《分式的乘除法》优质课比赛教案
2021年公开课《分式的乘除》精品获奖教案(3)
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
§10.4分式的乘除(1) 学习目标: 1.理解并掌握分式的乘除法则,会运用法则进行运算,能解决一些与分式有关的实际问题。
2.经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性. 重点、难点:运用分式的乘除法则进行运算。
学习过程 一.【预学指导】初步感知、激发兴趣 1、观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯, .279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cd a b c d b a 与同伴交流。
2、你会计算 b ac 34.3229ac b = bac 34÷3229ac b = 二.【问题探究】师生互动、揭示通法新知探究:1、猜一猜??=÷=⨯cd a b c d b a 与同伴交流。
2、你能验证分式乘、除运算法则是合理、正确的吗?3、归纳:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
b a ·dc =bdac (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
b a÷d c =bcad (3)分式乘方法则:分式乘方是把分子、分母各自乘方(ba )n = n nb a 。
问题1、计算:(1)b a a 2284-·6312-a ab ; (2)24⎪⎭⎫ ⎝⎛+c b a(3) )8(43222y z z xy -• (4)4963222-+-•--m m m m m 问题2、计算(1)22316x x y ÷ (2)124124419622+-÷+++-a a aa a a三.【拓展提升】能力提升、突破难点问题3.222244(4)2x xy y x y x y-+÷-+,其中1,1x y ==问题4.当2005=x ,1949=y 时,求代数式2222442yx x y y xy x y x +-•+--的值四.【回扣目标】学有所成、悟出方法五.【课堂反馈】1、下列各式计算正确的是 ( )A .222a ab b a b b a-+=-- B .2232()x xy y x y x y ++=++ C .23546x x y y ⎛⎫= ⎪⎝⎭D .y x y x -=+--11 2、若x 等于它的倒数,则()()22321962+-÷+++x x x x x 的值是 ( ) A .-3 B .-2 C .-1 D . -3或31-3、计算=•c b a a bc 222 ;=÷23342yx y x ; 4、(1)2442222++-•-+a a a a a a (2) 1211222+++÷--x x x x x 本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
分式的乘除优质课教案
重点
会用分式乘除的法则进行运算
难点
分子、分母是多项式的分式乘除法运算
教学过程
教学
环节
活动设计
设计意图
创
设
情
境
一:知识回顾
引出课题:分式的乘除
给出几个分数的乘除运算回顾分数乘除运算法则,如果把数字换成字母让同学们想一下该怎样运算。
引
导
探
究Hale Waihona Puke 二:探究活动;类比联想分式乘除法法则
猜一猜与同伴交流。
欢迎您的下载,
资料仅供参考!
练习题是对分式中分子和分母为单项式时的巩固,让学生自己解决问题,并总结出做这类题的一般步骤和所需要注意的问题。
尝
试
运
用
例2计算
例2是例1的延续和加深当分式的分子、分母是多项式,应先把多项式分解因式再进行约分.
提
高
训
练
课堂练习
练习1计算
能力提升
化简求值 ,其中
引导学生对知识的梳理和思想方法的提炼,教会学生学习的方法。提高学生对知识运用的熟练性
本题是对法则的巩固过程,进一步熟悉并掌握法则内容
例
题
分
析
例1计算
注意:分式运算的结果通常要化成最简分式或整式
巩固练习:
1.计算
分子和分母都是单项式的分式乘除法的解题步骤是:
①把除法运算变成乘法运算;
②确定积的符号;
③求分式的乘积;
④约分
例1就是直接应用分式的乘除法法则进行运算.切实理解每一步计算,除了书中的解法鼓励学生用其他的解法去解,有利于学生的个性化学习。
小
结
作
业
通过本节课的学习你有什么收获?又应该注意什么?
省优获奖教案《分式的乘除》word(优质)
本课的设计初衷,是为全体学生的共同提高。
作为教师要充分保护好孩子的自信心,只有孩子们有了自信,才有可能持续保持对某些事物的兴趣和热情。
“失败是成功之母”应该改为“成功是成功之母”,特别是在孩子刚开始对某些事物倾注热情和精力的时候,对他们自信心的保护至关重要。
所以强烈建议平时的测验应在学目标范围内尽可能的简单,最大限度的保持孩子的自尊心和自信心。
正所谓“大道至简”,在保证教学目标实现的情况下,教师的课堂要设计的简便扼要,要把较难的、复杂的问题、深刻的问题讲的轻松自然,诙谐幽默,像涓涓细流,于无声中浸润学生的思维。
本课在单元中,属于承上而启下的教学内容。
12.2分式的乘除(第二课时)一、教材分析本节课在学生学习了分式基本性质因式分解以及分式乘法的基础上进一步学习分式的除法,分式的除法可以转化为分式的乘法,是为分式加减作准备,具有承上启下作用,在教材中具有重要位置.二、学情分析学生已学过分式基本性质因式分解,现在的分式除法及上节的乘法是他们的应用和实践,学生在讨论观察交流过程中,可以培养学生知识的迁移能力以及转化的数学思想.三、教学目标1、了解并掌握分式的除法法则,能熟练将除法转化为乘法并进行计算.2、学会类比的数学方法,形成解决问题的基本策略.四、重点、难点重点:运用分式的除法法则进行除法运算.难点:分子、分母为多项式的分式除法运算及符号变化.教学环节教学活动设计设计意图说明创设问题情境1、计算,并说明依据什么知识?1225109)3(9275)2(5432)1(÷÷÷2、揭示课题:分式除法让学生通过类比方法发现.一起探究1、类比分数除法,猜想?=÷cdab2、你会用语言叙述一下刚才的猜想吗?用字母表示呢?3、小结:分式的除法法则adbcdcabcdab=•=÷引导学生用语言和式子表示,使学生对其有更深的理解.例题解析例1:计算(1)xyxy4252÷,(2)432622--÷--xxxx(3)22222323babababaaba-+÷+++小结:1、讨论总结做题步骤.2、讨论总结注意事项让学生在计算后进行思考、总结、升华知识.巩固练习练习(学生板演)重点思考:第2题整式怎样运算?暴露问题,解决问题评价反思本节课你学到了哪些内容?要注意什么问题?(1)运用分式的除法法则进行除法运算.(2)分子、分母为多项式的分式除法运算及符号变化(3)类比思想作业习题1、2板书设计课后反思说明设的情景为学生合作探究蓄势;又以清晰的头脑理清讨论的主线,呵护学生富有个性的创新,使学生享受了成功的快乐,体验了学习的乐趣. 这是本节课的成功所在.这节课不足之处:学生在将几何体进行分类时,语言表达不够准确.“冰冻三尺,非一日之寒”,学生的数学语言表达能力需要在今后的教学实践中努力培养.本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
分式的乘除优质课教案
分式的乘除【教学目标】一、教学知识点1.分式乘除法的运算法则。
2.会进行分式的乘除法的运算。
二、能力训练要求1.会通过类比的方法来理解和掌握分式的乘除法法则。
2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。
三、情感与价值观要求1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养学生的创新意识和应用数学的意识。
【教学重难点】1.让学生掌握分式乘除法的法则及其应用。
2.分子、分母是多项式的分式的乘除法的运算。
【教学过程】一、回顾旧知,引出新知设计说明:利用“数、式通性”“类比转化”的思想方法引发学生猜测,归纳分式乘除法运算法则,从而获得新知。
师:我们一起来看一道计算题,你会做吗?5372⨯(黑板出示)。
生:5732⨯⨯=(教师黑板书写答案)。
师:你能用文字来叙述出你做这道题的思路吗?生:分子乘以分子得到分子,分母乘以分母得到分母。
师:对,这就是分数的乘法,这位同学说的很好。
我们大家一起来看看分数的乘法法则。
多媒体出示分数乘法法则:两个分数相乘,分母与分母相乘的积作积的分母,分子与分子相乘的积作分子。
二、建立模型,引入新课师:刚才我们做的是分数之间的乘法运算,那换成我们刚学过的分式,cd a b ⨯(黑板出示),大家来猜想一下应该等于多少呢? 生:等于acbd 。
师:同学们还有没有不同的答案?(让学生讨论)。
师:对,分式的乘法与分数乘法类似,那你能说出分式乘法的法则吗?生:两个分式相乘,分母与分母相乘的积作积的分母,分子与分子相乘的积作积的分子。
师:说的太棒了,他已经帮我们归纳出了分式的乘法法则,(我们大家掌声鼓励一下)。
大家把他说的和幻灯片上分数乘法法则相对比一下,看一看有什么不同。
生:法则完全一样,一个是分数的乘法,一个是分式的乘法。
师:对,这个法则即适用与小学的分数乘法运算,同样也适用于分式之间的乘法运算。
我们看看分式的乘法法则。
《分式的乘除法》优质课比赛教案
《分式的乘除法》优质课比赛教案教案名称:分式的乘除法教学目标:1. 学会分式的乘法运算。
2. 学会分式的除法运算。
3. 能够应用分式的乘除法解决实际问题。
教学时长:2课时教学内容:第一课时:1. 复习分式的加减法,引入分式的乘法概念。
2. 讲解分式的乘法运算规则。
3. 练习分式的乘法计算。
4. 引入分式的除法概念。
5. 讲解分式的除法运算规则。
6. 练习分式的除法计算。
第二课时:1. 复习分式的乘法和除法规则。
2. 引入应用题,通过实际问题来练习分式的乘除法运算。
3. 学生上台演示解题过程。
4. 教师总结、点评和拓展,提出一些相关实际问题供学生练习。
教学准备:1. 教师准备白板、黑板、彩色粉笔等。
2. 学生准备笔记本、铅笔等。
教学步骤:第一课时:1. 引入:复习分式的加减法知识,向学生介绍分式的乘法概念。
2. 讲解:讲解分式的乘法运算规则,包括分子相乘、分母相乘。
3. 练习:给学生一些分式乘法计算的练习题,让学生在纸上计算并写出答案。
4. 引入:向学生介绍分式的除法概念。
5. 讲解:讲解分式的除法运算规则,包括将除法转化为乘法,分子相乘、分母相乘。
6. 练习:给学生一些分式除法计算的练习题,让学生在纸上计算并写出答案。
第二课时:1. 复习:复习分式的乘法和除法规则。
2. 引入:通过实际问题引入应用题,让学生能够将分式乘除法运用到实际情境中去解决问题。
3. 练习:学生上台展示解题过程,并与其他同学共同分析和讨论解题方法。
4. 总结:教师总结学生上台演示的解题方法,点评其中的优缺点,并提出相关拓展问题。
5. 拓展:提出一些相关的实际问题,供学生进一步练习分式的乘除法。
教学评价:1. 教师观察学生的学习情况,在课堂上提问学生,评价他们对分式乘除法的理解和运用能力。
2. 教师检查学生课后作业,评价他们对分式乘除法的掌握程度。
3. 学生之间互相讨论、合作解题,评价他们的合作能力和解题思路。
教学延伸:1. 学生可以在课后继续练习分式的乘除法运算,拓宽应用范围,提高运算速度和准确性。
八年级数学上册《分式的乘除法》教案、教学设计
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习积极性,使学生乐于探索分式的乘除法;
2.培养学生严谨、细致的学习态度,让学生在解题过程中,养成认真审题、规范答题的良好习惯;
3.培养学生的团队协作意识,使学生学会倾听、交流、分享,提高学生的沟通能力;
三、教学重难点和教学设想
(一)教学重难点
1.重点:分式乘除法的运算法则,包括同分母分式相乘、相除,异分母分式相乘、相除的运算方法。
2.难点:理解并掌握分式乘除法的运算规律,能熟练地将实际问题转化为分式乘除运算,以及正确处理分式乘除中的符号问题。
(二)教学设想
1.创设情境,导入新课:通过生活中的实例,如购物打折、配料计算等,引出分式乘除法在实际问题中的应用,激发学生的学习兴趣,为新课的学习做好铺垫。
4.通过生活中的实例,让学生感受分式乘除法在实际问题中的应用,激发学生学习新知的兴趣。
(二)讲授新知,500字
1.教师讲解分式乘除法的概念,强调同分母分式相乘、相除的运算方法,以及异分母分式相乘、相除的运算方法。
2.通过具体的例题,演示分式乘除法的运算步骤,引导学生关注运算过程中的符号处理,特别是约分、通分等操作。
6.课堂评价,激励进步:注重课堂评价,及时反馈学生的学习情况,激发学生的学习积极性。对学生的进步给予充分肯定,培养学生的自信心。
7.课后作业,巩固成果:布置适量的课后作业,让学生在课后巩固所学知识,提高学生的自主学习能力。
8.家校合作,共同促进:加强与家长的沟通,了解学生的课后学习情况,鼓励家长参与学生的学习过程,共同促进学生数学素养的提高。
4.多元练习,巩固提高:设计不同难度的练习题,让学生在解答过程中,巩固所学知识。针对学生的个体差异,进行分层指导,提高学生的运算能力和解决问题的能力。
分式的乘除法教案
分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。
2. 培养学生运用分式的乘除法解决实际问题的能力。
3. 提高学生对分式运算的兴趣和自信心。
二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。
三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。
四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。
五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。
【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。
2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。
3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。
5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。
7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
8. 总结:让学生总结分式的乘除法运算规则,加深印象。
9. 课堂小测:进行课堂小测,了解学生掌握情况。
10. 课后作业:布置课后作业,让学生巩固所学知识。
六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。
2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。
3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。
七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。
2. 分析学生的学习困难,针对性地调整教学内容和策略。
全国初中数学优质课一等奖《分式的乘除》教学设计教案
分式的乘除(第1课时)授课班级:八年级一班授课老师:教学任务分析教学过程设计计算下式:类比分数的乘除法则猜想分式的乘除法则。
问题与情境示分数与分式乘除法法则对比的表格。
活动具体如下:步骤一:学生独立完成 和的计算,完成计算后思考这是什么运算?依据是什么?并在表中填写分数乘除法则。
步骤二:学生通过类比分数的乘除法则, 探究分式的乘除法则,并在表中填写。
步骤三:在互动中完成下面表格内容的填写:乘除法则 除法法则分数 两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 分式 两个分式相乘, 把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母 两个分式相除, 把除式的分子分母颠倒位置后,再与被除式相乘.符号表示a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc师生行为解、接受; 利用表格更利于学生的对比和理解;把自主权交给学生,体现了自主探索,合作学习的新理念,遵循“教师主导,学生为主体”原则。
设计意图活动3例题分析,应用新知本环节的任务:运用分式的乘除法法则解例题,是本节课的重点环节。
师生活动的总体设计:教师尝试让学生自主探索,独立完成例题,并请两名学生进行板演,教师巡视,了解学生解题的情况,对学习有困难的学生给以个别指导;最后,在互动中得出正确的解题步骤,以及解题中应注意的问题。
活动具体如下: 例1:分子、分母为单项式的分式乘除例1是分子、分母为单项式的分式乘除,是分式乘除法法则的直接应用,待学生尝试完成后,由师生进行互动,让学生体会到解题时应注意: (1)运算结果应约分到最简。
(2)分式除法应:“变除为乘,除式颠倒”。
(3)运算中,分式的乘除运算跟整式运算一样,先判断运算符号,再计算结果。
例题采取学生自主运用新知识代替单纯的教师讲授,这是教学方法的一大尝试。
《分式的乘除法》示范公开课教案【八年级数学下册北师大版】
《分式的乘除法》教学设计教学目标1.类比分数乘除法的运算法则,探索分式乘除法的运算法则.2.理解分式乘方的运算法则.3.在分式乘除运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.4.通过乘方以及分式乘、除、乘方混合的运算,使学生感受到数学的严谨,从而体会学习数学的价值.二、教学重难点重点:分式乘除法的运算法则,分式乘方的运算法则.难点:乘方以及分式乘、除、乘方混合的运算.三、教学用具电脑、多媒体、课件四、教学过程设计【思考】教师活动:引领学生们思考问题1,问题2,并给出答案,且让学生感知掌握分式的乘除运算的必要性,最后引导学生思考分式的乘除如何计算呢?问题1:一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容器的m n时,水面的高度为多少?答:长方体容器的高为Vab,水面的高度为V mab n.问题2:大拖拉机 m 天耕地 a hm 2,小拖拉机 n 天耕地 b hm 2,大拖拉机的工作效率是小拖拉机工作效率的多少倍?答:大拖拉机的工作效率是amhm 2/天; 小拖拉机的工作效率是bmhm 2/天; 大拖拉机的工作效率是小拖拉机工作效率的()a bm n÷倍. 【思考】81. 23333n ⨯⨯⨯⨯个. 教师活动:衔接分数乘方的回顾,引导学生根据分式的乘法运算写出运算过程,并设出疑问:多个相同分式的乘法,是否可以简写呢?回顾板书:3355x x y y ⋅=3355x xy y ⋅=⋅22925x y . 333555x x x y y y ⋅⋅=333555x x xy y y ⋅⋅=⋅⋅3327125x y . 33335555x x x x y y y y ⋅⋅⋅=33335555x x x xy y y y ⋅⋅⋅=⋅⋅⋅4481625x y . 35nx y ⎛⎫ ⎪⎝⎭33335555n x x xxy y y y⋅⋅⋅⋅个【探究】教师活动:带领学生根据乘方的意义和分式的乘法法则进行运算.让学生了解字母可以表示数,最后类比数的乘方,得出分式乘方的运算法则. 2()=b a b b a a ⋅ =b ba a⋅⋅ 22=b a . 3()b =a b b b a a a ⋅⋅b b b =a a a ⋅⋅⋅⋅33b =a . 10()b=a10b b b a a a ⋅⋅⋅个1010b b b =a a a ⋅⋅⋅⋅⋅⋅个个1010b=a . ()n b=an b b ba a a⋅⋅⋅个=n n b b b a a a ⋅⋅⋅⋅⋅⋅个个=nn ba. 【归纳】 分式的乘方法则:一般地,当n 是正整数时,()n b=an b b ba a a⋅⋅⋅个==n n b b b a a a ⋅⋅⋅⋅⋅⋅个个n n b a ,即()=n b ann b a . 分式乘方要把分子、分母分别乘方.注意:a ,b 分别表示分母与分子,它们可以是单项式,也可以是多项式. 【合作】教师活动:带领学生根据分式乘方的运算法则进集体回答归纳总结通过类比分数的乘方,归纳总结分式的乘方,实现学生主动参与、探究新知的目的,培养学生类比的思想方法,提高分析问题,解决问题的能力.归纳总结分式的乘方法则,培养学生的归纳概括能力与语言表达能力.26x y =236xy x y =2.2x 122214441a a a a a ---+- 式与数有相同的混合运算顺序:先乘方,再乘。
《分式的乘除法》示范公开课教学设计【部编北师大版八年级数学下册】
5.2《分式的乘除法》教学设计一、教学目标1.经历探索分式的乘除运算法则的过程,培养代数化归意识,发展合情推理能力.2.掌握分式乘除法的法则.会进行简单分式的乘除运算,发展运算能力.3.能解决一些与分式乘除运算有关的,简单的实际问题.二、教学重点及难点重点:掌握分式乘除法的法则及其应用.难点:分子、分母是多项式的分式的乘除法的运算.三、教学用具多媒体课件四、教学过程【情境导入】师:上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?探索、交流——观察下列算式:32×54=5342⨯⨯,75×92=9725⨯⨯, 32÷54=32×45=4352⨯⨯,75÷92=75×29=2795⨯⨯. 猜一猜?b d a c ⨯= ?b d a c÷=与同伴交流. 生:观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.b d bd ac ac⨯=即; b d b c bc a c a d ad÷=⨯=. 这里字母a ,b ,c ,d 都是整数,但a ,c ,d 不为零.如果让字母代表整式,那么就得到类似于分数的分式的乘除法.设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法引出分式的乘除法则.【探究新知】分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.【典例精讲】例1 计算:(1)3432x y y x ⋅;(2)22122a a a a+⋅-+. 分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.解:(1)33443232x y x y y x y x ⋅⋅=⋅22222233xy xy x x ⋅==⋅; (2)22122a a a a +⋅-+2(2)(2)a a a a +=-⋅⋅+212a a=-. 例2 计算:(1)2263y xy x ÷;(2)22211444a a a a a --÷-+-. 分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.解:(1)222222263133662y x xy x xy xy x x y y ÷===;(2)22211444a a a a a --÷-+- 24214441a a a a a --=⨯-+- =)1)(44()4)(1(222-+---a a a a a =)1)(1()2()2)(2)(1(2+---+-a a a a a a =)1)(2(2+-+a a a . 设计意图:通过例题和跟进练习,让学生掌握分式乘除法的计算法则.做一做通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V =34πR 3(其中R 为球的半径),那么 (1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?师:夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.生:我们不妨设西瓜的半径为R ,根据题意,可得:(1)整个西瓜的体积为V 1=34πR 3; 西瓜瓤的体积为V 2=34π(R -d )3. (2)西瓜瓤与整个西瓜的体积比为:12V V =334π()34π3R d R -=33)(R d R -=(R d R -)3=(1-R d )3. (3)我认为买大西瓜合算. 由12V V =(1-R d )3可知,R 越大,即西瓜越大,R d 的值越小,(1-Rd )的值越大,(1-Rd )3也越大,则12V V 的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.设计意图:通过实例进一步丰富分式乘除法运算的背景,增强学生代数推理能力与应用意识.【课堂练习】1.计算:(1)2a b b a ⋅;(2)21a a a a ÷-(-);(3)2211x x y y -+÷. 2.化简:(1)226336x x x x x x+-+÷---; (2)222a b ab b a b -÷+(-).答案:1.解:(1)221==a b ab b a ba a ⋅; (2)2211a a a a a a a a -÷=⨯-(-)(-) =aa a a )1)(1(--=(a -1)2 =a 2-2a +1(3)y x 12-÷21yx +=y x 12-×12+x y =)1()1)(1(2+-+x y y x x =(x -1)y =xy -y . 2.解:(1)362--+x x x ÷xx x --+632 =3)2)(3(--+x x x ×362+--x x x =)3)(3()2)(3)(2)(3(+-+--+x x x x x x =(x -2)(x +2)=x 2-4.(2)(ab -b 2)÷ba b a +-22 =(ab -b 2)×22b a b a -+=))(())((b a b a b a b a b +-+- =b . 【课堂小结】同学们这节课有何收获呢?我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.我们以后对于分式的学习是否也类似于分数,加以推广便可.今天我们学习了一种新的运算,能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.【板书设计】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,。
《分式的乘除》教案
《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。
2. 掌握分式的乘法和除法运算规则。
3. 能够解决与分式有关的实际问题。
二、教学重点1. 分式的乘法和除法运算规则。
2. 实际问题的解决。
三、教学难点实际问题的解决。
四、教学准备1. 教师准备:课本、黑板、粉笔。
2. 学生准备:课本、笔记。
五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。
2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。
例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。
例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。
八年级数学下册《分式的乘除法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握分式乘除法的运算规则,包括同分母分式相乘除、异分母分式相乘除以及分式乘方、分式乘除混合运算。
2.能够运用分式乘除法解决实际问题,提高运算速度和准确性,培养良好的数学运算习惯。
3.能够运用分式乘除法简化表达式,解决方程、不等式等相关问题,为后续学习打下基础。
3.教师趁机提出:“如果小明的妈妈想要计算每瓶酱油和每瓶醋的平均价格,应该怎么计算呢?”引导学生思考,从而引出分式乘除法的概念。
(二)讲授新知,500字
1.教师讲解分式乘除法的运算规则,以同分母分式相乘除和异分母分式相乘除为例,解释运算过程中需要注意的问题,如通分、约分等。
2.通过示例,演示分式乘除法的具体步骤,让学生跟随教师一起完成计算,加深对规则的理解。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.以实际问题导入,激发学生的学习兴趣,引导学生通过观察、思考、探究来发现分式乘除法的运算规律。
2.通过小组合作、交流讨论等形式,让学生在实践中掌握分式乘除法的运算方法,培养合作意识和团队精神。
3.利用变式训练,巩固学生对分式乘除法的理解,提高学生的运算能力和解决问题的能力。
4.通过课后练习和拓展任务,让学生在自主探究中加深对分式乘除法的认识,培养自主学习能力。
(三)情感态度与价值观
在本章节的学习过程中,注重培养学生的以下情感态度与价值观:
1.培养学生对数学学习的兴趣和热情,使他们树立正确的数学观念,认识到数学在生活中的重要性。
2.培养学生勇于探索、积极思考的精神,使他们具备面对困难和挑战时的信心和勇气。
(2)鼓励学生将分式乘除法与其他数学知识相结合,提高解决问题的综合能力。
分式的乘除法教案
分式的乘除法教案教案:分式的乘除法教学目标:1. 理解分式的乘法和除法的概念。
2. 掌握分式的乘法和除法的运算方法。
3. 能够解决与分式乘除法相关的问题。
教学准备:1. 讲义或教材2. 小黑板/白板和彩色粉笔/白板笔教学过程:步骤一:复习回顾分式的概念和基本运算规则。
步骤二:引入分式的乘法1. 结合例子解释分式的乘法是什么意思。
例如:$\frac{a}{b} \times \frac{c}{d}$表示把两个分式相乘。
2. 解释如何进行分式的乘法运算。
例如:将分子与分子相乘,分母与分母相乘,再将结果化简。
步骤三:练习分式的乘法请学生做一些练习题,以巩固分式的乘法运算。
步骤四:引入分式的除法1. 结合例子解释分式的除法是什么意思。
例如:$\frac{a}{b} \div \frac{c}{d}$表示把两个分式相除。
2. 解释如何进行分式的除法运算。
例如:将除数转化为倒数,再与被除数进行乘法运算。
步骤五:练习分式的除法请学生做一些练习题,以巩固分式的除法运算。
步骤六:综合乘除法的练习请学生做一些综合乘除法的练习题,以加强对分式乘除法的掌握。
步骤七:总结总结分式的乘法和除法的运算规则,并检查学生的理解。
课堂扩展活动:1. 给学生一些应用题,例如:购物时打了九折,原价100元,问打折后的价格是多少?2. 让学生自己设计一道分式的乘法或除法题目,与同学们进行交流。
评估方式:1. 教师观察学生的参与情况,是否能正确进行分式的乘法和除法运算。
2. 教师布置习题,检查学生的掌握程度。
七年级数学下册《分式的乘除》教案、教学设计
4.归纳总结,提炼方法:引导学生对分式乘除法则进行归纳总结,提炼解题方法,培养学生的逻辑思维能力。
-教师与学生一起总结分式乘除法则的要点,强调注意事项。
5.互动反馈,查漏补缺:通过课堂提问、作业批改等方式,了解学生的学习情况,针对性地进行辅导和讲解。
-对学生在计算过程中出现的问题进行分类总结,找出共性问题进行讲解。
6.跨学科整合,拓展思维:将分式乘除与物理、化学等学科知识相结合,让学生体会数学在其他学科中的应用。
-例如,结合速度、密度等概念,让学生运用分式乘除解决实际问题。
7.情感态度与价值观的培养:关注学生在学习过程中的情感态度,营造轻松、愉快的学习氛围,提高学生的学习积极性。
3.拓展思维题:布置一些具有一定难度的题目,引导学生深入思考,培养学生的逻辑思维和创新能力。
-例如:已知$a=\frac{2}{3}$,$b=\frac{3}{4}$,求$\frac{1}{a}+\frac{1}{b}-\frac{ab}{a+b}$的值。
4.小组合作题:鼓励学生进行小组合作,共同完成一些需要团队协作的题目,培养学生的团队精神和沟通能力。
在练习过程中,我会巡回指导,解答学生的疑问。针对学生在计算过程中出现的问题,我会进行分类总结,找出共性问题,并在课堂上进行讲解。此外,我还会及时给予学生反馈,让他们了解自己的学习情况,调整学习策略。
(五)总结归纳,500字
在课堂练习结束后,我会引导学生对所学知识进行总结归纳。首先,我会让学生回顾分式乘除的法则,总结运算技巧。然后,我会强调分式乘除与整式乘除的联系与区别,提高学生的知识迁移能力。
七年级数学下册《分式的乘除》教案、教学设计
人教初中数学八上《分式的乘除》教案 (公开课获奖)
分式的乘除.课时第1课课型新授课教具多媒体课件教学目标知识与能力理解分式的乘除法法那么,会进行分式乘除运算过程与方法通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转化.从而充分发挥学生的主体性,使学生主动获取知识。
态度与情感体验自己通过实例运算总结法那么的过程,在主动学习中形成自信重点熟练地进行分式乘除法的运算难点熟练地进行分式乘除法的运算教学手段方法多媒体教学教学过程教师活动学生活动说明或设计意图一、导入新课二、自学指导1、分数乘除法计算法那么内容你还清楚吗?2、P135问题1,abV的由来依据是______________,水面的高nmabv⋅的由来依据是_____________3、问题2中的ma、nb表示___________________意思;⎪⎭⎫⎝⎛÷nbma表示_________________________________意思。
4、猜一猜,可以用分数乘除法的法那么来推广分式的乘除法法那么吗?乘法法那么:分数乘分数,用分子的积作为积的分子,分母的积作为积的分母.除法法那么:分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘abV表示长方体容器的高nmabv⋅水是容器内容积的nm,所以水面的高为nmabv⋅ma表示打拖拉机的工作效率;nb表示小拖拉机的工作效率打拖拉机的工作效率是小拖拉机工作效激发学生学习兴趣,培养学生想象感知能力多媒体展示三、教师点拨及法那么归纳乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.除法法那么:分式除以分式,把除数式的分子、分母颠倒位置后,与被除式相乘.1、P136例1.[分析]这道例题就是直接应用分式的乘除法法那么进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.2、P136例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.3、P136例3.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号〞、“丰收2号〞小麦试验田的面积,再分别求出“丰收1号〞、“丰收2号〞小麦试验田的单位面积产量,分别是15002-a、()21500-a,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1<a2-2+1,即率的⎪⎭⎫⎝⎛÷nbma倍乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.除法法那么:分式除以分式,把除数式的分子、分母颠倒位置后,与被除式相乘.例1 计算:例2 计算:P136例3.如图—1,“丰收1号〞小麦的试验田是边长为a米〔a>1〕的正方形去掉一个边长为1米的正方形蓄水池后余下的局部,“丰收2号〞小麦的试验田是边长为〔a-1〕米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?培养学生归纳能力用式子表示为:1d bc adcba⋅⋅=⨯c bd acdbadcba⋅⋅=⨯=÷3234xyyx⋅cdbacab4522223-÷411244222--⋅+-+-aaaaaammm7149122-÷-四、检测点拨五、巩固与练习(a-1)2<a2-1,可得出“丰收2号〞单位面积产量高.课堂练习1、课本137页练习第2、3题;课后作业课本146页习题15.2第1、2〔1〕〔2〕题培养学生分析问题、讨论问题的能力板书设计分式的乘除法乘法法那么:分式的乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
《分式的乘法与除法》教案 (公开课获奖)教案 》
分式的乘法与除法《分式的乘法与除法》评测练习 1 、课堂精练1-5题。
2. 补充题:229612316244yyy y y y --÷+⋅-+-. 设计意图:我设计了必做题、补充题和思考题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸,思考题是学生思维的一个锻练。
总的设计意图是反馈教学,巩固提高。
有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。
同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。
5.2 分式的乘除法 省优精品教案
5.2 分式的乘除法1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力;(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入 观察下列运算:23×45=2×43×5,57×29=5×27×9, 23÷45=23×54=2×53×4,57÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么? 今天我们仿照分数的乘除来研究分式的乘除. 二、合作探究探究点一:分式的乘法【类型一】 利用分式的乘法法则和除法法则进行计算计算下列各式:(1)3xy 24z 2·(-8z 2y ); (2)-3xy ÷2y 23x.解析:(1)直接利用分式的乘法运算法则,先找出公因式,然后进行约分;(2)变为乘法,再直接利用分式的乘法运算法则求出即可.解:(1)3xy 24z 2·(-8z 2y )=-6xy ;(2)-3xy ÷2y 23x =-9x 22y.方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.【类型二】 根据分式的除法,判断分式中字母的取值范围若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( )A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-3解析:∵x +3x +4≠0,x +2≠0,∴x +3≠0且x +4≠0,解得x ≠-2,x ≠-3,x ≠-4,故选C.方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型三】 分式的乘除法的应用老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab =2aba 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2aba 2+b 2倍.方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可. 【类型四】 分式乘除法的混合运算计算:a -1a +2·a -4a 2-2a +1÷1a 2-1.解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算.解:原式=a -1a +2·(a +2)(a -2)(a -1)2·(a +1)(a -1)1=(a -2)(a +1)=a 2-a -2. 方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点二:分式的乘方【类型一】 分式的乘方运算下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b 2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3D .(-x n y 2n )n =x 2ny3n解析:A 、B 、C 计算都正确;D 中(-x n y 2n )n =(-1)n xn 2y 2n 2,原题计算错误.故选D. 方法总结:分式的乘方就是分子、分母分别乘方,最后化为最简分式.【类型二】 分式的乘除、乘方混合运算计算:(1)(-x 2y )2·(-y 2x )3·(-1x)4;(2)(2-x )(4-x )x 2-16÷(x -24-3x )2·x 2+2x -8(x -3)(3x -4).解析:(1)先算乘方,然后约分化简,注意符号;(2)先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简.解:(1)原式=x 4y 2·(-y 6x 3)·1x 4=-y 4x3;(2)原式=(x -2)(x -4)(x +4)(x -4)·(3x -4)2(x -2)2·(x -2)(x +4)(x -3)(3x -4)=3x -4x -3.方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算.先算乘方,再算乘除.注意结果一定要化成一个整式或最简分式的形式.【类型三】 分式乘方的应用通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V =43πR 3(其中R 为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积比是多少? (3)买大西瓜合算还是买小西瓜合算?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R -d )3,整个西瓜的体积是43πR 3;(2)西瓜瓤与整个西瓜的体积比是43π(R -d )343πR 3=(R -d )3R 3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R -d )3R 3<1,故买大西瓜比买小西瓜合算.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.【类型四】 分式的化简求值化简求值:(2xy x +y )3÷(xy 3x 2-y 2)2·[12(x -y )]2,其中x =-12,y =23.解析:按分式混合运算的顺序化简,再代入数值计算即可.解:原式=8x 3y 6(x +y )3·(x +y )2(x -y )2x 2y 6·14(x -y )2=2x x +y .将x =-12,y =23代入得原式=-6.方法总结:先算乘方再算乘除,将原式化为最简形式是解决此类问题的常用方法.三、板书设计1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.3.1图形的平移第1课时平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是()A. B.C. D.解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】利用平移的性质进行计算如图,将等腰直角△ABC沿BC 方向平移得到△A1B1C1,若BC=32,△ABC与△A1B1C1重叠部分面积为2,则BB1等于()A.1 B. 2 C. 3 D.2解析:设B1C=2x,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴12×x×2x =2,解得x=2(舍去负值),∴B1C=22,∴BB1=BC-B1C= 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】 平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个 解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计 1.平移的定义 在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.第2课时 一元一次不等式的应用1.会在实际问题中寻找数量关系列一元一次不等式并求解; 2.能够列一元一次不等式解决实际问题.(重点,难点)一、情境导入如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠? 二、合作探究探究点:一元一次不等式的应用 【类型一】 商品销售问题某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x 折该商品获得的利润=该商品的标价×x 10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x 的值即可.解:设可以打x 折出售此商品,由题意得:180×x10-120≥120×20%,解得x ≥8.答:最多可以打8折出售此商品.方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.【类型二】 竞赛积分问题某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?解析:设小明答对x 道题,则答错或不答的题目为(25-x )道,根据得分要超过80分,列出不等关系求解即可.解:设小明答对x 道题,则他答错或不答的题目为(25-x )道.根据他的得分要超过80分,得:4x -2(25-x )>80,解得x >2123.因为x 应是整数而且不能超过25,所以小明至少要答对22道题. 答:小明至少要答对22道题.方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等.【类型三】安全问题采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.解:设导火线的长度需要x米,1厘米/秒=0.01米/秒,由题意得x0.01>4005,解得x>0.8.答:导火线至少要0.8米.【类型四】分段计费问题小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?解析:当每月用水5立方米时,花费5×1.8=9元,则可知小明家每月用水超过5立方米.设每月用水x立方米,则超出(x-5)立方米,根据题意超出部分每立方米收费2元,列一元一次不等式求解即可.解:设小明家每月用水x立方米.∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x-5)立方米,按每立方米2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:小明家每月用水量至少是8立方米.方法总结:分段计费问题中的费用一般包括两个部分:基本部分的费用和超出部分的费用.根据费用之间的关系建立不等式求解即可.【类型五】调配问题有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?解析:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.甲种蔬菜有3x亩,乙种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4人种甲种蔬菜.方法总结:调配问题中,各项工作的人数之和等于总人数.【类型六】方案决策问题为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.解析:(1)设购买污水处理设备A 型x 台,则B 型为(10-x )台,列出不等式求解即可,x 的值取整数;(2)如图表列出不等式求解,再根据x 的值选出最佳方案.解:(1)设购买污水处理设备A 型x 台,则B 型为(10-x )台.12x +10(10-x )≤105,解得x ≤2.5,∵x 取非负整数,∴x 可取0,1,2,有三种购买方案:购A 型0台,B 型10台;A 型1台,B 型9台;A 型2台,B 型8台; (2)240x +200(10-x )≥2040,解得x ≥1, ∴x 为1或2.当x =1时,购买资金为12×1+10×9=102(万元); 当x =2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A 型1台,B 型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.3.1 图形的平移 第1课时 平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究 探究点一:平移的定义下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C ,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】 利用平移的性质进行计算如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1,若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1等于()A .1 B. 2 C. 3 D .2解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴12×x ×2x=2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C = 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】 平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个 解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.。
《分式的乘除法》优质课比赛教案
《分式的乘除法》优质课比赛教案一、素质教育目标知识目标经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。
能力目标会进行简单分式的乘除运算,具有一定的代数化归能力,能解决一些实际问题。
情感目标培养学生的观察、类比、归纳的能力和与同伴合作交流的情感,进一步体会数学知识的实际价值。
二、学法引导通过类比分数的乘除法法则,获得分式的乘除法法则,并会利用法则进行分式的乘除法运算及解决有关的简单的实际问题。
三、教学设想难点:正确运用分式的基本性质约分。
重点:理解分式乘除法法则的意义及法则运用。
疑点:如何找分子和分母的公因式,即系数的最大公约数,相同因式的最低次幂。
四、媒体平台多媒体课件(自制)构思:激发学生的求知欲,巩固所学的知识。
五、教学步骤(一)情境导入观察下列运算(二)解读探究1、学生回答猜想后,多媒体显示过程,然后引导学生运用“数式相通”的类比思想,归纳分式乘除法法则。
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳、创造能力。
)2、乘法法则运用多媒体示题并解答。
学习例1,理解和巩固分式乘法法则。
并强调分式的运算结果通常要化成最简分式和整式。
例1 计算(1)(2)例2 计算(1)(2)3、做一做多媒体出示做一做的问题情境,鼓励学生结合情境思考并完成做一做,体会生活中到处有数学,培养学生运用数学知识解决生活中实际问题的能力。
多媒体显示解答过程。
(1)西瓜瓤的体积整个西瓜的体积(2)西瓜瓤与整个西瓜的体积比是(进一步丰富分式乘除法法则的情境,增强学生的代数推理能力与应用意识。
)4、除法法则运用学习例2,多媒体示题和答案。
巩固分式乘除法法则的运用,通过提示语,突破难点,解决疑点,使学生能正确找出分子和分母的公因式。
(三)巩固练习完成随堂练习。
重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式。
分式的乘除法教案
分式的乘除法教案一、教学目标1. 理解分式乘除法的概念和运算规则。
2. 能够运用分式乘除法解决实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容1. 分式乘法的概念和运算规则。
2. 分式除法的概念和运算规则。
3. 分式乘除法的实际应用。
三、教学重点与难点1. 重点:分式乘除法的概念和运算规则。
2. 难点:分式乘除法在实际问题中的应用。
四、教学方法1. 采用讲解法,讲解分式乘除法的概念和运算规则。
2. 采用案例分析法,分析分式乘除法在实际问题中的应用。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学准备1. 教案、PPT、教学素材。
2. 计算器、黑板、粉笔。
3. 练习题。
教学过程:一、导入(5分钟)1. 复习分式的概念和基本性质。
2. 引导学生思考分式乘除法的意义和必要性。
二、讲解(20分钟)1. 讲解分式乘法的概念和运算规则。
2. 讲解分式除法的概念和运算规则。
3. 通过PPT展示典型例题,讲解分式乘除法的应用。
三、案例分析(15分钟)1. 分析分式乘除法在实际问题中的应用。
2. 让学生尝试解决实际问题,巩固所学知识。
四、练习(15分钟)1. 让学生独立完成练习题。
2. 讲解练习题的答案,解析解题思路。
五、总结(5分钟)1. 回顾本节课所学内容,总结分式乘除法的概念和运算规则。
2. 强调分式乘除法在实际问题中的应用。
教学反思:通过本节课的教学,发现部分学生在理解分式乘除法时存在困难。
在今后的教学中,可以结合更多实际例子,让学生在实践中掌握分式乘除法的应用。
加强对学生的个别辅导,提高他们的学习兴趣和自信心。
六、教学拓展1. 引导学生探索分式乘除法的运算规律。
2. 介绍分式乘除法在数学竞赛中的应用。
3. 引导学生思考分式乘除法在其他学科中的应用。
七、课堂小结1. 回顾本节课所学内容,总结分式乘除法的概念和运算规则。
2. 强调分式乘除法在实际问题中的应用。
3. 提醒学生注意分式乘除法在运算过程中的符号判断。
《分式的乘除法》优质课比赛教案
《分式的乘除法》优质课比赛教案导读:本文是关于《分式的乘除法》优质课比赛教案,希望能帮助到您!一、素质教育目标知识目标经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。
能力目标会进行简单分式的乘除运算,具有一定的代数化归能力,能解决一些实际问题。
情感目标培养学生的观察、类比、归纳的能力和与同伴合作交流的情感,进一步体会数学知识的实际价值。
二、学法引导通过类比分数的乘除法法则,获得分式的乘除法法则,并会利用法则进行分式的乘除法运算及解决有关的简单的实际问题。
三、教学设想难点:正确运用分式的基本性质约分。
重点:理解分式乘除法法则的意义及法则运用。
疑点:如何找分子和分母的公因式,即系数的最大公约数,相同因式的最低次幂。
四、媒体平台多媒体课件(自制)构思:激发学生的求知欲,巩固所学的知识。
五、教学步骤(一)情境导入观察下列运算(二)解读探究1、学生回答猜想后,多媒体显示过程,然后引导学生运用“数式相通”的类比思想,归纳分式乘除法法则。
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳、创造能力。
)2、乘法法则运用多媒体示题并解答。
学习例1,理解和巩固分式乘法法则。
并强调分式的运算结果通常要化成最简分式和整式。
例1 计算(1)(2)例2计算(1)(2)3、做一做多媒体出示做一做的问题情境,鼓励学生结合情境思考并完成做一做,体会生活中到处有数学,培养学生运用数学知识解决生活中实际问题的能力。
多媒体显示解答过程。
(1)西瓜瓤的体积整个西瓜的体积(2)西瓜瓤与整个西瓜的体积比是(进一步丰富分式乘除法法则的情境,增强学生的代数推理能力与应用意识。
)4、除法法则运用学习例2,多媒体示题和答案。
巩固分式乘除法法则的运用,通过提示语,突破难点,解决疑点,使学生能正确找出分子和分母的公因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式的乘除法》优质课比赛教案
一、素质教育目标
知识目标
经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。
能力目标
会进行简单分式的乘除运算,具有一定的代数化归能力,能解决一些实际问题。
情感目标
培养学生的观察、类比、归纳的能力和与同伴合作交流的情感,进一步体会数学知识的实际价值。
二、学法引导
通过类比分数的乘除法法则,获得分式的乘除法法则,并会利用法则进行分式的乘除法运算及解决有关的简单的实际问题。
三、教学设想
难点:正确运用分式的基本性质约分。
重点:理解分式乘除法法则的意义及法则运用。
疑点:如何找分子和分母的公因式,即系数的最大公约数,相同因式的最低次幂。
四、媒体平台
多媒体课件(自制)构思:激发学生的求知欲,巩固所学的知识。
五、教学步骤
(一)情境导入
观察下列运算
(二)解读探究
1、学生回答猜想后,多媒体显示过程,然后引导学生运用“数式相通”的类比思想,归纳分式乘除法法则。
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳、创造能力。
)
2、乘法法则运用
多媒体示题并解答。
学习例1,理解和巩固分式乘法法则。
并强调分式的运算结果通常要化成最简分式和整式。
例1 计算
(1)
(2)
例2计算
(1)
(2)
3、做一做
多媒体出示做一做的问题情境,鼓励学生结合情境思考并完成做一做,体会生活中到处有数学,培养学生运用数学知识解决生活中实际问题的能力。
多媒体显示解答过程。
(1)西瓜瓤的体积
整个西瓜的体积
(2)西瓜瓤与整个西瓜的体积比是
(进一步丰富分式乘除法法则的情境,增强学生的代数推理能力与应用意识。
)
4、除法法则运用
学习例2,多媒体示题和答案。
巩固分式乘除法法则的运用,通过提示语,突破难点,解决疑点,使学生能正确找出分子和分母的公因式。
(三)巩固练习
完成随堂练习。
重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式。
多媒体未时示题并答案,学生可以看书。
1、计算
(1)
(2)
(3)
(四)学习小结
(1)内容总结
通过本节课的学习,你学到了哪些知识?要注意什么问题?(学习了分式的乘除法的运算法则,对运算的结果一定要化简。
)
(2)方法归纳
在本节课的学习过程中,你有什么体会?
(五)目标检测
布置作业,课本第70页习题3.3。