匀强磁场中的匀速圆周运动专题
专题:圆形磁场问题
![专题:圆形磁场问题](https://img.taocdn.com/s3/m/ec1bda4e58fafab069dc0220.png)
O1
例题(多选)如图虚线所示区域内有方向垂直于纸面的匀
强磁场,一束速度大小各不相同的质子正对该区域的圆 心O射入这个磁场;结果,这些质子在该磁场中运动的
时间有的较长,有的较短,其中运动时间较长的粒子
(
CD )
B v O s1 θ1 R1 s2
A.射入时的速度一定较大 B.在该磁场中运动的路程一定较长 C.在该磁场中偏转的角度一定较大 D.从该磁场中飞出的速度一定较小
2 2
2
当速度变为2V的带电粒子,不具备“磁会聚”的 条件,因此不会都通过O点。但此题可采用极端分析 法,带电微粒在磁场中经过一段半径为r’=2R的圆 弧运动后,将在y轴的右方(x>0)的区域离开磁场并做 匀速直线运动,如图所示。靠近上端点发射出来的带 电微粒在突出磁场后会射向x同正方向的无穷远处; 靠近下端点发射出来的带电微粒会在靠近原点之处穿 出磁场。所以,这束带电微粒与x同相交的区域范围 是x>0. y
θ2
R2
结论3:运动速度v相同,方向不同,弧长越长对应 时间越长。(直径对应的弧最长)
例题:如图,半径为 r=3×10-2m的圆形区域内有一匀强磁 场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析:R=mv/Bq=5×102m>r 说明:半径确定时,通过的弧越 长,偏转角度越大。而弧小于半 个圆周时,弦越长则弧越长。 sin = r/R = 37º,
h 2vt 4 3mv / qE
2
圆形磁场多次碰撞问题
带电粒子在匀强磁场中的匀速圆周运动
![带电粒子在匀强磁场中的匀速圆周运动](https://img.taocdn.com/s3/m/99b354b5710abb68a98271fe910ef12d2af9a9aa.png)
洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
专题06 带电粒子在磁场中运动的动态圆模型--高考物理模型法之情景模型法(解析版)2020年高考物理
![专题06 带电粒子在磁场中运动的动态圆模型--高考物理模型法之情景模型法(解析版)2020年高考物理](https://img.taocdn.com/s3/m/75dd7905ddccda38366baf66.png)
一模型界定本模型主要是指带电粒子在磁场中做匀速圆周运动时,由于粒子的速度不同、入射位置不同等因素而引起粒子在磁场中运动轨迹的差异,从而在有界磁场中形成不同的临界状态与极值问题的一类物理情景.二模型破解1. 处理“带电粒子在匀强磁场中的圆周运动”的基本知识点(i)圆心位置的确定①利用速度的垂线;②利用弦的中垂线;③利用两速度方向夹角的角平分线;④利用运动轨迹的半径大小.具体来说,如图1所示:①已知两位置的速度,分别过两位置作速度的垂线,交点处为运动轨迹的圆心②已知一点的速度与另一点的位置,过已知速度的点作该点速度的垂线,再作两点连线的中垂线,交点处为运动轨迹的圆心③已知一点的速度与另一不知位置的点的速度方向,过已知速度的点作该点速度的垂线,再作两速度夹角的平分线,交点处为运动轨迹的圆心④已知一点的速度与粒子运动的轨迹半径,过该点作速度的垂线,再在垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑤已知不知位置的两点的速度方向与粒子运动的轨迹半径,作两速度的夹角平分线,再在平分线上取一点,使其到两已知两已知速度所在直线间的距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑥已知一不知位置的点的速度方向与粒子运动的轨迹半径,可确定粒子运动的轨迹圆心位置在与该速度所在直线相平行且距离等于轨迹半径的直线上⑦已知运动轨迹上三点的位置,连接其中两点所得任两条弦,作此两条弦的中垂线,交点处为运动轨迹的圆心⑧已知运动轨迹上两点的位置与粒子运动的轨迹半径,作连接两已知点所得弦的中垂线,再在中垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心(ii)两个重要几何关系①粒子速度的偏向角ϕ等于回旋角θ,并等于AB 弦与切线的夹角(弦切角α)的2倍,即:ϕ=θ=2α=ωt.②相对的弦切角θ相等,与相邻的弦切角'θ互补,即πθθ=+'(iii)两个重要的对称性①如图2所示,带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;②如图3所示,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出;不沿半径射入的粒子必不沿半径射出,但速度方向与入射点、出射点所在半径之间的夹角相等,入射速度与出射速度的交点、轨迹圆的圆心、磁场区域圆的圆心都在弧弦的中垂线上.(iV)两类重要的临界状态与极值条件①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②当粒子运动的速率一定(即在磁场中运动的轨迹半径一定)时,通过的弧长越长,转过的圆心角越大,粒子在有界匀强磁场中运动的时间越长.由图1可以看到,Rl 22sin =θ,粒子在磁场中转过一个劣弧时,对应的弦长越长,转过的圆心角越大,运动时间越长;粒子在磁场中转过一个优弧时则相反.2.动态圆的问题处理方法(i)旋转"半圆"法处理速率相同的动态圆问题如图4所示,对于大量的同种粒子,从空间同一位置以相同的速率υ沿不同的方向垂直..进入某匀强磁场时,由于速度方向的差异,引起粒子在空间运动轨迹的不同,它们在空间运动的基本特征是:①所有粒子运动的轨迹半径qBmv R =相同 ②所有粒子运动轨迹平面都在垂直于磁场的同一平面内③所有粒子运动轨迹的圆心都在以入射点为圆心、R 为半径的圆周上④所有粒子的运动轨迹所覆盖的空间区域是以入射点为圆心、2R 圆形区域○5同一时刻射入的粒子在经过相同时间t ∆后,每个粒子速度方向改变的角度(偏向角)ϕ、转过的圆心角度α相同,t m qB ∆⋅==ϕα;到入射点的距离l 相同,即位于以射点为圆心、以l 为半径的同一圆周上,其中2sin 2αR l =。
专题1:带电粒子在匀强磁场的运动典型问题分析
![专题1:带电粒子在匀强磁场的运动典型问题分析](https://img.taocdn.com/s3/m/0ac5d3472e3f5727a5e962fa.png)
枣庄三中2013——2014学年度高二物理学案使用日期:2013年12月__日 学号_______ 姓名___________专题1:带电粒子在匀强磁场的运动典型问题分析问题1.带电粒子的轨道半径和周期1.粒子圆周运动的半径:Bqv =m R v 2R =Bqmv2.粒子圆周运动的周期:T =vRπ2=2π(Bq mv )/v =Bq m π2所以T =Bq m π23.带电粒子运动轨迹的圆心、半径的确定(1)已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图5-5-1(a )所示,P 为入射点,M 为出射点,O 为轨道圆心。
(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图5-5-1(b )所示,P 为入射点,M 为出射点,O 为轨道圆心。
(3)确定带电粒子运动圆弧所对圆心角的两个重要结论:带电粒子射出磁场的速度方向与射入磁场的速度方向之间的夹角φ叫做偏向角,偏向角等于圆弧轨道M P对应的圆心角α,即α=φ,如图5-5-1(a )所示。
(4)圆弧轨道M P所对应圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即α=2θ,如图5-5-1(b )所示。
4、带电粒子在磁场中运动的时间的确定带电粒子在匀强磁场中做匀速圆周运动时,转一周所用时间可用公式T=qBmπ2确定,从式中可以看出粒子转一周所用时间与粒子比荷有关,还与磁场有关。
若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角θ,并由表达式t=πθ2T 确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间越长。
典例1. 质量为m ,电荷量为q 的粒子,以初速度v 0垂直进入磁感应强度为B 、宽度为L 的匀强磁场区域,如图所示。
求(1)带电粒子的运动轨迹及运动性质(2)带电粒子运动的轨道半径(3)带电粒子离开磁场时的速率 (4)带电粒子离开磁场时的偏转角θ(5)带电粒子在磁场中的运动时间t(6)带电粒子离开磁场时偏转的侧位移图5-5-1问题2.带电粒子在有界磁场中运动问题1.带电粒子在半无界磁场中的运动典例2.一个负离子,质量为m ,电量大小为q ,以速率V 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中(如图1).磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离.(2)如果离子进入磁场后经过时间t 到达位置P ,证求直线OP 与离子入射方向之间的夹角θ跟t 的关系。
《带电粒子在匀强磁场中的匀速圆周运动》 教案4
![《带电粒子在匀强磁场中的匀速圆周运动》 教案4](https://img.taocdn.com/s3/m/589c9e575acfa1c7aa00ccfe.png)
课题:带电粒子在匀强磁场中的匀速圆周运动授课人:陈科学校:山西省大同市机车厂中学高中理化组邮编:037038一、 教学目的1、 使学生在复习巩固的基础上熟练掌握“带电粒子在匀强磁场中的匀速圆周运动”的基本规律。
2、 使学生在该专题上有进一步的认识,并提高解题技巧,拓展解题思路。
3、 培养学生观察、分析和综合物理问题的能力。
二、 教学重点和难点1、重点:“带电粒子在匀强磁场中的匀速圆周运动”的基本规律。
qvB=mv 2/r2、难点:学习分析物理问题的能力,掌握构建物理图景的分析方法。
三、 教具自制电脑课件(Flash 制作,特点:充分演示本专题的物理过程)附在软盘内四、 课程类型:复习提高课五、教学过程<一> 复习基础知识,引出正课。
对学生提出思考问题:复习“带电粒子在匀强磁场中的匀速圆周运动”的基本规律,请学生回答。
学生答:qVB=mV 2/r r =mV/qB T=2πm/qB带电粒子所受洛仑兹力方向始终指向圆心,且速度方向时刻与之垂直,洛仑兹力不做功。
(有个别学生还常在这个问题犯错误,因此课件专门制作了一个错误的动画,给学生制造思维陷阱)<二> 例题讨论,讲解本部分内容目的在于使学生在分析例题的过程中学习到知识,及分析物理问题的方法。
1、静止的电子(质量为m ,电量为e )以初速度V 0沿AB 方向进入匀强磁场,经过一段时间击中M 点,如图,设AM =d ,AM 与AB 的夹角为300,则磁感应强度B等于多少?【教师活动】提出要求:分析本题的物理过程,思考如何解决问题。
当学生活动完成后(问题解决),教师可根据学生回答的实际情况适当的加以概括。
【学生活动】⑴独立思考(要求学生想清楚物理过程)⑵分组讨论⑶学生在教师的引导下解决问题(利用教师自制的Flash 课件协助学生分析物理过程)A B M【说明】本例难度较低,知识点较简单。
教学活动重点在于学生活动⑵⑶,要充分体现以生为本。
带电粒子在匀强磁场中的运动(题型全)
![带电粒子在匀强磁场中的运动(题型全)](https://img.taocdn.com/s3/m/7ec22207e87101f69e31958d.png)
例2、如图,PQ为一块长为L,水平放置的绝缘平板,整 个空间存在着水平向左的匀强电场,板的右半部分还存在 着垂直于纸面向里的有界匀强磁场,一质量为m,带电量 为q的物体,从板左端P由静止开始做匀加速运动,进入 磁场后恰作匀速运动,碰到右端带控制开关K的挡板后被 弹回,且电场立即被撤消,物体在磁场中仍做匀速运动, 离开磁场后做匀减速运动,最后停在C点,已知PC=L/4, 物体与板间动摩擦因数为μ,求:(1)物体带何种电荷? (2)物体与板碰撞前后的速度v1和v2 (3)电场强度E和磁感应强度B多大?
请你推导半径和周期表达式。 2 m mv T R qB qB 实验演示
3、粒子运动方向与磁场有一夹角(大于0度小于 90度)轨迹为螺线
一、磁场作用下粒子的偏转
1、如图所示,一束电子(电量为e)以速度v垂直 从A点射入磁感应强度为B,宽度为d的匀强磁场中, 且与磁场的边界垂直,通过磁场时速度方向与电 子原来入射方向的夹角是30°,则: 电子的质量是 , v A B 通过磁场的时间是 。 30
2、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求正电子的电量和质量之比?
思考:如果是负电子,那 么,两种情况下的时间之 比为多少?
3、如图所示,在半径为r的圆形区域内,有一个 匀强磁场,一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心, ∠MON=120°,求粒子在磁场区的偏转半径R及 在磁场区中的运动时间。(粒子重力不计)
带电粒子在匀强磁场中的圆周运动
![带电粒子在匀强磁场中的圆周运动](https://img.taocdn.com/s3/m/35542802814d2b160b4e767f5acfa1c7aa00828b.png)
带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
带电粒子在匀强磁场中的圆周运动
![带电粒子在匀强磁场中的圆周运动](https://img.taocdn.com/s3/m/9752fb2abd64783e09122bf1.png)
1 2 eU mv 2
v evB m R
2
r tan 2 R
q
1 B r
2mU q tg e 2
【习题】如图所示,一个质量为m、电量为q的正离 子,从A点正对着圆心O以速度v射入半径为R的绝缘 圆筒中。圆筒内存在垂直纸面向里的匀强磁场,磁感 应强度的大小为B。要使带电粒子与圆筒内壁碰撞多 次后仍从A点射出,问发生碰撞的最少次数? 并计算此过程中正离子在磁场中运动的时间t ? 设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒 子的重力。
磁场专题复习
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中做圆周运动的 分析方法:
求解带电粒子在匀强磁场中的匀速圆周 运动时,根据题意对带电粒子进行受力分析 和运动分析,画出粒子运动的轨迹,确定出 圆心,从而求出半径或圆心角,然后利用牛 二定律圆周运动公式进行解答。其中求出半 径或圆心角,往往是解题关键。解题的一般 步骤为:看求解,明对象;查电性,析受力; 画轨迹,定圆心;找关系,求半径;套公式, 做解答。{也可逆向分析}
带电粒子在半无界磁场中的运动
例题(2001年全国卷)如图所示,在y<0的区域内存 在匀强磁场,磁场方向垂直于xy平面并指向纸面外, 磁感强度为B。一带正电的粒子以速度v0从O点射入 磁场,入射方向在xy平面内,与x轴正向的夹角为θ。 若粒子射出磁场的位置与O点的距离为l,求该粒子的 电量和质量之比。
(2005年广东卷)如图12所示,在一个圆形区域内,两 个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界 的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º 。一质量为 m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成 30º 角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心 O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁 场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子 重力)。
磁场中圆周运动动量定理
![磁场中圆周运动动量定理](https://img.taocdn.com/s3/m/b62d6194370cba1aa8114431b90d6c85ec3a88cc.png)
磁场中圆周运动动量定理摘要:一、磁场中圆周运动的基本概念1.粒子在磁场中做圆周运动的条件2.圆周运动的特征二、动量定理在磁场中圆周运动中的应用1.动量的定义及计算方法2.动量在磁场中圆周运动中的变化三、磁场中圆周运动的周期公式1.周期公式的推导过程2.周期公式的应用四、磁场中圆周运动的相关问题1.向心力的来源2.磁场中圆周运动的速度与磁感应强度的关系正文:一、磁场中圆周运动的基本概念在磁场中,当带电粒子受到洛伦兹力作用时,会做圆周运动。
这种运动具有以下特征:粒子在磁场中的速度方向始终与磁场方向垂直,因此速度的大小不变,但方向会发生改变。
由于动量是矢量,速度方向的改变意味着动量的改变,所以动量的改变量并不为0。
二、动量定理在磁场中圆周运动中的应用动量定理是用来描述物体动量变化的物理定律。
在磁场中,带电粒子受到洛伦兹力作用,其动量会发生改变。
根据动量定理,动量的变化量等于作用在粒子上的力的冲量。
在磁场中,洛伦兹力提供向心力,使粒子做圆周运动。
因此,可以通过动量定理来分析粒子在磁场中圆周运动的性质。
三、磁场中圆周运动的周期公式带电粒子在匀强磁场中做匀速圆周运动的周期公式为:T = 2πm/Bq,其中m为粒子质量,B为磁感应强度,q为粒子的电量。
根据这个公式,可以计算出粒子在磁场中圆周运动的周期。
需要注意的是,周期与运动速度v无关,这是磁场中圆周运动的一个特性。
四、磁场中圆周运动的相关问题在磁场中,圆周运动的向心力来源于洛伦兹力。
洛伦兹力始终与速度方向垂直,因此不会对粒子做功。
(完整版)带电粒子在匀强磁场中的运动专题
![(完整版)带电粒子在匀强磁场中的运动专题](https://img.taocdn.com/s3/m/2c260634fd0a79563d1e7270.png)
带电粒子在匀强磁场中的运动专题一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。
2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。
3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。
例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。
现将带电粒子的速度变为v/3,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B.2Δt C.13Δt D.3Δt例题2、如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。
一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。
粒子在磁场中运动的轨道半径为R,粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。
不计重力。
求M点到O点的距离和粒子在磁场中运动的时间。
二、带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。
如图甲所示,带电粒子以速率v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b。
2.磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。
如图乙所示,带正电粒子以速率v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b。
3.临界状态不唯一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。
带电粒子在匀强磁场中的圆周运动
![带电粒子在匀强磁场中的圆周运动](https://img.taocdn.com/s3/m/2189398d84254b35eefd34e6.png)
第 1 页 共 1 页 带电粒子在匀强磁场中的圆周运动
1.匀速圆周运动的规律
若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.
(1)基本公式:
q v B =m v 2R
(2)半径R =m v Bq
(3)周期T =2πR v =2πm qB
2.圆心的确定
(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图1甲所示,P 为入射点,M 为出射点).
图1
(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).
3.半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
4.运动时间的确定
粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间
表示为t =θ2π
T (或t =θR v ).。
带电粒子在磁场中运动解题方法及经典例题
![带电粒子在磁场中运动解题方法及经典例题](https://img.taocdn.com/s3/m/057d49bfb307e87100f69652.png)
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
带电粒子在匀强磁场中的圆周运动
![带电粒子在匀强磁场中的圆周运动](https://img.taocdn.com/s3/m/8261809129ea81c758f5f61fb7360b4c2f3f2a78.png)
带电粒子在匀强磁场中的圆周运动由于带电粒子在匀强磁场中的受力情况特殊,其运动轨迹呈现为圆周运动。
本文将详细介绍带电粒子在匀强磁场中的圆周运动原理及相关公式。
根据洛伦兹力的作用,当带电粒子运动时,受到匀强磁场的力会使其偏离直线路径,而呈现出圆周运动。
该力的方向垂直于带电粒子的速度方向与磁场方向,符合右手螺旋定则。
由于受力方向始终向心,因此粒子在磁场中做圆周运动。
带电粒子在匀强磁场中的圆周运动可以通过以下公式进行描述:1.某物质在匀强磁场中的圆周运动半径:$$r=\frac{mv}{|qB|}$$其中,$r$为圆周运动半径,$m$为粒子质量,$v$为粒子速度,$q$为粒子电荷量,$B$为磁感应强度。
2.圆周运动的周期:$$T=\frac{2\pi m}{|q|B}$$其中,$T$为圆周运动的周期,$m$为粒子质量,$q$为粒子电荷量,$B$为磁感应强度。
3.圆周运动的频率:$$f=\frac{1}{T}=\frac{|q|B}{2\pi m}$$其中,$f$为圆周运动的频率,$T$为圆周运动的周期,$q$为粒子电荷量,$B$为磁感应强度,$m$为粒子质量。
从以上公式可以看出,带电粒子的质量、速度、电荷量以及磁感应强度都会对其圆周运动的半径、周期和频率产生影响。
在匀强磁场中,不同的带电粒子具有不同的圆周运动轨迹。
根据质量和电荷量的不同,带电粒子的圆周运动半径、周期和频率都会有所差异。
因此,通过对带电粒子在匀强磁场中的圆周运动进行观测和测量,可以对粒子的性质进行研究和分析。
带电粒子在匀强磁场中的圆周运动在物理学和实际应用中具有重要的意义。
它可以被应用于粒子物理实验、质谱仪、核磁共振等领域。
了解带电粒子在匀强磁场中的圆周运动的原理及相关公式,有助于理解和应用这些技术和方法。
总结了带电粒子在匀强磁场中的圆周运动原理及相关公式,希望对读者对该主题有一个清晰的了解。
高中物理-“带电粒子在磁场中的圆周运动”解析
![高中物理-“带电粒子在磁场中的圆周运动”解析](https://img.taocdn.com/s3/m/71e24eaee009581b6bd9ebef.png)
高中物理-“带电粒子在磁场中的圆周运动”解析“带电粒子在磁场中的圆周运动”解析处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。
重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。
下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。
一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。
求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。
分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速度垂线的交点即为圆心O’(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。
由图可知粒子圆周运动的半径由有。
再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。
②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。
【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m带电+q的粒子从O点以初速度V沿垂直于ab 方向发射;在图中作出粒子。
专题十五 磁场中的动态圆模型
![专题十五 磁场中的动态圆模型](https://img.taocdn.com/s3/m/dbf691e268dc5022aaea998fcc22bcd126ff420f.png)
第十一章 磁 场专题十五 磁场中的动态圆模型核心考点五年考情命题分析预测“平移圆”模型本专题内容为解决带电粒子在有界磁场中运动的模型归纳,单独考查的可能性不大,但在解决大量带电粒子在磁场中的运动问题时,会使解题更加方便快捷.预计2025年高考可能会通过与带电粒子在磁场中做圆周运动有关的现代科技,考查带电粒子在有界匀强磁场中运动的临界与极值问题.“旋转圆”模型“放缩圆”模型2020:全国ⅠT18 “磁聚焦”与 “磁发散”模型 2021:湖南T13题型1 “平移圆”模型适用条件同种带电粒子速度大小相等、方向相同,入射点不同但在同一直线上.粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则圆周运动半径r=mv0qB ,如图所示(图中只画出了粒子带负电的情境)轨迹圆圆心共线 带电粒子在磁场中做匀速圆周运动的轨迹圆圆心在同一直线上,该直线与入射点的连线平行界定方法 将半径为r =mv 0qB的圆进行平移,从而探索粒子运动的临界条件垂直于磁场边界不断地发射速度相同的同种带电粒子,不考虑粒子间的相互作用,则粒子经过磁场的区域(阴影部分)可能是( C )解析带电粒子在磁场中做匀速圆周运动,如图所示,粒子源最左端发射的粒子落在A 点,最右端发射的粒子落在B点,故选C.题型2“旋转圆”模型适用条件同种带电粒子速度大小相等,方向不同.粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,圆周转向相同,圆心位置不同,轨迹不同.若粒子射入磁场时的速度为v0,则粒子做圆周运动的轨迹半径为R=mv0qB,如图所示(图中只画出粒子带正电的情境)轨迹圆圆心共圆如图.带电粒子在磁场中做匀速圆周运动的轨迹圆的圆心在以入射点为圆心、半径R=mv0qB的圆上界定方法将半径为R=mv0qB的圆以带电粒子入射点为定点进行旋转,从而探索粒子运动的临界条件,这种方法称为“旋转圆”法2.[2023四川德阳期末]如图所示,竖直平行线MN、PQ间距离为a,其间存在垂直纸面向里的匀强磁场(含边界PQ),磁感应强度大小为B,MN上O处的粒子源能沿不同方向释放速度大小相等、方向均垂直磁场的带负电粒子,已知粒子的电荷量为q,质量为m.粒子间的相互作用及重力不计,其中沿θ=60°射入的粒子,恰好垂直PQ射出,则(D)A.粒子在磁场中做圆周运动的半径为√3aB.粒子的速率为aqBmC.沿θ=60°射入的粒子,在磁场中的运动时间为πm3qBD.PQ边界上有粒子射出的长度为2√3a解析粒子沿θ=60°射入时,恰好垂直PQ射出,则粒子在磁场中转过30°,如图甲所示,由几何关系有Rsin30°=a,解得R=2a,由洛伦兹力提供向心力有qvB=m v2R,则v=2aqBm,故AB错误.沿θ=60°射入的粒子,在磁场中的运动时间为t=30°360°T=112×2πRv=πR 6v =πm6qB,故C错误.如图乙所示,θ=0°时,粒子从PQ上离开磁场的位置与B点的距离为√3a,当θ增大时,粒子从PQ上离开磁场的位置下移,直到粒子运动轨迹与PQ相切;θ继续增大,则粒子不能从PQ边界射出;粒子运动轨迹与PQ相切时,由半径R=2a 可知,粒子转过的角度为60°,所以出射点在PQ上O点的水平线下方√3a处;所以PQ 边界上有粒子射出的长度为2√3a,故D正确.题型3“放缩圆”模型适用条件同种带电粒子速度方向相同,大小不同.粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度大小的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情境),速度v越大,运动半径越大.带电粒子沿同一方向射入磁场后,它们运动轨迹的圆心在垂直入射速度方向的直线PP'上界定方法以入射点P为定点,圆心位于直线PP'上,将半径放缩确定运动轨迹,从而探索出粒子运动的临界条件,这种方法称为“放缩圆”法3.真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示.一速率为v的电子从圆心沿半径方向进入磁场.已知电子质量为m,电荷量为e,忽略重力.为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为(C)A.3mv2ae B.mvaeC.3mv4aeD.3mv5ae解析为使电子的运动被限制在图中实线圆围成的区域内,电子进入匀强磁场中做匀速圆周运动的半径最大时轨迹如图所示,设其轨迹半径为r,轨迹圆圆心为M,磁场的磁感应强度最小为B ,由几何关系有√r 2+a 2+r =3a ,解得r =43a ,电子在匀强磁场中做匀速圆周运动有evB =m v 2r,解得B =3mv 4ae,选项C 正确.题型4 “磁聚焦”与“磁发散”模型原理图像证明磁聚焦如图甲所示,大量同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,不计粒子的重力及粒子间的相互作用,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出图甲四边形OAO'B 为菱形,是特殊的平行四边形,对边平行,OB 必平行于AO'(即竖直方向),可知从A 点入射的带电粒子必然经过B 点磁发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,P 点有大量质量为m 、电荷量为q 的带正电粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力及粒子间的相互作用,如果带正电粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行图乙所有粒子运动轨迹的圆心与磁场圆圆心O 、入射点、出射点的连线为菱形,也是特殊的平行四边形,O 1A 、O 2B 、O 3C 均平行且等于PO ,即出射速度方向相同(均沿水平方向)4.如图所示,半径为R 的14圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场的左边垂直x 轴放置一线形粒子发射装置,能在0≤y ≤R 的区间内各处沿x 轴正方向同时发射出速度相同、带正电的同种粒子,粒子质量为m 、电荷量为q ,不计粒子的重力及粒子间的相互作用力,若某时刻粒子被装置发射出后,经过磁场偏转击中y 轴上的同一位置,则下列说法中正确的是( D )A.粒子都击中O 点处B.粒子的初速度为BqR2mC.粒子在磁场中运动的最长时间为πm qBD.粒子到达y 轴上的最大时间差为πm2qB-m qB解析 由题意,某时刻发出的粒子都击中y 轴上一点,由最高点射出的粒子只能击中(0,R ),可知击中的同一点就是(0,R ),A 错误;从最低点射入的粒子也击中(0,R ),由几何关系可知粒子做匀速圆周运动的半径为R ,由洛伦兹力提供向心力得qvB =m v 2R ,则速度v =BqR m,B 错误;偏转角最大的粒子在磁场中的运动时间最长,显然从最低点射入的粒子偏转角最大,为90°,故其在磁场中的运动时间最长,时间t =14T =14×2πm qB=πm2qB ,C错误;从最高点直接射向(0,R )的粒子到达y 轴的时间最短,则最长与最短的时间差为Δt =t -R v=πm2qB-mqB,D 正确.1.如图所示为边长为L 的正方形有界匀强磁场ABCD ,带电粒子从A 点沿AB 方向射入磁场,恰好从C 点飞出磁场;若带电粒子以相同的速度从AD 的中点P 垂直AD 射入磁场,则从DC 边的M 点飞出磁场(M 点未画出).设粒子从A 点运动到C 点所用的时间为t 1,从P 点运动到M 点所用的时间为t2.带电粒子重力不计,则t 1∶t 2为( C )A.2∶1B.2∶3C.3∶2D.1∶2解析 画出粒子从A 点射入磁场到从C 点射出磁场的轨迹,并将该轨迹向下平移,粒子做圆周运动的半径为R =L ,从C 点射出的粒子运动时间为t1=T4;由P 点运动到M 点所用时间为t2,圆心角为θ,cos θ=R 2R=12,则θ=60°,故t2=T6,所以t 1t 2=T 4T 6=32,C 正确.2.[2021全国乙]如图,圆形区域内有垂直纸面向里的匀强磁场,质量为m 、电荷量为q (q >0)的带电粒子从圆周上的M 点沿直径MON 方向射入磁场.若粒子射入磁场时的速度大小为v 1,离开磁场时速度方向偏转90°;若射入磁场时的速度大小为v 2,离开磁场时速度方向偏转60°.不计重力,则v1v 2为( B )A.12B.√33C.√32D.√3解析 设圆形磁场区域的半径为R ,粒子的运动轨迹如图所示,沿直径MON 方向以速度v1射入圆形匀强磁场区域的粒子离开磁场时速度方向偏转90°,则其轨迹半径为r1=R ,由洛伦兹力提供向心力得qv1B =m v 12r 1,解得v1=qBR m;沿直径MON 方向以速度v2射入圆形匀强磁场区域的粒子离开磁场时速度方向偏转60°,由几何关系得tan30°=Rr 2,可得其轨迹半径为r2=√3R ,由洛伦兹力提供向心力得qv2B =m v 22r 2,解得v2=√3qBR m ,则v 1v 2=1√3=√33,B 正确. 3.[多选]如图所示,空间中存在一半径为R 、磁感应强度为B 的圆形匀强磁场,MN 是一竖直放置的足够长的感光板.大量相同的带正电粒子从圆形磁场最高点P 以速率v 沿不同方向垂直磁场方向射入,不考虑速度沿圆形磁场切线方向入射的粒子.粒子质量为m ,电荷量为q ,不考虑粒子间的相互作用和粒子的重力.关于这些粒子的运动,以下说法正确的是( ACD )A.对着圆心入射的粒子,速度越大在磁场中运动的时间越短B.对着圆心入射的粒子,速度越大在磁场中运动的时间越长C.若粒子速度大小均为v =qBR m,出射后均可垂直打在MN 上D.若粒子速度大小均为v =qBR m,则粒子在磁场中的运动时间一定小于πm qB解析 对着圆心入射的粒子,速度越大在磁场中做圆周运动的轨迹半径越大,轨迹对应的圆心角越小,由t =θ2πT =θm qB可知,运动时间越短,故A 正确,B 错误.粒子速度大小均为v=qBR m时,根据洛伦兹力提供向心力可得粒子的轨迹半径r =mvqB =R ,根据几何关系可知,入射点P 、O 、出射点与轨迹圆的圆心的连线构成菱形,射出磁场时的轨迹半径与PO 平行,故粒子射出磁场时的速度方向与MN 垂直,出射后均可垂直打在MN 上;根据几何关系可知,轨迹对应的圆心角小于180°,粒子在磁场中的运动时间t <12T =πm qB,故C 、D 正确.4.[2023豫北名校联考/多选]如图所示,直角三角形ABC 区域内有一方向垂直纸面向里、磁感应强度大小为B 的匀强磁场,∠A =30°,AB =L .在A 点有一个粒子源,可以沿AB 方向发射速度大小不同的带正电的粒子.已知粒子的比荷均为k ,不计粒子间相互作用及重力,则下列说法正确的是( CD )A.随着速度的增大,粒子在磁场中运动的时间变短B.随着速度的增大,粒子射出磁场区域时速度的偏转角变大C.从AC 边射出的粒子的最大速度为2√33kLBD.从AC 边射出的粒子在磁场中的运动时间为π3kB解析5.[多选]如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点.一个带正电的粒子(重力忽略不计)从O 点沿纸面以垂直于cd 边的速度射入正方形区域内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°角的方向(如图中虚线所示)且以各种不同的速率射入正方形区域内,那么下列说法正确的是( AD )A.该带电粒子不可能从正方形的某个顶点射出磁场B.若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能为32t 0C.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能为32t 0D.若该带电粒子从cd 边射出磁场,它在磁场中经历的时间一定为53t 0解析 带电粒子以垂直于cd 边的速度射入正方形内,经过时间t0刚好从c 点射出磁场,则知带电粒子在磁场中做匀速圆周运动的周期为T =2t0.如图所示,随粒子速度逐渐增大,轨迹由①→②→③→④依次渐变,由图可以知道粒子在四个边射出时,不可能从四个顶点射出,故A 正确;由几何关系可知粒子从ab 边射出时经历的时间小于半个周期t0,从bc 边射出时经历的时间小于23T ,从cd 边射出时轨迹所对的圆心角都是300°,经历的时间为5T6=5t 03,故B 、C 错误,D 正确.6.如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里.P 为屏上的一个小孔,PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v 从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( D )A.2mvqBB.2mvcosθqBC.2mv (1-sinθ)qBD.2mv (1-cosθ)qB解析 当粒子初速度方向与MN 垂直时,粒子打中屏MN 上被粒子打中的区域的最右端,到P 点的距离x1=2r =2mvqB ;当粒子初速度方向与PC 夹角为θ时,粒子打中屏MN 上被粒子打中的区域的最左端,到P 点的距离x2=2rcos θ=2mvcosθqB,故在屏MN 上被粒子打中的区域的长度为x1-x2=2mv (1-cosθ)qB,D 正确.7.[选项图形化/多选]如图所示,纸面内有宽为L 、水平向右飞行的带电粒子流,粒子质量为m ,电荷量为-q ,速率为v 0,不考虑粒子的重力及粒子间的相互作用,要使粒子都会聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的形状及对应的磁感应强度可以是下列选项中的(其中B 0=mv 0qL,A 、C 、D 选项中曲线均为半径为L 的14圆弧,B 选项中曲线为半径为L2的圆)( AB )A B C D8.如图所示,正方形区域abcd 内(含边界)有垂直纸面向里的匀强磁场,ab =l ,Oa =0.4l ,大量带正电的粒子从O 点沿与ab 边成37°角的方向以不同的初速度v 0射入磁场,不计粒子重力和粒子间的相互作用.已知带电粒子的质量为m ,电荷量为q ,磁场的磁感应强度大小为B ,sin37°=0.6,cos37°=0.8.(1)求带电粒子在磁场中运动的最长时间;(2)若带电粒子从ad 边离开磁场,求v 0的取值范围.答案 (1)143πm 90qB(2)qBl 4m<v 0≤5qBl 9m解析 (1)粒子从ab 边离开磁场时,在磁场中运动的时间最长,如图甲所示有qBv 0=mv 02R,又T =2πR v 0,解得T =2πm Bq又由几何关系得θ=74°,则粒子在磁场中运动的最长时间t =360°-74°360°T =143πm 90qB(2)粒子轨迹与ad 边相切时,如图乙所示,设此时初速度为v 01,轨迹半径为R 1,由几何关系可得R 1+R 1sin37°=0.4l又qBv 01=mv 012R 1,解得v 01=qBl4m粒子运动轨迹与cd 边相切时,如图丙所示,设此时初速度为v 02,轨迹半径为R 2,由几何关系可得R 2+R 2cos37°=l又qBv 02=mv 022R 2,解得v 02=5qBl 9m综上可得qBl 4m<v 0≤5qBl 9m.9.[与数学知识联系紧密/2024湖北武汉部分学校调研/多选]如图所示,在xOy 平面的第一象限内存在方向垂直纸面向里、磁感应强度大小B =0.5T 的有界匀强磁场(未画出),磁场右边界满足曲线方程x 22+y 24=1(其中x ≥0,y ≥0,单位:m ),M 点的坐标为(12m ,√32m ).从O 点沿x 轴正方向以不同速率射出大量质量m =1×10-6kg 、电荷量q =+2×10-4C 的同种粒子,不计粒子的重力及粒子间的相互作用力,已知所有粒子均不从磁场右边界射出.下列说法正确的是( BD )A.所有粒子在磁场中运动的时间不同B.粒子的最大速率为100m/sC.磁场中有粒子出现的区域面积为π3m 2D.某粒子从O 点运动到M 点的过程,动量改变量大小为1×10-4kg·m/s解析 由题意可知所有的粒子应从y 轴上沿x 轴负方向离开磁场,则所有粒子在磁场中的运动时间均为T2=πmqB ,又所有粒子的质量和电荷量均相同,所以所有粒子在磁场中的运动时间相同,A 错误;当粒子在磁场中的运动轨迹与磁场右边界相切时,粒子的运动轨迹半径最大,速率最大,又粒子的最大轨迹圆方程为x 2+(y -r m )2=r m 2,磁场右边界的曲线方程为x 22+y 24=1,则联立所得方程的判别式Δ=0,解得r m =1m ,根据粒子在磁场中运动时有qv m B =m v m 2r m,可得v m =qBr m m=100m/s ,B 正确;根据题意可知磁场中有粒子出现的区域面积为粒子在磁场中运动的最大轨迹圆面积的12,即S =12πr m 2=π2m 2,C 错误;作出粒子运动过程中经过M 点的轨迹如图所示,则由几何关系有r 2=(12m )2+(√32m -r )2,解得r =√33m ,则粒子的速率为v =qBrm =100√33m/s ,根据图中的几何关系可知粒子在M点时速度方向与y轴正方向的夹角满足cosθ=12√33=√32,即θ=30°,则粒子从O点运动到M点的过程,速度改变量的大小为Δv=2v sin30°+90°2=√3v=100m/s,所以此过程动量改变量的大小为Δp=mΔv=1×10-4kg·m/s,D正确.。
带电粒子在圆形有界磁场中的运动PPT课件
![带电粒子在圆形有界磁场中的运动PPT课件](https://img.taocdn.com/s3/m/e95a5c0db52acfc789ebc9ae.png)
数学知识准备
1.已知两相交圆的有关边角关系
2.逆向思维的应用
一.沿半径方向飞入匀强磁场
沿半径方向飞入磁场,必沿半径方向飞出磁场
例1.(2002年全国) 、电视机的显像管中,电子束的偏 转是用磁偏转技术实现的。电子束经过电压为U的加速 电场后,进入一圆形匀强磁场区,如图所示。磁场方向 垂直于圆面。磁场区的中心为O,半径为r。当不加磁场 时,电子束将通过O点而打到屏幕的中心M点。为了让 电子束射到屏幕边缘P,需要加磁场,使电子束偏转一 已知角度θ ,此时的磁场的磁感应强度B应为多少?
如图所示,匀强磁场分布在半径为R的圆内, 磁感应强度为B,CD是圆的直径,质量为m, 电量为q的带电粒子,由静止开始经加速电场 加速后,沿着与直径CD平行且相距0.6R的直 线从A点进入磁场,若带电粒子在磁场中运动 时间是πm/2qB。求加速电场的加速电压
A 0.6R D
C
【解题回顾】数学方法与物理知识相结合是解决 物理问题的一种有效途径.本题还可以用下述方 法求出下边界.设P(x,y)为磁场下边界上的一点, 经过该点的电子初速度与x轴夹角为,则由图3-8 可知:x=rsin, y=r-rcos 得: x2+(y-r)2=r2 所以磁场区域的下边界也是半径为r,圆心为 (0,r)的圆弧
巩固练习. 如图所示,带负电的粒子垂直磁场 方向进入圆形匀强磁场区域,出磁场时速度方 向偏离原方向60°已知带电粒子质量m=3×10 -20kg,电荷量为q=10-13c,速度v =105m/s磁场 0 区域的半径为R=0.3m,不计重力,求磁场的磁 感强度。
巩固练习.在半径为r的圆筒内有匀强磁场,质量 为m、带电量为q的带电粒子在小孔S处以速度 v0向着圆心射入,问施加的磁感强度为多大, 此粒子才能在最短的时间内从原孔射出?(高 相碰时电量和动能均无损失)
专题7带电粒子在直线边界匀强磁场中的运动(解析版)
![专题7带电粒子在直线边界匀强磁场中的运动(解析版)](https://img.taocdn.com/s3/m/9d1d8488f5335a8103d22025.png)
专题七 带电粒子在直线边界匀强磁场中的运动基本知识点 1.轨迹圆心的两种确定方法(1)已知粒子运动轨迹上两点的速度方向时,作这两速度方向的垂线,交点即为圆心,如图所示。
(2)已知粒子轨迹上的两点和其中一点的速度方向时,画出粒子轨迹上的两点连线(即过这两点的圆的弦),作它的中垂线,并画出已知点的速度方向的垂线,则弦的中垂线与速度方向的垂线的交点即为圆心,如图所示。
2.三种求半径的方法 (1)根据半径公式r =m vqB求解。
(2)根据勾股定理求解,如图所示,若已知出射点相对于入射点侧移了x ,则满足r 2=d 2+(r -x )2。
(3)根据三角函数求解,如图所示,若已知出射速度方向与入射方向的夹角为θ,磁场的宽度为d ,则有关系式r =dsin θ。
3.四种角度关系 (1)如图所示,速度的偏向角(φ)等于圆心角(α)。
(2)圆心角α等于AB 弦与速度方向的夹角(弦切角θ)的2倍(φ=α=2θ=ωt )。
(3)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。
(4)进出同一直线边界时速度方向与该直线边界的夹角相等。
4.两种求时间的方法(1)利用圆心角求解,若求出这部分圆弧对应的圆心角,则t =θ2πT 。
(2)利用弧长s 和速度v 求解,t =sv 。
5.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.6.带电粒子的电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,当粒子具有相同速度时,正负粒子在磁场中运动轨迹不同,导致多解。
如图所示,带电粒子以速率v垂直进入匀强磁场,若带正电,其轨迹为a;若带负电,其轨迹为b.7.磁场方向的不确定形成多解磁感应强度是矢量,如果题述条件只给出磁感应强度的大小,而未说明磁感应强度的方向,则应考虑因磁场方向不确定而导致的多解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
+ ( R-
d)2
5d
∴ R= 13d= mv/eB
∴ B = mv/13ed
返回
匀强磁场中和匀强电场中 带电粒子的偏转比较
变题一:若要求电子能穿过磁场, 则最小速度是多大?穿过磁场的 时间是多少?
变题二:若电子以与左边界成θ 角垂直磁场射入磁场,为使电 子能从另一边界射出,问电子 的速率应满足什么条件?
巩固练习一
1. 以速率v 垂直于屏S 经过小孔A射入存在着匀强 磁场的真空室中,如图所示,磁感强度 B 的方向 与离子的运动方向垂直,并垂直于纸面向里. (1)求离子进入磁场后到达屏S上时的位置C与A 点距离 (2)如果离子进入磁场后经过时间t 到达位置P, 试证明:直线AP与离子入射方向之间的夹角θ跟t v A B 的关系是θ=q B t / 2 m
解析 A、C为圆周上的两点,做洛伦兹力 的延长线,交点O为圆周轨迹的圆心。以 O为圆心做电子从A到C的运动轨迹。过A、 C画速度的方向,偏转角为θ,如图6所示。
d2 sin 由几何关系得: 2 R mv P 轨迹半径为: R qB eB
F C A O F A V 图6 图5 F C θ V
tan
ab ) 因此,速度方向与x轴的夹角为 arctan(
(2)在直角三角形OO1D中, a2 b2 R ( ) ( ) 有: 2 2 轨道半径公式为: Rmvq
qB a2 b2 由上述两式可得粒子的初速度为 v 2m
b2
a b
y C
O1 A
E
D
θ O
x
图4
例3 如图5所示,有垂直纸面向外的匀强磁场,磁 感应强度为B。在匀强磁场中做匀速圆周运动的一 个电子动量为P,电量为e,在A、C点,所受洛伦 兹力的方向如图5所示,已知AC=d,求电子从A到C 时发生的偏转角。 B F
deB arcsin 因此,得偏转角为: P
例:长为L的水平极板间,有垂直纸面向内的匀 强磁场,如图所示,磁感强度为B,板间的距离 也为L,板不带电,现有质量为m ,电量为q的 带正电粒子(不计重力),从左边极板间中点处 垂直磁感线以速度v射入磁场,欲使粒子不打在 极板上,可采用的办法是: A.使粒子的速度BqL/4m <v< 5BqL/4m B.使粒子的速度v>5BqL/4m C.使粒子的速度v>BqL/m D.使粒子的速度v<BqL/4m
v x
巩固练习四
3.(1997年高考)在x轴上方存在着垂直于纸面向 外的匀强磁场,磁感强度为B,在原点O有 一个离子源向x轴上方的各个方向发射出质 量为m、电量为q的正离子,速率都为v,对 那些在xy平面内运动的离子,在磁场中可能 到达的最大x是多少?最大的y是多少?
y
O
x
巩固练习五
如图所示,一个带负电的粒子以速度υ0由 坐标原点O射出,速度与x 轴、y 轴均成 45°,已知该粒子带电量为-q,质量为m, 求该粒子通过x 轴和y 轴时的坐标分别是 多少? y
临界.两块长5d,相距d的水平平行金属板,板间有 垂直于纸面的匀强磁场.一大群电子从平行于板面的 方向、以等大小的速度v从左端各处飞入(图8).为 了不使任何电子飞出,板间磁感应强度的最小值为
mv /13 ed
解: 由 r=mv1/qB ,可知: 磁感应强度B 越小,则 R- d 半径越大,最大半径弧AB所对应的圆心 角θ=300,OB=OA即为半径r。故:
300 V
r
d sin 30
0
2d
O
d
mV 而 r 2 d 得 m 2 Bdq /V qB
0 又因弧 AB 对应圆心角 30
故磁场中运动时间 : 1 1 2 m d t T 12 12 qB 3 V
解题关键
定圆心画轨迹求半径和圆心角
(1)圆心的确定: 运动轨迹中任意两点(一般是射入磁场和射出磁 场的两点)洛仑兹力的方向,其延长的交点即为圆心。 或射入磁场和射出磁场的两点间弧的垂直平分线 与一半径的交点即为圆心。 (2)半径的确定:用平面几何知识求解 (2)圆心角的确定:粒子的速度偏向角等于圆心角 等于弦切角的两倍 (4)运动时间的确定:利用圆心角与弦切角的关系 或者四边形的内角和等于360°计算出粒子所转过的圆 心角θ 的大小,用公式 t=θ/360 ×T 可求出运动时间。
V
O 45
x
例2 如图3所示,在垂直坐标平面的范围有足够大 的匀强磁场,磁感应强度为B,方向向里,一带正 电荷量为q的粒子,质量为m,从O点以某一速度垂 直射入磁场,其轨迹与x、y轴的交点A、C到O点的 距离分别为a、b,试求:(1)初速度方向与x轴夹 角; y (2)初速度的大小。
C A O 图3 x
匀强磁场中的匀速圆周运动专题
如东高级中学
沈蔡林
例:如图所示,一电量为q的带电粒子, (不计重力)自A点以速度v垂直射入磁 感应强度为B,宽度为d的匀强磁场中, 穿过磁场的速度方向与原来入射方向的 夹角为300,则该电荷质量m是多少?穿 V 过磁场所用的时间t为多少?
A P O B 300 V
d
V A P B
解析 (1)粒子垂直射入磁场,在xOy平面内做匀速圆周运 动,OA、OC是圆周上的两条弦,做两条弦的垂直平分线, 交点O1为圆轨迹的圆心。以O1为圆心,以OO1=R为半径画 圆。正电荷在O点受到的洛伦兹力方向如图4所示,由左手 定则知,粒子的速度方向指向为过O做OO1的斜向上的垂线, 如图4所示。 设速度方向与x轴的夹角为θ,由几何关系知,在直角三角形 OO1D中,有: a2
θ O C S P
巩固练习二
例 . 如图所示,正、负电子初速度垂直于 磁场方向, 沿与边界成 30°角的方向射入匀强磁场中,求它们在 磁场中的运动时间之比.
φ1
θ
φ2
t1 / t2= φ1 / φ2 =1/5
巩固练习三
2.一个电子(质量为m、电量为e)以速度发v从 x轴进入上方的匀强磁场区域,如图所示, 已知x轴上方磁感应强度的大小为B,且为下 方的2倍,在图中画出电子运动的轨迹,电 子运动一个周其经历的时间是多少?电子运 动一个周期沿x轴移动的距离是多少?