镭的衰变速率(质量减少的即时速度)与镭的现存量M = M (t )成正比.又当t = 0时,M = M 0,求镭的存量与时间t 的函数关系.解 依题意,有.0),()(>-=k t kM dt t dM (2) 并满足初始条件.00M M t ==方程(2)是可分离变量的,分离变量后得kdt MdM -=. 两边积分,得C kt M ln ln +-=.即kt Ce M -=. 将初始条件00M M t ==代入上式,得0M C =,故镭的衰变规律可表示为.0kt e M M -=一般地,利用微分方程解决实际问题的步骤为:① 利用问题的性质建立微分方程,并写出初始条件;② 利用数学方法求出方程的通解;③ 利用初始条件确定任意常数的值,求出特解.2.齐次方程可化为形如 ⎪⎭⎫ ⎝⎛=x y f dx dy . (3) 的微分方程,称为一阶齐次微分方程,简称为齐次方程.例如方程0)2()(22=---dy xy x dx y xy可化为 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--=x y x y x y xy x y xy dx dy 212222. 它是一阶齐次微分方程.一般地,形如0),(),(=+dx y x N dy y x M 的方程,若),(y x M 与),(y x N 均为x ,y 的m 次齐次函数,则它是可化为形如(3)的齐次方程.齐次方程(3)中的变量x 与y 一般是不能分离的,如果作变量替换xy u =. (4) 就可以把方程(3)化为可分离变量的方程,这是因为ux y =,dxdu x u dx dy +=.将其代入方程(3),便得)(u f dxdu x u =+. 这是变量可分离的方程,分离变量,并两边积分,得dx x du u u f ⎰⎰=-1)(1. (5) 求出积分后,将u 还原成xy ,便得所给齐次方程的通解. 例4 解微分方程 .tan 2xy x y y =-' 解 原方程可写成 .tan2x y x y y +=' 这是齐次方程.令xy u =,f (u ) = 2tan u + u .代入(5)得 .tan 2⎰⎰=x dx u du积分得.ln ln ln 2sin ln 2cx c x u =+=.sin 2cx u = 将xy u =代入上式,便得原方程的通解为 .sin 2cx xy = 在微分方程中,一般习惯上把x 看作自变量,但有时若将y 看作自变量,求解时会很简便,如下例.例5 求微分方程023(22=--xydx dy x y ). 满足初始条件10==x y 的特解.解 原方程可化为y x y x xy x y dy dx ⋅⎪⎪⎭⎫ ⎝⎛-=-=23123222.令yx u =,即uy x =,则dy du y u dy dx +=,代入上式,得 uu dy du y 2512-=. 分离变量,并两边积分,得dy y du u u ⎰⎰=-15122.注左=⎰---2251)51(51u u d (凑微分)即 C y u ln 51ln )51ln(512-=--. 将yx u =代入,得到原方程的通解为 C y x y =-3255 将初始条件10==x y 代入通解中,得到1=C .于是,所求特解为15325=-y x y .与齐次方程类似,某些微分方程通过变量替换可化为可分离变量的方程,然后分离变量,经积分可求得通解.变量替换的方法是解微分方程最常用的方法.在后面,我们还会用到这种方法,这里再举一例.例6 求解微分方程11+-=yx dx dy . 解 令u y x =-,则u x y -=,dx du dx dy -=1,于是 111+=-u dx du .udx du 1-=. 分离变量,并两边积分,得 C x u +-=22.以y x u -=代回,得C x y x +-=-2)(2.3.一阶线性微分方程可化为形如)()(x Q y x P dxdy =+. (6) 的微分方程,称为一阶线性微分方程,其中)(),(x Q x P 均为x 的已知函数.当0)(≡x Q 时,称方程(6)是齐次的; 当)(x Q 不恒为零时,称方程(6)是非齐次的.设方程(6)是线性非齐次微分方程,把)(x Q 换成零而写出0)(=+y x P dx dy . (7) 称为对应于方程(6)的线性齐次微分方程.方程(7)是可分离变量的,分离变量后,得dx x P ydy )(-=. 两边积分,得 C dx x P y ln )(ln +-=⎰.于是,方程(7)的通解为⎰=-dx x P Ce y )(. (8)下面求方程(6)的通解.由于方程(7)是(6)的特殊情况,那么方程(6)的通解中必包含着方程(7)的通解.它们的解之间必有某种内在联系,下面我们分析一下方程(6)的解的形式.把方程(6)改写为dx y x Q x P y dy ⎪⎪⎭⎫ ⎝⎛+-=)()(. 两边积分,得1ln )()(ln C dx yx Q dx x P y ++-=⎰⎰. 即⎰⋅⎰=-dx x P dx y x Q e eC y ))(1(. 因为积分dx yx Q ⎰)(中的被积函数含有未知函数y ,因此还不能说得到了方程(6)的解.但是,由于y 是x 的函数,则积分dx yx Q ⎰)(的结果是x 的函数.故可设 )()(1x C eC dx y x Q =⎰.从而有⎰=-dx x P e x C y )()(. (9) 再求未知函数)(x C .因为(9)式是方程(6)的解,所以(9)式应满足方程(6),将y 及它的导数⎰-⎰'='--dx x P dx x P e x P x C e x C y )()()()()(. 代入方程(6),得)()()()()()()()()(x Q e x C x P e x P x C e x C dx x P dx x P dx x P =⎰+⎰-⎰'---.即)()()(x Q e x C dx x P =⎰'-.⎰='dx x P e x Q x C )()()(. 两边积分,得C dx e x Q x C dx x P +⎰=⎰)()()(.把上式代入(9)式,便得方程(6)的通解为⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()(. (10) 这种将线性齐次方程(7)的通解(8)中的任意常数换成待定函数)(x C ,然后求得线性非齐次方程(6)的通解的方法,叫做常数变易法.将(10)式写成两项之和⎰⎰⎰+⎰=--dx e x Q e Ce y dx x P dx x P dx x P )()()()(. 上式右端第一项是对应的线性齐次方程(7)的通解,第二项是线性非齐次方程(6)的一个特解(即在通解(10)中令0=C ,便得此特解).因此,一阶线性非齐次方程的通解等于对应的线性齐次方程的通解与线性非齐次方程的一个特解之和.例7 求解微分方程x x x y y sin 2cot =-'.解法1 常数变易法对应齐次方程为.0cot =-'x y y分离变量,得.cot 1xdx dy y =两边积分,得.sin sin ln cot x C Ce Ce y x xdx ⋅==⎰=用常数变易法,把C 换成新的未知函数)(x C ,即令.sin )(x x C y =则.cos )(sin )(x x C x x C y +'='代入原非齐次方程,得x x C 2)(='.两边积分,得C x x C +=2)(.故所求通解为.sin )(2x C x y +=解法2 公式法.sin 2)(,cot )(x x x Q x x P =-=故).(sin )2(sin )sin 1sin 2(sin )sin 2()sin 2(2sin ln sin ln cot cot C x x C xdx x C dx xx x x C dx e x x e C dx xe x e y x x xdx xdx +⋅=+⋅=+⋅⋅=+⋅=+⎰⎰=⎰⎰⎰⎰-- 例8 求微分方程 02)6(2=+'-y y x y 满足初始条件12==x y 的特解. 解 这个方程不是未知函数y 与y '的线性方程,但是可以将它变形为yy x dy dx 262-=. 即23y x y dy dx -=-. (11) 若将x 视为y 的函数,则对于)(y x 及其导数dydx 而言,方程(11)是一个线性方程,由通解公式(10)得 ⎪⎪⎭⎫ ⎝⎛+⎰⎪⎭⎫ ⎝⎛-⎰=⎰-C dy e y e x dy y dy y 332⎪⎪⎭⎫ ⎝⎛+=C y y 213. 以条件2=x 时,1=y 代入,得23=C . 因此,所求特解为 2232y y x +=. 例9 求解微分方程.)(ln 2y x a xy dx dy =+ 解 原方程不是线性方程,但通过适当的变换,可将它化为线性方程.将原方程改写为.ln 112x a y xdx dy y =+-- 即 .ln 111x a y xdx dy =+--- 令1-=y z ,则上式变为.ln 1x a z xdx dz -=- 这是z 关于x 的一阶线性方程.由通解公式(10),得通解].)(ln 2[2x a C x z -= 所以,原方程通解为.1])(ln 2[2=-x a C xy 一般地,形如 n y x Q y x P dxdy )()(=+ ( 1,0≠n ) (12) 的方程,称为伯努利方程.这类方程可经过变换化为线性方程,方程(12)两边同除以n y 得)()(1x Q y x P dxdy y n n =+--. 再令n y z -=1,则上式化为)()(11x Q z x P dxdz n =+-. 即)()1()()1(x Q n z x P n dxdz -=-+. 这是函数z 关于x 的一阶线性方程,从而可用常数变易法或公式法得出z ,再用n y -1代换z ,即得伯努利方程(12)的解.小结:1.可分离变量的方程:x x f y y g d )(d )(=,两边积分得通解.2.一阶齐次方程:)(x yy ϕ=',令u xy =,得⎰⎰=-x x u u u d )(d ϕ. 注 形如)(c by ax f y ++='的方程可令u c by ax =++转化为可分离变量的方程.3.一阶线性方程:)()(x Q y x P y =+'的通解为]d e )([d )(d )(C x x Q e y x x P x x P +⎰⎰=⎰-. 4.伯努利方程:n y x Q y x P y )()(=+',令u yn =-1可转化为一阶线性方程.第三讲 可降阶的高阶微分方程教学目的:掌握三种可以降阶的微分方程求解方法重 点:第二类可以降阶的微分方程难 点:第三类可以降阶的微分方程从这节起我们讨论二阶和高于二阶的微分方程,这类方程称为高阶微分方程.有些高阶微分方程可以通过代换化成较低阶的方程来求解.以二阶微分方程而论,如果我们能设法作代换把它从二阶降至一阶,那么就有可能用第二节所讲的方法来求解.下面介绍三种容易降阶的高阶微分方程的求解方法.1.)()(x f y n = 型的微分方程微分方程)()(x f y n = (6-18)的右端仅含有自变量x ,对于这种方程,两端积分便使它降为一个1-n 阶的微分方程()11d )(C x x f y n +=⎰-.再积分可得()[]212d d )(C x C x x f y n ++=⎰⎰-. 依此继续下去,连续积分n 次,便得方程(6-18)的含有n 个任意常数的通解.例 1 求微分方程x y x cos e 2-='''的通解.解 对所给方程连续积分三次,得12sin e 21C x y x +-='', 212cos e 41C x C x y x +++=', 3221221sin e 81C x C x C x y x ++++=, 这就是所求的通解.2.()y x f y '='',型的微分方程微分方程()y x f y '='', (6-19)中不显含未知函数y .如果设p y =',则p xp y '==''d d ,方程(6-19)变成 ),(p x f p ='.这是关于x 和p 的一阶微分方程,设其通解为()1,C x p ψ=. 由于xy p d d =,因此又得到一个一阶微分方程 ()1,d d C x xy ψ=. 对它积分即得(6-19)的通解 ()21d ,C x C x y +=⎰ψ.例 2 求方程()1212='+''+y x y x 的通解.解 所给方程不显含变量y ,令y p '=,则p y '='',代入原方程得()1212=+'+xp p x . 它是一阶线性微分方程,化为标准形式221112xp x x p +=++', 其通解为⎪⎪⎭⎫ ⎝⎛⎰++⎰=⎰++-x x C p x x x x x x d e 11e d 1221d 1222 ()⎥⎦⎤⎢⎣⎡++++=⎰x x x C x d 111112212 211xC x ++=. 将y p '=代入上式,并再积分一次得所求方程的通解()212arctan 1ln 21C x C x y +++=. 例 3 求方程()y x x y '=+''212满足初始条件1|0==x y ,3|0='=x y 的特解. 解 此方程不显含y ,令y p '=,则p y '='',代入方程得()xp x p 212=+'.分离变量后两边积分得()211x C p +=, 由3|0='=x y 得31=C ,从而()213d d x x y +=. 两边积分得233C x x y ++=,由1|0==x y 得12=C .故所求特解为133++=x x y .3.()y y f y '='',型的微分方程微分方程()y y f y '='',中不显含自变量x ,对于这类方程,令y p '=,两边对x 求导得yp p x y y p x p y d d d d d d d d =⋅==''. 则方程(6-20)变成),(d d p y f yp p =. 这是一个关于变量p 和y 的一阶微分方程,设它的通解为()1,C y p y ϕ=='.分离变量并积分,即可得方程(6-20)的通解()21d ,y x C y C =+ϕ⎰.例4 求微分方程()02='-''y y y 的通解. 解 方程中不显含自变量x ,设p y =',则y p py d d ='',代入原方程得 0d d 2=-p y p yp.如果0≠p ,那么方程中约去p 并分离变量得yy p p d d =. 两端积分并化简,得y C p 1=,即y C y 1='.再分离变量并积分,得21ln ln C x C y +=,即x C C y 1e 2=.如果0=p ,那么C y =,显然它也满足原方程,但C y =已包含在上述解中(令01=C 即得),所以原方程的通解为x C C y 1e 2=.小结:1.)()(x f y n =型,连续积分n 次,便得方程的含有n 个任意常数的通解.2.()y x f y '='',型(不显含未知函数y ).令p y =',方程变成),(p x f p ='.3.()y y f y '='',型(不显含自变量x ).,令y p '=,方程变成),(d d p y f yp p =.第四讲 二阶常系数线性微分方程教学目的:掌握二阶常系数线性方程的求解方法重 点:二阶常系数齐次和非齐次线性方程的求解难 点:二阶常系数非齐次线性方程的特解二阶常系数线性微分方程的一般形式为)(x f qy y p y =+'+''.这里p 、q 是常数,)(x f 是x 的已知函数.当()f x 恒等于零时,称为二阶常系数齐次线性微分方程,否则称为二阶常系数非齐次线性微分方程.1.二阶常系数齐次线性微分方程定理1 设)(1x y y =与)(2x y y =为二阶常系数齐次线性微分方程0=+'+''qy y p y(1)的相互独立的两个特解(即)()(12x y x y 不恒等于常数),则2211y C y C y +=为方程(1)的通解,这里1C 与2C 为任意常数.证 按假设)(1x y 与)(2x y 为方程(1)的解,所以有下式成立0111=+'+''qy y p y ,0222=+'+''qy y p y . 又 2211y C y C y +=, 2211y C y C y '+'=', 2211y C y C y ''+''=''. 代入(1)式左端,得()()()221122112211y C y C q y C y C p y C y C qy y p y ++'+'+''+''=+'+'' 0)()(22221111=+'+''++'+''=qy y p y C qy y p y C . 即2211y C y C y +=为方程(1)的解. 在)()(12x y x y 不恒等于常数的条件下,2211y C y C y +=中含有两个相互独立的任意常数1C 和2C ,所以2211y C y C y +=是方程(1)的通解.由此定理可知,求方程(1)的通解问题,归结为求(1)的两个相互独立的特解.为了寻找这两个特解,注意到当r 为常数时,指数函数rx y e =和它的各阶导数只相差一个常数因子,因此不妨用rx y e =来尝试.设rx y e =为方程(1)的解,则rx r y e =',rx r y e 2='',代入方程(1)得.0)(2=++rx e q pr r由于0e ≠rx ,所以有.02=++q pr r (2) 只要r 满足(2)式,函数rx y e =就是微分方程(1)的解.我们把代数方程(2)称为微分方程(1)的特征方程,特征方程的根称为特征根.由于特征方程是一元二次方程,故其特征根有三种不同的情况,相应地可得到微分方程(1)的三种不同形式的通解.(ⅰ) 当042>-q p 时,特征方程(8-23)有两个不相等的实根1r 和2r ,此时可得方程(1)的两个特解:x r y 1e 1=, x r y 2e 2=,且≠=-x r r y y )(1212e /常数,故x r x r C C y 21e e 21+=是方程(1)的通解.(ⅱ) 当042=-q p 时,特征方程(8-23)有两个相等的实根21r r =,此时得微分方程(1)的一个特解x r y 1e 1=.为求(1)的通解,还需求出与x r 1e 相互独立的另一解2y .不妨设)(/12x u y y =,则)(e 12x u y x r =, )(e 121u r u y x r +'=', )2(21121u r u r u e y x r +'+''=''. 将22,y y '及2y ''代入方程(1),得 0])()2[(e 12111=++'++'+''qu u r u p u r u r u x r .将上式约去x r 1e 并合并同类项,得0)()2(1211=+++'++''u q pr r u p r u .由于1r 是特征方程(2)的二重根,因此,0121=++q pr r ,且021=+p r ,于是得0=''u .不妨取x u =,由此得到微分方程(1)的另一个特解x r x y 1e 2=,且≠=x y y 12/常数,从而得到微分方程(1)的通解为x r x r x C C y 11e e 21+=,即)(e 211x C C y x r +=.(ⅲ) 当042<-q p 时,特征方程(2)有一对共轭复根βαi r +=1,βαi r -=2.于是得到微分方程(1)的两个特解x i y )(1e βα+=,x i y )(2e βα-=.但它们是复数形式,为应用方便,利用欧拉公式θθθsin cos e i i +=将1y 和2y 改写成)sin (cos e 1x i x y x ββα+=,)sin (cos e 2x i x y x ββα-=.于是得到两个新的实函数x y y y x βαcos e )(21211=+=, x y y iy x βαsin e )(21212=-=. 可以验证它们仍是(1)的解,且≠=x y y βtan /12常数,故微分方程(1)的通解为)sin cos (e 21x C x C y x ββα+=.综上所述,求微分方程(1)通解的步骤可归纳如下:第一步 写出微分方程(1)的特征方程02=++q pr r ,求出特征根; 第二步 根据特征根的不同形式,按照下表写出微分方程(1)的通解: 表1 特征方程02=++q pr r 的根21,r r 微分方程0'''=++qy py y 的通解两个不等实根21r r ≠ x r x r C C y 21e e 21+=两个相等实根21r r = x r x C C y 1e )(21+=一对共轭复根βαi r ±=2,1 )sin cos (e 21x C x C y x ββα+=例 1 求微分方程043=-'+''y y y 的通解.解 所给微分方程的特征方程为0432=-+r r .特征根为121, 4.r r ==- 于是,所求微分方程的通解为x x C C y 421e e -+=.例 2 求微分方程044=+'-''y y y 的满足初始条件1|,1|00='===x x y y 的特解.解 所给微分方程的特征方程为0442=+-r r .特征根221==r r .故所求微分方程的通解为)(e 212x C C y x +=.求导得x x C x C C y 22212e )(e 2++='.将初始条件1|0==x y 及1|0='=x y 代入以上两式求得.1,121-==C C 故所求特解为)1(e 2x y x -=.例 3 设函数)(x f 可导,且满足⎰⎰-++=xx t t f x t t tf x x f 00d )(d )(21)(. 试求函数)(x f .解 由上述方程知(0)1f =.方程两边对x 求导得⎰-='xt t f x f 0d )(2)(. 由此可得(0)2f '=.上式两边再对x 求导得)()(x f x f -=''.这是二阶常系数齐次线性方程,其特征方程为,012=+r特征根.,21i r i r =-= 于是,所求微分方程的通解为12()cos sin .f x C x C x =+由此得.cos sin )(21x C x C x f +-='由(0)1f =,(0)2f '=得.2,121==C C 所以.sin 2cos )(x x x f +=本节介绍的求二阶常系数齐次线性微分方程通解的原理和方法,也可以用于求解更高阶的常系数齐次线性方程.例 4 求四阶微分方程08)4(='+y y 的通解.解 所给微分方程的特征方程为084=+r r ,即,0)42)(2(2=+-+r r r r 其特征根为.31,2,04,321i r r r ±=-= 于是得方程的通解).3sin 3cos (e e 43221x C x C C C y x x +++=-2.二阶常系数非齐次线性微分方程从第二节的讨论知,一阶非齐次线性微分方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和.而二阶常系数非齐次线性微分方程具有相类似的性质.定理2 设()y y x **=是二阶常系数非齐次线性微分方程)(x f qy y p y =+'+''(3)的一个特解,而Y 为对应于方程(3)的齐次线性微分方程的通解,则y Y y *=+为方程(3)的通解.由此结论可知,二阶常系数非齐次线性微分方程的通解,可按下面三个步骤来求:①求其对应的齐次线性微分方程的通解Y ;②求非齐次线性微分方程的一个特解y *;③原方程的通解为y Y y *=+.求齐次线性微分方程的通解Y 的方法前面已讨论过,所以只要研究一下如何求非齐次方程(3)的一个特解就行.限于篇幅, 这里只讨论)(x f 为以下两种形式的情形.I.,e )()(x m x P x f λ=其中λ是常数,)(x P m 是x 的m 次多项式:m m m m m a x a x a x a x P ++++=--1110)( ;II .[]()e ()cos ()sin x t n f x P x x P x x λ=ω+ω,其中λ和ω是常数,)(x P t 、)(x P n 分别是x 的t 次和n 次多项式,其中有一个可为零.对于以上两种情形,下面用待定系数法来求方程(3)的一个特解,其基本思想是:先根据)(x f 的特点,确定特解y *的类型,然后把y *代入到原方程中,确定y *中的待定系数.I.x m x P x f λe )()(=型因为方程(3)右端)(x f 是多项式)(x P m 与指数函数x λe 的乘积,而多项式与指数函数乘积的导数仍然是同一类型的函数,因此,我们推测()e x y Q x *λ=(其中)(x Q 是某个多项式)可能是方程(3)的一个解,把y *、()y *'及()y *''代入方程(3),求出)(x Q 的系数,使()e x y Q x *λ=满足方程(3)即可.为此将()e x y Q x *λ=,[]()e ()()x y Q x Q x *λ''=λ+,2()e ()2()()x y Q x Q x Q x *λ'''''⎡⎤=λ+λ+⎣⎦代入方程(3)并消去x λe ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ. (4))1( 如果λ不是方程(3)的特征方程02=++q pr r 的根,由于)(x P m 是一个m 次多项式,要使方程(4)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m ,即设)(x Q m 为,)(1110m m m m m b x b x b x b x Q ++++=--其中m b b b ,,,10 为待定系数,将)(x Q m 代入(4),比较等式两端x 同次幂的系数,可得含有m b b b ,,,10 的1+m 个方程的联立方程组,解出),1,0(m i b i =得到所求特解m )2( 如果λ是特征方程02=++q pr r 的单根,即02=++q p λλ,但,02≠+p λ 要使(4)式的两端恒等,)('x Q 必须是m 次多项式,此时可令),()(x xQ x Q m =并且可用同样的方法确定)(x Q m 的系数),1,0(m i b i =.)3( 如果λ是特征方程02=++q pr r 的重根,即02=++q p λλ且,02=+p λ要使式(4)的两端恒等,)(x Q ''必须是m 次多项式,此时可令),()(2x Q x x Q m =并且利用同样的方法可以确定)(x Q m 的系数),1,0(m i b i =.综上所述,我们有以下结论:如果x m x P x f λe )()(=,则二阶常系数非齐次线性微分方程(3)具有形如()e k x m y x Q x *λ=的特解;其中)(x Q m 是与)(x P m 同次(m 次)的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为0、1或2.例 5 求方程2106652+-=+'-''x x y y y 的通解.解 所给方程是二阶常系数非齐次线性微分方程,且右端函数形如x m x P λe )(,其中,0=λ.2106)(2+-=x x x P m先求对应齐次方程065=+'-''y y y的通解,其特征方程是0652=+-r r .特征根,3,221==r r 对应齐次方程的通解为x x C C Y 3221e e +=.因为0=λ不是特征根,因而所求方程有形如的特解.由于()2,y Ax B *'=+()2,y A *''= 将它们代入原方程中得恒等式.2106652)106(622+-=+-+-+x x C B A x A B Ax比较上式两端x 的同次幂的系数可得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解方程组得.0,0,1===C B A 故所求方程的一个特解为2.y x *=从而所求方程的通解为.e e 23221x C C y x x ++=例 6 求方程x x y y y 2e 24'4=+-''的通解.解 所求方程是二阶常系数非齐次线性微分方程,且右端函数形如x m x P λe )(,其中,2=λ.2)(x x P m =所求解的方程对应的齐次方程044=+'-''y y y 的通解为).(e 212x C C Y x +=由于2=r 是二重特征根,所以设所求方程有形如22()e x y x Ax B *=+的特解.将它代入所求方程可得622.Ax B x +=比较等式两端x 的同次幂的系数,得0,31==B A .于是得所求方程的一个特解为321e .3x y x *= 最后得所求方程的通解为).31(e 3212x x C C y x ++=II .]sin )(cos )([e )(x x P x x P x f n l x ωωλ+=型可以推证,如果]sin )(cos )([e )(x x P x x P x f n l x ωωλ+=,则二阶常系数非齐次线性微分方程(3)的特解可设为e [()cos ()sin ],k x m m y x Q x x R x x *λ=ω+ω其中),(x Q m )(x R m 是m 次多项式,},,max{n l m = 而k 按ωλi ±不是特征方程的根或是特征方程的单根依次取0或1.例 7 求方程)sin 7(cos e 2x x y y y x -=-'+''的通解. 解 所求解的方程对应的齐次方程02=-'+''y y y 的特征方程为022=-+r r ,特征根2,121-==r r ,齐次方程的通解为x x C C Y 221e e -+=.因为i i ±=±1ωλ不是特征根,故所求方程具有形如(cos sin )x y e A x B x *=+的特解,求得()e [()cos ()sin ]x y A B x B A x *'=++-,()e [2cos 2sin ]x y B x A x *''=-.代入所求方程并化简得恒等式.sin 7cos sin )3(cos )3(x x x A B x A B -=+--比较上式两端x cos 和x sin 的系数,可得⎩⎨⎧-=--=+-.73,13B A B A 因此,1,2==B A 故e (2cos sin ).x y x x *=+所求通解为.e e )sin cos 2(221x x x C C x x e y -+++=小结:1.特征方程02=++q pr r 的根21,r r 微分方程0'''=++qy py y 的通解两个不等实根21r r ≠ x r x r C C y 21e e 21+= 两个相等实根21r r = xr x C C y 1e )(21+=一对共轭复根βαi r ±=2,1 )sin cos (e 21x C x C y x ββα+=2.x m x P x f λe )()(=型,特解形式()e k x m y x Q x *λ=,其中)(x Q m 是与)(x P m 同次(m 次)的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为0、1或2.3.]sin )(cos )([e )(x x P x x P x f n l x ωωλ+=型,特解形式e [()cos ()sin ],k x m m y x Q x x R x x *λ=ω+ω其中),(x Q m )(x R m 是m 次多项式,},,max{n l m = 而k 按ωλi ±不是特征方程的根或是特征方程的单根依次取0或1.4.二阶常系数非齐次线性微分方程的通解,可按下面三个步骤来求: ①求其对应的齐次线性微分方程的通解Y ;②求非齐次线性微分方程的一个特解y *;③原方程的通解为y Y y *=+.。
常微分方程(第三版)课件第一章
§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常
常微分方程课件
n 阶隐式方程的一般形式为 n 阶显式方程的一般形式为
(1.11)
(1.12)
在方程(1.11)中,如果左端函数F对未知函数y和它的各阶导数 y′,y″,…,y(n)的全体而言是一次的,则称为线性常微分方程,否则称它为 非线性常微分方程.这样,一个以y为未知函数,以x为自变量的n阶线性 微分方程具有如下形式:
而实际经验表明,一个自由落体运动仅能有一条运动轨迹. 产生这种多解性的原因是因为方程(1.2)所表达的是任何一个 自由落体,在任意瞬时t所满足的关系式,并未考虑运动的初 始状态,因此,通过积分求得的其通解(1.3)所描述的是任何 一个自由落体的运动规律.显然,在同一初始时刻,从不同的 高度或以不同初速度自由下落的物体,应有不同的运动轨迹. 为了求解满足初值条件的解,我们可以把例1中给出的两个 初始值条件,即 初始位置 x(0)= H 初始速度 代入到通解中,推得 于是,得到满足上述初值条件的特解为 (1.14)
上式两端同时积分,得到方程(1.19)的通积分
本节要点:
1.变量可分离方程的特征. 2.分离变量法的原理:微分方程(1.18) 与分离变量后的积分方程(1.26)当 时 是同解方程. 3.变量可分离方程一定存在常数解 y=y_0, 并且满足 .
第3讲 齐次微分方程 1.什么是齐次方程? 上一节,介绍了变量可分离方程的解法.有些方程,它们 形式上虽然不是变量可分离方程,但是经过变量变换之后, 就能化成变量可分离方程,本节介绍两类可化为变量可分离 的方程. 如果一阶显式方程 (1.9) 的右端函数可以改写为的函数,那么称方程(1.9)为一阶齐次 微分方程.
回通解,即得所求初值问题的 例2 求方程 的满足初值条件 解 方程通解为 求导数后得
最新01第一节微分方程的基本概念
01第一节微分方程的基本概念第八章常微分方程与差分方程对自然界的深刻研究是数学最富饶的源泉.-------傅里叶微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具.如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型.微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论.第一节微分方程的基本概念分布图示★引言★微分方程的概念★例1★例2★例3★例4★微分方程解的概念★例5★例6★内容小结★课堂练习★习题8-1内容要点:一、微分方程的概念我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程,本章我们只讨论常微分方程. 常微分方程的一般形式是:«Skip Record If...» (1.5)其中«Skip Record If...»为自变量,«Skip Record If...»是未知函数.如果能从方程(1.5)中解出最高阶导数,就得到微分方程«Skip Record If...» (1.6)以后我们讨论的微分方程组主要是形如(1.6)的微分方程,并且假设(1.6)式右端的函数«Skip Record If...»在所讨论的范围内连续.如果方程(1.6)可表为如下形式:«Skip Record If...» (1.7)则称方程(1.7)为«Skip Record If...»阶线性微分方程. 其中«Skip Record If...»«Skip Record If...»«Skip Record If...» «Skip Record If...»和«Skip Record If...»均为自变量«Skip Record If...»的已知函数.不能表示成形如(1.7)式的微分方程,统称为非线性方程.在研究实际问题时,首先要建立属于该问题的微分方程,然后找出满足该微分方程的函数(即解微分方程),就是说,把这个函数代入微分方程能使方程称为恒等式,我们称这个函数为该微分方程的解. 更确切地说,设函数«Skip Record If...»在区间«Skip Record If...»上有«Skip Record If...»阶连续导数,如果在区间«Skip Record If...»上,有«Skip Record If...»则称函数«Skip Record If...»为微分方程(1.5)在区间«Skip Record If...»上的解.二、微分方程的解微分方程的解可能含有也可能不含有任意常数. 一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解). 所谓通解的意思是指,当其中的任意常数取遍所有实数时,就可以得到微分方程的所有解(至多有个别例外).注:这里所说的相互独立的任意常数,是指它们不能通过合并而使得通解中的任意常数的个数减少.许多实际问题都要求寻找满足某些附加条件的解,此时,这类附加条件就可以用来确定通解中的任意常数,这类附加条件称为初始条件,也称为定解条件. 例如,条件(1.2)和(1.4)分别是微分方程(1.1)和(1.3)的初始条件.带有初始条件的微分方程称为微分方程的初值问题.微分方程的解的图形是一条曲线,称为微分方程的积分曲线.例题选讲:微分方程的概念例1 (E01) 设一物体的温度为100℃, 将其放置在空气温度为20℃的环境中冷却. 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比, 设物体的温度«Skip Record If...»与时间«Skip Record If...»的函数关系为«Skip Record If...»则可建立起函数«Skip Record If...»满足的微分方程«Skip Record If...»其中«Skip Record If...»为比例常数. 这就是物体冷却的数学模型.根据题意, «Skip Record If...»还需满足条件 «Skip Record If...»例2(E02)设一质量为«Skip Record If...»的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力«Skip Record If...»等于物体的质量«Skip Record If...»与物体运动的加速度«Skip Record If...»成正比,即«Skip Record If...»,若取物体降落的铅垂线为«Skip Record If...»轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是«Skip Record If...»,物体下落的距离«Skip Record If...»与时间«Skip Record If...»的函数关系为«Skip Record If...»,则可建立起函数«Skip Record If...»满足的微分方程«Skip Record If...» (1.1)其中«Skip Record If...»为重力加速度常数. 这就是自由落体运动的数学模型.根据题意,«Skip Record If...»还需满足条件«Skip Record If...» (1.2)例3(E03)如果设某商品在时刻t的售价为P, 社会对该商品的需求量和供给量分别是P的函数«Skip Record If...»则在时刻t的价格«Skip Record If...»对于时间t的变化率可认为与该商品在同时刻的超额需求量«Skip Record If...»成正比, 即有微分方程«Skip Record If...» (1.3)在«Skip Record If...»和«Skip Record If...»确定情况下, 可解出价格与t的函数关系.例4(E04)试指出下列方程是什么方程,并指出微分方程的阶数.«Skip Record If...»解(1)是一阶线性微分方程,因方程中含有的«Skip Record If...»和«Skip Record If...»都是一次.(2)是一阶非线性微分方程,因方程中含有的«Skip Record If...»的平方项.(3)是二阶非线性微分方程,因方程中含有的«Skip Record If...»的三次方.(4)是二阶非线性微分方程,因方程中含有非线性函数«Skip Record If...»和«Skip Record If...»微分方程的解例5求曲线族«Skip Record If...»满足的微分方程,其中«Skip Record If...»为任意常数.解求曲线族所满足的方程,就是求一微分方程,使所给的曲线族正好是该微分方程的积分曲线族.因此所求的微分方程的阶数应与已知曲线族中的任意常数的个数相等.这里,我们通过消去任意常数的方法来得到所求的微分方程.在等式«Skip Record If...»两端对«Skip Record If...»求导,得«Skip Record If...»再从«Skip Record If...»解出«Skip Record If...»代入上式得«Skip Record If...»化简即得到所求的微分方程 «Skip Record If...»例6(E05)验证函数«Skip Record If...»(C为任意常数)是方程«Skip Record If...»的通解, 并求满足初始条件«Skip Record If...»的特解.解要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将«Skip Record If...»求一阶导数,得«Skip Record If...»«Skip Record If...»把«Skip Record If...»和«Skip Record If...»代入方程左边得«Skip Record If...»«Skip Record If...»«Skip Record If...»因方程两边恒等,且«Skip Record If...»中含有一个任意常数,故«Skip Record If...»是题设方程的通解.将初始条件«Skip Record If...»代入通解«Skip Record If...»中,得«Skip Record If...»从而所求特解为 «Skip Record If...»课堂练习1.验证函数«Skip Record If...»是微分方程«Skip Record If...»的解. 并求满足初始条件«Skip Record If...»的特解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 §1.1 微分方程与解(2课时)一、目的要求:了解微分方程与相关学科的密切关系;掌握微分方程的有关基本概念。
二、重点:1. 通过讲授微分方程的一些具体应用实例(如利用相关的物理、化学、生物、工程等有关规律建立反映实际问题的模型),使学生认识到学习本课程的生要性。
2. 基本概念:常(偏)微分方程、阶、解(显式和隐式)、通解(显式和隐式)、特解、积分曲线、定解条件、Cauchy 问题等。
三、难点:分析模型;通解的定义。
四、教学方法:讲练结合法、启发式与提问式相结合教学法。
五、教学手段:传统板书与多媒体课件辅助教学相结合。
六、教学过程:1.课题导入:什么是微分方程?它是怎样产生的?这是首先要回答的问题.300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分 学,是人类科学史上划时代的重大发现,而微积分的产生和发展,又与求解微分方程问题密切相关. 这是因为,微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程. 然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系,而这种联系,用数学语言表达出来,其结果往往形成一个微分方程. 一旦求出这个方程的解,其运动规律将一目了然.在初等数学中,曾经学习过代数方程,例如:⑴3210x x -+=;1=; ⑶3121x x x--=+ 中,对未知数x 所施加的是代数运算,因此它们都是代数方程。
还学习过三角方程、指数方程、对数方程等,例如:⑴sin cos 1x x +=⑵221x e x x =+-⑶1ln x x +=中,出现了未知量x 的超越函数,因此它们都是超越方程。
并用它们解决了一些有趣的应用问题,使我们初步体会到方程论(主要是设未知量、列方程和求解方程的方法)对于解决实际问题的重要性。
在高等代数中,又学习过高次代数方程,n 元线性代数方程组。
这些方程(组)有一个共同特点,就是作为未知而要求的是一个或几个特定的值(称为方程的根或解)。
但在高等数学中,常常需要研究的是另外一类性质上完全不同的方程。
在这类方程中,作为未知而要去求的已经不再是一个或几个特定的值,而是一个函数。
这类方程称为函数方程。
例如:⑴221x y +=(设x 是自变量,则()y y x =未知函数);⑵2220,0x y z x y z ++=++=(设z 是自变量,则()x x z =和()y y x =是未知函数); 以及在数学分析中的隐函数问题,就是在一定条件下,由方程:F(x,y)=0 ()*来确定隐函数,上述方程()*就是众所周知的隐函数方程,它是函数方程中最简单的一种。
而隐函数是所要求的未知函数。
2.教学内容:㈠. 模型建立与分析本课程所要讲述的方程与刚才所说的那种函数方程又不一样,它们除了自变量和未知函数外,还包含了未知函数的导数(或微分),例如:⑴y xy '=(x 是自变量,y 是未知函数);⑵()20t x dt xdx ++=(t ,x 哪一个为自变量是任意的);⑶23x y y y e '''+-=(x 是自变量,y 是未知函数); ⑷z x y x∂=+∂(x ,y 为自变量,z 为未知函数); ⑸2222220u u u x y z∂∂∂++=∂∂∂(x ,y ,z 为自变量,u 为未知函数)。
这种联系着自变量、未知函数以及未知函数的导数(或微分)的方程,我们称其为微分方程。
其中未知函数的导数(或微分)是不可缺少的。
如果在微分方程中,自变量的个数只有一个,我们把这种微分方程称为常微分方程(ordinary differential equation )。
如:⑴、⑵、⑶。
如果在微分方程中,自变量的个数有两个(或两个以上),这种微分方程称为偏微分方程(partial differential equation )。
如:⑷、⑸。
常微分方程是数学中的古老而又常胜不衰的分支之一。
它与动力系统紧密相关并有重要应用价值。
如分支问题、混沌问题、非线性振动的复杂性以及常微分方程在物理、化学、生物、工程、航空航天、医学、经济和金融等领域中的广泛应用。
因此,它已成为现代科学技术中分析问题与解决问题的一个强有力的工具。
本讲我们通过几个具体的例子,简单的介绍常微分方程的一些物理背景和方程的建立问题,并讲述一些基本概念。
例1.镭的裂变。
镭是一种放射性物质。
它的原子时刻都向外放射出氦原子以及其它射线,从而原子量减少,变成其它的物质(如铅)。
这样,一定质量的镭,随着时间的变化,它的质量就会减少。
已发现其裂变速度(即单位时间裂变的质量)与它的存余量成正比。
设已知某块镭的质量在时刻0t t =为0R ,试确定这块镭在时刻t 的质量R 。
解 时刻t 时镭的存余量R 是t 的函数。
由于R 将随时间而减少,故镭的裂变速度dR dt 应为负值。
于是,按照裂变规律,可列出方程 dR kR dt=- (1.1) 其中k 为一正的比例常数。
(1.1)是一个关于未知函数R 的常微分方程。
上述问题就是要由(1.1)求出未知函数()R R t =来。
为此,将(1.1)变形为 dR kdt R=- ,然后两端积分,得 0ln R kt c =-+ (0c 为一积分常数),即 kt R ce -= (0c C e =)。
由于已知在时刻0t t =时0R R =,代入上式就有 00kt R Ce-= 或者00kt C R e =。
于是,在时刻t ,镭的质量为 0()0k t t R R e --=。
不仅镭的质量满足这个规律,其它的放射性物质也都满足这个规律。
不同的是,各种放射性物质具有各自的系数k 。
这个关系式是放射性物质的一个很基本的性质,它能说明很多问题,例如,从这个关系式出发,可以利用放射性物质来测定某种物体的绝对年龄。
例2.受到空气阻力的自由落体。
设质量为m 的物体,在时间0t =时自由下落,在空气中受到的阻力与物体的下落速度成正比,求物体下落距离与时间的关系。
如图1.1建立坐标系。
设x 为物体下落的距离。
于是物体下落的速度为 dx v dt=, 加速度为 22d x a dt=。
根据牛顿第二定律 F ma =,可以列出方程22,d x dx m k mg dt dt=-+ (1.2) 其中k 为一正比例常数,右端第一项的负号表示阻力与速度 dx dt的方向相反。
于是问题归结为求满足上述方程的未知函数()x t 的问题。
我们现在只考虑0k =的情形,也就是说物体是在真空中下落,没有阻力。
这时,(1.2)变成 22d x g dt =。
为了求出物体下落的距离,将上式积分两次,得到1,dx gt C dx=+ 2121,2x gt C t C =++ 其中1C 及2C 为两个常数。
考虑自由下落物体的初始状态。
由于选取物体的初始位置为坐标原点,故有 ()00x =;又由于物体为自由下落,即初始速度 ()000v x '==。
将这两个条件代入上述二式。
可确定 1C 、2C 分别为 120,0C C ==。
于是,自由下落物体的距离公式为 212x gt =。
例3.单摆。
图1.2为一单摆,上端固定在O 点,M 为一质量为m 的质点,摆杆OM 之长为l ,质量可以忽略,单摆的平衡位置为铅垂线OO '。
现将质点M 拉离OO '一个角度0θ,然后松开任其自由运动。
试求摆杆OM 和铅垂线OO '的夹角θ与时间t 的关系。
解 将重力mg 分解为径向力F 与切向力T 。
T 的大小为sin mg θ。
M 的切向加速度为22d a l dtθ=。
于是,由牛顿第二定理可列出方程 2222sin sin d d g ma ml mg dt dt lθθθθ==-=-或 (1.3) 如令初始时刻为0t =,摆杆的初始位置为0θ,初始角速度为0。
从而,上述问题就归结为求满足方程(1.3)以及条件 0(0),(0)0θθθ'==的函数()t θθ=的问题了。
㈡. 基本概念①方程的阶从以上三例我们看到,由实际问题中提出来的常微分方程是各式各样的。
以后我们不会看到,各种类型的微分方程都有有其自已的特点。
常微分方程分类的一个基本依据是在其中所出现的未知函数的导数的最高阶数,我们把它称为微分方程的阶(order)。
例如:⑴、⑵、⑷、(1.1)都是一阶方程;⑶、⑸、(1.2)、(1.3)都是二阶方程。
以后我们还会看到更高阶的微分方程。
一阶常微分方程的一般形式可以表为(),,0F x y y '= (隐式方程) (1.4)如果(1.4)式能对y '解出, 则得到方程(),y f x y '= (显式方程) (1.5)或 (,)(,)0M x y dx N x y dy += (微分形式) (1.6)n 阶隐式方程的一般形式记为()(,,,,,)0nF x y y y y '''= (1.7) n 阶显式方程的一般形式记为()()()1,,,,n n y f x y y y -'''= (1.8) ②方程的解和积分曲线定义1.1 设函数()y y x =在[a,b]上有定义, 且存在n 阶导数,如果把()y y x =代入方程()(,,,,,)0n F x y y y y '''= (1.7) 得到在区间[a,b]上的恒等式()(),(),(),,()0n F x y x y x y x '≡ 则称()y y x =为方程(1.7)在[a,b]上的一个显式解(explicit solution),同样可以定义隐式解(implicit solution),它们统称为解(solution )。
对于其它形式的方程或区间,也可以相应的叙述。
例如:易验证函数2,y x C =+(C 为任意常数)为微分方程 2y x '=在(),-∞+∞上的解;函数12x y e C x C =++,(12,C C 为任意常数 )为微分方程 x y e ''=在(),-∞+∞上的解。
例4.试验征:当0c >时,函数2122c y x c=-为方程dy y dx x =+在(),-∞+∞上的解;而当0c <时,该函数为上述方程在(,0)-∞上的解。
解 (略)例5.验证函数 12cos sin y C x C x =+ (12,C C 为任意常数)为方程 0y y ''+=在(),-∞+∞上的解。