电路图中的放大电路

合集下载

2.基本放大电路(2)

2.基本放大电路(2)

+
~

Re
RL U O

(a)电路图
图 2.5.1 共集电极放大电路
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
三、电流放大倍数
Ii b Ib
e Ie Io
Ii Ai
Ib Io Ii

Io

Ie Ib
Ie 所以
(1
RS
U S
Ic Rc
e+
Re Ie vo
-
AV

Vo Vi

( 1) IbRe Ib[rbe (1 )Re ]

( 1) Re rbe (1 )Re
Ri

Vi Ii
rbe
(1 )Re
Ro

Re
//
rbe
1
莆田学院三电教研室--模拟电路多媒体课件

(1
1 )rbe2
e
显然,、rbe 均比一个管子 1、rbe1 提高了很多倍。
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
3.构成复合管时注意事项
(1). 前后两个三极管连接关系上,应保证前级输 出电流与后级输入电流实际方向一致。
(2). 外加电压的极性应保证前后两个管子均为发 射结正偏,集电结反偏,使管子工作在放大区。
U o Ib (rbe Rs)
式中
Rs Rs // Rb RS
而 所以
Io Ie (1 )Ib
Ro

U o Io

rbe Rs
1
e Ie Io
rbe

基本放大电路ppt课件

基本放大电路ppt课件
首先,画出直流通路;在输入特性曲线上,作出直线VBE =VCC-IBRb,
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态

压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。

电工电子三极管放大电路 (共87张PPT)

电工电子三极管放大电路 (共87张PPT)
任务二 学习放大电路的主要性能指标 睡昆杭霈簧渡烀蛟谊延隙黄槲镁缴扶笏劈瞒瓴皙厩绛弋昆獍榕尾美荠捂袜潴汗挡宪板括舐涤
• 差模输入信号uid——大小相等而极性相反的两个输入信号。
(a)扩音机的功能框图 这种失真是因为三极管进入饱和引起的
任务三 学习放大电路的图解分析法 ②共射极放大电路的倒相作用——ib、ic与ui 相位相同;
图6-3 简化的单管放大电路
(a)信号直接输入输出
(b)变压器耦合信号输入输出
图6-4 信号输入输出的其他形式
2 放大电路中电压和电流符号的规定
• 表6-1 放大电路中电压和电流的符号
名称
直流值
交流分量
瞬时值
有效值
总电压或 电流
瞬时值
基极电流
IB
ib
集电极电流 发射极电流
IC IE
ic ie
集-射极电压
• 1.三极管微变等效电路 • 2.放大电路的微变等效电路
1.三极管微变等效电路
• (1)输入端等效
• 如果输入信号很小,可认为三极管在静态工 作点附近的工作段是线性的
• uCE为常数的条件下,当晶体管在静态工 作点上叠加一个交流信号时,有输入 电压的微小变化量ΔuBE以及相应的基极电
流变化量ΔiB。
• 设输入信号ui=ωt V,则晶体三极管发射
结上的总电压
• uBE=UBEQ+ui=(+ωt)在之间变化。 • 由于晶体三极管工作在输入特性曲线
的线性区,随着uBE的变化,工作点沿 着Q→Q1→Q→Q2→Q往复变化,故iB随 ui按正弦规律变化,变化范围为20~60μA
之间,
• 即ib=20sinωt μA
大电路输出端看进去的等效内阻称为输出电阻ro。

共发射极放大电路三种典型放大电路

共发射极放大电路三种典型放大电路

一、单管共发射极放大电路仅有直流反馈-固定偏置基本的电路如下三、选择器件与多数计算:设置静态工作点并计算元件参数依据指标要求、静态工作点范围、经验值进行计算静态工作点Q 的计算:要求iR{26300i beCQmvR rIβ≈≈+}>1K有若取V BQ = 3V,得1.53BQ BEECQV VR KI-==Ω取标称值1.5KmA2.2mA300100026`CQ=-<βI由于CQBQ I I β=; ()5~10BQ I I =得,=20k Ω ; =60k Ω为使静态工作点调整方便,1B R 由20k固定电阻与100k 电位器相串联而成。

=2033根据V A 的理论计算公式, V A =40 得,1k Ω 由//L C LR R R •=2k Ω计算电容为: )()(13~108.22L S be C uF f R r π≥=+ 综合考虑标称值10Uf10C B C C uF ==取标称值100uF四、画出预设计总体电路图: 预设总体电路图:βCQ BQBQ B I V I V R )10~5(12==21B BQBQ CC B R V VV R -=)(26)1(300)(26)1(mA I mVmA I mV r r EQ EQ bbe ββ++=++=2.静态工作点的测试与调整:测量方法是不加输入信号,将放大器输入端(耦合电容CB负端)接地。

用万用表分别测量晶体管的B、E、C极对地的电压VBQ 、VEQ及VCQ。

一般VBQ =(3~7)V, VCEQ=正几伏。

如果出现VCQ VCC,说明晶体管工作在截止状态;如果出现VCEQ0.5V,说明晶体管已经饱和.调整方法是改变放大器上偏置电阻R B1的大小,即调节电位器的阻值,同时用万用表分别测量晶体管的各极的电位V BQ、V CQ、V EQ,并计算V CEQ及I CQ。

如果V CEQ为正几伏,说明晶体管工作在放大状态,但并不能说明放大器的静态工作点设置在合适的位置,所以还要进行动态波形观测。

多级放大电路和差分放大电路

多级放大电路和差分放大电路
差模信号: 差模信号:输入信号uI1和uI2大小 相等,极性相反。
小结: 小结:
1、多级放大器的耦合方式和指标计算 2、差分放大电路的性能分析
作业:见参考书2,P104 17
U O1 U O2 U O3 Au = ⋅ ⋅ = Au1 ⋅ Au2 ⋅ Au3 U i U i2 U i3
加以推广到n级放大器
Au = Au1 ⋅ Au2 ⋅ Au3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Aun
图6 三级阻容耦合放大电路
+ UCC Rb C1 + + Ui - Rb ri
11 2
+ UCC Rb C2 Rc
22 2
Rc
12
1
C2 + V Uo
1
C3 + Uo ri

V
3
2
Rb
Re
1
+ Ce
21
Re
2
1+ Ce2Fra bibliotek(a)
(b)
图7 考虑前后级相互影响
(2) 输入电阻和输出电阻 一般说来, 多级放大电路的输入电阻就是输入级的 输入电阻, 而输出电阻就是输出级的输出电阻。由于多 级放大电路的放大倍数为各级放大倍数的乘积, 所以, 在 设计多级放大电路的输入级和输出级时, 主要考虑输入 电阻和输出电阻的要求, 而放大倍数的要求由中间级完 成。 具体计算输入电阻和输出电阻时, 可直接利用已有 的公式。但要注意, 有的电路形式, 要考虑后级对输入级 电阻的影响和前一级对输出电阻的影响。
第一级:
I BQ
U CC − U BE 14.3 = = ≈ 0.012mA Rb1 + (1 + β ) Re1 150 + 1020
I CQ = βI BQ = 50 × 0.012 = 0.61mA U CEQ ≈ U CC − I CQ Re1 = 15 − 0.61 × 20 = 2.8V

功率放大器电路图全集

功率放大器电路图全集

功率放大器电路图全集一.驻极体麦克风前置放大器该电路适用于采用驻极体麦克风的许多应用场合,这里用了以个1.5V的电池.C1和R3用来增强高音和压制低音,也可以根据愿意把它们去掉驻极体麦克风前置放大器二.TDA7057/TDA7057AQ伴音功放电路图· [图文] 差分功放仿真电路· [图文] 飞利浦有源重低音音箱功放电路图(SW2000)· [组图] 采用LM386制作的微小音频放大器电路· [图文] 5000W超轻,高功率放大器电路,无开关电源· [图文] 5,000W ultra-light, high-power amplifier, without switching-mode power supply· [图文] 简单实用的三极功放电路· [图文] 2N3055三极管功率放大器电路 (2N3055 Power Amplifier)· [组图] 摩托罗拉高保真功率放大器电路 (Motorola Hi-Fi power amplifier)· [图文] 带低音炮的10W的音频放大器(10W Audio Amplifier withBass-boost)· [图文] OPA604构成的音频功率放大器电路· [组图] STK465组成的2x30W(立体声)放大器及电路 (Amplifier 2x30W with STK465)·实用的大功率可控硅触发电路原理图· [组图] 低通滤波器电路/低音炮 (Low pass filter-Subwoofer)· [组图] 低阻抗麦克风放大器电路 (Low impedance microphone amplifier) · [图文] 22W音频放大器电路 (22W audio amplifier)· [图文] 100W RMS的放大器电路 (100W rms amplifier)· [组图] 50W功放电路 (50Watt Amplifier)· [图文] 迷你音箱:2W放大器电路 (Mini-box 2W Amplifier)· [图文] Two way cross-over 3500Hz· [组图] 25W场效应管音频放大器(25W Mosfet audio amplifier)· [图文] KMW-306通道无线话筒的原理及电路· [组图] LM1875功放器· [组图] 用LM317制作的功放电路图· [图文] LM1875制作功放电路(含电源电路)· [图文] TA8220功放电路图· [图文] XPT4990音频放大器应用电路· [图文] 大电流输出稳压电源· [图文] LM317高精度放大器电路· [图文] 2030功放电路图· [图文] 什么是高功率放大器· [图文] ZM312型十二路载波机线路放大器的功率放大级部分电路· [图文] 单边功率放大器的基本电路· [图文] 最大功率达到280W的LM3886功放电路图· [图文] BA328录音磁头放大电路· [组图] tda2822m功放电路· [组图] 大功率OCL立体声功放的制作及电路(20~100W×2双通道)· [组图] 用TDA1514制作的简单功放及电路· [组图] TDA2030型立体声功率放大器· [图文] DU30麦克前置放大器电路· [组图] 宽频带视频放大输出电路图· [图文] CD唱机加装自动放音电路· [组图] 傻瓜式混合型功率放大器电路及原理· [图文] 用TDA2822制作的助听器电路· [图文] 影像信号放大电路· [图文] 声音信号放大电路· [图文] 运算放大器音频电路· [图文] 四灯电子管发射机电路· [图文] 带有音频放大器的矿石收音机· [图文] 音频滤波电路· [图文] TDA2030功放电路双电源接法· [图文] TDA2030功放电路单电源电路· [图文] 视频放大器· [图文] 视频前置放大器· [图文] 由电子线路控制的可变增益视频支路放大器· [图文] 视频支路差动放大器· [图文] 双输入视频有线电视放大器· [图文] 简易视频放大器· [图文] 4.5MHz伴音中频放大器· [图文] 通用输出放大器· [图文] 具有低音控制的立体声电唱机放大器· [图文] 立体声前置放大器· [图文] 小型立体声放大器· [图文] 具有音调控制的单片机立体声前置放大器· [图文] 带晶体滤波器的45MHz IF放大器· [图文] RF前置放大器· [图文] 宽带前置放大器· [图文] LC调谐放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 455KHZ IF放大器· [图文] 可转换的HF VHF有源天线· [图文] 455KHz的中频放大器· [图文] 144-2304MHz的UHF宽带放大器· [图文] UHF放大器· [图文] 455KHz简易中频放大器· [图文] 20W 1296KHz的放大器模块· [图文] 采用MAR-1MMIC接收机和扫描机功率放大器· [图文] 用于手提式步话机的2M FET功率放大器· [图文] 10W 10M的线性放大器· [图文] 电视伴音系统· [图文] 宽带功率放大器· [图文] 20W 450MHz放大器· [图文] 30MHZ放大器· [图文] 小型宽带放大器· [图文] 70MHz RF功率放大器· [图文] 广播波段RF放大器· [图文] 435MHz的低噪音GASFET前置放大器· [图文] 宽频带RF放大器· [图文] 采用MAR-x的VHF和UHF前置放大器· [图文] HF前置放大器· [图文] 可增益放大器· [图文] 示波器前置放大器· [图文] 短波接收机的噪声放大限制器· [图文] 场效应管运算放大器传声器混合电路· [图文] 放大器冷却的电路Ⅱ· [图文] 放大器冷却电路Ⅰ· [图文] 前置放大器的收发定序器· [图文] 三极管功率放大电路· [图文] LMC6062仪表放大器· [图文] 红外光电二极管选择性前置放大器· [图文] 电子二分频功率放大器电路· [图文] 2×100W高保真双声道功率放大器· [图文] 单片音响功放集成电路TDA7294构成的100W功率放大器· [图文] 用两块高保真音响集成电路LM1875构成的BTL功率放大器· [图文] 2×70W双声道高保真功率放大器· [图文] 采用STK4040X1构成的70W音频功率放大器· [图文] 采用LM3875T构成的60W高保真功率放大器· [图文] 50W高保真功率放大器电路· [图文] 高保真音响功放集成电路TDA1514构成的40W功率放大器· [图文] 2×30W双声道音频功率放大器· [图文] 单电源、低压、低功耗运算放大器电路· [图文] NE5532前级放大电路· [组图] lm1875+ne5532功放电路· [图文] F4558基本接线图· [图文] 4558前级放大电路· [图文] 用LM1875构成的集成功率放大器电路· [图文] 甲乙类互补功率放大电路· [图文] 功放三极管的三种工作状态工作状态· [图文] 乙类互补对称功放电路· [图文] 实用OTL功放电路· [图文] 单片集成功率放大电路· [图文] QRP测音发声器/电码操作振荡器· [组图] tda2006单电源功放电路· [图文] 3V峰到峰单电源缓冲器· [图文] MOS场效应缓冲放大器· [图文] VFO缓冲放大器· [图文] 大电流缓冲器· [图文] 缓冲器/放大器· [图文] 分立元件功率放大器原理图· [图文] TDA2030功放集成块和BD907/BD908制作的40w功放电路· [图文] TDA7294功率放大电路· [图文] TDA7057/TDA7057AQ伴音功放电路图· [图文] TDA2822电路图· [图文] TDA2616功率放大电路图· [图文] TDA2040应用电路图· [图文] TDA2009 OTL单/双声道功率放大电路图· [图文] TDA1521A功率放大器电路· [图文] TDA1521双通道功率放大电路· [图文] TDA1514功放电路图· [图文] TDA1013伴音功放电路· [图文] TBA820/TBA820M功率放大电路图· [图文] TA8223/TA8223K双通道功率放大电路· [图文] TA8218/TA8218H三通道功放电路图· [图文] TA8211/TA8211AH双通道功放电路· [图文] TA7270/TA7270P功率放大器电路· [图文] TA7250/TA7250P功率放大器电路· [图文] LA4287伴音功放电路图· [图文] TDA3803/TDA3803A伴音处理器电路图· [组图] 音频分配放大器· [图文] 音频放大器。

第三章 多级放大电路

第三章 多级放大电路

当 f >> fH 时,
f = 100 f H | AU |≈ 0.01
| AU |=
1 1 + ( f / fH )
2
≈ fH / f
斜率为 -20dB/十倍频程 的直线 十倍频程
f = f H | AU |=
1 ≈ 0.707 20 lg | AU |= 3dB 2
20 lg | AU |= 20 lg( f H / f )
)
2
0 -20 -40
f
当 f << f H 时,
| AU |=
1 1 + ( f / fH )
2
≈1
20 lg | AU |= 20 lg 1 ≈ 0 dB
f = 10 f H
| AU |≈ 0 .1
0分贝水平线 分贝水平线
20 lg | AU |= 20 dB 20 lg | AU |= 40 dB
+
- 20k
Re1
2.7k Ce1
Rc2
4.3k u o
-
+
I B1 = I C1 / β = 9 .9 uA
UC1 = UB2 = Vcc IC1Rc1 = 12 0.99× 5.1 = 7.2 V
UCE1 ≈ Vcc IC1(Rc1 + Re1) = 12 0.99× 7.8 = 4.6 V
R e2 T2
+ V CC + uo
- V EE
3. 变压器耦合
级与级之间利用变压器传递交流信号。 (1)优点:匹配好、耗能少、Q点独立、可阻抗转换
' β RL Au = rbe
(2)缺点:频带窄、体积大、笨重、非线性失真大、只传 递交流、无法集 成

三极管及放大电路—多级放大电路(电子技术课件)

三极管及放大电路—多级放大电路(电子技术课件)
ሶ = ෍ 20

20 ሶ = 20 1
=1
3.单级放大器频率特性
下限频率fL
上限频率fH
通频带BW = fH - fL≈fH
4.两级相同放大器的幅频率特性
绘制多级放大电路的
频率特性曲线时,只要将
各级对数频率特性在同一
横坐标上频率所对应的电
压增益相加,即为幅频特
性。
5.两级相同放大器的相频率特性
绘制多级放大电路的相
频特性曲线时,只要将各级
对数频率特性在同一横坐标
上频率所对应的相位差相加
,即为相频特性。
多级放大电路组成及耦合方式
2.6.1 多级放大电路组成及耦合方式
一、多级放大电路的组成
多级放大电路的组成框图如图所示,第一级的输入为电路总的输入,前级输出
工作点的相互影响。
直接耦合的两级共射放大电路
常用的解决电路形式
(a)
(b)
(a)采用电阻Re2提高VT2发射极电位,从而提高VT1集电极电位,避免
VT1进入饱和区。
(b)采用电阻R、稳压管VZ构成稳压电路,提高VT2发射极电位,从而
提高VT1集电极电位,避免VT1进入饱和区。
常用的解决电路形式
(c)
=
(−1)
总电压放大倍数为:
1 2

AU =
=

∙⋯
= AU1 ∙ AU2 ∙ ⋯ ∙ AUN
1
1 1
(−1)
二、多级放大电路的级间耦合方式
多级放大器级间耦合方式一般有:阻容耦合,变压器耦合,直接耦合三种。
1.阻容耦合
前级输出信号通过电容、下
级输入电阻,传递到下一级的连

基本放大电路图

基本放大电路图

学习材料
返回
42
图2.6.1 复合管
学习材料
返回
43
图2.6.2 阻容耦合复合管共射放大电路
学习材料
返回
44
图2.6.3 阻容耦合复合管共集放大电路
学习材料
返回
45
图2.6.4 共射-共基放大电路的交流通路
学习材料
返回
46
图2.6.5 共集-共基放大电路的交流通路
学习材料
返回
47
2.7 场效应管放大电路
返回
21
图2.3.9 直流负载线和交流负载线
学习材料
返回
22
图2.3.10 例图
学习材料
返回
23
图2.3.11 晶体管的直流模型
学习材料
返回
24
图2.3.12 晶体管的共射h参数等效模型
学习材料
返回
25
图2.3.13 h参数的物理意义及求解方法
学习材料
返回
26
图2.3.14 简化的h参数等效模型
学习材料
返回
39
图2.5.3 共集放大电路的输出电阻
学习材料
返回
40
图2.5.4 根本共基放大电路
学习材料
返回
41
2.6 根本放大电路的派生电路
• 图2.6.1 复合管 • 图2.6.2 阻容耦合复合管共射放大电路 • 图2.6.3 阻容耦合复合管共集放大电路 • 图2.6.4 共射-共基放大电路的交流通路 • 图2.6.5 共集-共基放大电路的交流通路
学习材料
返回
36
2.5 晶体管单管放大电路的三种根本接法
• 图2.5.1 根本共集放大电路 • 图2.5.2 根本共集放大电路的交流等效电路 • 图2.5.3 共集放大电路的输出电阻 • 图2.5.4 根本共基放大电路

电工学课件(哈工大)第十六章 基本放大电路

电工学课件(哈工大)第十六章 基本放大电路

第16章基本放大电路哈尔滨工业大学电工学教研室目录16.1 基本放大电路的组成16.2 放大电路的静态分析16.3 放大电路的动态分析16.4 静态工作点的稳定16.5 射极输出器16.6 放大电路中的负反馈16.7 放大电路的频率特性16.8 多级放大电路及其级间耦合方式16.9 差动放大电路16.1 基本放大电路的组成放大器的目的是将微弱的变化电信号转换为较强的电信号。

放大器实现放大的条件:1. 晶体管必须偏置在放大区。

发射结正偏,集电结反偏。

2. 正确设置静态工作点,使整个波形处于放大区。

3. 输出回路将变化的集电极电流转化成变化的集电极电压,经电容滤波只输出交流信号。

u iu o共射极放大电路1. 晶体管T 的作用R B +U CCR CC 1C2放大元件满足i C = i B ,T 应工作在放大区,即保证集电结反偏,发射结正偏。

i bi c i e2. 集电极电源U CC 作用共射极放大电路R B +U CCR CC 1C 2集电极电源作用,是为电路提供能量。

并保证集电结反偏。

3. 集电极负载电阻R C 作用共射极放大电路R B +U CC R CC 1C 2集电极电阻的作用是将变化的电流转变为变化的电压。

4. 基极电阻R B 的作用+U CCR CC 1C 2TR B共射极放大电路基极电阻能提供适当的静态工作点。

并保证发射结正偏。

5. 耦合电容C 1和C 2作用(1) 隔直作用隔离输入.输出与电路的直流通道。

(2)交流耦合作用能使交流信号顺利通过。

共射极放大电路R B +U CCR CC 1C 216.2 放大电路的静态分析16.2.1 用放大电路的直流通路确定静态值放大电路中各点的电压或电流都是在静态直流上附加了小的交流信号。

电路中电容对交、直流的作用不同。

如果电容容量足够大,可以认为它对交流不起作用,即对交流短路。

而对直流可以看成开路,这样,交直流所走的通道是不同的。

交流通道---只考虑交流信号的分电路。

放大电路分析方法、图解法分析放大电路

放大电路分析方法、图解法分析放大电路

放⼤电路分析⽅法、图解法分析放⼤电路放⼤电路分析⽅法、图解法分析放⼤电路⼀、本⽂介绍的定义⼆、放⼤电路分析⽅法三、图解法⼀、本⽂介绍的定义放⼤电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放⼤电路的直流和交流通路、静态⼯作点、图解法分析静态、直流负载线、交流负载线、电压放⼤倍数公式、交直流并存状态、电压放⼤作⽤、倒相作⽤、⾮线性失真、截⽌失真、饱和失真、最⼤输出幅度、电路参数对静态⼯作点的影响、⼆、放⼤电路分析⽅法放⼤电路分析:放⼤电路主要器件如双极型三极管、场效应管,特性曲线是⾮线性的,对放⼤电路定量分析,需要处理⾮线性问题,常⽤⽅法,图解法和微变等效电路法。

图解法:在放⼤管特性曲线上⽤作图的⽅法对放⼤电路求解。

微变等效电路法:将⾮线性问题转化成线性问题,也就是,在较⼩变化范围内,近似认为特性曲线是线性的,导出放⼤器件等效电路和微变等效参数,利⽤线性电路适⽤的定律定理对放⼤电路求解。

静态分析:讨论对象是直流成分,分析未加输⼊信号时,电路中各处的直流电压、直流电流。

动态分析:讨论对象是交流成分,加上交流输⼊信号,估算动态技术指标,电压放⼤倍数、输⼊电阻、输出电阻、通频带、最⼤输出功率。

直流通路:电容所在路视为开路;电感所在路视为短路。

交流通路:电容容抗为1/(wC),电容值⾜够⼤,电容所在路视为短路;电感感抗为wL;理想直流电压源Vcc视为短路(因为电压恒定不变);理想电流源,视为开路(因为电流变化量为0) 。

单管共射放⼤电路的直流和交流通路:如下图,直流通路,将隔直电容开路;交流通路,将隔直电容短路,直流电源Vcc短路。

静态⼯作点:三极管基极回路和集电极回路存在着直流电流和直流电压,这些电流电压在三极管输⼊输出特性曲线上对应⼀个点,称为静态⼯作点,静态⼯作点的基极电流Ibq、基极与发射极之间的电压Ubeq、集电极电流Icq、集电极与发射极电压Uceq。

三、图解法图解法分析静态:⽤作图的⽅法分析放⼤电路静态⼯作点。

如何看懂电路图之 放大电路

如何看懂电路图之 放大电路

能够把微弱的信号放大的电路叫做放大电路或放大器。

例如助听器里的关键部件就是一个放大器。

放大电路的用途和组成放大器有交流放大器和直流放大器。

交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。

此外还有用集成运算放大器和特殊晶体管作器件的放大器。

它是电子电路中最复杂多变的电路。

但初学者经常遇到的也只是少数几种较为典型的放大电路。

读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。

首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。

放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。

在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。

下面我们介绍几种常见的放大电路。

低频电压放大器低频电压放大器是指工作频率在20 赫~20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。

( 1 )共发射极放大电路图 1 ( a )是共发射极放大电路。

C1 是输入电容,C2 是输出电容,三极管VT 就是起放大作用的器件,RB 是基极偏置电阻,RC 是集电极负载电阻。

1 、3 端是输入,2 、3 端是输出。

3 端是公共点,通常是接地的,也称“地”端。

静态时的直流通路见图 1 ( b ),动态时交流通路见图 1 ( c )。

电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

( 2 )分压式偏置共发射极放大电路图 2 比图 1 多用 3 个元件。

基极电压是由RB1 和RB2 分压取得的,所以称为分压偏置。

发射极中增加电阻RE 和电容CE ,CE 称交流旁路电容,对交流是短路的;RE 则有直流负反馈作用。

所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。

常用运算放大器电路 (全集)]的电路图

常用运算放大器电路 (全集)]的电路图

下面是[常用运算放大器电路(全集)]的电路图常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。

R3 = R4 提供1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)单双电源皆可工作5. Square-wave oscillator 方块波震荡电路:R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端On Cycle = 1 /(2π* R5 * C1)O/P输出端Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. Window detector窗型检知器电路:当I/P电位高于OP1+端电位时, Led 1暗/Led 2亮当I/P电位高于OP2-端电位时, Led 1亮/Led 2暗只有当I/P电位高于OP2-端电位, 却又低于OP1+端电位时, Led 1与Led 2同时皆亮如果适当选择R1, R2,R3数值可用以检知I/P电位是否合乎规格。

基本放大电路

基本放大电路

第二章 基本放大电路2.1 放大的概念和放大电路的主要性能指标 2.1.1 放大的概念以扩音机为例说明一下问题: 如图2.1.1所示:一、 放大电路放大的本质是能量的控制和转换。

二、 电子电路放大的基本特征是功率放大。

三、 放大电路组成的必要条件是存在能够控制能量的元件,即有源元件。

四、 放大的前提是不失真,即只有在不失真的情况下放大才有意义。

五、 放大电路的测试信号为正弦波,因为任何稳态信号都可以分解为若干频率正弦信号的叠加。

2.1.2 放大电路的性能指标一、 放大电路示意图:(图2.1.2)任何一个放大电路都可以看成一个两端口网络,解释放大电路作为负载相当于一个电阻,作为前级相当于电源。

二、 放大倍数i u uu U U A A 0== i i ii I I A A 0== i ui I U A 0= iiu U I A 0= 注: (1)在实测时,只有在不失真的情况下才有意义。

(2)当输入信号为缓慢变化量或直流变化量时,输入、输出量都用△表示,如:I u ∆、I i ∆。

三、 输入电阻 iii I U R =四、 输出电阻 (图2.1.3) L R U U R ⎪⎪⎭⎫⎝⎛-=10'00,0U 与0U '分别代表空载和带负载时的输出电压的有效值。

解释输入、输出电阻在多级放大电路中的作用。

五、 通频带(图2.1.4)1. 通频带产生原因:放大电路中存在电容、电感及半导体器件结电容等电抗元件。

2. 通频带的定义:L H bw f f f -= 上限截止频率、下限截止频率。

3. 通频带的意义:用于衡量放大电路对不同频率信号的放大能力。

4. 通频带的宽窄根据实际情况而定。

六、 非线性失真系数1. 产生原因:放大器件具有非线性特性,线性放大范围有一定的限度,当输入信号幅度超过一定值后,输出电压将会产生非线性失真。

2. 定义:输出波形中的谐波成分总量与基波成分之比,+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=213212A A A A D七、 最大不失真输出电压1. 定义:当输入电压再增大就会使输出波形产生非线性失真时的输出电压。

基本放大电路图教学课件PPT

基本放大电路图教学课件PPT
• (b) Use Multi-sim to verify your results in part (a).
2.6 基本放大电路的派生电路
• 1 复合管 • 2 阻容耦合复合管共射放大电路 • 3 阻容耦合复合管共集放大电路
4 共射-共基放大电路的交流通路 5 共集-共基放大电路的交流通路
1. 复合管
1.FET的几种应用方式:
• ⑴.FET开关电路 • ⑵.FET放大元件 • ⑶.FET压控电阻: • ⑷.FET恒流源电路:
2.自生柵偏压JFET Amp.
Ci
ui
Rg
Vdd
Rd
CO

Rs

uo
CS
JFET Amp.静态分析
• DC通路计算Q:
UGS
JFET Amp.动态分析
AC通路计算Q:
Cc
Rs
Cb
us ∽
Re
uo RL
⑴.共集放大电路的直流通路和交流通路
Rb Re
直流通路
Rb
Rs
Re
RL
交流通路
共集放大电路的交流通路
Rs
Rb
Rc
RL
⑵.共集放大电路的RO等效电路
Rs Rb
Us=0 -
Re uo
⑶. 基本共集放大电路的交流等效电路
直接耦合
Rb
⑷.共集放大电路的输出电阻
Rs Rb
Ro
共集Amp.的性能特点:
• ⑴.无电压放大作用; • ⑵.有电流放大能力;
• ⑶.Ri 较大; • ⑷.Ro较小;
• ⑸.输出跟隨输入改变;
p.205
2.共基放大电路
C1
RS Re
Rb1

放大电路的原理图及应用

放大电路的原理图及应用

放大电路的原理图及应用1. 介绍放大电路是电子设备中常用的一种电路,在信号处理和增强方面起着重要作用。

它可以将输入信号的能量增加,并将其输出为更大幅度的信号。

本文将介绍放大电路的原理图和应用。

2. 放大电路的原理图放大电路的原理图通常由几个主要组件组成,包括输入信号源、放大器、电源和输出负载。

下面是一个简单的放大电路的原理图示例:输入信号源 -----> 放大器 -----> 输出负载^|└─── 电源•输入信号源:提供输入信号源的信号,可以是一个电压或电流信号。

•放大器:放大输入信号的幅度,并将其输出到输出负载。

•输出负载:接收放大后的信号,并将其输出到所需的设备或电路。

3. 放大电路的应用放大电路在各种电子设备中广泛应用,以下是几个常见的应用示例:3.1 音频放大器音频放大器是将音频信号放大到适合扬声器输入的幅度的电路。

它通常用于音响系统、收音机和电视等设备中。

音频放大器可以增强低音、中音和高音的幅度,以提供更好的音频体验。

3.2 射频放大器射频放大器是一种将射频信号放大到适合发送或接收的幅度的电路。

它通常用于无线通信设备、雷达和卫星通信系统中。

射频放大器可以将微弱的射频信号放大到足够大的幅度,以使其可以在长距离传输或接收。

3.3 光电放大器光电放大器是一种将光信号转换为电信号并放大其幅度的电路。

它通常用于光通信系统、光电传感器和激光器等设备中。

光电放大器可以将微弱的光信号放大到足够大的幅度,以使其可以进行进一步处理或控制。

3.4 生物放大器生物放大器是一种将生物信号(如心电图、脑电图等)放大到适合医疗设备或研究中使用的幅度的电路。

它通常用于医疗设备、生物传感器和实验室研究中。

生物放大器可以提取微弱的生物信号,并将其放大到可以进行分析和诊断的幅度。

3.5 视频放大器视频放大器是将视频信号放大到适合显示设备(如显示器或电视)输入的幅度的电路。

它通常用于监视系统、摄像机和电视设备中。

功率放大电路)

功率放大电路)

3.1 功率放大电路很多系统需要对输出信号进行放大,以便提高带负载能力、驱动后级电路,因此要对其进行功率放大。

功率放大电路种类繁多,按原理分可分为甲类、乙类推挽、丙类谐振功率放大器等,可由三极管或集成运放芯片实现,应根据不同的功率放大指标,选择不同的方案。

甲类功率放大器中,在输入信号的一个完整的周期内三极管都是导通的,因而可保证无失真的电压输出,故甲类功率放大器有利于小信号的功率放大。

缺点是晶体管的静态工作点较高,静态损耗相对较大,效率比较低。

丙类谐振放大器采用谐振网络选频进行功率放大,适合于对载波信号或高频已调波信号进行选频放大。

缺点是谐振回路只能实现窄带选频。

当信号频带较宽时,可采用乙类推挽放大器。

乙类推挽功率放大电路由功率对管搭建而成。

在输入信号的一个周期内,两管半周期轮流导通,减小了单个管子的静态损耗,具有较高的输出功率与效率。

同时由于电路的对称性,可以在输出负载端得到完整的双极性波形。

电路如图3-24所示。

图3-24 乙类推挽功率放大电路此电路的前级由AD811组成同相放大器,放大倍数为311V R A R =+。

后级的功率对管构成乙类功率推挽输出形式,提供负载的驱动电流。

通过D1、D2的电压钳位及微调电位器R a2,可实现两功率管的微导通及上下电路的完全对称。

为保护晶体管及稳定B 点输出电流,输出级串接6.8Ω的小电阻,同时保证输出信号波形对称。

经实验测试,整个电路的输出阻抗小于15Ω,通频带大于10MHz ,且带内平坦,通带波纹小于0.1dB;空载时可对0~10MHz范围内峰峰值为20V的正弦信号无失真输出;输出端接50Ω负载时,无失真的最大输出电压峰峰值达到10V,并且在峰峰值为10V的输出状态下,频率大于2MHz仍无失真现象,效果良好。

需要注意的是,同相放大电路中的AD811放大倍数不能太大,否则芯片会存在一定程度的发热。

AD811是美国模拟器件公司推出的一种宽带电流反馈视频运算放大器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子入门讲座----电路图中的放大电路放大电路的用途和组成放大器有交流放大器和直流放大器。

交流放大器又可按频率分为低频、中频和高频:按输出信号强弱分成电压放大、功率放大等。

此外还有用集成运算放大器和特殊晶体管作器件的放大器。

它是电子电路中最复杂多变的电路。

但初学者经常遇到的也只是少数几种较典型的放大电路。

读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。

首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。

放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析,二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。

在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。

下面我们介绍几种常见的放大电路。

低频电压放大器低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。

(1)共发射极放大电路图1(a)是共发射极放大电路。

C1是输入电容,C2是输出电容,三极管VT就是起放大作用的器件,RB是基极偏置电阻,RC是集电极负载电阻。

1、3端是输入,2、3端是输出。

3端是公共点,通常是接地的,也称“地”端.静态时的直流通路见图1(b),动态时交流通路见图1(c)。

电路的特点是电压放大倍数从十几到一百多,输出电压的相位拥输入电压是相反的,性能不够稳定,可用于一般场合。

2)分压式偏置共发射极放大电路图2比图1多用3个元件。

基极电压是由RBl和RB2分压取得的,所以称为分压偏置。

发射极中增加电阻RE和电容CE,CE称交流旁路电容,对交流是短路的,RE则有直流负反馈作用。

所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。

如果送回部分和原来的输入部分是相减的,就是负反馈。

图中基极真正的输入电压是RB2上电压和RE上电压的差值,所以是负反馈。

由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。

3)射极输出器图3(a)是一个射极输出器。

它的输出电压是从射极输出的。

图3(b)是它的交流通路图,可以看到它是共集电极放大电路。

这个图中,晶体管真正的输入是Vl 和V。

的差值,所以这是一个交流负反馈很深的电路,由于很深的负反馈,这个电路的特点是:电压放大倍数小于1而接近1,输出电压和输入电压同相输入阻抗高输出阻抗低,失真小,频带宽,工作稳定.它经常被用作放大器的输入级,输出级或作阻抗匹配之用。

(4)低频放大器的耦合一个放大器通常有好几级,级与级之间的联系就称为耦合。

放大器的级间耦合方式有三种;①RC耦合,见图4(a)。

优点是简单、成本低,但性能不是最佳。

②变压器耦合,见图4(b)。

优点是阻抗匹配好、输出功率和效率高,但变压器制作比较麻烦。

(3)直接耦合,见图4(c)。

优点是频带宽,可作直流放大器使用,但前后级工作有牵制,稳定性差,设计制作较麻烦。

功率放大器能把输入信号放大并向负载提供足够大的功率的放大器叫功率放大器。

例如收音机的末级放大器就是功率放大器。

(1)甲类单管功率放大箱图5是单管功率放大器,C1是输入电容,T是输出变压器。

它的集电极负载电阻Ri是将负载电阻RL通过变压器匝数比折算过来的;负载电阻是低阻抗的扬声器,用变压器可以起阻抗变换作用,使负载得到较大的功率。

这个电路不管有没有输入信号,晶体管始终处于导通状态,静态电流比较大,困此集电极损耗较大,效率不高,大约只有35%。

这种工作状态被称为甲类工作状态。

这种电路一般用在功率不太大的场合,它的输入方式可以是变压器耦合也可以是RC耦合。

(2)乙类推挽功率放大器图6是常用的乙类推挽功率放大电路。

它由两个特性相同的晶体管组成对称电路,在没有输入信号时,每个管子都处于截止状态,静态电流几乎是零,只有在有信号输入时管于才导通,这种状态称为乙类工作状态。

当输入信号是正弦波时,正半周时VTl导通VT2截止,负半周时VT2导通VTl截止。

两个管于交替出现的电流在输出变压器中合成,使负载上得到纯正的正弦波。

这种两管交替工作的形式叫做推挽电路。

乙类推挽放大器的输出功率较大,失真也小,效率也较高,一般可达60%。

(3)OTL功率放大器目前广泛应用的无变压器乙类推挽放大器,简称OTL电路,是一种性能很好的功率放大器。

为了易于说明,先介绍一个有输入变压器没有输出变压器的OTL电路,如图7.这个电路使用两个特性相同的晶体管,两组偏置电阻和发射极电阻的阻值也相同.在静态时,VTI、VT2流过的电流很小,电容C上充有对地为1/2E的直流电压.在有输入信号时,正半周时VTI譬通,VT2截止,集电板电流方向如图所示,负载RL上得到放大了的正半周输出信号.负半周时VTl截止,VT2导通,集电极电流的方向如图所示,RL上得到放大了的负半周输出信号.这个电路的关键元件是电容器C,它上面的电压就相当于VT2的供电电压.以这个电路为基础,还有用三极管倒相的不用输入变压器的真正OTL电路,用PNP管和NPN 管组成的互补对称式OTL电路,以及最新的桥接推挽功率放大器,简称BTL电路等等。

直流放大器能够放大直流信号或变化很缓慢的信号的电路称为直流放大电路或直流放大器。

测量和控制方面常用到这种放大器。

(1)双管直耦放大器直流放大器不能用RC耦合或变压器耦合,只能用直接耦合方式,图8是一个两级直耦放大器。

直耦方式会带来前后级工作点的相互牵制,电路中在VT2的发射极加电阻RE以提高后级发射极电位来解决前后级的牵制。

直流放大器的另一个更重要的问题是零点漂移。

所谓零点漂移是指放大器在没有输入信号时,由于工作点不稳定引起静态电位缓慢地变化,这种变化被逐级放大,使输出端产生虚假信号.放大器级数越多,零点漂移越严重。

所以这种双管直耦放大器只能用于要求不高的场合。

(2)差分放大器解决零点漂移的办法是采用差分放大器,图9是应用较广的射极耦合差分放大器。

它使用双电源,其中VTl和VT2的特性相同,两组电阻数值也相同,RE有负反馈作用。

实际上这是一个桥形电路,两个Rc和两个管子是四个桥臂,输出电压V。

从电桥的对角线上取出。

没有输入信号时,因为·R Cl:RC2和两管特性相同,所以电桥是平衡的,输出是零。

由于是接成桥形,零点漂移也很小。

差分放大器有良好的稳定性,因此得到广泛的应用。

集成运算放大器集成运算放大器是一种把多级直流放大器做在一个集成片上,只要在外部接少量元件就能完成各种功能的器件。

因为它早期是用在模拟计算机中做加法器、乘法器用的,所以叫做运算放大器。

它有十多个引脚,一般都用有3个端子的三角形符号表示,如图10。

它有两个输入端、1个输出端,上面那个输入端叫做反相输入端,用“一”作标记,下面的叫同相输入端,用“+”作标记。

.集成运算放大器可以完成加、减、乘、除、微分、积分等多种模拟运算,也可以接成交流或直流放大器应用。

在作放大器应用时有:(1)带调零的同相输出放大电路图11是带调零端的同相输出运放电路.引脚1、11、12是调零端,调整RP可使输出端(8)在静态时输出电压为零.9.6两脚分别按正,负电源.输入信号按到同相输入端(5),因此输出信号和输入,信号同相.放大器负反馈经反馈电阻R2接到反相输入端(4).同相输入接法的电压放大倍数总是大于1的。

(2)反相输出运放电路也可以使输入信号从反相输入端接入,如图12.如对电路要求不高,可以不用调零,这时可以把3个调零端短路.输入信号从耦合电容C1经R1接人反相输入端,而同相输入端通过电阻R3接地.反相输入接法的电压放大倍数可以大于1,等于l或小于1,(3)同相输出高输入阻抗运放电路图13中没有接入R1,相当于R1阻值无穷大,这时电路的电压放大倍数等于1,输入阻抗可达几百千欧。

放大电路读圈要点和举例放大电路是电子电路中变化较多和较复杂的电路.在拿到一张放大电路图时,首先要把它遂级分解开,然后一级一级分析弄懂它的原理,最后再全面综合。

读图时要注意,①在逐级分析时要区分开主要元器件和辅助元器件.放大器中使用的辅助元器件很多,如偏置电路中的温度补偿元件,稳压稳流元器件,防止自激振荡的防振元件、去耦元件,保护电路中的保护元件等.②在分析中最主要和困难的是反馈的分析,要能找出反馈通路,判断反馈的极性和类型,特别是多级放大器,往往以后级将负反馈加到前级,因此更要细致分析.③一般低频放大器常用RC耦合方式,高频放大器则常常是和LC调谐电路有关的,或是用单调谐或是用双调谐电路,而且电路里使用的电容器容量一般也比较小.④注意晶体管和电源的极性,放大器中常常使用双电源,这是放大电路的特殊性。

例1 助听器电略图14是一个助听器电路,实际上是一个4级低频放大器.VTl,VT2之间和VT3,VT4之间采用直接耦合方式,VT2和VT3之间则用RC耦合.为了改善音质,VTl和VT3的本级有并联电压负反馈(R2和R7).由于使用高阻抗的耳机,所以可以把耳机直接接在VT4的集电极回路内。

R6,C2是去耦电路,C6是电源滤波电容。

例2 收音机低放电路图15是普及型收音机的低放电路。

电路共3级,第1级(VTl)前置电压放大,第2级(VT2)是推动级,第3级(VT3,VT4)是推挽功放。

VTl和VT2之间采用直接耦合,VT2和VT3,VT4之间用输入变压器(T1)耦合并完成倒相,最后用输出变压器(T2)输出,使用低阻扬声器。

此外,VTl本级有并联电压负反馈(R1),T2次级经R3送回到VT2有串联电压负反馈。

电路中C2的作用是增强高音区的负反馈,减弱高音以增强低音。

R4、C4为去耦电路,C3为电源的滤波电容.整个电路简单明了.计算机电路基础(2)--期末网上答疑记录资料任为民老师:今天计算机电路基础(2)进行网上讨论,讨论重点是教材的第二篇,也就是模拟电路部分。

这部分是学习的重点,又是较难学的部分。

大家在学习中有什么问题或要讨论的问题,请大家提出来我们共同研究。

问:请问老师:三极管放大电路的工作特点?谢谢!任为民老师:三极管放大电路的工作特点主要表现以下三点:1、电路中既有直流,又有交流。

直流提供静态工作点,交流是被放大的信号;2、电路由线性元件和非线性元件组成,不能直接用线性电路的分析方法分析放大电路;3、三极管必须始终工作在放大状态,以保证被放大的信号不失真。

问:如何看懂放大电路图,不知道电路是不是能放大信号?任为民老师:放大电路在组成上满足以下要求就能放大信号:1、由于三极管基本放大电路的放大元件是半导体三极管,所以必须外加直流电源,并保证三极管的发射极有正向偏置电压,集电结有反向偏置电压;2、输入信号和输入电极之间有信号通路,输出电极和负载之间有信号通路;3、直流电源对交流信号呈现非常小(接近为0)的电阻,因此要避免与输入、输出电极相联的信号被直流电源短路。

相关文档
最新文档