2021年中考数学模拟试卷(七)(习题及答案).

合集下载

2021年北京市西城区中考数学模拟试卷及答案解析

2021年北京市西城区中考数学模拟试卷及答案解析

第 1 页 共 32 页
2021年北京市西城区中考数学模拟试卷
一.选择题(共8小题,满分16分)
1.(2分)在下列四个图案中,不是中心对称图形的是( )
A .
B .
C .
D .
2.被英国《卫报》誉为“新世界七大奇迹”的港珠澳大桥是中国境内一座连接香港、广东
珠海和澳门的桥隧工程,它是世界上最长的跨海大桥,桥隧全长55000米,其中55000用科学记数法表示为( )
A .55×104
B .5.5×104
C .5.5×105
D .0.55×106
3.(2分)实数a ,b 在数轴上的位置如图,则|a ﹣b |﹣|a +b |等于( )
A .﹣2a
B .﹣2b
C .2b ﹣2a
D .2a +2b
4.(2分)若n 边形的内角和等于外角和的3倍,则边数n 为( )
A .n =6
B .n =7
C .n =8
D .n =9 5.(2分)如果x +y =5,那么代数式(1+y x−y )÷
x x 2−y 2的值为( ) A .1 B .﹣1 C .5 D .﹣5
6.(2分)如图,△ABC 中,点D 在边AB 上,添加下列条件,不能判定△ACD ∽△ABC 的
是( )
A .∠ACD =∠
B B .∠AD
C =∠ACB C .A
D AC =CD BC D .AC 2=AD •AB
7.(2分)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点.若有一直线l
经过点(﹣。

2021年广东省珠海市香洲区中考数学模拟试卷及答案解析

2021年广东省珠海市香洲区中考数学模拟试卷及答案解析

2021年广东省珠海市香洲区中考数学模拟试卷一.选择题(共10小题,每小题3分,满分30分)1.﹣4的倒数是( )A .14B .−14C .4D .﹣42.5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为( )A .13×105B .1.3×105C .1.3x 106D .1.3×1073.计算(2a )3•b 4÷12a 3b 2的结果是( )A .16b 2B .32b 2 C .23b 2 D .2b 23a 2 4.已知实数a ,b ,c 满足a =4b ﹣7,b =12c +2.①当23<c <3时,总有a >b >c ;②当2<c <4时,则b +c >a .上述结论,( )A .①正确②正确B .①正确②错误C .①错误②正确D .①错误②错误5.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个6.如图,将△ABC 绕点C 顺时针旋转35°,得△A ′B ′C ,若AC ⊥A ′B ′,则∠BAC =( )A .65°B .75°C .55°D .35°7.一元二次方程x 2﹣2kx +k 2﹣k +2=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣2B .k <﹣2C .k <2D .k >28.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.659.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.10.如图,平行四边形ABCD中,AC、BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,S△AEF=4,则下列结论:①FD=2AF;②S△BCE=36;③S△ABE=16;④△AEF∽△ACD,其中一定正确的是()A.①②③④B.①②C.②③④D.①②③二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:a2b﹣25b=.12.(4分)分式方程13x =2x−2的解为.13.(4分)一个多边形的内角和等于1800°,则该多边形的边数n等于.14.(4分)已知a2﹣a﹣2=0,则3a﹣3a2的值为.15.(4分)如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC=8,那么PD等于.。

2021年辽宁省沈阳市中考数学学业水平模拟试卷(含解析)

2021年辽宁省沈阳市中考数学学业水平模拟试卷(含解析)

2021年辽宁省沈阳市中考数学学业水平模拟试卷一、选择题(共10小题).1.下列实数中,比1大的数是()A.﹣3B.0C.D.π2.沈阳市总面积约13000平方公里,数据“13000”用科学记数法表示为()A.1.3×103B.0.13×105C.13×103D.1.3×104 3.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.4.不等式3x≤6的解集在数轴上表示为()A.B.C.D.5.下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2 6.已知方程组,则x﹣y的值是()A.1B.2C.4D.57.如图,将一直尺与一块三角板按如图放置,若∠1=36°,则∠2的度数为()A.126°B.136°C.120°D.144°8.方程x2﹣2x﹣1=0根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根9.一次函数y=﹣x+5的图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限10.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD二、填空题(每小题3分,共18分)11.因式分解:a3+2a2+a=.12.不等式组的解集是.13.若某正六边形的边长是4,则该正六边形的边心距为.14.如图,在平面直角坐标系中,点B的坐标为(﹣3,1).反比例函数y=(k>0)的图象经过点A.∠AOB=90°,AB=10,则k的值为.15.如图,在△ABC中,点D在边BC上,AB=AD,点E,点F分别是AC,BD的中点,EF=2.5.则AC的长为.16.如图,四边形ABCD中,AD∥BC,∠C=90°.点E在边BC上,AD=BE=2,DC=3,BC=5,点M在射线DC上,连接BM,当直线BM与直线AE的夹角等于45°时,线段DM的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:3tan30°+(﹣)﹣2﹣(π﹣2021)0+|2﹣|.18.在创建“文明校园”活动中,某校甲、乙两班共有5名学生被评为“文明学生”.甲班一名男生、一名女生,乙班三名女生.现要从甲、乙两班各随机抽取一名“文明学生”作为学校文明礼仪值周生,请用列表法或画树状图法求抽取的两名学生性别相同的概率(甲班男生用A表示,女生用B表示;乙班三名女生分别用b1,b2,b3表示).19.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点A作AE⊥BD,垂足为点E,过点C作CF⊥BD,垂足为点F.(1)求证:AE=CF;(2)若∠AOE=74°,∠EAD=3∠CAE,直接写出∠BCA的度数.四、(每小题8分,共16分)20.某校体育组以“我最喜爱的体育项目”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球,乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查数据绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接补全条形统计图;(3)扇形统计图中的m的值是,乒乓球所对应的扇形的圆心角的度数是°;(4)若该校有1200名学生,根据抽样调查的结果.请估计该校有多少名学生最喜爱乒乓球项目.21.四月是辽宁省“全民阅读月”,某校阅览室需购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的数量与用12000元购买文学类图书的数量相同,求文学类图书和科普类图书平均每本的价格.五、(本题10分)22.如图,AB是⊙O的直径,点C在⊙O上,AD⊥CE于点D,AC平分∠BAD.(1)求证:EC是⊙O的切线;(2)若AD=4,cos∠CAB=,直接写出⊙O的半径的长.六、(本题10分)23.在平面直角坐标系中,直线AB与x轴负半轴交于点A,与y轴交于点B,点B坐标为(0,),AB=7,点C在x轴上(点C在点A的右侧),AC=5,动点P从点B 出发,以每秒1个单位长度的速度沿BC运动,动点Q从点A出发,以每秒3个单位长度的速度沿射线AC运动,两点同时出发,当点P到达点C时,两点同时停止运动.设运动时间为t秒(t>0).(1)如图,当点Q在线段AC上时.①求点C的坐标;②当△CPQ是等腰三角形时,求t的值;(2)是否存在时刻t,使得PQ⊥AB,若存在,直接写出t的值;若不存在,说明理由.七、(本题12分)24.四边形ABCD是正方形,点F在射线CD上,以点A,点F为顶点作正方形AEFG(点A,E,F,G按顺时针方向排列),连接DE,BG.(1)如图1,点F在线段CD上,求证:DE=BG;(2)如图2,点F在线段CD上,连接AF.①求证:FC=BG;②直接写出线段AD,DF,BG之间的数量关系;(3)当DF=1,以点A,E,D,F为顶点的四边形的面积等于5时,直接写出此时BG 的长.八、(本题12分)25.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),动点E和点F在x轴上方抛物线上,点E在点P的右侧,EP∥x轴.分别过点E,点F作EH⊥x轴于点H,FG⊥x轴于点G.(1)求抛物线的表达式,并直接写出抛物线的顶点C的坐标;(2)设点E的横坐标为a,四边形EFGH的周长为L,求L的最大值;(3)在(2)的条件下,连接CF,CE,OE.点P在x轴下方抛物线上,点P到CF的距离记为h1,点P到OE的距离记为h2,当=时,①直接写出点P的坐标;②将△CFE沿射线CF平移,平移后的三角形记为△C'F'E′,在平移过程中,当△C'F′E′三边所在直线最后一次经过点P时,直接写出平移的距离.参考答案一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.下列实数中,比1大的数是()A.﹣3B.0C.D.π解:显然﹣3<1,0<1.∵1<<2,∴<<1.∵3<π<4,∴π>1.故选:D.2.沈阳市总面积约13000平方公里,数据“13000”用科学记数法表示为()A.1.3×103B.0.13×105C.13×103D.1.3×104解:13000用科学记数法表示为:1.3×104.故选:D.3.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.4.不等式3x≤6的解集在数轴上表示为()A.B.C.D.解:不等式解得:x≤2,表示在数轴上,如图所示,.故选:B.5.下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.6.已知方程组,则x﹣y的值是()A.1B.2C.4D.5解:∵2x+3y﹣(x+4y)=x﹣y=14﹣12=2,∴x﹣y=2,故选:B.7.如图,将一直尺与一块三角板按如图放置,若∠1=36°,则∠2的度数为()A.126°B.136°C.120°D.144°解:∵∠1=36°,∴∠3=90°﹣36°=54°,∵AB∥CD,∴∠4=∠3=54°,∴∠2=180°﹣54°=126°,故选:A.8.方程x2﹣2x﹣1=0根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根解:∵△=(﹣2)2﹣4×(﹣1)=8>0,∴方程有两个不相等的实数根.故选:D.9.一次函数y=﹣x+5的图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限解:∵y=﹣x+5中k<0,∴一次函数图像经过第二四象限,∵b>0,∴一次函数图像经过二四一象限.故选:B.10.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.二、填空题(每小题3分,共18分)11.因式分解:a3+2a2+a=a(a+1)2.解:a3+2a2+a,=a(a2+2a+1),…(提取公因式)=a(a+1)2.…(完全平方公式)故答案为:a(a+1)2.12.不等式组的解集是﹣4≤x<2.解:解不等式x﹣2<0,得:x<2,解不等式2x+8≥0,得:x≥﹣4,则不等式组的解集为﹣4≤x<2.13.若某正六边形的边长是4,则该正六边形的边心距为2.解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴边心距OG=OB•sin∠OBG=4×=2故答案为:2.14.如图,在平面直角坐标系中,点B的坐标为(﹣3,1).反比例函数y=(k>0)的图象经过点A.∠AOB=90°,AB=10,则k的值为27.解:∵点B的坐标为(﹣3,1).∴OB==,∵∠AOB=90°,AB=10,∴OA===3,作AD⊥x轴于D,BE⊥x轴于E,∵∠BOE+∠AOD=90°=∠AOD+∠OAD,∴∠BOE=∠OAD,∵∠BEO=∠ADO=90°,∴△BOE∽△OAD,∴====3,∴OD=3BE=3,AD=3OE=9,∴A(3,9),∵反比例函数y=(k>0)的图象经过点A,∴k=3×9=27,故答案为27.15.如图,在△ABC中,点D在边BC上,AB=AD,点E,点F分别是AC,BD的中点,EF=2.5.则AC的长为5.解:连接AF.∵AB=AD,F是BD的中点,∴AF⊥BD,又∵E是AC的中点,∴EF=AC(直角三角形斜边上的中线等于斜边的一半),∴AC=2EF,∵EF=2.5,∴AC=5.故答案为:5.16.如图,四边形ABCD中,AD∥BC,∠C=90°.点E在边BC上,AD=BE=2,DC=3,BC=5,点M在射线DC上,连接BM,当直线BM与直线AE的夹角等于45°时,线段DM的长为或13.解:如图1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵∠AEB=∠BEN,∴△EBN∽△EAB,∴EB2=EN•AE,设DM=x,∴4=,解得:x=,如图2,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,∵∠BAE=∠NAB,∴△BNA∽△EBA,∴AB2=AE•AN,设DM=x,∴,解得:x=13,综上所述,可知DM的长为或13.故答案为:或13.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:3tan30°+(﹣)﹣2﹣(π﹣2021)0+|2﹣|.解:原式=3×+9﹣1+2﹣=+9﹣1+2﹣=10.18.在创建“文明校园”活动中,某校甲、乙两班共有5名学生被评为“文明学生”.甲班一名男生、一名女生,乙班三名女生.现要从甲、乙两班各随机抽取一名“文明学生”作为学校文明礼仪值周生,请用列表法或画树状图法求抽取的两名学生性别相同的概率(甲班男生用A表示,女生用B表示;乙班三名女生分别用b1,b2,b3表示).解:画树状图如图:共有6个等可能的结果,抽取的两名学生性别相同的结果有3个,∴抽取的两名学生性别相同的概率为=.19.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点A作AE⊥BD,垂足为点E,过点C作CF⊥BD,垂足为点F.(1)求证:AE=CF;(2)若∠AOE=74°,∠EAD=3∠CAE,直接写出∠BCA的度数.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.(2)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=74°,∴∠EAO=90°﹣∠AOE=16°,∵∠EAD=3∠CAE,∴∠EAD=3×16°=48°,∴∠DAC=∠DAE﹣∠EAO=48°﹣16°=32°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCA=∠DAC=32°.四、(每小题8分,共16分)20.某校体育组以“我最喜爱的体育项目”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球,乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查数据绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)本次共调查了120名学生;(2)请根据以上信息直接补全条形统计图;(3)扇形统计图中的m的值是30,乒乓球所对应的扇形的圆心角的度数是72°;(4)若该校有1200名学生,根据抽样调查的结果.请估计该校有多少名学生最喜爱乒乓球项目.解:(1)本次调查的学生总人数为12÷10%=120(名),故答案为:120;(2)“其他”人数为120×15%=18(人),“乒乓球”人数为120﹣(36+30+12+18)=24(人),补全图形如下:(3)篮球对应的百分比m%=×100%=30%,即m=30,乒乓球所对应的扇形的圆心角的度数是360°×=72°,故答案为:30、72;(4)估计该校最喜爱乒乓球项目的学生人数为1200×=240(名).21.四月是辽宁省“全民阅读月”,某校阅览室需购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的数量与用12000元购买文学类图书的数量相同,求文学类图书和科普类图书平均每本的价格.解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+8)元,依题意得:=,解得:x=32,经检验,x=32是原方程的解,且符合题意,∴x+8=40.答:文学类图书平均每本的价格为32元,科普类图书平均每本的价格为40元.五、(本题10分)22.如图,AB是⊙O的直径,点C在⊙O上,AD⊥CE于点D,AC平分∠BAD.(1)求证:EC是⊙O的切线;(2)若AD=4,cos∠CAB=,直接写出⊙O的半径的长.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线EC是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,∵AD=4,cos∠CAB=,设AC=4x,AB=5x,∴,∴x=,∴AB=,即⊙O的半径的长为.六、(本题10分)23.在平面直角坐标系中,直线AB与x轴负半轴交于点A,与y轴交于点B,点B坐标为(0,),AB=7,点C在x轴上(点C在点A的右侧),AC=5,动点P从点B 出发,以每秒1个单位长度的速度沿BC运动,动点Q从点A出发,以每秒3个单位长度的速度沿射线AC运动,两点同时出发,当点P到达点C时,两点同时停止运动.设运动时间为t秒(t>0).(1)如图,当点Q在线段AC上时.①求点C的坐标;②当△CPQ是等腰三角形时,求t的值;(2)是否存在时刻t,使得PQ⊥AB,若存在,直接写出t的值;若不存在,说明理由.解:(1)①∵B(0,),∴OB=,在Rt△AOB中,AO===,∵AC=5,∴OC=OA=AC=﹣5=,∴C(﹣,0).②∵△CPQ是等腰三角形,∠PCQ是钝角,∴只有CQ=CP,∵tan∠BCO===,∴∠BCO=60°,∴∠CBO=30°,∴BC=2OC=3,∵CQ=5﹣3t,CP=3﹣t,∴5﹣3t=3﹣t,∴t=1.(2)如图,过点P作PJ⊥OA于J.∵PQ⊥AB,∴∠ABO+∠BAO=90°,∠BAO+∠QPJ=90°,∴∠PQJ=∠ABO,∴tan∠PQJ=tan∠ABO,∴=,∴=,∴t=1.96.七、(本题12分)24.四边形ABCD是正方形,点F在射线CD上,以点A,点F为顶点作正方形AEFG(点A,E,F,G按顺时针方向排列),连接DE,BG.(1)如图1,点F在线段CD上,求证:DE=BG;(2)如图2,点F在线段CD上,连接AF.①求证:FC=BG;②直接写出线段AD,DF,BG之间的数量关系;(3)当DF=1,以点A,E,D,F为顶点的四边形的面积等于5时,直接写出此时BG 的长.【解答】(1)证明:如图1,∵四边形ABCD,四边形EFGC都是正方形,∴AD=AB,∠DAB=90°,∵四边形AEFG是正方形,∴AE=AG,∠EAG=90°,∵∠EAD=∠EAG﹣∠DAG,∠GAB=∠DAB﹣∠DAG,∴∠EAD=∠GAB,∴∠BCE=∠DCG,∴△EAD≌△GAB(SAS),∴DE=BG;(2)①证明:连接AC,∵四边形ABCD是正方形,∴BC=BA,∠CBA=90°,在Rt△ABC中,tan∠CAB=1,∴∠CBA=45°,∴AC==AB,∵四边形AEFG是正方形,∴AG=FG,∠FGA=90°,在Rt△AGF中,tan∠FAG==1,∴∠FAG=45°,∴AF==AG,∴∠FAC=∠FAG﹣∠CAG,∠GAB=∠CAB﹣∠CAG,∴∠FAC=∠GAB,,∴△CFA∽△BGA,∴,∴FC=BG;②AD=DF+BG.理由如下:∵FC=BG,CD=DF+CF,∴CD=DF+BG,∵四边形ABCD是正方形,∴AD=CD,∴AD=DF+BG;(3)解:①如图3,当点F在线段CD上时,设DE=BG=x,则FC=x,∴DC=AD=x+1,过点E作EM⊥AD于点M,∵∠AEF=∠ADF=90°,∴A,E,D,F四点共圆,∴∠AFE=∠EDM=45°,∴EM=x,∴S△ADE=×x,S△ADF=AD×DF=x,∴=5,解得x=,x=﹣3(舍去),∴BG=;②如图4,当点F在线段CD的延长线上时,连接AC,∵S四边形AEFD=S△AEF+S△ADF,设AD=a,∴AF2=DF2+AD2=1+a2,∴S=a=5,解得a=﹣1+2(负值舍去),∴AD=﹣1+2,∴CF=2,由(2)知△CFA∽△BGA,∴=,∴BG==.综合以上可得BG的长为或.八、(本题12分)25.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),动点E和点F在x轴上方抛物线上,点E在点P的右侧,EP∥x轴.分别过点E,点F作EH⊥x轴于点H,FG⊥x轴于点G.(1)求抛物线的表达式,并直接写出抛物线的顶点C的坐标;(2)设点E的横坐标为a,四边形EFGH的周长为L,求L的最大值;(3)在(2)的条件下,连接CF,CE,OE.点P在x轴下方抛物线上,点P到CF的距离记为h1,点P到OE的距离记为h2,当=时,①直接写出点P的坐标;②将△CFE沿射线CF平移,平移后的三角形记为△C'F'E′,在平移过程中,当△C'F′E′三边所在直线最后一次经过点P时,直接写出平移的距离.解:(1)将点A(﹣1,0),B(0,3)代入y=﹣x2+bx+c,得解得,∴抛物线的表达式为y=﹣x2+2x+3,顶点为(1,4).(2)∵EH⊥x轴,FG⊥x轴,EF∥x轴,∴四边形EFGH是矩形,∴EF=GH,EH=FG,∴点E,F关于对称轴x=1对称,∴设点E(a,﹣a2+2a+3)则点F(2﹣a,﹣a2+2a+3),∴EF=2a﹣2,EH=﹣a2+2a+3,∴L=2(EF+EH)=﹣2a2+8a+2=﹣2(a﹣2)2+10,∵﹣2<0,∴当a=2时,L有最大值,最大值为10.(3)①如图,连接PF,CP,OP,PE,过点P作PN⊥EF交EF的延长线于N,过点C作CM⊥PN于M,连接BM.设P(x0,y0).由(2)可知,a=2,∴E(2,3),F(0,3),C(1,4),∴CF=,OE=,∵S△PCF=S△PCM﹣S△PMB﹣S△CMB=(x0﹣y0+3),∴h1=,同法h2=,∵,且,如图,x0>3或x0<﹣1,y0<0,解得:,∴P(﹣4,﹣21).②令x=﹣4代入l CF:y=x+3中,y=﹣1,∴(﹣4,﹣21)不过点P,若直线CE平移后过点P,设平移后直线解析式为:y=﹣x+b,代入(﹣4,﹣21),得b=﹣25,此时平移距离为,若直线EF平移后过点P,设F'(f,﹣21),代入l CF:y=x+3中,得f=﹣24,∴平移距离为,∴直线最后一次经过点P时,平移的距离为24.。

2021年陕西省西安市某校中考数学第七次适应性训练试卷(七模)祥细答案与解析

2021年陕西省西安市某校中考数学第七次适应性训练试卷(七模)祥细答案与解析
如图,四边形 中, = = , = , 过点 ,与 相切于点 ,与 相交于点 ,且 = .
(1)求证: 与 相切;
(2)若 的半径为 ,求四边形 的面积.
如图,抛物线 为二次函数 的图象,作抛物线 关于点 成中心对称的抛物线 .
(1)求抛物线 对应的二次函数的表达式;
(2)点 在 轴上,点 为抛物线 在 轴右侧部分上的一个动点.请求出 的最大值.
A. B. C. D.
5.已知正比例函数 = ,当自变量 的值增大 时,函数值减小 ,则 的值为()
A. B. C. D.
6.如图,等腰直角 中,点 在斜边 上,且 = ,角平分线 交 于点 , 于点 ,若 = ,则 的长为()
A. B. C. D.
7.已知一次函数 = , 的值随 值的增大而减小,点 在该一次函数的图象上,则 的取值范围为()
【解答】
过点 、 分别作 轴, 轴,垂足为 、 ,
∵, 和 都是等腰直角三角形,
∴ = = , = = ,
∵点 在 的图象上,

设 = 则 代入 得: = ,
解得: = ,
又∵ ,
∴ ,
∴ = ,即点 的横坐标为: .
【答案】
【考点】
三角形的内切圆与内心
等边三角形的性质
全等三角形的性质与判定
【解析】
【解答】
原式=

【答案】
【考点】
三角形的面积
矩形的性质
作图—复杂作图
【解析】
先连结 交 于 ,再根据中线的作法作出 的中点即可求解.
【解答】
【答案】
∵四边形 是平行四边形,
∴ = , = , ,
∴ = ,
在 和 中,

2021年广东省东莞市七校联考中考数学模拟试卷(解析版)

2021年广东省东莞市七校联考中考数学模拟试卷(解析版)

2021年广东省东莞市七校联考中考数学模拟试卷一.选择题(共10小题).1.下列实数中,无理数是()A.0B.﹣4C.D.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣83.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.804.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)5.正多边形的内角和是1440°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形6.若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.107.不等式组的解集在数轴表示正确的是()A.B.C.D.8.在半径为3的圆中,150°的圆心角所对的弧长是()A.πB.πC.πD.π9.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为()A.18B.25C.32D.3610.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4二.填空题(共7小题,满分28分,每小题4分)11.计算:20210+=.12.分式有意义的条件是.13.分解因式:1﹣16n2=.14.若2m+n=4,则代数式6﹣2m﹣n的值为.15.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.16.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有根小棒.三.解答题(共8小题,满分62分)18.先化简,再求值:()÷,其中x=﹣1.19.如图,△ABC是等边三角形,D,E分别是BA,CB延长线上的点,且AD=BE.求证:AE=CD.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.21.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品30件,B种物品20件,共需680元;如果购买A种物品50件,B种物品40件,共需1240元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共300件,总费用不超过4000元,那么A种防疫物品最少购买多少件?22.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.23.如图,已知点P是⊙O外一点,直线PA与⊙O相切于点B,直线PO分别交⊙O于点C、D,∠PAO=∠PDB,OA交BD于点E.(1)求证:OA∥BC;(2)当⊙O的半径为10,BC=8时,求AE的长.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,D为第一象限内抛物线上一点,过D做DT⊥x轴交x轴于T,交BC于点K,设D点横坐标为m,线段DK的长为d,求d与m之间的关系式;(3)如图3,在(2)的条件下,D在对称轴右侧,Q、H为直线DT上一点,Q点纵坐标为4,H在第四象限内,且QD=TH,过D作x轴的平行线交抛物线于点E,连接EQ 交抛物线于点R,连接RH,tan∠ERH=2,求点D的坐标.25.如图1,在平面直角坐标系中,已知矩形OABC的顶点A(6,0),C(0,2),将矩形OABC绕点O逆时针旋转得到矩形ODEF,使得点A的对应点D恰好落在对角线OB上,OE交BC于点G.(1)求证:△BGO是等腰三角形;(2)求点E的坐标;(3)如图2,矩形ODEF从点O出发,沿OB方向移动,得到矩形O′D′E′F′,当移动到点O′与点B重合时,停止运动,设矩形O'D'E′F′与△OBC重叠部分的面积为y,OO′=x,求y关于x的函数关系式.参考答案一.选择题(共10小题,满分30分,每小题3分)1.下列实数中,无理数是()A.0B.﹣4C.D.解:0,﹣4是整数,属于有理数;是分数,属于有理数;无理数是.故选:C.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8解:0.0000000099=9.9×10﹣9,故选:C.3.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.4.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)解:∵点A关于原点的对称点A1(3,﹣2),∴点A的坐标为(﹣3,2),故选:A.5.正多边形的内角和是1440°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形是正十边形.故选:D.6.若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.10解:∵关于x的方程x2+6x﹣a=0无实数根,∴△=62﹣4×1×(﹣a)<0,解得:a<﹣9,∴只有选项A符合,故选:A.7.不等式组的解集在数轴表示正确的是()A.B.C.D.解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.8.在半径为3的圆中,150°的圆心角所对的弧长是()A.πB.πC.πD.π解:弧长==π,故选:A.9.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为()A.18B.25C.32D.36解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由折叠的性质得:∠AFE=∠D=90°,EF=ED,AF=AD,∴tan∠EFC==,设CE=3k,则CF=4k,由勾股定理得DE=EF==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF==tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36(cm),故选:D.10.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.计算:20210+=﹣2.解:原式=1+3﹣6=﹣2.故答案为:﹣2.12.分式有意义的条件是x≠﹣1.解:要使分式有意义,必须x+1≠0,解得,x≠﹣1,故答案是:x≠﹣1.13.分解因式:1﹣16n2=(1﹣4n)(1+4n).解:1﹣16n2=(1﹣4n)(1+4n).故答案为:(1﹣4n)(1+4n).14.若2m+n=4,则代数式6﹣2m﹣n的值为2.解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.15.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.解:作OC⊥AB于C,连接OA,如图,∵OC⊥AB,∴AC=BC=AB=×4=2,在Rt△AOC中,OA=5,∴OC===,即圆心O到AB的距离为.故答案为:.16.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是①④.(把所有正确结论的序号都填在横线上)①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;不正确;正确的是①④.故答案为:①④.17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有31根小棒.解:观察图形的变化可知:第1个图案中有6根小棒,即5×1+1=6;第2个图案中有11根小棒,即5×2+1=11;第3个图案中有16根小棒,即5×3+1=16;…,则第6个图案中有:5×6+1=31(根)小棒.故答案为:31.三.解答题(共8小题,满分62分)18.先化简,再求值:()÷,其中x=﹣1.解:原式=•=x+2,当x=﹣1时,原式=﹣1+2=1.19.如图,△ABC是等边三角形,D,E分别是BA,CB延长线上的点,且AD=BE.求证:AE=CD.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠BAC=60°,∴∠ABE=∠CAD=180°﹣60°=120°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS),∴AE=CD.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)画树状图如下:共有12个等可能的结果,恰好抽到同性别学生的结果有4个,∴恰好抽到同性别学生的概率为=.21.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品30件,B种物品20件,共需680元;如果购买A种物品50件,B种物品40件,共需1240元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共300件,总费用不超过4000元,那么A种防疫物品最少购买多少件?解:(1)设A种防疫物品x元/件,B种防疫物品y元/件,依题意得:,解得:.答:A种防疫物品12元/件,B种防疫物品16元/件.(2)设A种防疫物品购买m件,则B种防疫物品购买(300﹣m)件,依题意得:12m+16(300﹣m)≤4000,解得:m≥200.答:A种防疫物品最少购买200件.22.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.解:(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,,解得,,∴一次函数的关系式为y=2x﹣4,当x=3时,y=2×3﹣4=2,∴点C(3,2),∵点C在反比例函数的图象上,∴k=3×2=6,∴反比例函数的关系式为y=,答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=;(2)点P在反比例函数的图象上,点Q在一次函数的图象上,∴点P(n,),点Q(n,2n﹣4),∴PQ=﹣(2n﹣4),∴S△PDQ=n[﹣(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,∵﹣1<0,∴当n=1时,S最大=4,答:△DPQ面积的最大值是4.23.如图,已知点P是⊙O外一点,直线PA与⊙O相切于点B,直线PO分别交⊙O于点C、D,∠PAO=∠PDB,OA交BD于点E.(1)求证:OA∥BC;(2)当⊙O的半径为10,BC=8时,求AE的长.【解答】证明:(1)如图,连接OB,∵PA与⊙O相切于点B,∴∠ABO=90°,∴∠ABE+∠OBE=90°,∵OB=OD,∴∠OBD=∠ODB,∵∠PAO=∠PDB,∴∠PAO=∠OBD,∴∠ABE+∠PAO=90°,∴∠AEB=90°,∵CD是直径,∴∠CBD=90°,∴∠CBD=∠AEB,∴OA∥BC;(2)∵CD=2OD=20,BC=8∴BD===4,∵OE⊥BD,∴BE=DE=2,∵∠BAE=∠D,∠AEB=∠CBD=90°∴△ABE~△DCB,∴∴∴AE=21.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,D为第一象限内抛物线上一点,过D做DT⊥x轴交x轴于T,交BC于点K,设D点横坐标为m,线段DK的长为d,求d与m之间的关系式;(3)如图3,在(2)的条件下,D在对称轴右侧,Q、H为直线DT上一点,Q点纵坐标为4,H在第四象限内,且QD=TH,过D作x轴的平行线交抛物线于点E,连接EQ 交抛物线于点R,连接RH,tan∠ERH=2,求点D的坐标.解:(1)对于y=a(x+1)(x﹣3),令y=a(x+1)(x﹣3)=0,解得x=3或﹣1,令x=0,则y=﹣3a,∴A(﹣1,0),B(3,0),C(0,﹣3a),∵OB=OC=3,∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3;(2)由点BC的坐标得:直线BC解析式为y=﹣x+3,∴设D(m,﹣m2+2m+3),K(m,﹣m+3),∴d=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3);(3)连接EH,∵QH平行y轴,Q点的纵坐标为4,QD=TH,∴QT=DH=4,∴QD=4﹣(﹣m2+2m+3)=m2﹣2m+1,∵ED=2m﹣2,∴tan∠QED=,∴tan∠EHD=,∴∠QED=∠EHD,∴∠QEH=90°,过E作y轴平行线l,过R、H分别作直线l的垂线交l于M和N,连接EH,∵∠QEH=90°,∴∠REM+∠HEN=90°,∵∠EHN+∠HEN=90°,∴∠REM=∠EHN,∴Rt△RME∽Rt△ENH,∴=tan∠ERH=2,∵NH=DE=2m﹣2,∴ME=m﹣1,∴RF=﹣m2+3m+2,∵EN=DH=4,∴RM=2,∴FT=NH﹣MR=2m﹣4,∴OF=OT﹣OF=4,∴R(4﹣m,﹣m2+3m+2),将R点代入抛物线表达式得:﹣m2+3m+2=﹣(4﹣m)2+2(4﹣m)+3,解得:m=,当x=时,y=﹣x2+2x+3=,∴D(,).25.如图1,在平面直角坐标系中,已知矩形OABC的顶点A(6,0),C(0,2),将矩形OABC绕点O逆时针旋转得到矩形ODEF,使得点A的对应点D恰好落在对角线OB上,OE交BC于点G.(1)求证:△BGO是等腰三角形;(2)求点E的坐标;(3)如图2,矩形ODEF从点O出发,沿OB方向移动,得到矩形O′D′E′F′,当移动到点O′与点B重合时,停止运动,设矩形O'D'E′F′与△OBC重叠部分的面积为y,OO′=x,求y关于x的函数关系式.解:(1)由题意知:tan∠CBO=,∴∠CBO=30°,∵AO∥BC,∴∠BOA=∠CBO=30°,∵∠GOB=∠GBO=30°,∴GO=GB,∴△BGO是等腰三角形;(2)在Rt△BCO中,OC=2,BC=OA=6,∴OB=OE==4,作EH⊥x轴于点H,∵∠BOA=∠EOB=30°,∴∠EOH=∠BOA+∠EOB=60°,在Rt△EOH中,OE=4,∴OH=2,EH=6,故E点坐标为(2,6);(3)OO′=x,O′D′=6,D'B=4﹣x﹣6,令F'O'与CO交点为点M.,E'D'与CB交点为点N,S△OMO′=x2,S△ND′B=,S△OCB=6,当0≤x﹣6,y=6﹣x2﹣,当4﹣6<x,y=6﹣x2,当,y=.。

2021年江苏省无锡市中考数学模拟试卷(含解析)

2021年江苏省无锡市中考数学模拟试卷(含解析)

2021年江苏省无锡市中考数学模拟试卷一、选择题(共10小题).1.若a、b互为倒数,则2ab﹣5的值为()A.1B.2C.﹣3D.﹣52.函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 3.如表所示是某位运动员近6次的比赛成绩(单位:分钟):第几次123456比赛成绩405035202510则这组成绩的中位数和平均数分别为()A.25.25,30B.30,85C.27.5,85D.30,304.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.7ab﹣(﹣3ab)=4ab D.﹣a2﹣a2=﹣2a25.一个正多边形,它的一个内角恰好是一个外角的4倍,则这个正多边形的边数是()A.八B.九C.十D.十二6.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.7.下列运算正确的是()A.B.(t﹣3)2=t2﹣9C.(﹣2ab2)2=4a2b4D.x2•x=x28.已知反比例函数y=与一次函数y=x+1的图象没有交点,则k的值可以是()A.B.C.D.﹣19.如图,在四边形ABCD中,∠ABC=∠BCD=90°,,把Rt△ABC沿着AC翻折得到Rt△AEC,若,则线段DE的长度()A.B.C.D.10.如图,正三角形ABC的边长为3+,在三角形中放入正方形DEMN和正方形EFPH,使得D、E、F在边CB上,点P、N分别在边CA、AB上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为()A.B.C.3D.二、填空题(共8小题).11.因式分解:4a3﹣16a=.12.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为.13.如图,粮仓的顶部是圆锥形状,这个圆锥的底面圆的半径为3米,母线长为6米,为防雨水,需要在粮仓顶部铺上油毡,如果油毡的市场价为10元/米2,那么购买油毡所需要的费用是元(结果保留π).14.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=.15.写出一个二次函数关系式,使其图象开口向上.16.一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底是岁.17.已知函数y=kx2+(2k+1)x+1(k为实数).(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点;(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m的值为.18.如图,直线l1∥l2∥l3,分别交直线m、n于点A、B、C、D、E、F,若AB:BC=5:3,DE=15,则EF的长为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)+﹣.(2)﹣+.20.(1)解方程:(x+1)(x+3)=15(2)解方程:3x2﹣2x=2(3)解不等式组21.如图,已知EC=AC,∠BCE=∠ACD,∠A=∠E,BC=3.求DC的值.22.将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和等于4的概率(用树状图或列表法求解).23.莫拉克台风给台湾造成了重大的损失,某中学开展爱心捐助活动,根据预备年级的捐款情况绘制如下统计图:请根据统计图给出的信息回答下列问题:(1)本次活动中预备年级共有多少同学捐款?(2)本次活动中捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数的几分之几?24.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹).25.如图:CB与圆O相切于B,半径OA⊥OC,AB、OC相交于D,求证:(1)CD=CB;(2)AD•DB=2CD•DO.26.某水果店销售某种水果,由市场行情可知,从1月至12月,这种水果每千克售价y1(元)与销售时间x(1≤x≤12,x为正整数)月之间存在如图1所示(图1的图象是线段)的变化趋势,每千克成本y2(元)与销售时间x(1≤x≤12,x为正整数)月满足函数表达式y2=ax2﹣2x+c,其变化趋势如图2所示(图2的图象是抛物线).(1)求y1关于x的函数表达式.(不需要写出自变量的取值范围)(2)求y2关于x的函数表达式.(不需要写出自变量的取值范围)(3)求哪个月出售这种水果,每千克所获得的收益最大.27.矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,求BE的长.28.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求点C的坐标和此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求△BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.参考答案一、选择题(共10小题).1.若a、b互为倒数,则2ab﹣5的值为()A.1B.2C.﹣3D.﹣5解:根据题意得:ab=1,则2ab﹣5=2﹣5=﹣3.故选:C.2.函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.3.如表所示是某位运动员近6次的比赛成绩(单位:分钟):第几次123456比赛成绩405035202510则这组成绩的中位数和平均数分别为()A.25.25,30B.30,85C.27.5,85D.30,30【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解:把这组数据按从大到小的顺序排列是:10,20,25,35,40,50故这组数据的中位数是:(25+35)÷2=30;平均数=(10+20+25+35+40+50)÷6=30.故选:D.4.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.7ab﹣(﹣3ab)=4ab D.﹣a2﹣a2=﹣2a2解:A、应为4a﹣2a=2a,故选项错误;B、应为2(a+2b)=2a+4b,故选项错误;C、应为7ab﹣(﹣3ab)=10ab,故选项错误;D、﹣a2﹣a2=﹣2a2,故选项正确.故选:D.5.一个正多边形,它的一个内角恰好是一个外角的4倍,则这个正多边形的边数是()A.八B.九C.十D.十二解:设多边形的一个外角为x,则它的一个内角为4x,4x+x=180°,∴x=36°∴这个正n边形的边数为:360°÷36°=10,故选:C.6.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.解:A、是中心对称图形,但不是轴对称图形.故本选项符合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、是轴对称图形,不是中心对称图形.故本选项不合题意;D、是轴对称图形,不是中心对称图形.故本选项不合题意.故选:A.7.下列运算正确的是()A.B.(t﹣3)2=t2﹣9C.(﹣2ab2)2=4a2b4D.x2•x=x2【分析】直接利用乘法公式以及积的乘方运算法则、二次根式的除法运算法则分别化简得出答案.解:A、÷=,故此选项错误;B、(t﹣3)2=t2﹣6t+9,故此选项错误;C、(﹣2ab2)2=4a2b4,正确;D、x2•x=x3,故此选项错误;故选:C.8.已知反比例函数y=与一次函数y=x+1的图象没有交点,则k的值可以是()A.B.C.D.﹣1【分析】先把两函数的解析式组成方程组,再转化为求一元二次方程解答问题,求出k 的取值范围,找出符合条件的k的值即可.解:∵反比例函数y=与一次函数y=x+1的图象没有交点,∴方程组无解,即=x+1无解,整理得x2+x﹣k=0,∴△=1+4k<0,解得k<﹣,四个选项中只有﹣1<﹣,所以只有选项D符合条件.故选:D.9.如图,在四边形ABCD中,∠ABC=∠BCD=90°,,把Rt△ABC沿着AC翻折得到Rt△AEC,若,则线段DE的长度()A.B.C.D.【分析】过点D作DM⊥CE,根据折叠可得到∠ACE=∠ACB=60°,设EM=x,由折叠性质可知,EC=CB,设DM=x,则CD=2x,MC=x,EM=EC﹣CM=﹣x,在直角三角形EDM中,根据勾股定理即可得DE的长.解:如图,过点D作DM⊥CE,∵∠ABC=90°,AB=3,BC=,∴∠CAB=30°,∵∠ABC=∠BCD=90°,∴CD∥AB,∴∠ACD=∠CAB=30°,由折叠可知:∠ACE=∠ACB=60°,EC=BC=,∴∠ECD=30°,设DM=x,则CD=2x,∴MC=x,∴EM=EC﹣CM=﹣x,∵tan∠CED=,∴=,∴=,解得x=,∴EM=,在直角三角形EDM中,DE2=DM2+EM2,∴DE==.故选:B.10.如图,正三角形ABC的边长为3+,在三角形中放入正方形DEMN和正方形EFPH,使得D、E、F在边CB上,点P、N分别在边CA、AB上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为()A.B.C.3D.【分析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,根据等边三角形的性质得∠A=∠B=60°,利用含30度的直角三角形三边的关系得BD=DN=m,CF=PF=n,则m+m+n+n=3+,所以所以n=3﹣m,S=m2+n2=m2+(3﹣m)2=2(m﹣)2,接着确定m的取值范围为6﹣3≤m≤3﹣3,然后根据二次函数的性质求出S的最小值.解:设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A=∠B=60°,AB=3+,在Rt△BDN中,BD=DN=m,在Rt△CPF中,CF=PF=n,∵BD+DE+EF+CF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3﹣m,∴S=m2+n2=m2+(3﹣m)2=2(m﹣)2,当点M落在AC上,则正方形DEMN的边长最小,正方形EFPH的边长最大,如图,在Rt△BDN中,BD=DN,BN=DN,∴DN+DN=3+,解得DN=3﹣3,在Rt△CPF中,CF=PF,∴(3﹣3)+3﹣3+EF+PF=3,解得PF=6﹣9,∴6﹣3≤m≤3﹣3,∴当m=时,S最小,S的最小值为.故选:D.二、填空题(本大题共8小题,每小题2分,共计16分.不需要写出解答过程,只需把答案直接填写在答题卷相应的位置)11.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)12.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为 3.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解:将36000用科学记数法表示应为3.6×104,故答案为:3.6×104.13.如图,粮仓的顶部是圆锥形状,这个圆锥的底面圆的半径为3米,母线长为6米,为防雨水,需要在粮仓顶部铺上油毡,如果油毡的市场价为10元/米2,那么购买油毡所需要的费用是180π元(结果保留π).【分析】根据圆锥侧面积公式S=πrl,算出油毡的面积,乘以10即可得到结果.解:根据题意得:圆锥侧面积=π×3×6=18π(平方米),则购买油毡所需要的费用=10×18π=180π(元).故答案为:180π.14.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=9.6.【分析】连接AC交BD于点G,连接AO,根据菱形的性质可求出AG的长,再根据面积法即可求出OE+OF的值.解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.15.写出一个二次函数关系式,使其图象开口向上y=3x2(本题答案不唯一).【分析】抛物线开口向下,则二次函数解析式的二次项系数为负数,依此写二次函数解析式.解:依题意,得y=3x2.本题答案不唯一.故答案为:y=3x2(本题答案不唯一).16.一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底是70岁.【分析】设小民爷爷是x岁,小民是y岁,根据爷爷及小民年龄之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设小民爷爷是x岁,小民是y岁,依题意得:,解得:.故答案为:70.17.已知函数y=kx2+(2k+1)x+1(k为实数).(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点(0,1);(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m的值为0.【分析】(1)分别将x取﹣2或0时,计算相应的函数值,即可得到答案;(2)先由k>0,判断函数图象的开口方向,再求出函数的对称轴,则m值大于﹣1时均符合题意,任取范围内一个m值即可.解:(1)∵y=kx2+(2k+1)x+1(k为实数).∴当x=﹣2时,y=4k+(2k+1)×(﹣2)+1=﹣1,当x=0时,y=0+0+1=1,∴对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点(0,1),故答案为:(0,1);(2)∵k为任意正实数,∴k>0,∴函数图象开口向上,∵函数y=kx2+(2k+1)x+1的对称轴为x=﹣=﹣1﹣<﹣1,∴在对称轴右侧,y随x的增大而增大,∵x>m时,y随x的增大而增大,∴m≥﹣1﹣,故m=0时符合题意.(答案不唯一,m≥﹣1即可).故答案为:0.18.如图,直线l1∥l2∥l3,分别交直线m、n于点A、B、C、D、E、F,若AB:BC=5:3,DE=15,则EF的长为9.解:∵l1∥l2∥l3,∴=,∵AB:BC=5:3,DE=15,∴=,解得,EF=9,故答案为:9.三、解答题(共10小题).19.计算:(1)+﹣.(2)﹣+.解:(1)原式=9﹣3﹣4=2;(2)原式=﹣+,=,=,=,=.20.(1)解方程:(x+1)(x+3)=15(2)解方程:3x2﹣2x=2(3)解不等式组解:(1)∵(x+1)(x+3)=15,∴x2+4x+3=15,∴x2+4x﹣12=0,∴(x+6)(x﹣2)=0,∴x=﹣6或x=2;(2)∵3x2﹣2x=2,∴3x2﹣2x﹣2=0,∴a=3,b=﹣2,c=﹣2,∴△=4﹣4×3×(﹣2)=28,∴x==;(3)由①可得:x<﹣1;由②得:x>﹣4,∴不等式组的解集为:﹣4<x<﹣1;21.如图,已知EC=AC,∠BCE=∠ACD,∠A=∠E,BC=3.求DC的值.解:∵∠BCE=∠ACD,∴∠ACB=∠ECD,在△ACB和△ECD中,,∴△ACB≌△ECD(ASA),∴BC=CD=3.22.将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和等于4的概率(用树状图或列表法求解).【分析】(1)根据概率公式求解;(2)通过列表展示9种等可能的结果,再找出所摸出的两个球上数字之和等于4的结果数,然后利用概率公式求解.解:(1)P(标号为奇数)=;(2)列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)共有9种等可能的结果,其中所摸出的两个球上数字之和等于4(记为事件A)的有3种,所以,P(A)=.23.莫拉克台风给台湾造成了重大的损失,某中学开展爱心捐助活动,根据预备年级的捐款情况绘制如下统计图:请根据统计图给出的信息回答下列问题:(1)本次活动中预备年级共有多少同学捐款?(2)本次活动中捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数的几分之几?【分析】(1)把捐每种款项的人数相加即是预备年级共有的学生人数,列式解答即可得到答案;(2)用捐款20元以上(不包括捐款20元的)的人数除以预备年级捐款总人数,列式解答即可得到答案.解:(1)25+70+55+16+25+4=195(人)答:本次活动中预备年级共有195个同学捐款;(2)(16+25+4)÷195=45÷195,=,答:捐款20元以上(不包括捐款20元的)的人数占预备年级捐款总人数.24.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹).解:如图所示.圆P即为所作的圆.25.如图:CB与圆O相切于B,半径OA⊥OC,AB、OC相交于D,求证:(1)CD=CB;(2)AD•DB=2CD•DO.【分析】(1)由切线的性质可得∠ABO+∠CBD=90°,由直角三角形的性质可得∠OAB+∠ODA=90°,可得∠ADO=∠CBD=∠CDB,可证CD=CB;(2)过点C作CH⊥DB于点H,由等腰三角形的性质可得DH=BH=BD,通过证明△AOD∽△CHD,可得,可得结论.解:(1)连接OB,∵CB与圆O相切,∴OB⊥BC,∴∠ABO+∠CBD=90°,∵AO=BO,∴∠OAB=∠OBA,∵AO⊥CO,∴∠OAB+∠ODA=90°,∴∠ADO=∠CBD=∠CDB,∴CD=CB;(2)过点C作CH⊥DB于点H,∵CD=CB,CH⊥DB,∴DH=BH=BD,∵∠ADO=∠CDH,∠AOD=∠CHD=90°,∴△AOD∽△CHD,∴,∴AD•DH=CD•DO,∴AD•DB=CD•DO,∴AD•DB=2CD•DO.26.某水果店销售某种水果,由市场行情可知,从1月至12月,这种水果每千克售价y1(元)与销售时间x(1≤x≤12,x为正整数)月之间存在如图1所示(图1的图象是线段)的变化趋势,每千克成本y2(元)与销售时间x(1≤x≤12,x为正整数)月满足函数表达式y2=ax2﹣2x+c,其变化趋势如图2所示(图2的图象是抛物线).(1)求y1关于x的函数表达式.(不需要写出自变量的取值范围)(2)求y2关于x的函数表达式.(不需要写出自变量的取值范围)(3)求哪个月出售这种水果,每千克所获得的收益最大.解:(1)设一次函数表达式为y1=kx+b,将点(4,22)、(8,20)代入函数一次函数表达式得,解得,故y1关于x的函数表达式为y1=﹣x+24;(2)将点(3,12)、(7,14)代入抛物线表达式得:,解得,故y2关于x的函数表达式为y2=x2﹣2x+;(3)设每千克所获得的收益为w(元),则w=y1﹣y2=(﹣x+24)﹣(x2﹣2x+)=﹣x2+x+,∵﹣<0,故w有最大值,此时x=3,故3月出售这种水果,每千克所获得的收益最大.27.矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,求BE的长.【分析】如图1,当∠BC′E=90°时,如图2,当∠BEC′=90°时,根据矩形的性质和勾股定理即可得到结论.解:如图1,当∠BC′E=90°时,如图1,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BC′E=90°,∴B,C′,D三点共线,∴DC′=DC=6,∴BC′=4,BE=8﹣C′E,∵BC′2+EC′2=BE2,∴42+C′E2=(8﹣C′E)2,解得C′E=3,∴BE=8﹣3=5;如图2,当∠BEC′=90°时,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BEC′=90°,∴∠CEC′=90°,∴四边形ECDC′是正方形,∴C′E=CE=CD=6,∴BE=2.综上所述,当△BEC′为直角三角形时,BE的长为2或5.28.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求点C的坐标和此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求△BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)如图2,连接BC,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),可得EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,根据S△BEC=S四边形BOCE﹣S△BOC,构建二次函数,利用二次函数的性质求解即可.(3)由P在抛物线的对称轴上,设出P坐标为(﹣1,m),如图所示,过A′作A′N ⊥对称轴于N,由旋转的性质得到一对边相等,再由同角的余角相等得到一对角相等,根据一对直角相等,利用AAS得到△A′NP≌△PMA,由全等三角形的对应边相等得到A′N=PM=|m|,PN=AM=2,表示出A′坐标,将A′坐标代入抛物线解析式中求出相应m的值,即可确定出P的坐标.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:y=﹣x2﹣2x+3,C(0,3).(2)如图2,连接BC,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴S△BEC=S四边形BOCE﹣S△BOC=BF•EF+(OC+EF)•OF﹣•OB•OC=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)﹣=﹣a2﹣a=﹣(a+)2+,∴当a=﹣时,S△BEC最大,且最大值为.(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,①当m≥0时,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP与△PMA中,,∴△A′NP≌△PMA(AAS),∴A′N=PM=m,PN=AM=2,∴A′(m﹣1,m+2),代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,解得:m=1,m=﹣2(舍去),②当m<0时,要使P2A=P2A2,由图可知A2点与B点重合,∵∠AP2A2=90°,∴MP2=MA=2,∴P2(﹣1,﹣2).∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).。

【中考冲刺】2021年上海市浦东新区中考数学模拟试卷(附答案)

【中考冲刺】2021年上海市浦东新区中考数学模拟试卷(附答案)
8.
【解析】
较长的线段MP的长为xcm,则较短的线段长是(4−x)cm.
则x2=4(4−x),
解得x= 或− (舍去).
故答案为 .
9.
【分析】
把特殊角的三角函数值代入计算即可得到答案.
【详解】
解:
故答案为:
【点睛】
本题考查的是特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.
10.36
【分析】
16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt ABC中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=______.
17.如果将二次函数的图像平移,有一个点既在平移前的函数图像上又在平移后的函数图像上,那么称这个点为“平衡点”.现将抛物线 : 向右平移得到新抛物线 ,如果“平衡点”为(3,3),那么新抛物线 的表达式为______.
(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当 AMO与 ABP相似时,求点M的坐标.
25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.
(1)如图1,当∠B=90°时,求 与 的比值;
(2)如图2,当点E是边BC的中点时,求 的值;
绝密★启用前
【中考冲刺】2021年上海市浦东新区中考数学模拟试卷(附答案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、单选题
1.A、B两地的实际距离AB=250米,如果画在地图上的距离 =5厘米,那么地图上的距离与实际距离的比为()

2021年北京市丰台区中考数学模拟试卷及答案解析

2021年北京市丰台区中考数学模拟试卷及答案解析

第 1 页 共 30 页
2021年北京市丰台区中考数学模拟试卷
一.选择题(共8小题,满分16分)
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
2.根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000用科
学记数法表示为( )
A .1.6×108
B .1.6×107
C .16×106
D .1.6×106
3.实数a ,b 在数轴上的对应点如图所示,则下列不等式中正确的是( )
A .ab >0
B .a +b >0
C .|a |>|b |
D .b <a
4.内角和等于外角和的多边形是( )
A .三角形
B .四边形
C .五边形
D .六边形
5.如图,在平面直角坐标系中,等边三角形△OAB 的边长为4,点A 在第二象限内,将△
OAB 沿射线AO 平移,平移后点A '的横坐标为4√3,则点B '的坐标为( )
A .(﹣6√3,2)
B .(6√3,﹣2√3)
C .(6,﹣2)
D .(6√3,﹣2) 6.若x 满足x 2﹣2x ﹣2=0,则分式(
x 2−3x−1−2)÷1x−1的值是( ) A .1 B .12 C .﹣1 D .−32 7.如图,BC 是⊙O 的直径,点A 、D 在⊙O 上,若∠ADC =48°,则∠ACB 的度数为( )。

山东省聊城市冠县市级名校2021-2022学年中考数学全真模拟试卷含解析

山东省聊城市冠县市级名校2021-2022学年中考数学全真模拟试卷含解析

山东省聊城市冠县市级名校2021-2022学年中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=22.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.3.下列运算正确的是()A.5a+2b=5(a+b)B.a+a2=a3C.2a3•3a2=6a5D.(a3)2=a54.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.85.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m6.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70°B.110°C.130°D.140°7.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A.5B.3C.5+1 D.38.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=69.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x二、填空题(共7小题,每小题3分,满分21分)11.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sin C=3tan B,则BD=_____.12.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__________.13.用换元法解方程221231x x x x +-=+时,如果设21x y x +=,那么原方程化成以y 为“元”的方程是________. 14.不等式1﹣2x <6的负整数解是___________.15.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.16.计算20180(1)(32)---=_____.17.分式方程26x 9--1=x 3x-的解是x=________. 三、解答题(共7小题,满分69分)18.(10分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF =,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .19.(5分)在平面直角坐标系中,已知点A (2,0),点B (0,3),点O (0,0).△AOB 绕着O 顺时针旋转,得△A′OB′,点A 、B 旋转后的对应点为A′、B′,记旋转角为α.(I )如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P ,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).20.(8分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案..他们在C处仰望建筑物顶端A处,测得仰角为45,21.(10分)某中学九年级数学兴趣小组想测量建筑物AB的高度再往建筑物的方向前进6米到达D处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,≈≈,2 1.414)3 1.73222.(10分)化简分式2222334424x x xx x x x⎛⎫---÷⎪-+--⎝⎭,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.23.(12分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?24.(14分)先化简,再求值:22222+ba b a b aa ab b a b a-+÷--+-,其中,a、b满足2428a ba b-=-⎧⎨+=⎩.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.2、C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.3、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.4、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.5、D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.6、D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.7、C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.8、D【解析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.9、A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.10、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(﹣2x2)3=﹣8x6,故此选项错误;C选项:x2•(﹣x3)=﹣x5,故此选项正确;D选项:2x2÷x2=2,故此选项错误.故选C.【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sin C=;在Rt△ABD中,tan B=.已知7sin C=3tan B,所以7×=3×,又因AC=14,即可求得BD=1.点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tan B 和sin C的式子是解决问题的关键.12、3【解析】试题解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan ∠BOD=3.考点:解直角三角形.13、y-23y = 【解析】分析:根据换元法,可得答案.详解:21x x +﹣221x x +=1时,如果设21x x +=y ,那么原方程化成以y 为“元”的方程是y ﹣2y =1. 故答案为y ﹣2y=1. 点睛:本题考查了换元法解分式方程,把21x x +换元为y 是解题的关键. 14、﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x <6,移项得:﹣2x <6﹣1,合并同类项得:﹣2x <5,不等式的两边都除以﹣2得:x >﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.15、23【解析】先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=23. 故答案为23. 【点睛】本题考查的是概率公式,熟知随机事件A 的概率P (A )=事件A 可能出现的结果数所有可能出现的结果数的商是解答此题的关键.16、0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:())0201812--=1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.17、-5【解析】两边同时乘以(x+3)(x-3),得6-x 2+9=-x 2-3x ,解得:x=-5,检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案为:-5.【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.三、解答题(共7小题,满分69分)18、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案.详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴≌()FHB AAS ,DG BH ∴=,AG HC ∴=,又AD//CB ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.19、(1)B'的坐标为(3,3);(1)见解析 ;(3)3﹣1.【解析】(1)设A'B'与x 轴交于点H ,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°, 由∠BOB'=α=30°推出BO ∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出; (1)证明∠BPA'=90︒即可;(3)作AB 的中点M (1,),连接MP ,由∠APB=90°,推出点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM ⊥x 轴时,点P 纵坐标的最小值为3﹣1.【详解】(Ⅰ)如图1,设A'B'与x 轴交于点H ,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO ∥A'B',∵OB'=OB=1, ∴OH=OB'=,B'H=3,∴点B'33);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P31.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题. 20、(1)y1=kx+80,y2=30x;(2)见解析.【解析】(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三种情况分析即可.【详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故当租车时间为小时时,两种选择一样;当租车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算.【点睛】本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.21、14.2米;【解析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.【详解】设AB x=米∵∠C=45°∴在Rt ABC中,BC AB x==米,60ADB∠=,又6CD=米,∴在Rt ADB中Tan∠ADB=AB BD,Tan60°=6x x -解得)114.2x =≈米 答,建筑物的高度为14.2米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.22、x 取0时,为1 或x 取1时,为2【解析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.试题解析:解:原式=[22322x x x x ----()()]234x x -÷- =233224x x x x x --÷---() =32223x x x x x -+-⨯--()() = x +1,∵x 1-4≠0,x -2≠0,∴x ≠1且x ≠-1且x ≠2,当x =0时,原式=1.或当x =1时,原式=2.23、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可. (2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x ,根据题意列方程得:()2100001x 12100⨯-=,解得x 1=0.1,x 2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.24、3 5【解析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b +-++,=ba b +,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

黑龙江省哈尔滨市第六十九中学2021年中考数学真题模拟试卷及答案(含解析)

黑龙江省哈尔滨市第六十九中学2021年中考数学真题模拟试卷及答案(含解析)

黑龙江省哈尔滨市第六十九中学2021年中考数学真题模拟试卷及答案(含解析)一、单选题1、若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5 B.5 C.﹣4 D.4【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.2、海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.3、平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.4、﹣3的绝对值是()A.﹣3 B.C.3 D.±3【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.5、如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=,故选:B.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.6、已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.【解答】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.7、如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN =∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN =∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN =2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=FG=AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN=AG=1,∵GM=BC=4,∴==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=AN•FG=2×1=1,S△ADM=AD•DM=×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.8、观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.9、甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10、如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【点评】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.二、填空题1、《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26 寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2、如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.【分析】设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=,故答案为.【点评】本题考查了矩形,熟练掌握矩形的性质以及勾股定理是解题的关键.3、如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.4、把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12 .【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.5、甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(难度:中等)1、在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG ⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.2、在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图形G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.3、计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.4、如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.【分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解答】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴==2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).5、某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.6、为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取50 名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为72°;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?【分析】(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°;(2)A类学生:50﹣23﹣12﹣10=5(人),据此补充条形统计图;(3)该校表示“喜欢”的B类的学生大约有1500×=690(人).【解答】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°,故答案为50,72°;(2)A类学生:50﹣23﹣12﹣10=5(人),条形统计图补充如下该校表示“喜欢”的B类的学生大约有1500×=690(人),答:该校表示“喜欢”的B类的学生大约有690人;【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7、如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.8、某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)【分析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.【点评】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.。

河北省沧州市中考数学模拟试卷(解析版).

河北省沧州市中考数学模拟试卷(解析版).

精品文档河北省沧州市2021年中考数学模拟试卷一、选择题:本大题共 16小题,1-10小题,每题 3分,11-16小题,每题 3分,共42分,在每题给出的四个选项中,只有一项符合题目要求..下面哪个式子可以用来验证小明的计算3﹣〔﹣ 1〕=4是否正确?〔4﹣〔﹣〕4+1 C4×1 4÷1 〕.〔﹣〕. 〔﹣〕〔﹣2 .以下运算正确的选项是〔〕A .a 3+a 2=a 5B .3a 2﹣a 2=22C .a 3?a 2=a 5D .a 6÷a 3=a 23.下了四个图形中,既是轴对称图形又是中心对称图形的是〔 〕A .B .C .D .4.以下各式中,能用平方差公因式分解的是〔 〕A .x 2+xB .x 2+8x+16C .x 2+4D .x 2﹣15.如图是一个几何体的三视图,那么这个几何体的侧面积是〔 〕A .12πcm 2B .8πcm 2C .6πcm 2D .3πcm26.如图,在⊙O 的内接四边形 ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线 PD 与直线AB交于点P ,那么∠ADP 的度数为〔 〕A .40°B .35°C .30°D .45°7.a= ,b= ,c= ,那么以下大小关系正确的选项是〔 〕A .a >b >cB .c >b >aC .b >a >cD .a >c >b精品文档精品文档8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,那么以下结论中不正确的选项是〔〕A.∠AOF=45°B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,那么tan∠DBC的值为〔〕A.B.﹣1C.2﹣D.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,那么以下结论正确的选项是〔〕A.当x=3时,EC<EM B.当y=9时,EC>EMC .当x增大时,EC CF的值增大D.当y增大时,BEDF的值不变??11.如下图是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在以下哪一范围内〔1ml=1cm 3〕〔〕精品文档精品文档A .10cm 3以上,20cm 3以下 B .20cm 3以上,30cm 3以下 C .30cm 3以上,40cm 3以下D .40cm 3以上,50cm 3以下12.假设关于x 的一元二次方程〔 k ﹣1〕x 2+2x ﹣2=0有实数根,那么 k 的取值范围是〔〕A .k >B .k ≥C .k > 且k ≠1D .k ≥且k ≠113.如图是某市 7月 1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染, 某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,那么此人在该市停留期间有且仅有1天空气质量优良的概率是〔〕A .B .C .D .14.如图,函数 y =ax+b 和y=kx 的图象交于点P ,那么根据图象可得,关于x 、y 的二元一次方程组的解是〔 〕A .B .C .D .15.如图,正六边形ABCDEF内接于⊙O ,半径为4,那么这个正六边形的边心距OM和的长分别为〔 〕精品文档精品文档A.2,B.2,πC.,D.2,16.一个大正方形和四个全等的小正方形按①、②两种方式放,②的大正方形中未被小正方形覆盖局部的面是〔用含a、b的式子表示〕〔〕A.〔a+b〕2B.〔a b〕2C.2ab D.ab二、填空:本大共4小,每小3分,共12分,把答案写在中横上.17.算2sin45°的果是.18.假设〔x1〕2=2,代数式x22x+5的.19.如,在半径2的⊙O中,两个点重合的内接正四形与正六形,阴影局部的面.20.如,所有正三角形的一都与x平行,一点在y正半上,点依次用A1,A2,A3,A4⋯表示,坐原点O到A1A2,A4A5,A7A8⋯的距离依次是1,2,3,⋯,从内到外,正三角形的依次246⋯A23的坐是.,,,,精品文档精品文档三、解答题:本大题共6个小题,共 66分,解容许写出文字说明、证明过程或演算步骤.21.现规定=a ﹣b+c ﹣d ,试计算 ,其中x=2,y=1.22.如图,点 A 〔﹣4,2〕,B 〔﹣1,﹣2〕,平行四边形 ABCD 的对角线交于坐标原点O .1〕请直接写出点C 、D 的坐标;2〕写出从线段AB 到线段CD 的变换过程;3〕直接写出平行四边形ABCD 的面积.23.为了节省材料,某水产养殖户利用水库的岸堤〔岸堤足够长〕为一边,用总长为 80m 的围网在水库中围成了如下图的 ①②③ 三块矩形区域,而且这三块矩形区域的面积相等.设 BC 的长度为xm ,矩形区域 ABCD 的面积为ym 2.〔1〕求y 与x 之间的函数关系式,并注明自变量 x 的取值范围;〔2〕x 为何值时,y 有最大值?最大值是多少?精品文档精品文档24.如图是根据某市国民经济和社会开展统计公报中的相关数据绘制的两幅统计图〔不完整〕.根据图中信息解答以下问题:〔1〕2021年该市私人轿车拥有量约是多少万辆?〔精确到 1万辆〕〔2〕请补全折线统计图.〔3〕经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为的轿车,假设一年行驶的路 程为1万千米,那么这一年该轿车的碳排放量约为 万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量〔L 〕小于大于 轿车数量〔辆〕602008060按照上述的统计数据, 通过计算估计:2021年该市仅排量为的私人轿车〔假定每辆车平均一年行驶的路程都为 1万千米〕的碳排放总量为多少万吨?25.如图,经过点A 〔0,﹣6〕的抛物线y= x 2+bx+c 与x 轴相交于B 〔﹣2,0〕,C 两点.〔1〕求此抛物线的函数关系式和顶点 D 的坐标;〔2〕将〔1〕中求得的抛物线向左平移 1个单位长度,再向上平移 m 〔m >0〕个单位长度得到新抛物线y 1,假设新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围;〔3〕设点M 在y 轴上,∠OMB+∠OAB=∠ACB ,直接写出AM 的长.26.在平面直角坐标系中,O 为原点,四边形 OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点P ,点Q 分别是边 BC ,边AB 上的点,连结AC ,PQ ,点B 1是点B 关于PQ 的对称点.精品文档精品文档〔1〕假设四边形OABC为矩形,如图1,①求点B的坐标;②假设BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;〔2〕假设四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.假设B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.精品文档精品文档2021年河北省沧州市中考数学模拟试卷〔3月份〕参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每题3分,11-16小题,每题3分,共42分,在每题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣〔﹣1〕=4是否正确?〔〕A.4﹣〔﹣1〕B.4+〔﹣1〕C.4×〔﹣1〕D.4÷〔﹣1〕【考点】有理数的减法.【分析】根据被减数、减数、差三者之间的关系解答.【解答】解:可以用4+〔﹣1〕验证.应选B.【点评】此题主要考查了有理数的减法,熟记被减数=差+减数是解题的关键.2.以下运算正确的选项是〔〕A .a3+a2=a5B.3a2﹣a2=22C.a3a2=a5D.a6a3=a2?÷【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A,C;根据合并同类项,可判断B;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、合并同类项系数相加字母局部不变,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;应选:C.【点评】此题考查了同底数幂的除法,熟记法那么并根据法那么计算是解题关键.3.下了四个图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.精品文档精品文档【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形,故正确;C 、是轴对称图形,不是中心对称图形,故错误;D 、是轴对称图形,不是中心对称图形,故错误.应选B .【点评】此题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两 局部沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180度后与原图重合.4.以下各式中,能用平方差公因式分解的是〔〕A .x 2+xB .x 2+8x+16C .x 2+4D .x 2﹣1 【考点】因式分解-运用公式法.【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A 、x 2+x=x 〔x+1〕,是提取公因式法分解因式,故此选项错误;B 、x 2+8x+16=〔x+4〕2,是公式法分解因式,故此选项错误;C 、x 2+4,无法分解因式,故此选项错误;D 、x 2﹣1=〔x+1〕〔x ﹣1〕,能用平方差公因式分解,故此选项正确.应选:D .【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.5.如图是一个几何体的三视图,那么这个几何体的侧面积是〔〕A .12πcm 2B .8πcm 2C .6πcm 2D .3πcm 2【考点】由三视图判断几何体;圆柱的计算.【分析】首先判断出该几何体,然后计算其面积即可.精品文档精品文档【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,应选C.【点评】此题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB 交于点P,那么∠ADP的度数为〔〕A.40°B.35°C.30°D.45°【考点】切线的性质.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,PD是切线,∴∠ADP=∠ABD=30°,应选:C.【点评】此题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.精品文档精品文档7.a=,b=,c=,那么以下大小关系正确的选项是〔〕A.a>b>c B.c>b>a C.b>a>c D.a>c>b【考点】实数大小比拟.【专题】计算题.【分析】将a,b,c变形后,根据分母大的反而小比拟大小即可.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,应选A.【点评】此题考查了实数比拟大小,将a,b,c进行适当的变形是解此题的关键.8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,那么以下结论中不正确的选项是〔〕A.∠AOF=45°B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角【考点】垂线;余角和补角;对顶角、邻补角.【分析】根据垂线的定义和角平分线得出A正确;根据对顶角相等得出B正确;求出∠BOD的余角得出C不正确;根据邻补角关系得出D正确.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵OF平分∠AOE,∴∠AOF=∠AOE=45°,∴A正确;夜∠BOD和∠AOC是对顶角,∴∠BOD=∠AOC,精品文档精品文档∴B正确;∵∠BOD的余角=90°﹣15°30′=74°30′,∴C不正确;∵∠AOD+∠BOD=180°,∴∠AOD和∠BOD互为补角,D正确;应选:C.【点评】此题考查了垂线、余角以及对顶角、邻补角的定义;熟练掌握角的互余和互补关系是解题的关键.9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,那么tan∠DBC的值为〔〕A.B.﹣1C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE 来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.精品文档精品文档∴tan∠DBC===.应选:A.【点评】此题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,那么以下结论正确的选项是〔〕A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC?CF的值增大D.当y增大时,BE?DF的值不变【考点】动点问题的函数图象.【专题】数形结合.【分析】由于等腰直角三角形AEF的斜边EF过C点,那么△BEC和△DCF都是直角三角形;观察反比例函数图象得反比例解析式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,那么C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EF=10,而EM=5;由于EC?CF=x×y;利用等腰直角三角形的性质BE?DF=BC?CD=xy,然后再根据反比例函数的性质得BE?DF=9,其值为定值.【解答】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图象得x=3,y=3,那么反比例解析式为y=;精品文档精品文档A 、当x=3时,y=3,即BC=CD=3,所以CE=BC=3 ,CF= CD=3 ,C 点与M 点重合,那么EC=EM ,所以A 选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC= ,EF=10 ,EM=5 ,所以B 选项错误;C、因为EC?CF= x?y=2×xy=18,所以,EC?CF 为定值,所以C 选项错误;D、因为 BEDF=BC ? CD=xy=9 ,即 BEDF 的值不变,所以 D选项正确. ? ?应选D .【点评】此题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.11.如下图是测量一物体体积的过程:步骤一,将180ml 的水装进一个容量为 300ml 的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在以下哪一范围内〔 1ml=1cm 3〕〔 〕A .10cm 3以上,20cm 3以下 B .20cm 3以上,30cm 3以下C .30cm 3以上,40cm 3以下D .40cm 3以上,50cm 3以下【考点】一元一次不等式的应用.【专题】操作型.【分析】先求出剩余容量,然后分别除以 3和4,就可知道球的体积范围.【解答】解:300﹣180=120,120÷3=40,120÷4=30应选:C .【点评】特别注意水没满与满的状态.12.假设关于x 的一元二次方程〔 k ﹣1〕x 2+2x ﹣2=0有实数根,那么 k 的取值范围是〔〕A .k >B .k ≥C .k >且k ≠1D .k ≥且k ≠1【考点】根的判别式;一元二次方程的定义.精品文档精品文档【分析】根据根的判别式和一元二次方程的定义可得4﹣4〔k ﹣1〕〔﹣2〕=8k ﹣4≥0且k ≠1,求出k 的取值范围即可. 【解答】解:∵关于x 的一元二次方程〔k ﹣1〕x 2+2x ﹣2=0有实数根, ∴△≥0且k ≠1,∴△=4﹣4〔k ﹣1〕〔﹣2〕=8k ﹣4≥0且k ≠1, ∴k ≥且k ≠1, 应选:D .【点评】此题主要考查了根的判别式以及一元二次方程的定义的知识,解答此题的关键是掌握一元二次方程有实数根,那么△≥0,此题难度不大.13.如图是某市 7月1日至10日的空气质量指数趋势图, 空气质量指数小于 100表示空气质量优良,空气质量指数大于 200表示空气重度污染, 某人随机选择 7月1日至7月8日中的某一天到达该市,并连续停留 3天,那么此人在该市停留期间有且仅有 1天空气质量优良的概率是〔 〕A .B .C .D .【考点】概率公式;折线统计图. 【专题】图表型. 【分析】先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公 式求解即可. 【解答】解:∵由图可知,当 1号到达时,停留的日子为1、2、3号,此时为〔86,25,57〕,3天空气质量均为优;当2 号到达时,停留的日子为 2、3 、4 号,此时为〔25 ,57,143〕,2 天空气质量为优; 当3 号到达时,停留的日子为 3、4 、5 号,此时为〔57 ,143,220〕, 1天空气质量为优; 当4 号到达时,停留的日子为4、5 、6 号,此时为〔143,220,160〕,空气质量为污染;精品文档精品文档当5号到达时,停留的日子为5、6、7号,此时为〔220,160,40〕,1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为〔160,40,217〕,1天空气质量为优;当7号到达时,停留的日子为7、8、9号,此时为〔40,217,160〕,1天空气质量为优;当8号到达时,停留的日子为8、9、10号,此时为〔217,160,121〕,空气质量为污染∴此人在该市停留期间有且仅有1天空气质量优良的概率= =.应选:C.【点评】此题考查的是概率公式,熟知随机事件A的概率P〔A〕=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.如图,函数y=ax+b 和y=kx的图象交于点P,那么根据图象可得,关于x、y的二元一次方程组的解是〔〕A.B.C.D.【考点】一次函数与二元一次方程〔组〕.【分析】由图可知:两个一次函数的交点坐标为〔﹣3,1〕;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P〔﹣3,1〕,即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.应选C.【点评】此题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.精品文档精品文档15.如图,正六边形ABCDEF内接于⊙O,半径为4,那么这个正六边形的边心距OM和的长分别为〔〕A.2,B.2,πC.,D.2,【考点】正多边形和圆;弧长的计算.【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,OB=4,∴BM=2,∴OM=2,==π,应选D.【点评】此题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,那么图②的大正方形中未被小正方形覆盖局部的面积是〔用含a、b的式子表示〕〔〕精品文档精品文档A .〔a+b 〕2B .〔a ﹣b 〕2C .2abD .ab【考点】整式的混合运算.【分析】用大正方形的面积减去 4个小正方形的面积即可.【解答】解:〔 〕2﹣4×〔〕2= ﹣==ab , 应选D .【点评】此题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.二、填空题:本大题共4小题,每题 3分,共12分,把答案写在题中横线上.17.计算 ﹣2sin45°的结果是 .【考点】实数的运算;特殊角的三角函数值.【分析】利用二次根式的性质以及特殊角的三角函数值求出即可.【解答】解: ﹣2sin45°=2 ﹣2×.故答案为:.【点评】此题主要考查了实数运算等知识,正确掌握相关性质是解题关键.18.假设〔x ﹣1〕2=2,那么代数式x 2﹣2x+5的值为6.【考点】完全平方公式.【分析】根据完全平方公式展开,先求出x 2﹣2x 的值,然后再加上 5计算即可.【解答】解:∵〔x ﹣1〕2=2, ∴x 2﹣2x+1=2,精品文档精品文档x 2﹣2x=1, 两边都加上5,得x 2﹣2x+5=1+5=6. 故答案为:6.【点评】此题考查了完全平方公式,熟记公式是解题的关键,利用“整体代入〞的思想使计算更加简便.19.如图,在半径为2的⊙O 中,两个顶点重合的内接正四边形与正六边形,那么阴影局部的面积为 6﹣2. 【考点】正多边形和圆. 【分析】如图,连接 OB ,OF ,根据题意得:△BFO 是等边三角形,△CDE 是等腰直角三角形,求 得△ABC 的高和底即可求出阴影局部的面积. 【解答】解:如图,连接OB ,OF , 根据题意得:△BFO 是等边三角形,△CDE 是等腰直角三角形,∴BF=OB=2,∴△BFO 的高为; ,CD=2〔2 ﹣ 〕=4﹣2,∴BC=〔2﹣4+2〕=﹣1,∴阴影局部的面积 =4S △ABC =4×〔 〕?=6﹣2.故答案为:6﹣2.精品文档精品文档【点】本考了正多形和,三角形的面,解的关是知道阴影局部的面等于4个三角形的面.20.如,所有正三角形的一都与x平行,一点在y正半上,点依次用A1,A2,A3,A4⋯表示,坐原点O到A1A2,A4A5,A7A8⋯的距离依次是1,2,3,⋯,从内到外,正三角形的依次2,4,6,⋯,A23的坐是〔8,8〕.【考点】律型:点的坐.【分析】根据每一个三角形有三个点确定出A23所在的三角形,再求出相的三角形的以及23的坐的度,即可得解.【解答】解:∵23÷3=7⋯2,∴A23是第8个等三角形的第2个点,第8个等三角形2×8=16,∴点A23的横坐×16=8,∵A1A2与A4A5、A4A5与A7A8、⋯均相距一个位,∴点A23的坐8,∴点A23的坐〔8,8〕.故答案:〔8,8〕.【点】此考点的坐化律,主要利用了等三角形的性,确定出点A23所在三角形是解的关.三、解答:本大共6个小,共66分,解答写出文字明、明程或演算步.21.定=a b+c d,算,其中x=2,y=1.精品文档精品文档【考点】整式的混合运算 —化简求值.【专题】新定义;整式.【分析】原式利用题中的新定义化简,将 x 与y 的值代入计算即可求出值. 【解答】解:原式=〔xy ﹣3x 2〕﹣〔﹣2xy 〕﹣2x 2﹣〔﹣5+xy 〕=xy ﹣3x2+2xy ﹣2x2+5﹣xy=﹣5x 2+2xy+5, 当x=2,y=1时,原式=﹣20+4+5=﹣11.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法那么是解此题的关键. 22.如图,点 A 〔﹣4,2〕,B 〔﹣1,﹣2〕,平行四边形 ABCD 的对角线交于坐标原点 O . 1〕请直接写出点C 、D 的坐标; 2〕写出从线段AB 到线段CD 的变换过程; 3〕直接写出平行四边形ABCD 的面积. 【考点】平行四边形的性质;坐标与图形性质;平移的性质. 【分析】〔1〕利用中心对称图形的性质得出 C ,D 两点坐标; 2〕利用平行四边形的性质以及结合平移的性质得出即可; 3〕利用S ABCD 的可以转化为边长为;5和4的矩形面积,进而求出即可.【解答】解:〔1〕∵四边形ABCD 是平行四边形, ∴四边形ABCD 关于O 中心对称, A 〔﹣4,2〕,B 〔﹣1,﹣2〕,∴C 〔4,﹣2〕,D 〔1,2〕; 〔2〕线段AB 到线段CD 的变换过程是:绕点O 旋转180°; 〔3〕由〔1〕得:A 到y 轴距离为:4,D 到y 轴距离为:1,A 到x 轴距离为:2,B 到x 轴距离为:2,∴S ABCD 的可以转化为边长为; 5和4的矩形面积,精品文档精品文档S ABCD =5×4=20.【点评】此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出S ABCD 的可以转化为矩形面积是解题关键.23.为了节省材料,某水产养殖户利用水库的岸堤〔岸堤足够长〕为一边,用总长为 80m 的围网在水库中围成了如下图的 ①②③ 三块矩形区域,而且这三块矩形区域的面积相等.设 BC 的长度为xm ,矩形区域 ABCD 的面积为ym 2.〔1〕求y 与x 之间的函数关系式,并注明自变量 x 的取值范围;〔2〕x 为何值时,y 有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】〔1〕根据三个矩形面积相等, 得到矩形AEFD 面积是矩形 BCFE 面积的2倍,可得出AE=2BE ,设BE=a ,那么有AE=2a ,表示出 a 与2a ,进而表示出 y 与x 的关系式,并求出 x 的范围即可;〔2〕利用二次函数的性质求出 y 的最大值,以及此时 x 的值即可.【解答】解:〔1〕∵三块矩形区域的面积相等,∴矩形AEFD 面积是矩形 BCFE 面积的2倍,∴AE=2BE ,设BE=a ,那么AE=2a ,∴8a+2x=80,∴a=﹣x+10,3a=﹣ x+30,y=〔﹣x+30〕x=﹣x 2+30x ,a=﹣x+10>0,∴x <40,精品文档精品文档那么y=﹣x 2+30x 〔0<x <40〕;〔2〕∵y=﹣x 2+30x=﹣〔x ﹣20〕2+300〔0<x <40〕,且二次项系数为﹣<0,∴当x=20时,y 有最大值,最大值为 300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解此题的关键.24.如图是根据某市国民经济和社会开展统计公报中的相关数据绘制的两幅统计图〔不完整〕.根据图中信息解答以下问题:〔1〕2021年该市私人轿车拥有量约是多少万辆?〔精确到1万辆〕 〔2〕请补全折线统计图.〔3〕经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为 的轿车,假设一年行驶的路程为1万千米,那么这一年该轿车的碳排放量约为 万吨,从该市随机抽取 400辆私人轿车,不同排量的轿车数量统计如下表:排量〔L 〕小于大于轿车数量〔辆〕60200 8060按照上述的统计数据, 通过计算估计:2021 年该市仅排量为的私人轿车〔假定每辆车平均一年行驶的路程都为 1万千米〕的碳排放总量为多少万吨? 【考点】折线统计图;条形统计图.【分析】〔1〕设2021 年该市私人轿车拥有量为 x 万辆,根据2021年拥有量=2021年拥有量×〔1+2021年的增长率〕列出方程,解方程可得;〔2〕设2021年增长率为m ,根据 2021年拥有量×〔1+增长率〕=2021年拥有量,列方程求解即可;〔3〕根据2021年20私人轿车总量由 14年的私人轿车占私人轿车拥有量的比例可得排量为的私人轿车数,再计算碳排放总量.精品文档精品文档【解答】解:〔1〕设2021年该市私人轿车拥有量为 x 万辆,根据题意,得:〔1+30%〕x=108,解得:x=83,答:2021年该市私人轿车拥有量约是 83万辆; 2〕设2021年增长率为m ,那么60〔1+m 〕=69, 解得:m=0.15=15%,补全统计图如以下图所示:〔3〕2021年私人轿车的拥有量为: 108×〔200÷400〕=54〔万辆〕,所以2021 年该市仅排量为的私人轿车的碳排放总量为: 540000×2.7=1458000〔万吨〕, 答:2021 年该市仅排量为的私人轿车的碳排放总量为1458000万吨.【点评】此题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据,折线统计图表示的是事物的变化情况.25.如图,经过点 A 〔0,﹣6〕的抛物线y= x 2+bx+c 与x 轴相交于B 〔﹣2,0〕,C 两点.〔1〕求此抛物线的函数关系式和顶点 D 的坐标;〔2〕将〔1〕中求得的抛物线向左平移1个单位长度,再向上平移m 〔m >0〕个单位长度得到新抛物线y 1,假设新抛物线 y 1的顶点P 在△ABC 内,求m 的取值范围; 〔3〕设点M 在y 轴上,∠OMB+∠OAB=∠ACB ,直接写出 AM 的长.【考点】二次函数综合题. 【分析】〔1〕该抛物线的解析式中只有两个待定系数,只需将A 、B两点坐标代入即可得解.精品文档精品文档〔2〕首先根据平移条件表示出移动后的函数解析式,从而用m 表示出该函数的顶点坐标,将其代入直线AB 、AC的解析式中,即可确定P 在△ABC 内时m 的取值范围.〔3〕先在OA 上取点N ,使得∠ONB=∠ACB ,那么只需令∠NBA=∠OMB 即可,显然在 y 轴的正 负半轴上都有一个符合条件的 M 点;以y 轴正半轴上的点 M 为例,先证△ABN 、△AMB 相似,然后通过相关比例线段求出 AM 的长.【解答】解:〔1〕将A 〔0,﹣6〕、B 〔﹣2,0〕代入抛物线 y=x 2+bx+c 中,得:, 解得. ∴抛物线的解析式: y=x 2﹣2x ﹣6=〔x ﹣2〕2﹣8,顶点D 〔2,﹣8〕;〔2〕由题意,新抛物线的解析式可表示为:y=〔x ﹣2+1〕2﹣8+m ,即:y= 〔x ﹣2+1〕2﹣8+m .它的顶点坐标 P 〔1,m ﹣8〕.由〔1〕的抛物线解析式可得: C 〔4,0〕.∴直线AB :y=﹣3x ﹣6;直线AC :y=x ﹣6.当点P 在直线 AB上时,﹣ 3﹣6=m ﹣8,解得:m=﹣1;当点P 在直线AC又∵m >0,∴当点P 在△ABC 上时, 内时,﹣6=m ﹣8,解得:0<m < .m=;3〕由A 〔0,﹣6〕、C 〔6,0〕得:OA=OC=6,且△OAC 是等腰直角三角形.如图,在OA 上取ON=OB=2,那么∠ONB=∠ACB=45°.∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB ,即∠NBA=∠OMB .精品文档精品文档如图,在△ABN 、△AM 1B 中,BAN=∠M 1AB ,∠ABN=∠AM 1B ,∴△ABN ∽△AM 1B ,得:AB 2=AN?AM 1;由勾股定理,得 AB 2=〔﹣2〕2+〔﹣6〕2=40,又∵AN=OA ﹣ON=6﹣2=4, AM 1=40÷4=10,OM 1=AM 1﹣OA=10﹣6=4OM 2=OM 1=4AM 2=OA ﹣OM 2=6﹣4=2. 综上所述,AM 的长为4或2.【点评】考查了二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质,勾股定理.26.在平面直角坐标系中,O 为原点,四边形 OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2, 点P ,点Q 分别是边BC ,边AB 上的点,连结 AC ,PQ ,点B 1是点B 关于PQ 的对称点.〔1〕假设四边形OABC 为矩形,如图1, ① 求点B 的坐标;② 假设BQ :BP=1:2,且点B 1落在OA 上,求点B 1的坐标;〔2〕假设四边形OABC 为平行四边形,如图2,且OC ⊥AC ,过点B 1作B 1F ∥x 轴,与对角线 AC 、边OC 分别交于点E 、点F .假设B 1E :B 1F=1:3,点B 1的横坐标为m ,求点B 1的纵坐标,并直接写出m 的取值范围.【考点】四边形综合题.【专题】压轴题.【分析】〔1〕①根据OA=4,OC=2,可得点B 的坐标;②利用相似三角形的判定和性质得出点的坐标;精品文档。

2021年初三数学模拟试卷(七)

2021年初三数学模拟试卷(七)

初三数学模拟试卷(七)一、选择题: 本大题共12小题;每小题3分;共36分;在每小题给出的四个选项中;只有一项是符合题目要求的. 1.2)2(-化简的结果是【 】A .2 B .—2 C .2或—2 D .4 2.点P (-2;3)关于原点对称点的坐标是【 】A .(-2;3)B .(2;-3)C .(2;3)D .(-2;-3) 3.如图1;△ABC 中;∠C =90°;BC =2;AB =3;则下列结论正确的是【 】A .35sin =AB .32cos =AC .32sin =A D .25=tgA4.如果两个圆只有一条共切线;那么这两个圆的位置关系是【 】A .外离B .外切C .相交D .内切 5.下列图形中;轴对称图形的个数是【 】A .1个B .2个C .3个D .4个.6.某种商品的进价为800元;出售时标价为1200元;后来由于该商品积压;商店准备打折销售;但要保证利润率不低于5%;则至多可打【 】 A .6折 B .7折 C .8折 D .9折7.如图2;P 是反比例函数xy 4=在第一象限分支上的一动点;PA ⊥x 轴;随着x 逐渐增大;△APO 的面积将【 】 A .增大 B .减小 C .不变 D .无法确定8.为了鼓励节约用水;按以下规定收取水费:(1)每户每月用水量不超过20立方米;则每立方米水费1.2元;;(2)每户每月用水量超过20立方米;则超过部分每立方米水费2元;设某户一个月所交水费为y (元);用水量为x (立方米);则y 与x 的函数关系用图像表示为【 】36 24 12 x y0 36 24 12 y0 36 2412 y0 36 24 12 y0 A B C DACB图1x yO P A 图29.如下图中的四个正方形的边长均相等;其中阴影部分面积最大的图形是【 】10.如图;是用杠杆撬石头的示意图;C 是支点;当用力压杠杆的端点A 时;杠杆绕C 点转动;另一端点B 向上翘起;石头就被撬动.现有一块石头;要使其滚动;杠杆的B 端必须向上翘起10cm ;已知杠杆的动力臂AC 与阻力臂BC 之比为5︰1;则要使这块石头滚动;至少要将杠杆的端点A 向下压【 】A 、100cmB 、60cmC 、50cmD 、10cm11.我们从不同的方向观察同一物体时;可能看 到不同的图形.如右图;图①是由若干个小 正方体所搭成的几何体;图②是从图①的上 面看这个几何体所看到的图形;那么从图① 的左面看这个几何体所看到的图形是 【 】12.在某次足球训练中;一队员在距离球门12米处挑射;正好射中了2.4米高的球门横梁。

2021年安徽省中考数学模拟试题七及答案详解(24页)

2021年安徽省中考数学模拟试题七及答案详解(24页)

2021年安徽省中考数学模拟试题七数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.19的绝对值是( )A.-19B.19C.119D.-1192.计算(ab2)5的结果是( )A.a5b7B.a6b7C.a5b10D.a6b103.光年是天文学上的一种距离单位.光在真空中1年内经过的路程为1光年.已知光的速度为3×105千米/秒,1年约3.2×107秒,那么1光年约为(用科学记数法表示) ( ) A.9.6×1035千米 B.9.6×1012千米C.0.96×108千米D.9.6×107千米4.如图是由5个完全相同的小正方体搭成的几何体,则其左视图是( )A B C D5.分解因式6a-6a3的结果是( )A.6a(a2-1)B.6a(1-a2)C.6a(a-1)(a+1)D.6a(1-a)(1+a)6.小明记录了自己连续一个月(30天)在某网站利用“名师在线课堂”进行自主学习的时间,并根据记录结果绘制了如图所示的统计图,则在这组数据中,众数和中位数分别是( )A.1.2,1.3B.1.4,1.3C.1.4,1.35D.1.3,1.37.一元二次方程(x+3)(x-1)=2x-2的实数根是( )A.x=1B.x=-1C.x1=0,x2=1 D.x1=-1,x2=18.我省某地区2016年年底有贫困人口15万人,自国家实施“精准扶贫”政策以来,通过社会各界的努力,2018年年底贫困人口减少至1.5万人.设2016年年底至2018年年底该地区贫困人口的年平均下降率为x,根据题意可列方程为( ) A.15(1-2x)=1.5 B.15(1-x)2=1.5C.15(1+2x)=1.5D.15(1+x)2=1.59.已知三个实数a,b,c满足a+b+c>0,a+c=b,b+c=a,则( )A.a=b>0,c=0B.a=c>0,b=0C.b=c>0,a=0D.a=b=c>010.边长为4、中心为O的正方形ABCD如图所示,动点P从点A出发,沿A→B→C →D→A以每秒1个单位长度的速度运动到点A时停止,动点Q从点A出发,沿A →D→C→B→A以每秒2个单位长度的速度运动一周停止,若点P,Q同时开始运动,点P的运动时间为t s,当0<t<16时,满足OP=OQ的点P的位置有( )A.6个B.7个C.8个D.9个二、填空题(本大题共4小题,每小题5分,满分20分)11.729的立方根是.12.命题“等腰三角形的两个底角相等”的逆命题是.13.如图,在△ABC中,∠B=30°,∠C=45°,AB=4 cm.能够将△ABC完全覆盖的最小圆形纸片的面积是cm2.14.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为.三、(本大题共2小题,每小题8分,满分16分)15.解方程:2(x-3)2=x2-9.16.如图所示为由边长为1个单位长度的小正方形组成的8×8的网格,已知点A,B为网格线的交点.(1)将线段AB向右平移3个单位长度,再向上平移2个单位长度,得到线段CD(点A,B的对应点分别为C,D),在图中作出线段CD;(2)若以点B为坐标原点建立平面直角坐标系xOy,点A的坐标为(-2,1),则点C 的坐标为;(3)在网格中找出点E,使以点A,B,C,E为顶点的四边形是平行四边形,并写出点E 的坐标.(找到并写出其中一个即可)四、(本大题共2小题,每小题8分,满分16分)17.某市政部门对一条长a km的河道进行改造,甲施工队计划用30天完成,当甲施工队工作5天后,市政部门接到通知,要求提前15天完成河道改造,甲施工队随即加快速度,每天的工作效率比原计划提高30%,同时乙施工队加入和甲施工队共同完成剩余工程,结果按要求如期完成整个工程.(1)甲施工队改造了km河道后,乙施工队加入(用含a的代数式表示);(2)若乙工程队加入后,甲、乙两施工队每天改造的河道长度相差0.5 km,求河道的长度.18.为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯踏步的宽度的范围是260 mm~300 mm(含300 mm),高度的范围是120 mm~150 mm(含150 mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900 mm,∠ACD=65°,问该中学楼梯踏步的宽度和高度是否符合规定.(参考数据:sin 65°≈0.906,cos 65°≈0.423)五、(本大题共2小题,每小题10分,满分20分)19.在如图所示的平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,2),B(-1,0),C(0,1),△A1B1C与△ABC关于y轴对称.将△ABC和△A1B1C向右平移4个单位长度,得到△A1B2C1和△A2B3C1;将△A1B2C1和△A2B3C1向右平移4个单位长度,得到△A2B4C2和△A3B5C2……依次操作下去,从而得到一组三角形.(1)写出下列各点的坐标:A 1,A2,Am(m为正整数).(2)若△Am BnCk(k≥1)是这组三角形中的一个三角形,则当n=99时,①m=,k=.②请直接写出△Am BnCk的各个顶点的坐标.20.如图,AB是☉O的直径,点C在☉O上且不与点A,B重合,∠ABC的平分线交☉O于点D,过点D作DE⊥AB,垂足为点G,交☉O于点E,连接CE交BD于点F,连接FG.DE;(1)求证:FG=12(2)若AB=4√5,FG=4,求AG的长.六、(本题满分12分)21.某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水;B.瓶装矿泉水;C.碳酸饮料;D.非碳酸饮料.根据统计结果绘制如下两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)这个班级饮用碳酸饮料的同学有人,补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?饮品名称白开水瓶装矿泉水碳酸饮料非碳酸饮料价格/(元/瓶)0 2 3 4(3)为了养成良好的生活习惯,班主任决定在饮用碳酸饮料的同学中选出5名同学(3名男生,2名女生)组成班级的监督员,再由这5名监督员随机抽签产生2名监督员,进行当日的执勤工作,请用列表法或画树状图法求当日恰好抽到2名女监督员的概率.七、(本题满分12分)22.已知直线l:y=kx+4与二次函数y=ax2+bx+2的图象交于点A,B(1,3),且点A 在x轴上.点P是y轴上一动点,连接PA,PB.(1)求k,a,b的值,并直接写出当PA+PB取得最小值时点P的坐标;(2)若直线x=m交直线l于点C(点C在线段AB上,不与端点重合),交二次函数的图象于点D.设W=OC2+CD,求W关于m的函数解析式,并求出W的最小值.八、(本题满分14分)23.在菱形ABCD中,∠BCD=α,点P是对角线BD上一动点(不与点B重合),连接AP,CP,将线段CP绕点C顺时针旋转α得到CQ,连接DQ.(1)如图(1),求证:①△BCP≌△DCQ;②AP=CQ.(2)如图(2),连接QP并延长交直线AB于点M,PQ与CD交于点N.求证:PM=QN.(3)当AB=2,α=120°,且点B,C,Q三点共线时,PQ=√3.图(1) 图(2)答案详解一、选择题(本大题共10小题,每小题4分,满分40分)1.19的绝对值是( B )A.-19B.19C.119D.-1192.计算(ab2)5的结果是( C )A.a5b7B.a6b7C.a5b10D.a6b103.光年是天文学上的一种距离单位.光在真空中1年内经过的路程为1光年.已知光的速度为3×105千米/秒,1年约3.2×107秒,那么1光年约为(用科学记数法表示) ( B ) A.9.6×1035千米 B.9.6×1012千米C.0.96×108千米D.9.6×107千米4.如图是由5个完全相同的小正方体搭成的几何体,则其左视图是( A )A B C D5.分解因式6a-6a3的结果是( D )A.6a(a2-1)B.6a(1-a2)C.6a(a-1)(a+1)D.6a(1-a)(1+a)6.小明记录了自己连续一个月(30天)在某网站利用“名师在线课堂”进行自主学习的时间,并根据记录结果绘制了如图所示的统计图,则在这组数据中,众数和中位数分别是( B )A.1.2,1.3B.1.4,1.3C.1.4,1.35D.1.3,1.37.一元二次方程(x+3)(x-1)=2x-2的实数根是( D )A.x=1B.x=-1C.x1=0,x2=1 D.x1=-1,x2=18.我省某地区2016年年底有贫困人口15万人,自国家实施“精准扶贫”政策以来,通过社会各界的努力,2018年年底贫困人口减少至1.5万人.设2016年年底至2018年年底该地区贫困人口的年平均下降率为x,根据题意可列方程为( B ) A.15(1-2x)=1.5 B.15(1-x)2=1.5C.15(1+2x)=1.5D.15(1+x)2=1.59.已知三个实数a,b,c满足a+b+c>0,a+c=b,b+c=a,则( A )A.a=b>0,c=0B.a=c>0,b=0C.b=c>0,a=0D.a=b=c>010.边长为4、中心为O的正方形ABCD如图所示,动点P从点A出发,沿A→B→C →D→A以每秒1个单位长度的速度运动到点A时停止,动点Q从点A出发,沿A →D→C→B→A以每秒2个单位长度的速度运动一周停止,若点P,Q同时开始运动,点P 的运动时间为t s,当0<t<16时,满足OP=OQ 的点P 的位置有 ( B )A.6个B.7个C.8个D.9个二、填空题(本大题共4小题,每小题5分,满分20分) 11.729的立方根是 9 .12.命题“等腰三角形的两个底角相等”的逆命题是 两个角相等的三角形是等腰三角形 .13.如图,在△ABC 中,∠B=30°,∠C=45°,AB=4 cm.能够将△ABC 完全覆盖的最小圆形纸片的面积是 (4+2√3)π cm 2.14.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点E,F 分别在边BC,AC 上,沿EF 所在的直线折叠∠C,使点C 的对应点D 恰好落在边AB 上,若△EFC 和△ABC 相似,则AD 的长为 95或52 .三、(本大题共2小题,每小题8分,满分16分) 15.解方程:2(x-3)2=x 2-9. 解:2(x-3)2-(x+3)(x-3)=0,(x-3)[2(x-3)-(x+3)]=0,(x-3)(x-9)=0,(6分)解得x=3或x=9.(8分) 16.如图所示为由边长为1个单位长度的小正方形组成的8×8的网格,已知点A,B为网格线的交点.(1)将线段AB向右平移3个单位长度,再向上平移2个单位长度,得到线段CD(点A,B的对应点分别为C,D),在图中作出线段CD;(2)若以点B为坐标原点建立平面直角坐标系xOy,点A的坐标为(-2,1),则点C 的坐标为(1,3) ;(3)在网格中找出点E,使以点A,B,C,E为顶点的四边形是平行四边形,并写出点E 的坐标.(找到并写出其中一个即可)解:(1)求作的线段CD如图所示.(2分)(2)(1,3)(4分)(3)求作的点E如图所示,坐标为(-3,-2),(3, 2)或(-1,4).答出一个即可.(8分)四、(本大题共2小题,每小题8分,满分16分)17.某市政部门对一条长a km 的河道进行改造,甲施工队计划用30天完成,当甲施工队工作5天后,市政部门接到通知,要求提前15天完成河道改造,甲施工队随即加快速度,每天的工作效率比原计划提高30%,同时乙施工队加入和甲施工队共同完成剩余工程,结果按要求如期完成整个工程.(1)甲施工队改造了 a6 km 河道后,乙施工队加入(用含a 的代数式表示); (2)若乙工程队加入后,甲、乙两施工队每天改造的河道长度相差0.5 km,求河道的长度. 解:(1)a6(3分)(2)设乙单独承担河道改造工程,需要x 天完成, 根据题意得,30-15-530(1+30%)+30-15-5x=56,∴x=25.∵甲、乙两施工队每天改造的河道长度相差0.5 km, ∴1.3a 30-a25=0.5, 解得a=150.故河道的长度为150 km.(8分)18.为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯踏步的宽度的范围是260 mm~300 mm(含300 mm),高度的范围是120 mm~150 mm(含150 mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900 mm,∠ACD=65°,问该中学楼梯踏步的宽度和高度是否符合规定.(参考数据:sin 65°≈0.906,cos 65°≈0.423)解:如图,连接BD,过点D作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB∥CD,∴四边形ABDC是平行四边形,(2分)∴∠C=∠ABD,AC=BD.∵∠C=65°,AC=900 mm,∴∠ABD=65°,BD=900 mm,∴BM=BD·cos 65°≈900×0.423=380.7(mm),(4分)DM=BD·sin 65°≈900×0.906=815.4(mm).(6分)∵380.7÷3=126.9,120<126.9<150,∴该中学楼梯踏步的高度符合规定;∵815.4÷3=271.8,260<271.8<300,∴该中学楼梯踏步的宽度符合规定.综上所述,该中学楼梯踏步的宽度和高度都符合规定.(8分)五、(本大题共2小题,每小题10分,满分20分)19.在如图所示的平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,2),B(-1,0),C(0,1),△A1B1C与△ABC关于y轴对称.将△ABC和△A1B1C向右平移4个单位长度,得到△A1B2C1和△A2B3C1;将△A1B2C1和△A2B3C1向右平移4个单位长度,得到△A2B4C2和△A3B5C2……依次操作下去,从而得到一组三角形.(1)写出下列各点的坐标:A 1(2,2) ,A2(6,2) ,Am(4m-2,2) (m为正整数).(2)若△Am BnCk(k≥1)是这组三角形中的一个三角形,则当n=99时,①m=50 ,k=49 .②请直接写出△Am BnCk的各个顶点的坐标.解:(1)(2,2) (6,2)(2分) (4m-2,2)(4分)解法提示:由题意易得A1(2,2),A2(6,2).根据平移规律,得点Am的横坐标为2+(m-1)×4=4m-2,∴点Am的坐标为(4m-2,2) .(2)①50 49(8分)解法提示:观察规律可知,当n为奇数时,n=1+2k,m=k+1.当n=99时,1+2k=99,解得k=49,∴m=49+1=50.②Am (198,2),Bn(197,0),Ck(196,1). (10分)21.如图,AB是☉O的直径,点C在☉O上且不与点A,B重合,∠ABC的平分线交☉O于点D,过点D作DE⊥AB,垂足为点G,交☉O于点E,连接CE交BD于点F,连接FG.(1)求证:FG=12DE;(2)若AB=4√5,FG=4,求AG的长.(1)证明:∵BD是∠ABC的平分线,∴∠DBA=∠DBC.又∵∠C=∠D,∴∠BFC=∠BGD=90°,∴∠DFE=∠CFB=90°,∴△DEF是直角三角形.(3分)∵AB是☉O的直径,DE⊥AB,∴点G是DE的中点,∴FG=12DE.(6分)(2)解:连接OD,则OD=OA=12AB=2√5.由(1)知DG=FG=4,∴OG=√OD2-DG2=√(2√5)2-42=2,∴AG=OA-OG=2√5-2.(10分)六、(本题满分12分)21.某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水;B.瓶装矿泉水;C.碳酸饮料;D.非碳酸饮料.根据统计结果绘制如下两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)这个班级饮用碳酸饮料的同学有20 人,补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?饮品名称白开水瓶装矿碳酸非碳酸泉水饮料饮料价格/(元/瓶)0 2 3 4(3)为了养成良好的生活习惯,班主任决定在饮用碳酸饮料的同学中选出5名同学(3名男生,2名女生)组成班级的监督员,再由这5名监督员随机抽签产生2名监督员,进行当日的执勤工作,请用列表法或画树状图法求当日恰好抽到2名女监督员的概率.解:(1)20(2分)补全条形图如下.(4分) (2)(0×10+2×15+3×20+4×5)÷(15÷30%)=2.2(元).答:该班同学每天用于饮品的人均花费是2.2元.(7分) (3)根据题意,列表如下.男1男2男3女1女2男1(男1,男2)(男1,男3)(男1,女1)(男1,女2)男2 (男2,男1)(男2,男3) (男2,女1) (男2,女2)男3 (男3,男1) (男3,男2)(男3,女1) (男3,女2)女1 (女1,男1) (女1,男2) (女1,男3)(女1,女2)女2 (女2,男1) (女2,男2) (女2,男3) (女2,女1)由表格可知,共有20种等可能的结果,其中,抽到2名女监督员的结果有2种, 故恰好抽到2名女监督员的概率为220=110. (12分)七、(本题满分12分)22.已知直线l:y=kx+4与二次函数y=ax 2+bx+2的图象交于点A,B(1,3),且点A 在x 轴上.点P 是y 轴上一动点,连接PA,PB.(1)求k,a,b 的值,并直接写出当PA+PB 取得最小值时点P 的坐标;(2)若直线x=m 交直线l 于点C(点C 在线段AB 上,不与端点重合),交二次函数的图象于点D.设W=OC 2+CD,求W 关于m 的函数解析式,并求出W 的最小值. 解:(1)由题意知点B(1,3)在直线l 上, ∴k+4=3, ∴k=-1,(1分)∴直线l 的解析式为y=-x+4. 对于y=-x+4,令y=0,则x=4,∴点A 的坐标为(4,0).将A(4,0),B(1,3)分别代入y=ax 2+bx+2, 得{16a +4b +2=0,a +b +2=3,解得{a =-12,b =32.(4分)当PA+PB 取得最小值时点P 的坐标是(0,125).(6分)解法提示:设点B 关于y 轴的对称点为点B',则点B'的坐标为(-1,3). 连接AB',则AB'与y 轴的交点即为PA+PB 取得最小值时点P 的位置. 易求得直线AB'的解析式为y=-35x+125. 对于y=-35x+125,当x=0时,y=125,故当PA+PB 取得最小值时点P 的坐标是(0,125). (2)由(1)知二次函数的解析式为y=-12x 2+32x+2, 根据题意可得C(m,-m+4),D(m,-12m 2+32m+2), ∴OC 2=m 2+(-m+4)2=2m 2-8m+16.∵点C 在线段AB 上(不与点A,B 重合), ∴点D 在点C 上方,∴CD=-12m 2+32m+2-(-m+4)=-12m 2+52m-2,∴W=OC 2+CD=2m 2-8m+16-12m 2+52m-2=32m 2-112m+14=32(m-116)2+21524(1<m<4). (10分)∵32>0,∴当m=116时,W 取得最小值,最小值为21524.(12分)八、(本题满分14分)23.在菱形ABCD中,∠BCD=α,点P是对角线BD上一动点(不与点B重合),连接AP,CP,将线段CP绕点C顺时针旋转α得到CQ,连接DQ.(1)如图(1),求证:①△BCP≌△DCQ;②AP=CQ.(2)如图(2),连接QP并延长交直线AB于点M,PQ与CD交于点N.求证:PM=QN.(3)当AB=2,α=120°,且点B,C,Q三点共线时,PQ=√3.图(1) 图(2)(1)证明:①∵四边形ABCD是菱形,∴BC=DC.由旋转的性质,得CP=CQ,∠PCQ=α.∵∠BCD=∠PCQ=α,∴∠BCP+∠PCD=∠PCD+∠DCQ,∴∠BCP=∠DCQ,∴△BCP≌△DCQ.(3分)②∵四边形ABCD是菱形,∴∠ABP=∠CBP,BA=BC.又BP=BP,∴△ABP≌△CBP,∴AP=CP. 又∵CP=CQ, ∴AP=CQ.(6分)(2)证明:由(1)知△BCP ≌△DCQ,△ABP ≌△CBP, ∴∠BAP=∠BCP=∠DCQ.如图,在CD 上取点R,连接QR,使QR=QN,则∠QRN=∠QNR.∵四边形ABCD 是菱形, ∴AB ∥CD,∴∠AMP=∠QNR=∠QRN.在△AMP 和△CRQ 中,{∠AMP =∠CRQ,∠MAP =∠RCQ,AP =CQ,∴△AMP ≌△CRQ,∴PM=QR, ∴PM=QN. (11分) (3)√3(14分)解法提示:当B,C,Q 三点共线时,∠DCQ=180-∠BCD=60°. 又∠CDQ=∠CBP=12∠ABC=30°, ∴∠CQD=90°. 由(1)知△BCP ≌△DCQ,∴∠BPC=∠CQD=90°.由菱形的性质可知,点P为线段BD的中点, BD=DP=BP.∴PQ=12在Rt△BPC中,BC=2,∠CBP=30°,∴BP=BC·cos 30°=√3,∴PQ=√3.。

2021年中考数学模拟试卷7 含答案

2021年中考数学模拟试卷7 含答案

2021中考数学模拟试卷七(满分120分,答题时间120分钟)第I 卷选择题(共30分)一、选择题(本题10小题,每题3分,共30分) 1. ﹣2的绝对值是( ) A. 2B.12C. 12-D. 2-2.函数5y x =-的自变量x 的取值范围是( ) A. 5x ≠B. 2x >且5x ≠C. 2x ≥D. 2x ≥且5x ≠3. 某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁4. 下列不是三棱柱展开图的是( )A .B .C .D .5. 已知某几何体的三视图(单位:cm )如图所示,则该几何体的侧面积等于( )A. 12πcm2B. 15πcm2C. 24πcm2D. 30πcm 26. 从长度分别为1cm 、3cm 、5cm 、6cm 四条线段中随机取出三条,则能够组成三角形的概率为( ) A .14B .13C .12D .347. 如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分∠OAE ,反比例函数y =k x(k >0,x >0)的图象经过AE 上的两点A ,F ,且AF =EF ,△ABE 的面积为18,则k 的值为( )A .6B .12C .18D .248. 一次函数y ax b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A. B. C. D.9. 如图,AB 为⊙O 的直径,点C ,点D 是⊙O 上的两点,连接CA ,CD ,AD .若∠CAB =40°,则∠ADC 的度数是( )A .110°B .130°C .140°D .160°10. 如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边AB =a ,BC =b ,∠DAO =x ,则点C 到x 轴的距离等于( )A .a cos x +b sin xB .a cos x +b cos xC.a sin x+b cos x D.a sin x+b sin x第II卷非选择题(共90分)二、填空题(本题有6小题,每题3分,共18分)11.√27−√3=.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算1x −13x的结果是.14.如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠EAD=40°,则∠BCE的度数为.15.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5 ﹣4 ﹣2 0 2y 6 0 ﹣6 ﹣4 6下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)16.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本题有8小题,共72分)17.(8分)先化简,再求值:(x+1)(x-1)+x(2-x),其中x=12.18.(8分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.19.(8分)广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.20.(8分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.21.(8分)如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.(1)求证:asin∠A =bsin∠B=csin∠C=2R;(2)若∠A=60°,∠C=45°,BC=4√3,利用(1)的结论求AB的长和sin∠B的值.22.(10分)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?23.(10分)如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:△AEH≌△AGH;(2)当AB=12,BE=4时:①求△DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出AHAF的值;若不存在,请说明理由.24.(12分)如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线函数表达式;(2)若点D 在x 轴的下方,当BCD 的面积是92时,求ABD △的面积; (3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.的2021中考数学模拟试卷七(满分120分,答题时间120分钟)第I 卷选择题(共30分)一、选择题(本题10小题,每题3分,共30分) 1. ﹣2的绝对值是( ) A. 2 B.12C. 12-D. 2-【答案】A【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A .2.函数y =的自变量x 的取值范围是( ) A. 5x ≠ B. 2x >且5x ≠C. 2x ≥D. 2x ≥且5x ≠【答案】D【解析】由分式与二次根式有意义的条件得函数自变量的取值范围. 解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠3. 某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( ) A .甲 B .乙C .丙D .丁【答案】A【解析】根据方差的意义求解可得.∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲 4. 下列不是三棱柱展开图的是( )A .B .C .D .【答案】B【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解析】A 、C 、D 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.B 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C 不能围成三棱柱. 5. 已知某几何体的三视图(单位:cm )如图所示,则该几何体的侧面积等于( )A. 12πcm 2B. 15πcm 2C. 24πcm 2D. 30πcm 2 【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm ,底面半径是3cm 5(cm ),∴侧面积=π×3×5=15π(cm 2),故选B .6. 从长度分别为1cm 、3cm 、5cm 、6cm 四条线段中随机取出三条,则能够组成三角形的概率为( ) A .14B .13C .12D .34【答案】A【解析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率. 从长度为1cm 、3cm 、5cm 、6cm 四条线段中随机取出三条, 共有以下4种结果(不分先后): 1cm 、 3cm 、5cm , 1cm 、 3cm 、6cm , 3cm 、 5cm 、6cm , 1cm 、5cm 、6cm ,其中,能构成三角形的只有1种, ∴P (构成三角形)=14.7. 如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6 B.12 C.18 D.24【答案】B【分析】如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD∥AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.【解析】如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k 2,∴12•ON•AN=12•OM•FM,∴ON=12OM,∴ON=MN=EM,∴ME =13OE , ∴S △FME =13S △FOE , ∵AD 平分∠OAE , ∴∠OAD =∠EAD , ∵四边形ABCD 是矩形,∴OA =OD ,∴∠OAD =∠ODA =∠DAE , ∴AE ∥BD ,∴S △ABE =S △AOE ,∴S △AOE =18,∵AF =EF ,∴S △EOF =12S △AOE =9,∴S △FME =13S △EOF =3, ∴S △FOM =S △FOE ﹣S △FME =9﹣3=6=k2, ∴k =12. 故选:B .8. 一次函数y ax b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A. B. C. D.【答案】B【解析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y 轴的关系即可得出a 、b 的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论. A .∵二次函数图象开口向上,对称轴在y 轴右侧, ∴a>0,b <0,∴一次函数图象应该过第一、三、四象限,A 错误; B .∵二次函数图象开口向上,对称轴在y 轴左侧, ∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B 正确; C .∵二次函数图象开口向下,对称轴在y 轴右侧, ∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C错误;D.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D错误.9.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC 的度数是()A.110°B.130°C.140°D.160°【答案】B【解析】连接BC,如图,利用圆周角定理得到∠ACB=90°,则∠B=50°,然后利用圆的内接四边形的性质求∠ADC的度数.如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.10.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y 轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x【答案】A【解析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=b sin x,DE=a cos x,进而得出答案.作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=ODAD,cos∠CDE=DECD,∴OD=AD×sin∠DAO=b sin x,DE=D×cos∠CDE=a cos x,∴OE=DE+OD=a cos x+b sin x,∴点C到x轴的距离等于a cos x+b sin x.第II卷非选择题(共90分)二、填空题(本题有6小题,每题3分,共18分)11.√27−√3=.【答案】2√3.【解析】原式=3√3−√3=2√3.【点拨】先将二次根式化为最简,然后合并同类二次根式即可得出答案.12. 热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h ),分别为:4,3,3,5,5,6.这组数据的中位数是 . 【答案】4.5【解析】根据中位数的定义求解可得. 将数据重新排列为:3,3,4,5,5,6, 所以这组数据的中位数为4+52=4.5,13. 计算1x −13x的结果是 .【答案】23x .【解析】1x−13x=33x−13x=23x.14. 如图,在▱ABCD 中,过点C 作CE ⊥AB ,垂足为E ,若∠EAD =40°,则∠BCE 的度数为 .【答案】50°.【解析】由平行四边形的性质得出∠B =∠EAD =40°,由角的互余关系得出∠BCE =90°﹣∠B =50°即可.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠B =∠EAD =40°, ∵CE ⊥AB ,∴∠BCE =90°﹣∠B =50°15. 已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表:x ﹣5 ﹣4 ﹣2 02 y6﹣6 ﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)【答案】①③④.【分析】任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可.【解析】将(﹣4,0)(0,﹣4)(2,6)代入y=ax2+bx+c得,{16a−4b+c=0c=−44a+2b+c=6,解得,{a=1b=3c=−4,∴抛物线的关系式为y=x2+3x﹣4,a=1>0,因此①正确;对称轴为x=−32,即当x=−32时,函数的值最小,因此②不正确;把(﹣8,y1)(8,y2)代入关系式得,y1=64﹣24﹣4=36,y2=64+24﹣4=84,因此③正确;方程ax2+bx+c=﹣5,也就是x2+3x﹣4=﹣5,即方x2+3x+1=0,由b2﹣4ac=9﹣4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④16.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.【答案】2【解析】根据旋转的性质可知,△ADF≌△ABG,然后即可得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以得到DE的长,本题得以解决.解:由题意可得,△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,{AG=AF∠EAG=∠EAF AE=AE,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即CE=2三、解答题(本题有8小题,共72分)17.(8分)先化简,再求值:(x+1)(x-1)+x(2-x),其中x=12.【答案】21x ;0【解析】本题考查了整式的混合运算—化简求值,解题的关键是掌握平方差公式,单项式乘多项式的运算法则.先去括号,再合并同类项,最后将x值代入求解.原式=2212x x x -+- =21x - 将x=12代入, 原式=0.18.(8分)如图,点C 、E 、F 、B 在同一直线上,点A 、D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D . (1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎨2 -x ≥0 ⎨2 -x ≥0⎨x - 2 ≥0⎨x - 2 ≥02021 年中考数学模拟试卷(七)(满分120 分,考试时间100 分钟)一、选择题(每小题 3 分,共30 分)1.-6 的绝对值是【】A.-6 B.6 C.16D.-162.据统计,某年参加普通高考的考生达900 余万人,其中河南普通高考人数为716 000 人,则河南普通高考人数用科学记数法可以表示为【】A.0.9 ⨯107 人B.9.0 ⨯106 人C.0.716 ⨯106 人D.7.16 ⨯105 人3.如图,AB∥CD,AD 平分∠BAC,若∠BAD=70°,则∠ACD 的度数为【】A.40°B.35°C.50°D.45°第3 题图第4 题图4.如图,数轴上表示某不等式组的解集,则这个不等式组可能是【】A.⎧x +1≥0⎩B.⎧x +1≤0⎩C.⎧x +1≤0⎩D.⎧x +1≥0⎩5.五名学生投篮球,规定每人投20 次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是【】A.20 B.28 C.30 D.316.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体有【】A.3 个或4 个B.4 个或5 个C.5 个或6 个D.6 个或7 个7.已知二次函数y =-1x2 - 7x +15,若自变量x 分别取x1,x2,x3,且0<x1<2 2x2<x3,则对应的函数值y1,y2,y3 的大小关系正确的是【】A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y1主视图俯视图8.从-1,1,2 这三个数字中随机抽取一个数,记为a,那么使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形的面积为14,且关于x 的不等式⎧x + 2 ≤a组⎨⎩1-x ≤2aA.13有解的概率为【】B.23C.12D.149.如图,Rt△ABC 中,∠ACB=90°,CD 平分∠ACB 交AB 于点D,按下列步骤作图:步骤1:分别以点 C 和点 D 为圆心,大于1CD 的长为半径作弧,两弧相交2于M,N 两点;步骤2:作直线MN,分别交AC,BC 于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE 的长为【】A.53C.B.32D.4310.如图,菱形ABCD 的边长为2,∠A=60°,一个以点B 为顶点的60°角绕点B旋转,这个角的两边分别与线段AD 的延长线及CD 的延长线交于点P,Q.设DP=x,DQ=y,则能大致反映y 与x 的函数关系的图象是【】A B C D二、填空题(每小题 3 分,共15 分)11. 因式分解:2a2-8= .22 017 12. 若点 M (k -1,k +1)关于 y 轴的对称点在第四象限内,则一次函数 y =(k -1)x +k 的图象不经过第象限.13.已知正方形 ABCD 的边长为 5,点 E ,F 分别在 AD ,DC 上,AE =DF =2,BE 与 AF 相交于点 G ,点 H 为 BF 的中点,连接 GH ,则 GH 的长为.第 13 题图 第 14 题图14. 如图,抛物线 y =2x 2-4x -1 与 y 轴交于点 A ,其顶点为 D ,点 A′的坐标是(2,2),将该抛物线沿 AA′方向平移,使点 A 平移到点 A′,则平移中该抛物线上A ,D 两点间的部分所扫过的面积是.15. 如图,四边形 ABCD 是菱形,AB =2,∠ABC =30°,点 E 是边 DA 所在直线上一动点,把△CDE 沿 CE 折叠,其中点 D 的对应点为点 D′,若直线 CD′垂直于菱形 ABCD 的边时,则 DE 的长为.三、解答题(本大题共 8 小题,满分 75 分)16.(8 分)先化简,再求值: x 2 -1 ÷ (2 - x 2+1 ) ,其中 x = +1. x 2+ x x17.(9 分)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4 个选项:A.1.5 小时以上;B.1~1.5 小时;C.0.5~1 小时;D.0.5 小时以下.根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式.(2)计算本次调查的学生人数和图2 选项C 的圆心角度数.(3)请将图1 中选项B 的部分补充完整.(4)若该校有3 000 名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5 小时以下.18.(9 分)如图,已知Rt△ABC,∠C=90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E,连接DE.(1)求证:DE 是⊙O 的切线;(2)若AE:EB=1:2,BC=6,求AE 的长.19. (9 分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A,B 的距离,如图,勘测飞机在距海平面垂直高度为1 公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2 公里到点D,并测得端点B 的俯角为37°,求钓鱼岛两端A,B 的距离.(结果精确到0.1 公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2 ≈1.41)(2)连接OP,OQ,求△OPQ 的面积(用含m 的代数式表示);(3)当m=3,1<x<3 时,存在点M 使得△OPM∽△OCP,求此时点M 的坐标.21. (10 分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数2是乙队单独完成这项工程所需天数的;若由甲队先做10 天,则剩下的工3程由甲、乙两队合作30 天可以完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4 万元,乙队每天的施工费用为5.6 万元,工程预算的施工费用为500 万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.(1) 如图 1,当点 D 落在线段 BC 的延长线上时,请直接写出∠ADE 的度 数.(2) 如图 2,当点 D 落在线段 BC (不含端点)上时,AC 与 DE 交于点 F ,请问(1)中的结论是否仍然成立?如果成立,给出证明;如果不成立,请说明理由.(3) 在(2)的条件下,若 AB =6,求线段 CF 的最大值.22. (10 分)在△ABC 中,AB =AC ,∠BAC =120°,以 CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD , 连接 AD ,DE ,AE .23. (11 分)如图,在平面直角坐标系中,矩形OABC 的边OA,OC 分别在x轴、y 轴上,点B 坐标为(4,t)(t>0),二次函数y=x2+bx(b<0)的图象经过点B,顶点为点D.(1)当t=12 时,顶点D 到x 轴的距离等于;(2)点E 是二次函数y=x2+bx(b<0)的图象与x 轴的一个公共点(点E 与点O 不重合),求OE·EA 的最大值及取得最大值时的二次函数表达式;(3)矩形OABC 的对角线OB,AC 交于点F,直线l 平行于x 轴,交二次函数y=x2+bx(b<0)的图象于点M,N,连接DM,DN.当△DMN≌△FOC 时,求t 的值.2 3 3 3 3 2017 6 2【参考答案】一、选择题1 2 3 4 5 6 7 8 9 10 B D A A B B A A D A11. 2(a -2)(a +2)12. 一13. 34214. 7 15., 2 , 2 - 2 或2 + 2三、解答题16. 原式= -1x -1,当 x = +1 ,原式= -2 017 . 2 017 17. (1)抽查;(2) 本次调查的学生人数为 200 人,选项 C 的圆心角度数为 54°; (3) 统计图略;(4) 该校可能有 150 名学生平均每天参加体育活动的时间在 0.5 小时以下.18. (1)证明略; (2)AE 的长为 .19. 钓鱼岛两端 A ,B 的距离为 3.5 公里.20. (1)∠OCD =45°;(2) S△OPQ= 1 m 2 - 1 (m >1); 2 2(3)点 M 的坐标为(2, 3 )或( 3,2).2 221. (1)甲、乙两队单独完成这项工程各需 60 天、90 天;(2)不够用,需追加预算 4 万元. 22. (1)∠ADE =30°;(2) 成立,证明略;(3) 线段 CF的最大值为 9. 223. (1) 1;4 (2)OE ·EA 的最大值为 4,此时二次函数表达式为 y =x 2-2x ;(3)t 的值为2 .3。

相关文档
最新文档