华二数学校本教材第七章 答案

合集下载

高等数学第七章 习题答案

高等数学第七章 习题答案

习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。

答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。

2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。

4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。

完整版数值分析第7章答案

完整版数值分析第7章答案

1数值分析第七章第七章非线性方程求根一、重点内容提要(一)问题简介求单变量函数方程f(x)?0(7.1)f(x*)?0x*x*x*为也称为方程的根是指求(7.1).(实数或复数),使得称的根,m f(x)?(x?x*)g(x)f(x)f(x)函数的零点.若可以分解为g(x)g(x)?0x*x*为单称m=1满足时,是方程(7.1)的根.,则当其中m为正整数,g(x)x*x*是方程(7.1)的m称,充分光滑,为m重根.若重根,则有根;当m>1时(m?1)(m)f(x*)?f'(x*)?...?f(x*)?0,f(x*)?0f(x)f(a)f(b)?0,则方程(7.1)在(a,b)[a,b]若上连续且内至少有一个实根,称在[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得.(二)方程求根的几种常用方法1.二分法f(x)f(a)f(b)?0f(x)?0f(x)?0*x在上连续,再设内有根,则设.在(a,b)在[a,b]1x?(a?b)a?a,b?bf(x)f(x)?0000计算和.,若则(a,b)内仅有一个根.令20000a?xb?b[a,b])f(a)f(x?0x*?x;,则令,结束计算;若若得新的有根区间,10,11001a?ab?x0)?(f(a)fx,得新,则令的有根区间0110,0011b?a?(b?a)x?(a?b)[a,b][a,b]?[a,b]f(x)0101111再令计算,.,.同上法得221110101[a,b],如此反复进行出新的有根区间,可得一有根区间套22...?[a,b]?[a,b]?...?[a,b]001?n1?nnn2数值分析第七章11a?x*?b,n?0,1,2,...,b?a?(b?a)?...?(b?a)0n0?1nnn?1nn且. 221lim(b?a)?0,lim x?lim(a?b)?x* nnnnn故2????n??nn1x?(a?b)f(x)?0nnn的近似根,可作为,且有误差估计因此21(b?a)|x?x*|?n1?n(7.2)22.迭代法?(x?)x等价变形为将方程式(7.1) (7.3)??(x*)?)(xf(x*)?0x**xx*的一个不动点为函数.;反之亦然则.若要求称满足?(x)的不动点由式(7.3)产生的不动点迭代关系式(也求方程(7.1)的根等价于求称简单迭代法)为?(x),k?0,1,2...x?(7.4)k1?k?(x),k??x0,1,2...?(x)称为迭代函数.函数如果对任意,由式(7.4)产生的序列??x有极限kk??k则称不动点迭代法(7.4)收敛.kk?1x?x*lim?(x)?C[a,b]满足以下两个条件: 定理7.1(不动点存在性定理)设?(x)??b;x?[a,b]a有1.对任意??(y)|?|x?y|?,y[a,b]|(x)?x 2.存在正常数使对任意, ,都有(7.5)1?L?(x)[a,b]x*.则在上存在惟一的不动点?(x)?C[a,b]满足定理7.2(定理不动点迭代法的全局收敛性定理)设7.1中的两个??x]b,?x[a?(x)并条件,由,(7.4),的不动点式得到的迭代序列则对任意到.收敛k0有误差估计式3数值分析第七章L|x?*|?x||x?x1kkk?(7.6)L1?k L|x?x*|?|x?x|1?kkk L1?(7.7)和??'(xx))(xx**的某,为设在的不动点定理7.3(不动点迭代法的局部收敛性定理)?'(x)|?|1,则迭代法(7.4)局部收敛个邻域连续,且.?(xx?)x*,的根如果迭代误差收敛阶的概念设迭代过程(7.4)收敛于方程e?x?x*k??时成产下列渐近关系式当kk e k?1?C(常数C?0)e(7.8) k则称该迭代过程是p阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.(K)?(x)x*的邻近连续,并定理7.4(收敛阶定理在所求根)对于迭代过程(7.4),如果且(p?1)???(x*)?...?*)?'(x*)?0''(x(p)?(x*)?0(7.9)*x的邻近是收敛的,则该迭代过程在点并有e1)(p?1k?*)x?lim(p!ep??k (7.10)k斯蒂芬森(Steffensen)迭代法当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为??(y?)(x),zy?kkkk2)?x(y kk x?x?kk?1z?2y?x kkk k?0,1,2,...(7.11)4数值分析第七章此法也可写成如下不动点迭代式?(x),kx??0,1,2,...kk?12?)?x(x)(?(x)?x????(x)?2?(x(x))(7.12)?(x)x**x是为式(7.12)中则的不动点7.5(定理斯蒂芬森迭代收敛定理)设,?(x)???1*)''(x)?'(x(x)*x的不动点,存在,的不动点;设则,则斯蒂芬森迭代法是(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(x)k,x?k?0,1,2,...?x k?k1)xf'(其迭代函数为(7.13)k f(x)??(x)?x f'(x)f(x*)?0,f'(x*)?0,f''(x*)?0时牛顿迭代法的收敛速度当,容易证f''(x*)??0*)?''(x 0'(x*)?ff'(x*),由定理,明,7.4知,牛顿迭代法是平方收敛的,且ef''(x*)1?k?lim2*)f'(ex2??k(7.14)k f(x)?0(m?2)*x时,迭代函数的m重顿重根情形的牛迭代法当根是f(x)1??x)?(x?'(x*)?1??0?'(x*)|?1|)xf'(*x.所以牛顿迭代法求处的导数在,且m x*的重数m知道,重根只是线性收敛.若则迭代式f(x)k,k?0,1,2,...??xx?m kk?1)'(xf(7.15)k f(x)??x()f'(x)*x此时迭代式,的单重零点一定是函数,未知时m当.求重根二阶收敛5数值分析第七章?(x)f(x)f'(x)kkk?xx??x?kk?1k?)f''(x)x)]?f(x'(x)[f'(kkkk k?0,1,2,...(7.16)也是二阶收敛的.f(x)k,?k?0,1,2,...x?x k1k?)xf'(如下迭代法简化牛顿法0称为简化牛顿法或平行弦法.牛顿下山法为防止迭代不收敛,可采用牛顿下山法.具体方法见教材.4.弦截法f'(x)xxf(x)在,处的一阶差商来代替,将牛顿迭代法(7.13)中的即可得弦用kkk?1截法f(x)k(xx?x??x)1kk?1k?k f(x)?f(x)(7.17)??x*|:|x??*x内具有二阶连续导数,的邻域在其零点定理7.6假设且对任1kk?)(xfx,x??10f'(x)?0?x?,又初值,,意则当邻域充分小时,有弦截法(7.17)将按阶?1?5?p?1.6182???1?0?*x2的正根收敛到是方程..这里p5.抛物线法(x,f(x)),(x?f(x))两点的直线方程的根近似替弦截法可以理解为用过kk?1kk?1xxx0x)?(fx)?0f(用,过三若的根.已知个近似根,的2kk?1k?(x,f(x)),(x,f(x)),(x,f(x))f(x)?0的根,的抛物线方程的根近似代替2??k?k121k?kkk所得的迭代法称为抛物线法,也称密勒(Muller)法.f(x)f'(x*)?0*x,则抛物线法局部收敛当,在,的邻近有三阶连续导数且收敛阶p?1.839?1.84. 为数值分析第七章二、知识结构图三、常考题型及典型题精解3上有一个实根x*,并用二分法2]在[1,?1?例7-1 证明方程x0?x-6-3,需二分区间[1,2]10.若要求|x-x*|?求这个根,要求|x-x*|?10kk多少次?3在[1,2],则f(1)=-1<0,f(2)=5>0,故方程f(x)=0x?解设f(x)=x1?2在[1,2]时,f'(x)>0,即f(x)=0-1,所以当x?上有根x*.又因f'(x)=3x上有惟一实根x*.用二分法计算结果如表7-1所示.[1,2]7-1表k abxf(x)的符号kkkk+ 2 0 1 1.5- 1.5 1 1 1.25+ 2 1.25 1.51.3751.3125 3 1.251.375 -1.375 1.3438 1.3125 4 +1.312551.3282+1.1341.3125-861.32041.32041.32827-1.32431.32431.32821.3263+87数值分析第七章9 1.3243 1.3282 1.3253 +1.32631-3-3,可以作为x*的近??10此时x=1.3253满足|x-x*|?10?0.97799102似值.1-6?6,只需|x10-x*|?-x*|即可,解得k+1?19.932, 若要求|x?10?kkk+12即只需把[1,2]二分20次就能满足精度要求.x=1,(1)确定有根区间[a,b];(2)构造不动e例7-2 已知函数方程(x-2)点迭代公式使之对任意初始近似x?[a,b],迭代方法均收敛;(3)用所构0?3.|?10造的公式计算根的近似值,要求|x?x1k k?xx因此区间[2,3]0,e解 (1)令f(x)=(x-2)-1>-1,由于f(2)=-1<0,f(3)=e x x)=-1,f(,lim,lim f(x)=+?是方程f(x)=0的一个有根区间.又因f'(x)=(x-1)e???xx???1-1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-?,+?)内f'(1)=-e有且仅有一根x*,即x*?[2,3].x?xx?.由于当?将(x-2)e[2,3].则=1等价变形为x=2+ee(x)=2+,x(2)2??x??<1'(x)|=|-e?e[2,3]x?时2?|(x)?3,|x?[2,3]均收敛.??故不动点迭代法x=2+e x,k=0,1,2,...,对k0k+1x?进行迭代计算,结果如表7-2所示.e(3)取x=2.5,利用x=2+k k+10表7-28数值分析第七章此时x已满足误差要求,即x*?x?2.120094976.44例7?3考虑求解方程2cos x?3x?12?0的迭代公式2 x=4+cos x,k=0,1,2,...k k+13(1)试证:对任意初始近似x?R,该方法收敛;0-3;10-x|?(2)取x=4,求根的近似值x,要求|x k0k+1k+1(3)所给方法的收敛阶是多少?2?(x)=4+cos x,解 (1)由迭代公式知,迭代函数322?(x)的值域介于(4-)与(4+由于)之间,且(??,??).x?3322?'(x)|=|-sin x|??1|33?(x)在(??,??)内存在惟一的故根据定理7.1,7.2知,??收敛于x*.x?x?R,迭代公式得到的序列不动点x*,且对k0(2) 取x=4,迭代计算结果如表7-3所示.0表7-3x*?xx?3.347529903已满足误差要求,即此时55?'(x*)?0.136323129?0,故根据定理7 .4)由于(3知方法是线性收敛的,并e?1k?'(x?*)lim e??k。

人教版高中数学必修二《第七章 复数》课后作业及答案解析

人教版高中数学必修二《第七章 复数》课后作业及答案解析

人教版高中数学必修二《第七章 复数》课后作业《7.1.1 数系的扩充和复数的概念》课后作业基础巩固1.复数2i -的虚部为( ) A .2B .1C .-1D .-i2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y =D .2x =,0y =3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .14.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( ) A .0B .1C .1-D .1或1-5.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +yi =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i >b +i ; ③若x 2+y 2=0,则x =y =0. A .0 B .1 C .2 D .36.以复数3i 3-的实部为虚部的复数是________. 7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6π B .3π C .23π D .3π或23π 10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?《7.1.1 数系的扩充和复数的概念》课后作业答案解析基础巩固1.复数2i -的虚部为( ) A .2 B .1C .-1D .-i【答案】C【解析】复数2i -的虚部为-1,故选C .2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y = D .2x =,0y =【答案】B【解析】由题意得:02x x y =⎧⎨+=-⎩,解得:02x y =⎧⎨=-⎩故选:B3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .1【答案】B【解析】由题意得17,3a a a +=-=,选B.4.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( )A .0B .1C .1-D .1或1-【答案】D【解析】若()21z a a i =+-,a R ∈(i 为虚数单位)为实数,则210, 1.a a -=∴=±本题选择D 选项.5.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题;对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.6.以复数32i 32i -的实部为虚部的复数是________. 【答案】33i -. 【解析】32i -的虚部为3,32i -的实部为3- ∴所求复数为33i -故答案为:33i -7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______.【答案】12x =,2i y = 【解析】由()212i x y -+=,得210,2i ,x y -=⎧⎨=⎩解得12x =,2i y =.故答案为:12x =,2i y =. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.【答案】(1)122x y ⎧=⎪⎨⎪=⎩;(2)42x y =⎧⎨=-⎩ 【解析】(1)()2120x y y i -++-= 21020x y y -+=⎧∴⎨-=⎩,解得:122x y ⎧=⎪⎨⎪=⎩(2)由()()()()12321x y y i x y y i ++-=+++得:23121x y x y y y +=+⎧⎨-=+⎩,解得:42x y =⎧⎨=-⎩能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6πB .3π C .23π D .3π或23π 【答案】B【解析】若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=.10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 【答案】2【解析】依题意可得2220209m m m m m ⎧-=⎪-⎪=⎨⎪<⎪⎩,即0? 22033m m m m =⎧⎪=≠⎨⎪-<<⎩或且,解得2m =.故答案为:2. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.【答案】(1)1m =(2)1m =或3m =-(3)0m = 【解析】(1)若复数z 是零,则()210230m m m m ⎧-=⎨+-=⎩,解得1m =,即当1m =时,复数z 是零.(2)若复数z 是实数,则2230m m +-=,解得1m =或3m =-, 即当1m =或3m =-时,复数z 是实数. (3)若复数z 是纯虚数,则()210230m m m m ⎧-=⎨+-≠⎩,解得0m =,即当0m =时,复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?【答案】①6a =;②1a ≠±且6a ≠;③无解.【解析】()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =.②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠.③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.《7.1.2 复数的几何意义》课后作业基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( ) A .1BCD .54.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5D .310.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形?素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.《7.1.2 复数的几何意义》课后作业答案解析基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】复数-2+3i 在复平面内对应的点为(-2,3),故复数-2+3i 对应的点位于第二象限.2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i【答案】D【解析】 由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( )A .1BCD .5【答案】D【解析】由题意,34z i =-,∴z 对应的向量OA 的坐标为()3,4-5=.故选:D .4.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i【答案】C【解析】 复数6+5i 对应的点为A (6,5),复数-2+3i 对应的点为B (-2,3).利用中点坐标公式得线段AB 的中点C (2,4),故点C 对应的复数为2+4i.5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3) D .(1,5)【答案】B【解析】 |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5). 6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________. 【答案】±2【解析】依题意,a 2+1=4+1,∴a =±2.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.【答案】5【解析】由点(3,-5),(1,-1),(-2,a )共线可知a =5.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.【答案】m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.【解析】由题意得z =(m 2+m -2)-(4m 2-8m +3)i ,z 对应的点位于第一象限,所以有⎩⎪⎨⎪⎧m 2+m -2>0,-(4m 2-8m +3)>0,所以⎩⎪⎨⎪⎧m 2+m -2>0,4m 2-8m +3<0,所以⎩⎪⎨⎪⎧m <-2或m >1,12<m <32,即1<m <32,故所求m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5 D .3【答案】D【解析】 ∵|z |=2,∴复数z 对应的轨迹是以原点为圆心,2为半径的圆,而|z -i|表示圆上一点到点(0,1)的距离,∴|z -i|的最大值为圆上点(0,-2)到点(0,1)的距离,易知此距离为3,故选D.10.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 【答案】12【解析】由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 【答案】(1)|z 1|>|z 2|. (2)见解析 【解析】(1)|z 1|= (3)2+12=2,|z 2|=⎝ ⎛⎭⎪⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.【答案】(1)m =4,|OZ →|=1. (2)m ∈⎝ ⎛⎭⎪⎫3+212,4.【解析】(1)log 2(m 2-3m -3)=0,所以m 2-3m -3=1. 所以m =4或m =-1;因为⎩⎪⎨⎪⎧m 2-3m -3>0,m -2>0,所以m =4,此时z =i ,OZ →=(0,1),|OZ →|=1.(2)⎩⎪⎨⎪⎧log 2(m 2-3m -3)<0,log 2(m -2)>0,m 2-3m -3>0,m -2>0,所以m ∈⎝ ⎛⎭⎪⎫3+212,4.《7.2.1 复数的加、减法运算及其几何意义》课后作业基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i +B .i -C .1D .1- i2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+B .15i -+C .410i -+D .110i -+3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+;(2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .CD .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.《7.2.1 复数的加、减法运算及其几何意义》课后作业答案解析基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i + B .i -C .1D .1- i【答案】C【解析】由题得()()32i i +-+=3+i-2-i=1.故选C 2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+ B .15i -+C .410i -+D .110i -+【答案】A【解析】∵5634z i i +-=+,∴()3456210z i i i =+--=-+,故选:A 3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】34i z =-,5z ∴=,∴()1i 34i 51i 15i z z -+-=--+-=--,∴复数()1i z z -+-在复平面内对应的点为()1,5--,在第三象限.故选:C.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i【答案】D【解析】 由题意可得,在平行四边形中CD BA OA OB ==-, 则(3)(13)42i i i +--+=-,所以CD 对应的复数为42i -,故选D .5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-【答案】A【解析】12()()i 2z z y x x y -=++-=,即2,0,x y x y +=⎧⎨-=⎩1x y ∴==,1xy ∴=.故选:A6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.【解析】21|12|d z z i =-=-==7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 【答案】9i + 【解析】BA OA OB =-,所以,表示向量BA 的复数为()()65349i i i +--+=+.故答案为:9i +.8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+; (2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.【答案】(1)18i --;(2)44i -+;(3)(43)a b i -+-【解析】(1)(12)(34)(56)(42i)(56)18i i i i i ++--+=--+=--. (2)5[(34)(13)]5(4)44i i i i i i -+--+=-+=-+.(3)()(23)3(2)[(3)3](43)a bi a bi i a a b b i a b i +---=-+---=-+-能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .C D .【答案】D【解析】 由题意得1255z z i -=+,所以12()(55)55f z z f i i -=+=+==故选D .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.【答案】(2,)+∞【解析】由题得12z z -=(2-a )+(a-1)i ,因为复数12z z -在复平面内对应的点位于第二象限,所以20,210a a a -<⎧∴>⎨->⎩.故答案为(2,)+∞ 11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.【答案】(1) -3-2i (2) 5-2i (3) 1+6i【解析】(1) AO OA =-,所以AO 所表示的复数为-3-2i . 因为BC AO =,所以BC 所表示的复数为-3-2i .(2) CA OA OC =-,所以CA 所表示的复数为(3+2i )-(-2+4i )=5-2i . (3) OB OA OC =+,所以OB 所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.【答案】(1)016z i =+;(2)复数z 对应点的轨迹为以1,6B ()为圆心,1为半径的圆【解析】(1)由已知得(3,2),(2,4)OA OC ==-, ∴(1,6)OB OA OC =+=, ∴点B 对应的复数016z i =+. (2)设复数z 所对应的点Z , ∵01z z -=,∴点Z 到点()1,6B 的距离为1,∴复数z 所对应的点Z 的轨迹为以()1,6B 为圆心,1为半径的圆, 且其方程为()()22161x y -+-=.《7.2.2 复数的乘除运算》课后作业基础巩固1.已知复数z =2+i ,则z z ⋅=( )AB C .3D .52.设复数z 满足(1+i)z =2i ,则|z |=( )A .12B .2C D .23.若复数12az i i=+-(i 为虚数单位,a R ∈)的实部与虚部互为相反数,则a =( ) A .53-B .13- C .1- D .5-4.在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4-B .3-C .3D .46.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____. 7.设复数z 满足(23)64z i i -=+(其中i 为虚数单位),则z 的模为______. 8.计算:(1)(4)(62)(7)(43)i i i i -+--+; (2)32322323i ii i+-+-+; (3)(2)(1)(1)(1)i i i i i--+-+.能力提升9.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A .1 B .1- C .12D .2-10.在复平面内,复数z 与52i-对应的点关于实轴对称,则z =______.11.在复数范围内解下列一元二次方程: (1)290x +=;(2)210x x -+=.素养达成12.古代以六十年为一个甲子用十天干和十二地支相配六十年轮一遍,周而复始。

高等数学第七章课后习题解答

高等数学第七章课后习题解答

习题1.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3;()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等.【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121; 同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a .(3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M .10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=.因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32. 【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题1.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为.2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ; ()0.=++c b a c .即0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为{}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题1.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k . 由公式,平面π与xoy31=;同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj in M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x .8.求满足下列条件的平面方程:(1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴;(3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=.【解】(1)根据题意,可设所求平面的一般式方程为0:=+By Ax π. ①又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=.因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故 ⎩⎨⎧-==.9,2C B C D .因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为0:=+D By π. ①又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=.因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-==因此①成为043:=--+A Az Ay Ax π . ⑤ 注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程.【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ②及 010=+D C . ③又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有032=++C B A . ④②、③、④联立得到B A BC BD 5,3,30-==-=.因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π.10.指出下列各平面的特殊位置,并画出各平面.(1)013=-x ;(2)012=-+z y ;(3)02=+z x ;(4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面;(2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面. 习题1.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L 【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为 311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程.【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程.【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为 .531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s .故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111z y x =--=-垂直相交的直线方程. 【解】 过点()2,1,0且与直线21111z y x =--=-垂直的平面π为 ()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111z y x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫ ⎝⎛1,21,231M . 因此所求直线的方向为 ⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-. 故所求直线为.221130-=-=--z y x6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标.【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为 .102211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t . 故垂足坐标为⎪⎭⎫ ⎝⎛-32,32,351M . 7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ. 【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=. ()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin ⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程.【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s . 所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2z y x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M . 可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为 ()()()03.12.31.1=-+---z y x .化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程. 【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s .根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j is P P n ∥{}1,1,0. 所以,平面π的方程为 ()()()01.12.11.0=-+-+-z y x .化简得03:=-+z y π.习题1.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程.(1)zox 面上的抛物线x z 52=绕x 轴旋转一周;(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周;(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周.【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x z y 5222=+±,即 x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±y z x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x . 3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-;(4)16922=+z y ;(5)22z y x --=;(6)224y z x =+;(7)36249222=++z y x ;(8)444222=-+x y z .【解】(1)原方程可化为()1169222=++y z x . 所以,原方程表示的是旋转椭球面.(2)原方程可化为 1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为 11691622=+z y . 所以,原方程表示的是椭圆柱面.(5)原方程可化为()22z y x +-=.所以,原方程表示的是旋转抛物面.(6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面. (8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题1.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程. 【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x .Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程. 【解】(一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】(一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得 R z 21=. 所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=. 所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ; (2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题1.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t t t ===.由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为 ()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向. 【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732. (5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下: 由①式得 ()0.=-c b a ,说明a 与c b -垂直;由②式得 ()0=-⨯c b a ,说明a 与c b -平行. 因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1)k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a . 9.3=,1=6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ① (1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==b a b a θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(392931329cos -=⨯-==θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=.所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为 .03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即 .065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程.【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为()()()01.13.32.1=--+--z y x ,即 .0103=---z y x 【书后答案有误】. 16.求过点()1,1,1M 且与直线42135:-=+=-zy x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周. 【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y zx 2222=+±,即 222z xy += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z yx ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x . 【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程.【解】将1=t 代入① ,得切点坐标为⎪⎭⎫⎝⎛1,2,21.又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t tt t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-. 所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。

2024-2025学年上海华二附中高二上学期数学周测试卷及答案(2024.09)

2024-2025学年上海华二附中高二上学期数学周测试卷及答案(2024.09)

1华二附中2024学年第一学期高二年级数学测试2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.直线l 上存在两点在平面α上,则l α(填一符号). 2.函数324y sin x π⎛⎫=+ ⎪⎝⎭的圆频率是 .3.已知{}n a 是等差数列,若75230a a −−=,则9a 的值是 .4.两条异面直线所成角的取值范围是 .5.已知复数z a i =−的实部与虚部相等,则z i −= .6.函数213y tan x π⎛⎫=−+ ⎪⎝⎭的对称中心是 .7.三个互不重合的平面能把空间分成 . 8.数列{}n a 满足1111,12n n a a a +==−,则2024a = . 9.在ABC ∆中,::5:7:8sinA sinB sinC =,则该三角形外接圆与内切圆的面积之比是 . 10.如图,摩天轮的半径为50m,圆心O 距地面的高度为60m.已知摩天轮按逆时针方向匀速转动,每15min 转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.则游客进舱5min 时他距离地面的高度为 m.11.已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边,AB AC 于,M N 两点,设,(0,0)AM x AB AN yAC x y ==>>,则4x y +的最小值为 .12.对任意0,4π⎡⎤ϕ∈⎢⎥⎣⎦,函数()()f x sin x =ω+ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递增,则实数ω的取值范围是 .2二、选择题(本大题共有4题,满分18分,第13,14题每题4分,第15,16题每题5分) 13.设扇形的圆心角为α,半径为r ,弧长为l ,而积为S,周长为L ,则下列说法不正确的 是( ).A.若,r α确定,则,L S 唯一确定B.若,l α确定,则L S 唯一确定C.若,S L 确定,则,r α唯一确定D.若,1S 确定,则,r α唯一确定14.过正方体1111ABCD A B C D −的顶点A 作直线l ,使l 与棱1,,AB AD AA 所成的角都相等,这样的直线l 可以作( ).A.1条B.2条C.3条D.4条15.数列{}{},n n a b 满足21,32n n n a b a n n ⋅==++,则{}n b 的前10项之和等于( ). A.13 B.512 C.12 D.712 16.如图所示,角02x ,π⎛⎫∈ ⎪⎝⎭的终边与单位圆O 交于点(),10,P A ,PM x ⊥轴,AQ x ⊥轴,M 在x 轴上,Q 在角x 的终边上.由正弦函数、正切函数定义可知,sin ,tan x x 的值别等于线段,MP AQ 的长,且ΔOAP ΔOAQ OAP S S S <<扇形,则下列结论不正确的是( ). A.函数y tanx sinx x =++在22,ππ⎛⎫− ⎪⎝⎭内有1个零点B.函数y tanx x =−在32222,,ππππ⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭内有2个零点C.函数y sinx x =−有3个零点D.函数y tanx sinx tanx sinx =+−−在22,ππ⎛⎫− ⎪⎝⎭内有13三、解答题(本大题满分78分)本大题共有5题, 17.(本题满分14分,第1小题6分,第2小题8分) 已知3,052sin ,π⎛⎫α=α∈ ⎪⎝⎭. (1)求23sin π⎛⎫α+ ⎪⎝⎭的值;(2)在平面直角坐标系xOy 中,以Ox 为始边,已知角β的终边与角α的终边关于y 轴对称,求()cos α+β的值.18.(本题满分14分,第1小题6分,第2小题8分)如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,14,AA P =为线段11B D 上一点. (1)求证:AC BP ⊥;(2)当P 为线段11B D 的中点时,求点A 到平面PBC 的距离.419.(本题满分14分,第1小题6分,第2小题8分)在直角梯形ABCD 中,//,90,224AB CD DAB AB AD DC ∠====,点F 是BC 边上的中点. (1)若点E 满足2DE EC =,且EF AB AD =λ+μ,求λ+μ的值; (2)若点P 是线段AF 上的动点(含端点),求AP DP ⋅的取值范围.20.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 如图,正方体的棱长为1,''B C BC O ⋂=,求: (1)AO 与''A C 所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)B OA C −−的度数.521.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 若有穷数列{}n a 满足:10ni i a ==∑且11ni i a ==∑,则称其为"n 阶01−数列".(1)若"6穷01−数列"为等比数列,写出该数列的各项;(2)若某"21k +阶01−数列"为等差数列,求该数列的通项(121n a n k ≤≤+,用,n k 表示); (3)记"n 阶01−数列"{}n a 的前k 项和为()123k S k ,,,,n =,若存在{}123m ,,,,n ∈,使12m S =,试问:数列{}()123i S i ,,,,n =能否为"n 阶01−数列"?若能,求出所有这样的数列{}n a ;若不能,请说明理由.6参考答案一、填空题1.⊂;2.2;3.3;4.0,2π⎛⎤⎥⎝⎦;5. 6.,1,46k k Z ππ⎛⎫+∈ ⎪⎝⎭; 7.4678或或或; 8.2; 9.499; 10.85; 11.94 12.13042,⎛⎤⎧⎫⋃−⎨⎬ ⎥⎝⎦⎩⎭11.已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边,AB AC 于,M N 两点,设,(0,0)AM x AB AN yAC x y ==>>,则4x y +的最小值为 . 【答案】94 【解析】()12AD AB AC =+,且E 为AD 的中点,()1124AE AD AB AC ∴==+,11,,(0,0),AM x AB AN y AC x y AB AM AC AN x y==>>∴==,,,M E N 三点共线,11144x y∴+=, ()1111944111444444y x x y x y x y x y ⎛⎫∴+=++=+++++= ⎪⎝⎭…故答案为:94 12.对任意0,4π⎡⎤ϕ∈⎢⎥⎣⎦,函数()()f x sin x =ω+ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递增,则实数ω的取值范围是 . 【答案】13042,⎛⎤⎧⎫⋃−⎨⎬ ⎥⎝⎦⎩⎭【解析】对任意0,4π⎡⎤ϕ∈⎢⎥⎣⎦,函数()()f x sin x =ω+ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递增,12,222ππ∴⨯π−∴ωω厔 ①0ω>时,此时,()02,y sin x <ω=ω+ϕ…单调递增,可得222,22k k Z k ππω+ϕ≥−+π∈ππω+ϕ≤π⎧⎪⎪⎨⎪⎩+⎪,则22222k k ⎧⎪⎪⎨⎪⎪ππϕ≥π−−ωπϕ≤+−ω⎩ππ71120,,24441kk ⎧ω≤−+π⎪⎡⎤ϕ∈∴⎨⎢⎥⎣⎦⎪ω≥−⎩当0k =时,可得104<ω≤; ②0ω<时,此时,20−ω<…,()y sin x =ω+ϕ单调递增, 即()y sin x =−−ω−ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递减;可得222322,k k Z k ππ−ω−ϕ≥+ππ−πω−ϕ≤π⎧⎪⎪∈⎨⎪+⎪⎩,则222322k k ⎧⎪⎪⎨⎪⎪ππϕ≤−π−ω−πϕ≥π−πω⎩−− 14120,,3422k k ⎧ω≤−−−⎪π⎪⎡⎤ϕ∈∴⎨⎢⎥⎣⎦⎪ω≥−−⎪⎩当0k =时,可得32ω=−; 综上,则实数ω的取值范围是13042,⎛⎤⎧⎫⋃−⎨⎬ ⎥⎝⎦⎩⎭.二、选择题13.C 14.D 15.B 16.C15.数列{}{},n n a b 满足21,32n n n a b a n n ⋅==++,则{}n b 的前10项之和等于( ). A.13 B.512 C.12D.712 【答案】B【解析】由题意得()()12,n a n n =++()()11112112n n b a n n n n ===−++++1210b b b ∴++⋯⋯+11111123341112=−+−+⋯⋯+−11521212=−= 综上所述,答案选择:B16.如图所示,角02x ,π⎛⎫∈ ⎪⎝⎭的终边与单位圆O 交于点(),10,P A ,PM x ⊥轴,AQ x ⊥轴,M 在x 轴上,Q 在角x 的终边上.由正弦函数、正切函数定义可知,sin ,tan x x 的值别等于线段,MP AQ 的长,且ΔOAP ΔOAQ OAP S S S <<扇形,则下列结论不正确的是( ).8A.函数y tanx sinx x =++在22,ππ⎛⎫− ⎪⎝⎭内有1个零点B.函数y tanx x =−在32222,,ππππ⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭内有2个零点C.函数y sinx x =−有3个零点D.函数y tanx sinx tanx sinx =+−−在22,ππ⎛⎫− ⎪⎝⎭内有1【答案】C【解析】对于选项A ,函数()g x y tanx sinx x ==++在22,ππ⎛⎫− ⎪⎝⎭为增函数,又()00g =,即函数y tanx sinx x =++在22,ππ⎛⎫− ⎪⎝⎭内有1个零点,即选项A 正确;对于选项B ,函数()f x y tanx x ==−,则()21'1f x cos x =−,则函数在3,2222,,ππππ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭为减函数,又()3300,0,042f f f ππ⎛⎫⎛⎫=<> ⎪ ⎪⎝⎭⎝⎭,即函数在3,2222,,ππππ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭各有一个零点, 即函数y tanx x =−在32222,,ππππ⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭内有2个零点,即选项B 正确;对于选项C ,因为y sinx x =−,则'10y cosx =−…,即函数为减函数, 又当0x =时,0y =,即函数y sinx x =−有1个零点,即选项C 错误;对于选项D,当02x ,π⎛⎫∈− ⎪⎝⎭时,sin tanx x <,即2y tanx =,显然无零点,当02x ,π⎛⎫∈ ⎪⎝⎭时,sin tanx x >,即2y sinx =,显然无零点,又当0x =时,0y =,即函数y tanx sinx tanx sinx =+−−在22,ππ⎛⎫− ⎪⎝⎭内有1个零点,即选项D 正确,故选C三.解答题 17.(1)(2)1− 18.(1)证明略(219.(1)112− (2)1,810⎡⎤−⎢⎥⎣⎦20.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)9如图,正方体的棱长为1,''B C BC O ⋂=,求: (1)AO 与''A C 所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)B OA C −−的度数.【答案】(1)30(2(3)90 【解析】(1)连接'AB ,则由正方体性质,可得''AB AC B C ====且O 为'B C 的中点,所以1'2OC B C ==AO OC ⊥,所以12OC sin OAC AC ∠===,故30OAC ∠=,又由正方体性质可知'//'AA CC 且''AA CC =,所以四边形''AA C C 是平行四边形, 所以//''AC A C 所以OAC ∠是AO 与''A C 所成角,故AO 与''A C 所成角的度数为30; (2)如图,在平面''BCC B 内作OE BC ⊥交BC 于点E ,连接AE , 由正方体性质可知平面''BCC B ⊥平面ABCD ,又平面''BCC B ⋂平面,ABCD BC OE =⊂平面''BCC B ,所以OE ⊥平面ABCD , 所以E 为BC 中点,AE 为AO 在平面ABCD 上的射影, 所以OAE ∠为OA 与平面ABCD 所成的角, 由题意,在Rt OAE ∆中,12OE BE ==,AE ==所以1OEtan OAEAE∠===所以AO与平面ABCD;(3)由(1)知AO OC⊥,又由正方体性质可知AB⊥平面''BB C C,而OC⊂平面''BB C C,所以AB OC⊥,又,,AO AB A AO AB⋂=⊂平面ABO,所以OC⊥平面ABO,又OC⊂平面AOC,所以平面ABO⊥平面AOC,所以B OA C−−的度数为90.21.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)若有穷数列{}n a满足:10niia==∑且11niia==∑,则称其为"n阶01−数列".(1)若"6穷01−数列"为等比数列,写出该数列的各项;(2)若某"21k+阶01−数列"为等差数列,求该数列的通项(121na n k≤≤+,用,n k表示);(3)记"n阶01−数列"{}n a的前k项和为()123kS k,,,,n=,若存在{}123m,,,,n∈,使12mS=,试问:数列{}()123iS i,,,,n=能否为"n阶01−数列"?若能,求出所有这样的数列{}na;若不能,请说明理由.【答案】(1)111111,,,,,666666−−−或1111111,,,,,666666−−−;(2)当0d>时,()()*1211nna n N,n kk k k∴=−∈≤++当0d<时,()()*1211nna n N,n kk k k=−+∈≤++(3)数列{}()123iS i,,,,n=不为"n阶01−数列".【解析】(1)设123456,,,,,a a a a a a成公比为q的等比数列,显然1q≠,则有123456a a a a a a+++++=,得()6111a qq−=−,解得1q=−,由1234561a a a a a a+++++=,得161a=,解得116a=±,1011所以数列为111111,,,,,666666−−−或1111111,,,,,666666−−−;(2)设等差数列()12321,,,,1k a a a a k +…的公差为d ,123210,k a a a a +++++=()()11221210,0,2k k dk a a kd +∴++=+=即120,,k k a a d ++=∴=当0d =时,矛盾, 当0d >时,(23211212k k k a a a a a ++++++==−++)k a +()1122k k kd d −∴+=,即()11d k k =+, 由()11100,1k a a k k k +=+⋅=+得即11,1a k =−+ ()()()111111n na n k k k k k ∴=−+−⋅=+++()*121n N ,n k k−∈≤+ 当0d <时,同理可得()1122k k kd d −+=−,即()11d k k =−+由10k a +=得()1101a k k k −⋅=+,即111a k =+ ()()()111111n na n k k k k k ∴=−−⋅=−+++()*121n N ,n k k+∈≤+ 综上所述,当0d >时,()()*1211n n a n N ,n k k k k∴=−∈≤++当0d <时,()()*1211n n a n N ,n k k k k=−+∈≤++(3)记12,,,n a a a 中非负项和为A ,负项和为B ,则0,1A B A B +=−=,得1111,,2222k A B B S A ==−−=≤≤=,即()11232k S k ,,,,n ≤=,若存在{}123m ,,,,n ∈,使12m S =,可知:1210,0,,0,0m m a a a a +厖厔21210,,0,,2m n m m n a a a a a ++++++=−且剟1,0,0;k k k m a S ∴时剟厖 1,0,0k k n m k n a S S +<=时剟?123123n n S S S S S S S S ∴++++=++++12又1230n S S S S ++++=与1231n S S S S ++++=不能同时成立数列{}()123i S i ,,,,n =不为"n 阶01−数列".。

高中数学必修第二册第七章综合测试03含答案解析

高中数学必修第二册第七章综合测试03含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第七章综合测试一、选择题(本题共12小题,每小题5分,共60分)1.以2i +22i +的实部为虚部的新复数是( )A .22i -B .C .2i +D2.z 是z 的共扼复数,若2z z +=,()2z z i -=(i 为虚数单位),则z =( ) A .1i +B .1i --C .1i -+D .1i -3.设z 是复数,则下列命题中的假命题是( ) A .若20z ≥,则z 是实数 B .若20z <,则z 是虚数 C .若z 是虚数,则20z ≥D .若z 是纯虚数,则20z <4.若()2x i i y i -=+,x ,y ∈R ,则复数x yi +等于( ) A .2i -+B .2+iC .12i -D .1+2i5.已知互异的复数a ,b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=( ) A .2B .1C .0D .1-6.若复数z 满足()34|43|i z i -=+,则z 的虚部为( ) A .4-B .45-C .4D .457.i 是虚数单位,若1+72ia bi i=+-(a ,b ∈R ),则ab 的值是( ) A .15-B .3C .3-D .158.若()12z x yi =-+与23z x i =+(x ,y ∈R )互为共轭复数,则1z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.已知集合{}21,2,A z zi =,{}2,4B =,i 为虚数单位,若{}2A B =∩,则纯虚数z 为( ) A .iB .i -C .2iD .2i -10.已知i 是虚数单位,复数1z a i=-(a ∈R )在复平面内对应的点位于直线20x y -=上,则复数z 的虚部为( ) A .2B .3C .15i D .1511.复数11+i 在复平面内的对应点到原点的距离为( )A .12B C .1D12.已知复数32z i =-+(i 为虚数单位)是关于x 的方程220x px q ++=(p ,q 为实数)的一个根,则p q +的值为( )A .22B .36C .38D .42二、填空题(本题共4小题,每小题5分,共20分)13.复数11+z i=(i 为虚数单位),则||z =________. 14.若z ∈C ,且22||1z i +-=,则|z 22|i --的最小值为________.15.设复数11z i =+,22z xi =+(x ∈R ),若12·z z ∈R ,则x 的值为________. 16.下列说法中正确的序号是________.①若()()213x i y y i -+=--,其中x ∈R ,C C y =R ,则必有()21,13;x y y -=⎧⎪⎨=--⎪⎩②21i i ++>;③虚轴上的点表示的数都是纯虚数; ④若一个数是实数,则其虚部不存在;⑤若1z i=,则31z +对应的点在复平面内的第一象限. 三、解答题(本题共6小题,共70分)17.(10分)设复数()()22lg 2232z m m m m i =--+++,当m 为何值时, (1)z 是实数?(2)z 是纯虚数?18.(12分)已知复数1z 满足()1115i z i +=-+,22z a i =--,其中i 为虚数单位,a ∈R ,若121||||z z z -<,求a 的取值范围.19.(12分)设复数()()2214sin 12cos z a i θθ=-++,()0,θπ∈,2z 在复平面内对应的点在第一象限,且2234z i =-+.(1)求2z 及2||z .(2)若12z z =,求θ与a 的值.20.(12分)已知复数z满足||z ,2z 的虚部是2. (1)求复数z ;(2)设z ,2z ,2z z -在复平面上的对应点分别为A ,B ,C ,求ABC △的面积.21.(12分)已知复数()311z i i =-. (1)求1||z ;(2)若||=1z ,求1||z z -的最大值.22.(12分)设1z 是虚数,2111z z z =+是实数,且211z -≤≤. (1)求1||z 的值以及1z 的实部的取值范围; (2)若111=1z z ω-+,求证:ω为纯虚数.第七章综合测试答案解析一、 1.【答案】A【解析】设所求新复数为z a bi =+(a ,b ∈R ),由题意知,复数2i 的虚部为2,即2a =;复数()22212i +=+⨯-=-的实部为2-,即2b =-,则所求的新复数为22z i =-。

部编版高中数学必修二第七章复数带答案重点知识点大全

部编版高中数学必修二第七章复数带答案重点知识点大全

(名师选题)部编版高中数学必修二第七章复数带答案重点知识点大全单选题1、已知i是虚数单位,若z=i+a1+i为纯虚数,则实数a=()A.1B.−1C.2D.−22、复平面中有动点Z,Z所对应的复数z满足|z−3|=|z−i|,则动点Z的轨迹为()A.直线B.线段C.两条射线D.圆3、已知复数z满足(z−i)(2+i)=6−2i,则|z|=()A.√3B.2C.√5D.√64、如果复数z满足|z+1−i|=2,那么|z−2+i|的最大值是()A.√13+2B.2+√3C.√13+√2D.√13+45、若复数5−3−i的实部与虚部分别为a,b,则点A(b,a)必在下列哪个函数的图象上()A.y=2x B.y=x+12xC.y=|x|D.y=−2x2−16、已知z(1−2i)=i,则下列说法正确的是()A.复数z的虚部为i5B.复数z对应的点在复平面的第二象限C.复数z的共轭复数z=25−i5D.|z|=157、设z=i(2+i),则z̅=A.1+2iB.–1+2iC.1–2iD.–1–2i8、(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i多选题9、已知复数z满足方程(z2+9)(z2−2z+4)=0,则()A.z可能为纯虚数B.该方程共有两个虚根C.z可能为1−√3i D.该方程的各根之和为210、若实数x,y满足(x+i)(3+y i)=2+4i,则()A.1+y i的共轭复数为1−i B.xy=1C.|y+i|的值可能为√10D.y−3x=−211、在复数范围内,方程x3=8的虚数根是()A.1+√3i B.-1+√3i C.1-√3i D.-1-√3i填空题,其中i为虚数单位,则Imz=________12、设z=52+i13、若复数z=a(1+i)+i2013为实数,则实数a=________.部编版高中数学必修二第七章复数带答案(三十二)参考答案1、答案:B分析:由复数除法法则化简复数为代数形式,然后由复数的定义求解.因为z =i +a1+i =(a+i )(1−i )(1+i )(1−i )=a−a i +i −i 22=a+12+1−a 2i 为纯虚数,所以{a+12=01−a 2≠0 ,a =−1.故选:B .2、答案:A分析:设出动点Z 坐标为(x,y ),根据题意列出方程,求出结果.设动点Z 坐标为(x,y ),则z =x +y i ,所以|x +y i −3|=|x +y i −i |,即(x −3)2+y 2=x 2+(y −1)2,化简得:3x −y −4=0,故动点Z 的轨迹为直线.故选:A3、答案:C分析:利用复数的运算先求z ,再利用复数的模长公式求解.因为(z −i )(2+i )=6−2i ,所以z =6−2i2+i +i=(6−2i )(2−i )(2+i )(2−i )+i ,=2−2i+i=2−i ,所以|z |=√22+(−1)2=√5.故选:C.4、答案:A分析:复数z 满足|z +1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z −2+i|表示圆上的点与点M(2,−1)的距离,求出|CM|即可得出.复数z 满足|z +1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z −2+i|表示圆上的点与点M(2,−1)的距离.∵|CM|=√32+22=√13.∴|z −2+i|的最大值是√13+2.故选:A .小提示:本题考查复数的几何意义、圆的方程,求解时注意方程|z +1−i|=2表示的圆的半径为2,而不是√2.5、答案:D分析:将复数化为z =a +b i 的形式即可求出A ,将A 的坐标代入选项的函数验证即可.因为5−3−i ==5(−3+i)(−3−i)(−3+i)=-32+12i ,所以a =-32,b =12,所以A (12,−32),把点A 的坐标分别代入选项,只有D 选项满足.故选:D.6、答案:B分析:由复数除法求出复数z ,然后可判断各选项.由已知得z =i 1−2i =1(1+21)(1−2i)(1+2i)=−25+i 5,所以复数z 的虚部为15,而不是i 5,A 错误; 在复平面内,复数z 对应的点为(−25,15),在第二象限,B 正确. z =−25−i 5,C 错误;|z|=√(−25)2+(15)2=√55,D 错误;故选:B .小提示:本题考查复数的除法,考查复数的几何意义,共轭复数的概念及模的定义,属于基础题.7、答案:D分析:本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z .z =i(2+i)=2i +i 2=−1+2i ,所以z̅=−1−2i ,选D .小提示:本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.8、答案:D分析:利用复数的乘法可求(2+2i)(1−2i).(2+2i)(1−2i)=2+4−4i+2i=6−2i,故选:D.9、答案:ACD分析:依题意可得z2+9=0或z2−2z+4=0,即z2=−9或(z−1)2=−3,从而求出z,即可判断;解:由(z2+9)(z2−2z+4)=0,得z2+9=0或z2−2z+4=0,即z2=−9或(z−1)2=−3,解得z=±3i或z=1±√3i,即方程的根分别为z1=3i、z2=−3i、z3=1+√3i、z4=1−√3i,所以z1+z2+z3+z4=3i+(−3i)+(1+√3i)+(1−√3i)=2故选:ACD.10、答案:BCD分析:由复数相等的定义求出x,y的关系,并求得y的可能值,然后判断各选项.因为(x+i)(3+y i)=(3x−y)+(3+xy)i=2+4i.所以3x−y=2,3+xy=4,即y−3x=−2,xy=1,则y−3=−2.解得y=1或y=−3,y故A错误,B,C,D均正确.故选:BCD.11、答案:BD分析:利用一元二次方程在虚数范围内的根的求法.方程x3=8可化为(x-2)(x2+2x+4)=0,=-1±√3i.解得x=2或x=-2±√12i2故选:BD.12、答案:−1解析:直接利用复数的除法运算化简得到z的代数形式,再根据定义即得结果.因为z=52+i =5(2−i)(2+i)(2−i)=5(2−i)22−(−1)=2−i所以Imz=−1.所以答案是:−1.13、答案:−1分析:根据复数代数形式的乘方及加法运算化简,再根据复数的类型求出参数的值. 解:因为z=a+a i+i4×503+1=a+(a+1)i为实数,所以a+1=0,即a=−1.所以答案是:−1。

高等数学课后答案 第七章 习题详细解答

高等数学课后答案 第七章 习题详细解答

习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。

2021华师大版七数下第七章7.3《实践与探索》测试题及答案

2021华师大版七数下第七章7.3《实践与探索》测试题及答案

2021华师大版七数下第七章7.3《实践与探索》测试题及答案一、耐心填一填,本节所学知识尽显眼前!1、某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价每件 元,售价每件 元.2、一列火车由A 城开往B 城行驶了三小时,返回后每小时车速降低20公里,结果多行驶了43小时,那么A 、B 两地的距离是 . 3、有一个两位数,它的十位上的数与个位上的数的和为5,则符合这样的条件的数有 个.二、精心选一选,本节所学知识点准能顺利过关!4、某班组运回一筐苹果,,若每人分5个则少10个;若每人分4个,则多3个,那么班组人数与苹果分别为( )A 、13,50B 、12,55C 、13,55D 、12,505、某年级学生共有165人,其中男生人数x 比女生人数y 的32少5人,则下列方程组中的正确的是( ) A 、⎪⎩⎪⎨⎧=-=+y x y x 325165 B 、⎪⎩⎪⎨⎧+==+523165y x y x C 、⎪⎩⎪⎨⎧-==+532165y x y x D 、()⎪⎩⎪⎨⎧=+=+x y y x 532165 6、某校学生乘船游览青云湖时,若每船坐12人,将有11人无船可坐;若每船坐14人,会有1人独乘1只船,则他们这次租用的船只数为( ).A 、5;B 、8;C 、12;D 、14三、探索与应用.7、甲、乙两人从相距28千米的两地相向而行,如果同时出发,经过3小时30分钟相遇;如果甲先走2小时,然后乙再出发,这样乙经过2小时45分钟与甲相遇,求甲、乙两人的速度各是多少千米/小时?8、某商店出售的某种茶壶每只定价20元,茶杯每只定价3元.该商店在营销淡季规定一项优惠方法,即买一只茶壶赠送一只茶杯.某顾客花了170元,买回茶壶和茶杯一共38只,问该顾客买回茶壶和茶杯各多少只?9、(2005 潍坊)出租车收费标准为行程不超过3千米收起步价若干元,超过部分每千米多收若干元.某天老李第一次乘了8千米,花去12牙,第二次乘了11千米,花去15.6牙.问出租车起步价是多少元,超过3千米后每千米多收多少元?10、为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,2004年秋季有5000名农民工子女进入主城区中小学学习,预测2005年秋季进入主城区中小学学习的农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样,2005年秋季新增1160名农民工子女在主城区中小学学习.(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2005年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,如按2005年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?能力提升一、耐心填一填,“实践与探索”知识尽显眼前!1、一艘轮船顺流每小时行a千米,逆流每小时行b千米(a>b>0),则轮船在静水中每小时行千米,水流速度为每小时千米.2、要把一张面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么共有换法种.二、精心选一选,本节所学知识点准能顺利过关!3、有一个两位数,它的十位上的数字与个位上的数字的和是5,则符合这个条件的两位数有()A、4个B、5个C、6个D、无数多个4、某工程队原计划由52人在一定时间内完成一项工程,后来决定由开工之日就采用能提高工作效率50%的新技术,只派40人去工作,结果比原计划提前6天完成这项工程,采用新技术完成这项工程的天数与原计划所用天数的比是()A、11:13B、13:11C、13:15D、15:135、甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙二人分别应分得().A、2000元,5000元;B、5000元,2000元;C、4000元,10000元;D、10000元,4000元三、解答题:6、某商业银行现有存款4600万元,与去年同期相比,定期存款增加了25%,活期存款减少了25%,存款总额增加了15%,问现有定期、活期存款各多少万元?7、有两堆小球,每堆小球数一样多,且都只有红、黄两种小球,若甲堆中红球是乙堆中黄球数的43,乙堆中红球数是甲堆中黄球数的95,问乙堆球中的红球数是甲堆中红球数的多少倍?8、要用20张白卡纸做长方体的包装盒,每张白卡纸可以做盒身2个,或者做纸盒底3个.如果一个盒身和2个底盖可以做成一个包装盒,那么能否把这些白卡纸分成两部分,一部分做盒身,一部分做底盖,使做成的盒身和盒底盖正好配套?请你设计一种分法.想一想,如果一张白卡纸可以适当的套裁出一个盒身和一个盒盖,那么,又怎样分这些白卡纸,才能既使做出的盒身和盒盖配套,又能充分地利用白卡纸?9、一张方桌由1个桌面、4条腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条.现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?10、小明在拼图时,发现8个一样大小的长方形如图(1)那样,恰好可以拼成一个大的长方形.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图(2)那样的正方形.咳,怎么中间还留下一个洞,恰好是边长为2mm 的小正方形!你能帮他们解开其中的奥秘吗?(图1) (图2)探索:从两个图形看,问题可能与这些长方形的长、宽有关.设长方形的长、宽分别为x mm 与y mm .现在该如何着手呢?上图(2)给我们提供了一个信息:S 大正方形-8×S 长方形=22,即(x+2y)2-8xy=4但这是我们还没有遇到过的方程!你有什么其他好的办法吗?参考答案:跟踪反馈一、1、200,300;2、300公里;3、5.二、4—6、CCC三、7、解:设甲的速度是x 千米/小时,乙的速度是y 千米/小时.根据题意,得()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-=•+=•+x y x y x 22843228213.解得⎩⎨⎧==53y x 答:甲的速度是3千米/小时,乙的速度是5千米/小时8、解:设茶壶x 只,茶杯y 只.由题意得⎩⎨⎧=-+=+170)(32038x y x y x .解得⎩⎨⎧==344y x 答:买回茶壶4只,茶杯34只.9、解:设出租车起步价为x 元,超过3千米后每千米多收y 元.根据题意列方程组,得()()⎩⎨⎧=-+=-+6.153111238y x y x 解这个方程组,得⎩⎨⎧==2.16y x 答:出租车的起步价为6元,超过3千米后每千米多收1.2元.10、解:(1)设2004年秋季在主城区小学学习的农民工子女x 人,在主城区中学学习的农民工子女y 人.,由题意可得:⎩⎨⎧=+=+1160%30%205000y x y x 解得:⎩⎨⎧==16003400y x ∴48016001003010030,68034001002010020=⨯==⨯=y x ∴500×680+1000×480=820000元=82万元.答:共免收82万元(或820000)“借读费”(2)2005年秋季入学后,在小学就读的学生有3400×(1+20%)=4080(名);在中学就读的学生有1600×(1+30%)=2080(名)∴(4080÷40)×2+(2080÷40)×3=102×2+52×3=360(名)答:一共需要配备360名中小学教师.能力提升一、1、2;2b a b a -+;2、6 二、3、B ;4、C ;5、C三、6、解:设定期、活期存款分别为x 、y 万元,,由题意得⎪⎩⎪⎨⎧+=-++=+%2514600%251%2514600y x y x ,解得⎩⎨⎧==6004000y x 答:定期、活期存款分别为40000,600万元. 7、解:设甲、乙两堆中红球数分别为a 、b ,则甲堆中黄球数为b 59,乙堆中黄球数为a 34,由题意得ab b a 3459+=+,解得:,125a b =即125=a b 答:乙堆中的红球是甲堆中红球数的125倍. 8、解:设x 张白卡纸做盒身,y 张白卡纸做盒底盖,由题意得:⎩⎨⎧=⨯=+y x y x 32220解得⎪⎪⎩⎪⎪⎨⎧==7311748y x 由于解为分数,所以若不套裁,则最多能做16个包装盒;若可套裁,用8张做盒身,11张做盒底盖,另一张套裁出一个盒身,1个盒底盖.则共可做盒身17个,盒底盖34个,正好配成17个包装盒,较好地利用了材料.点拨:(1)此问题中有两个等量关系:做纸身的白卡纸数+做底盖的白卡纸数=20;盒身数的2倍=盒底盖的的数量.故可以转化为建立二元一次方程组模型来解决.(2)“配套”问题是合理用料问题中的一种,其关键是既要充分利用所给的纸张,又不能出现浪费问题.所以本题以“套裁” 最好.9、解:设用x 立方米的木料做桌面,用y 立方米的木料做桌腿.根据题意,得:⎩⎨⎧=⨯=+yx y x 3005045解得{23==y x ∴可做50×3=150张方桌答:用3立方米的木料做桌面,用2立方米的木料做桌腿,可做成150张方桌.点拨:等量关系为:(1)做桌面的木料数+做桌腿的木料数=5(不计算加工过程中的木料损耗);(2)桌面数应与桌腿数配套,x 立方米的木料可做桌面50x 个,y 立方米的木料可做桌腿300y 个. 一个桌面做配4条桌腿,也就是桌面数×4=桌腿数,即4×50x=300y.特别提醒:我们可以将复杂的实际问题数学化,即建立一个数学模型,这样便于用数学知识来解决它,建立数学模型的过程是:10、解:设小长方形的长为x mm,宽为y mm根据题意、观察拼图,得⎩⎨⎧+=+=yx x y x 22253 整理,得⎩⎨⎧-=-=-22053y x y x ,解得⎩⎨⎧==610y x 则小正方形的边长=(x+2y)-2x=(10+2×6)-2×10=2mm特别提醒:本题巧妙地运用了两个拼图,建立起小长方形的长与宽之间的关系,它体现了数与形之间相互关系.打破了用语言描述两个量之间关系的常规,渗透了数形结合的数学思想.。

七年级数学下册《第七章 二次根式》练习题及答案

七年级数学下册《第七章 二次根式》练习题及答案

七年级数学下册《第七章 二次根式》练习题及答案1.下列各式,是二次根式的是( ) A.3 B.39 C.1+x D.22--x2.下列各式中,不一定是二次根式的为( ) A.a B.12+b C.0 D.2)(b a +3.在实数范围内,要使代数式2-x 有意义,则x 的取值范围是( )A.x ≥2B.x >2C.x ≠2D.x <24.若式子12-+a a 有意义,则实数a 的取值范围是( ) A.a ≥-2 B.a ≠1 C.a >1 D.a ≥-2且a ≠15.当x 为____________时,代数式5232+x 有意义. 6.要使xx -+-3112有意义,则符合条件的x 的整数值为_____________. 7.已知(x-y +3)2+y x +2=0,则x +y 的值为( )A.0B.-1C.1D.58.若62121--+-=x x y ,则xy 的值为( ) A.-2 B.2 C.-3 D.39.当a =_________时,代数式1+a +1取到最小值,这个最小值是___________.10.计算:(1)(9)2;(2)-(3)2;(3)2323⎪⎪⎭⎫ ⎝⎛-;(4)(2a )2.11.已知4422-=-+a b a ,求ab 的值.12.在式子2x (x >0),2,1+y (y =-2),x 2-(x >0),33,12+x ,x +y 中,二次根式有( )A.2个B.3个C.4个D.5个13.若式子2112+++x x 有意义,则实数x 的取值范围是( ) A.x >-2 B.x ≥-2且x ≠2 C.x ≥-2 D.x >-2且x ≠214.计算:-(5)2=____________.15.使式子13-x 有意义的x 的取值范围是_____________.16.若y =22332+-+-x x ,则2x +y =____________.17.已知x ,y 为实数,y =319922-+-+-x x x ,则x-6y 的值为____________. 18.函数y =52--x x 的自变量x 的取值范围是( ) A.x ≠5 B.x >2且x ≠5 C.x ≥2 D.x ≥2且x ≠519.若二次根式5-x 在实数范围内有意义,则x 的取值范围为___________.20.若|1001-a|+1002-a =a ,则a-10012=__________.21.观察下表中的式子,写出第n (n 为正整数)个式子(用含n 的代数式表示),并回答,这个式子一定是二次根式吗?为什么? 第1个第2个 第3个 第4个 … 112- 222- 332-442- …参考答案1.A2.A3.A4.D5.答案 全体实数解析 因为3x 2+2>0,所以无论x 为何值时,被开方数都是正数,故答案为全体实数.6.答案 1,2解析 要使xx -+-3112有意义,则2x-1≥0,且3-x >0,解得21≤x <3,所以符合条件的整数为1,2.7.C 8.C9.答案 -21;1 解析 ∵12+a ≥0,∴12+a 的最小值为0, ∴12+a +1的最小值为1.取最小值时,a =-21. 10.解析 (1)(9)2=9.(2)-(3)2=-3.(3)63293232=⨯=⎪⎪⎭⎫ ⎝⎛-.(4)(2a )2=a 2. 11.解析 ∵a 2-4a +4+2-b =(a-2)2+2-b =0∴a-2=0,b-2=0,即a =b =2,∴ab =2.12.B 13.C14.答案 -5 解析 原式=-515.答案 x ≥31 解析 根据题意可得被开方数3x-1≥0,解得x ≥31. 16.答案 5解析 根据题意可得⎩⎨⎧≥-≥-023032x x ,解得x =23,所以y =2,所以2x +y =2×23+2=5. 17.答案 -2解析 由题意得⎪⎩⎪⎨⎧≠-≥-≥-03090922x x x ,解得x =-3,∴y =61331-=--, ∴x-6y =-3-6×(-61)=-3+1=-2.故答案为-2.18.D19.答案 x ≥5解析 要使二次根式5-x 在实数范围内有意义,则x-5≥0,∴x ≥5.20.答案 1002解析 由题意得a-1002≥0,∴a ≥1002.由|1001-a|+1002-a =a ,得-1001+a +1002-a =a ,∴1002-a =1001, ∴a-1002=10012,∴a-10012=1002.21.解析第n 个式子是n n -2,一定是二次根式.理由: ∵n 为正整数,∴n 2≥n ,即n n -2的被开方数是非负数, ∴n n -2一定是二次根式.。

高等数学(本科)第七章课后习题解答

高等数学(本科)第七章课后习题解答

习题7.11.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3; ()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等. 【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题7.21.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121;同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a . (3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x . 又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M . 10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值. 【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=. 因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32.【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题7.31.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为 .2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a 2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ;()0.=++c b a c .即 0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC ⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为 {}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题7.41.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k .由公式,平面π与xoy31=; 同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj i n M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x . 8.求满足下列条件的平面方程: (1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴; (3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=. 【解】(1)根据题意,可设所求平面的一般式方程为 0:=+By Ax π. ① 又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=. 因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为 0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故⎩⎨⎧-==.9,2C B C D . 因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为 0:=+D By π. ① 又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=. 因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=. 将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-== 因此①成为043:=--+A Az Ay Ax π . ⑤注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程. 【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ② 及 010=+D C . ③ 又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有 032=++C B A . ④ ②、③、④联立得到B A BC BD 5,3,30-==-=. 因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π. 10.指出下列各平面的特殊位置,并画出各平面. (1)013=-x ; (2)012=-+z y ; (3)02=+z x ; (4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面; (2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面.习题7.51.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程. 【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程. 【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为.531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s . 故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111zy x =--=-垂直相交的直线方程.【解】 过点()2,1,0且与直线21111zy x =--=-垂直的平面π为()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111zy x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫⎝⎛1,21,231M . 因此所求直线的方向为⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-.故所求直线为.221130-=-=--z y x 6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标. 【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为.12211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t .故垂足坐标为⎪⎭⎫⎝⎛-32,32,351M .7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ.【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=.()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程. 【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s .所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2zy x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M .可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为()()()03.12.31.1=-+---z y x . 化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程.【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s . 根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j i s P P n ∥{}1,1,0. 所以,平面π的方程为()()()01.12.11.0=-+-+-z y x . 化简得03:=-+z y π.习题7.61.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程. (1)zox 面上的抛物线x z 52=绕x 轴旋转一周; (2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周; (3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周. 【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x zy 5222=+±,即x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±yz x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x .3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-; (4)16922=+z y ;(5)22z y x --=;(6)224y z x =+; (7)36249222=++z y x ;(8)444222=-+x y z . 【解】(1)原方程可化为()1169222=++y z x. 所以,原方程表示的是旋转椭球面.(2)原方程可化为1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为11691622=+z y . 所以,原方程表示的是椭圆柱面. (5)原方程可化为()22z y x +-=. 所以,原方程表示的是旋转抛物面. (6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面.(8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题7.71.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程.【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x . Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程.【解】 (一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=. 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=.所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ;(2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题7.81.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向.【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732.(5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下:由①式得 ()0.=-c b a ,说明a 与c b -垂直; 由②式得 ()0=-⨯c b a ,说明a 与c b -平行.因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即 0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1) k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a .9.3=1=,6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ①(1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(39293132932cos -=⨯-==b a b a θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C ,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=. 所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为.03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即.065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程. 【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为 ()()()01.13.32.1=--+--z y x ,即.0103=---z y x 【书后答案有误】.16.求过点()1,1,1M 且与直线42135:-=+=-z y x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周.【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y z x 2222=+±,即 222z x y += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z y x ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x .【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程. 【解】将1=t 代入① ,得切点坐标为⎪⎭⎫ ⎝⎛1,2,21. 又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t t t t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-.所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。

上海民办华二初级中学小学数学二年级下册第七单元习题(专题培优)

上海民办华二初级中学小学数学二年级下册第七单元习题(专题培优)

一、选择题1.2936和2946之间有()个数。

A. 10B. 9C. 8B解析: B【解析】【解答】2936和2946之间有9个数:2937、2938、2939、2940、2941、2942、2943、2944、2945。

故答案为:B。

【分析】此题主要考查了万以内数的排序,按顺序列举,然后数一数即可解答。

2.下面排列正确的是()。

A. 7148>4187>4817B. 4871>4781>4187C. 8714>8417>8471D. 1784>1478>1748B 解析: B【解析】【解答】4871>4781>4187 正确。

故答案为:B。

【分析】万以内数比较大小,先比较千位,千位大的这个数就大;千位相等的,再比较百位,百位大的这个数就大;百位相等的,再比较十位,十位大的这个数就大;十位相等的,再比较个位,个位大的这个数就大。

3.妈妈去超市买如表三样物品.下面哪个问题适合用估算解决?()养生壶暖气扇学习机99元282元196元B. 收银员应收多少钱?C. 如果妈妈付给收银员600元钱,应找回多少钱?A解析: A【解析】【解答】对于选项A,妈妈准备的钱数应该为:99+282+196≈100+300+200=600(元),估算比较方便,可以进行估算;对于选项B,收银员应收的钱数必须是准确数,不能进行估算;对于选项C,妈妈付给收银员600元,应找回的钱数必须是准确数,否则对收银员和妈妈都不公平,故应找回的钱数不能进行估算。

故答案为:A。

【分析】在解决实际问题时,要明白哪些数据可以估算,哪些数据必须是准确值,题目中妈妈准备的钱数可以估算,收银员应收的钱数和应找回的钱数都必须是准确数。

4.估算576+284,下面说法正确的是()。

A. 它们的和比1000大一些。

B. 它们的和700小一些。

C. 576<600,284<300,它们的和一定小于900。

高等数学教材第七章答案

高等数学教材第七章答案

高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。

解答:首先计算 $\frac{\partial z}{\partial x}$。

根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。

同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。

1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。

解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。

对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。

2021-2022学年新教材人教A版高中数学必修第二册第七章复数课时练习题含答案解析

2021-2022学年新教材人教A版高中数学必修第二册第七章复数课时练习题含答案解析

第七章复数练习题1、数系的扩充和复数的概念 (1)2、复数的几何意义 (6)3、复数的加、减运算及其几何意义 (14)4、复数的乘、除运算 (22)1、数系的扩充和复数的概念基础练习一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.(1+)i的实部与虚部分别是( )A.1,B.1+,0C.0,1+D.0,(1+)i【解析】选C.(1+)i可看作0+(1+)i=a+bi,所以实部a=0,虚部b=1+.2.已知复数a2-4+(a+2)i为纯虚数,则实数a=( )A.-2B.2C.±2D.4【解析】选B.由纯虚数的定义可知,解得a=2.3.已知x-2i=3+2yi(x,y∈R),则x+y=( )A.4B.2C.3D.1【解析】选B.由复数相等的充要条件可知,x=3,y=-1,所以x+y=3-1=2.4.复数4-3a-a2i与复数a2+4ai相等,则实数a的值为( )A.1B.1或-4C.-4D.0或-4【解析】选C.由复数相等的充要条件得解得:a=-4.5.以复数z=3-4i的实部为虚部,虚部为实部的复数为( )A.3-4iB.-3+4iC.-4+3iD.4-3i【解析】选C.由于复数z=3-4i=3+(-4)i的实部为3,虚部为-4,所求复数为-4+3i.6.(多选题)若i是虚数单位,则下列结论正确的是( )A.是分数B.i是无理数C.-i2不是虚数D.若a∈R,则(a2+1)i是虚数【解析】选CD.由于i是虚数单位,则,i都是虚数,A,B都不正确;-i2=1是实数,不是虚数,C正确;若a∈R,则a2+1≥1,所以(a2+1)i是虚数,D正确.二、填空题(每小题5分,共10分)7.若复数z=a2-3+2ai的实部与虚部互为相反数,则实数a的值为________.【解析】由条件知a2-3+2a=0,所以a=1或a=-3.答案:1或-38.已知复数z=k2-3k+(k2-5k+6)i(k∈R),若z<0,则k的值为________.【解析】因为复数z=k2-3k+(k2-5k+6)i(k∈R),若z<0,则k2-5k+6=0,k2-3k<0,解得k1=2,k2=3(舍去).答案:2三、解答题(每小题10分,共20分)9.已知复数z=+i,(m∈R)是虚数,求实数m的取值范围.【解析】因为复数z=+i,(m∈R)是虚数,所以,解得m<0或m>1且m≠-2.所以实数m的取值范围是(-∞,-2)∪(-2,0)∪(1,+∞).10.当实数m为何值时,复数z=+(m2-2m)i分别为:(1)实数?(2)虚数?(3)纯虚数?【解析】(1)当即m=2时,复数z为实数.(2)当即m≠0且m≠2时,复数z为虚数.(3)当即m=-3时,复数z为纯虚数.提升练习一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.复数z=2-i的实部与虚部的差为( )A.-1B.1C.2D.3【解析】选D.复数z=2-i=2+(-1)i的实部为2,虚部为-1,所以复数的实部与虚部的差为3.2.如果C,R,I分别表示复数集、实数集和纯虚数集,其中C为全集,则( )A.C=R∪IB.R∪I={0}C.R=C∩ID.R∩I=∅【解析】选D.复数包括实数和虚数,所以实数集与纯虚数集无交集.所以R∩I=⌀.故选D.3.(多选题)下列命题中为真命题的是( )A.复数一定是虚数B.实数一定是复数C.复数的平方数一定是非负实数D.实数的虚部为0,纯虚数的实部为0,虚部不为0【解析】选BD.因为实数和虚数统称为复数,所以复数不一定是虚数,A是假命题;实数一定是复数,B是真命题;由于i2=-1,复数的平方数可以是负实数,C是假命题;实数的虚部为0,纯虚数的实部为0,虚部不为0,D是真命题.4.若xi-i2=y+2i,x,y∈R,则复数x+yi=( )A.-2+iB.2+iC.1-2iD.1+2i【解析】选B.因为i2=-1得xi-i2=1+xi.由题意得1+xi=y+2i,所以x=2,y=1.故x+yi=2+i.二、填空题(每小题5分,共20分)5.方程(2x2-3x-2)+(x2-5x+6)i=0的实数解x=________.【解析】方程可化为解得x=2.答案:26.复数2i,3-i,3-i2,i-1中,不同于另外三个的一个复数是______.【解析】复数2i,3-i,3-i2,i-1中,3-i2=4是实数,不同于其他三个虚数.答案:3-i27.若a-2i=bi+1(a,b∈R),则b+ai=________.【解析】根据复数相等的充要条件,得所以b+ai=-2+i.答案:-2+i8.若复数z=(a+1)+(1-a)i(a∈R)的实部与虚部都大于0,则实数a的取值范围是________.【解析】由a+1>0,1-a>0,解得-1<a<1.答案:(-1,1)三、解答题(每小题10分,共30分)9.已知x是实数,y是纯虚数,且满足(3x-10)+i=y-3i,求x与y.【解析】设y=bi(b∈R且b≠0),代入(3x-10)+i=y-3i,整理得(3x-10)+i=bi-3i, 由复数相等的充要条件得解得所以x=,y=4i.10.设复数z=(m2+2m-3)+(m-1)i,试求实数m取何值时,满足(1)z是实数;(2)z是纯虚数.【解题指南】(1)复数为实数需满足虚部为零.(2)纯虚数需满足实部为零且虚部不为零.【解析】(1)由m-1=0得m=1,即m=1时z是实数.(2)由解得m=-3,即m=-3时z是纯虚数.11.定义运算=ad-bc,如果(x+y)+(x+3)i=,求实数x,y 的值.【解析】由定义运算=ad-bc,得=3x+2y+yi,故有(x+y)+(x+3)i=3x+2y+yi.因为x,y为实数,所以有得得x=-1,y=2.2、复数的几何意义基础练习一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.已知复数z在复平面上对应的点为(1,-1),则( )A.z=-1+iB.z=1+iC.z+i是实数D.z+i是纯虚数【解析】选 C.因为复数z在复平面上对应的点为(1,-1),所以z=1-i.所以z+i=1-i+i=1,所以z+i是实数.2.已知z1=5+3i,z2=5+4i,下列选项中正确的是( )A.z1>z2B.z1<z2C.|z1|>|z2| D.|z1|<|z2|【解析】选 D.因为复数不能比较大小,所以A,B不正确,又|z1|==,|z2|==,所以|z1|<|z2|,故C不正确,D正确.3.向量对应的复数为z1=-3+2i,对应的复数为z2=1-i,则|+|为( )A. B. C.2 D.【解析】选A.因为z1=-3+2i,z2=1-i,所以=(-3,2),=(1,-1),则+=(-2,1),所以|+|==.4.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则等于( )A.2+IB.2-iC.-2+iD.-2-i【解析】选B.点Z(2,1)对应复数z=2+i,与z互为共轭复数,对应的两点关于实轴对称,所以=2-i.5.在复平面内,对应的复数是2+i,对应的复数是-1-3i,则对应的复数为( )A.1-2iB.-1+2iC.3+4iD.-3-4i【解析】选D.由题意知=(2,1),=(-1,-3).=+=(-1,-3)+(-2,-1)= (-3,-4),所以对应的复数为-3-4i.6.(多选题)下列关于复数z=a+bi,a,b∈R的说法正确的是( )A.=a-biB.若=z,则b=0C.若|z|=0,则z=0D.若|z|≠0,则ab≠0【解析】选ABC.由复数z=a+bi,a,b∈R,得=a-bi,选项A正确;若=z,则a+bi =a-bi,b=-b,所以b=0,选项B正确;若|z|=0,则a2+b2=0,所以a=b=0,z=0,选项C 正确;若|z|≠0,则a2+b2≠0,所以a,b至少有一个不为0,选项D不正确.二、填空题(每小题5分,共10分)7.已知复平面内,点(2cos 300°,2sin 300°)对应的复数为z,则z=________,|z|=________.【解析】由点的坐标(2cos 300°,2sin 300°),得(1,-),对应的复数为z=1-i,|z|=2.答案:1-i 28.复平面上,实轴上的点A(3,0)与虚轴上的点B(0,-4),则向量对应的复数的实部为________,虚部为________.【解析】复平面上,实轴上的点A(3,0)与虚轴上的点B(0,-4),则=(-3,-4),对应的复数z=-3-4i的实部为-3,虚部为-4.答案:-3 -4三、解答题(每小题10分,共20分)9.已知z=x+yi,x,y∈R,若2x-1+(y+1)i=x-y+(-x-y)i.(1)求实数x,y的值;(2)求.【解析】(1)因为x,y为实数,所以2x-1,y+1,x-y,-x-y都为实数,由复数相等的充要条件得解得(2)=x-yi=3+2i.10.已知复数z满足|z+1-i|=1,求|z|的最大值和最小值.=-1+i对应向量,由|z+1-i|=|z-(-1+i)| 【解析】设复数z对应向量,复数z1=1,得|-|=||=1,所以动点Z的轨迹是以C(-1,1)为圆心,半径为1的圆,所以复数z对应的点的轨迹是以-1+i对应的点C为圆心,以1为半径的圆,画出方程|z+1-i|=1表示的轨迹,如图,而|z|则表示该圆上的点到原点O的距离,由平面几何知识可知,使圆上的点到原点距离取最大(最小)值的点在直线OC与圆的交点处.所以|z|最大值为|OC|+r=+1,最小值为|OC|-r=-1.提升练习一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.(多选题)设复数z=(2t2+5t-3)+(t2+2t+2)i,t∈R,则以下结论中正确的是( )A.复数z对应的点在第一象限B.复数z可能是纯虚数C.复数z对应的点在实轴上方D.复数z一定是实数【解析】选BC.因为z的虚部t2+2t+2=(t+1)2+1恒为正,所以z对应的点在实轴上方,且z一定是虚数,排除D.又z的实部2t2+5t-3=(t+3)(2t-1)可为正、为零、为负,所以选项A不正确.当t=-3或时B正确.2.欧拉公式e ix=cos x+isin x(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e-2i表示的复数在复平面中位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选 C.e-2i=cos(-2)+isin(-2),对应点为(cos(-2),sin(-2)),由于-π<-2<-,因此cos(-2)<0,sin(-2)<0,所以点(cos(-2),sin(-2))在第三象限.3.(多选题)复平面内,下列关于复数的叙述正确的是( )A.原点对应的复数是0B.纯虚数对应的点在虚轴上C.实轴上的点对应的复数是实数D.虚轴上的点对应的复数是虚数【解析】选ABC.复平面内,原点对应的复数是0,选项A正确.纯虚数对应的点在虚轴上,选项B正确.实轴上的点对应的复数是实数,选项C正确.虚轴上除原点以外的点对应的复数是虚数,选项D错误.4.设复数z=m(3+i)-(2+i)(m∈R,i为虚数单位).在复平面内对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选B.复数z=(3m-2)+(m-1)i在复平面内的对应点P(3m-2,m-1).当m>1时P在第一象限;当m<时P在第三象限;当<m<1时P在第四象限;当m=时P在y轴上;当m=1时P在x轴上.【补偿训练】设A,B为锐角三角形的两个内角,则复数z=(cos B-tan A)+itan B对应的点位于复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选B.因为A,B为锐角三角形的两个内角,所以A+B>,即A>-B,sin A>cos B.cos B-tan A=cos B-<cos B-sin A<0,又tan B>0, 所以点(cos B-tan A,tan B)在第二象限.二、填空题(每小题5分,共20分)5.复平面内,点(2,3)对应的复数的共轭复数为______.【解析】复平面内,点(2,3)对应的复数z=2+3i,共轭复数为=2-3i.答案:2-3i6.复数z1=3与z2=2-i对应的两点间的距离为______.【解析】复数z1=3与z2=2-i对应的两点Z1(3,0),Z2(2,-)间的距离为|Z1Z2|==2.答案:27.已知z-|z|=-1+i,则复数z=______.【解析】设z=x+yi(x,y∈R),由题意得x+yi-=-1+i,即(x-)+yi=-1+i,所以解得所以z=i.答案:i8.已知复数z=(a2-2a)+(a2-a-2)i对应的点在虚轴上,且z≠0,则a的值为________.【解析】由题意,得a2-2a=0,得a=0或a=2.当a=2时z=0,与题意不符.答案:0三、解答题(每小题10分,共30分)9.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第一象限,求实数m的取值范围.【解析】因为复数z对应的点在第一象限.所以解得m<或m>.所以实数m的取值范围为∪.10.已知两向量a,b对应的复数分别是z1=-3,z2=-+mi(m∈R),且a,b的夹角为60°,求m的值.【解析】因为a,b对应的复数分别为z1=-3,z2=-+mi(m∈R),所以a=(-3,0),b=.又a,b的夹角为60°,所以cos 60°=,即=,解得m=±.11.设复数z=(2x+a)+(2-x+a)i,x,a∈R,当x在内变化时,求|z|的最小值g(a).【解析】|z|2=(2x+a)2+(2-x+a)2=22x+2-2x+2a(2x+2-x)+2a2.令t=2x+2-x,则t≥2,且22x+2-2x=t2-2.从而|z|2=t2+2at+2a2-2=(t+a)2+a2-2,当-a≥2,即a≤-2时,g(a)=;当-a<2,即a>-2时,g(a)==|a+1|.综上可知g(a)=3、复数的加、减运算及其几何意义基础练习一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.已知z1=2+i,z2=1+2i,则复数z=z2-z1对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选B.z=z2-z1=(1+2i)-(2+i)=-1+i,实部小于零,虚部大于零,故位于第二象限.2.若复数z满足z+(3-4i)=1,则z的虚部是( )A.-2B.4C.3D.-4【解析】选B.z=1-(3-4i)=-2+4i.3.已知复数z1=1+2i,z2=3-4i,若z+z1=z2-z,则复数z=( )A.1+3iB.1-3iC.2-6iD.3+4i 【解析】选B.设z=a+bi,a,b∈R,由复数z1=1+2i,z2=3-4i,且z+z1=z2-z,得a+bi+1+2i=3-4i-(a+bi),得(a+1)+(b+2)i=(3-a)+(-4-b)i, 所以a+1=3-a,b+2=-4-b,得a=1,b=-3,所以z=1-3i.【一题多解】选B.因为复数z1=1+2i,z2=3-4i,且z+z1=z2-z,所以2z=z2-z1=3-4i-(1+2i)=2-6i,所以z=1-3i.4.在复平面内,复数1+i和1+3i分别对应向量和,其中O为坐标原点,则||=( )A. B.2 C. D.4【解析】选B.由复数减法运算的几何意义知,对应的复数为(1+3i)-(1+i)=2i,所以||=2.5.如图,设向量,,所对应的复数为z1,z2,z3,那么( )A.z1-z2-z3=0 B.z1+z2+z3=0C.z2-z1-z3=0 D.z1+z2-z3=0【解析】选D.由题图可知,+=0,所以+-=0,所以z1+z2-z3=0.6.(多选题)下列关于复数的叙述正确的是( )A.两个共轭复数的和是实数B.两个共轭复数的差是虚数C.两个共轭虚数的和是实数D.两个共轭虚数的差是虚数【解析】选ACD.设复数z=a+bi,a,b∈R,则共轭复数=a-bi,所以有z+=2a∈R,z-=2bi,当b=0时,z-是实数,当b≠0时,z-是虚数,A正确,B不正确.设虚数z=a+bi,a,b∈R,且b≠0,则共轭虚数=a-bi,所以有z+=2a∈R,z-=2bi是虚数,C正确,D正确.二、填空题(每小题5分,共10分)7.计算(1-3i)-(2-4i)+(3+5i)=________.【解析】(1-3i)-(2-4i)+(3+5i)=(1-2+3)+(-3+4+5)i=2+6i.答案:2+6i8.已知|z|=,且z-2+4i为纯虚数,则z=________.【解析】设复数z=x+yi(x,y∈R),则z-2+4i=(x-2)+(y+4)i.由题意知所以或所以z=2±i.答案:2±i【补偿训练】已知向量和向量对应的复数分别为3+4i和2-i,则向量对应的复数为__________.【解析】因为=-,所以对应复数为(2-i)-(3+4i)=-1-5i.答案:-1-5i三、解答题(每小题10分,共20分)9.已知复数z1=-1+2i,z2=1-i,z3=3-2i所对应的点分别为A,B,C.若=x+y,求x+y的值.【解析】由于复数z1=-1+2i,z2=1-i,z3=3-2i所对应的点分别为A,B,C,所以=-1+2i,=1-i,=3-2i,因为=x+y,所以3-2i=x(-1+2i)+y(1-i),所以解得故x+y=5.10.已知z1=-3+i,z2=2+6i对应的向量分别为和,以OZ1,OZ2为邻边作平行四边形OZ1CZ2.求向量,,对应的复数.【解析】由复数加减法的几何意义知,向量对应的复数为z 1+z2=(-3+i)+(2+6i)=-1+7i,向量对应的复数z2-z1=(2+6i)-(-3+i)=5+5i;向量对应的复数z1-z2=-5-5i.提升练习一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.复平面上三点A,B,C分别对应复数1,2i,5+2i,则由A,B,C所构成的三角形是 ( )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【解析】选A.|AB|=|2i-1|=,|AC|=|4+2i|=,|BC|=5,所以|BC|2=|AB|2+ |AC|2.故选A.2.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A,B,C,则平行四边形ABCD的对角线BD所对应的复数是( )A.5-9iB.-5-3iC.7-11iD.-7+11i【解析】选 C.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A,B,C,则=(-3,-2),=(-4,5),=(2,1),所以平行四边形ABCD的对角线BD满足=+=(-)+(-)=(7,-11),所对应的复数是7-11i.3.(多选题)设z1,z2∈C,则下列关系正确的是( )A.|z1+z2|>|z1|B.|z1-z2|<|z1|C.|z1+z2|≤|z1|+|z2|D.|z1-z2|≤|z1|+|z2|【解析】选CD.若z2=0时,|z1+z2|=|z1|,|z1-z2|=|z1|,故A,B不正确.设复数z1,z2对应平面向量,,当与不共线时,|+|<||+||,当与方向相同时, |+|=||+||,故|+|≤||+||,即|z1+z2|≤|z1|+|z2|,C正确.当与不共线时,|-|<||+||,当与方向相反时,|-|=||+||,故|-|≤||+||,即|z1-z2|≤|z1|+|z2|,D正确.4.复数z1=1+icos θ,z2=sin θ-i,则|z1-z2|的最大值为( )A.3-2B.-1C.3+2D.+1【解析】选D.|z1-z2|=|(1+icos θ)-(sin θ-i)|===≤=+1.二、填空题(每小题5分,共20分)5.复平面内三点A,B,C,点A对应的复数为3-4i,向量对应的复数为1+2i,向量对应的复数为3-2i,则点C对应的复数为________.【解析】由点A对应的复数为3-4i,向量对应的复数为1+2i,向量对应复数为3-2i,得=+=+-=(3-4i)+(3-2i)-(1+2i)=5-8i,所以点C对应的复数为5-8i.答案:5-8i6.复数z=x+yi(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为________. 【解析】由|z-4i|=|z+2|,得|x+(y-4)i|=|x+2+yi|,所以x2+(y-4)2=(x+2)2+y2,即x+2y=3,所以2x+4y=2x+22y≥2=2=4,当且仅当x=2y=时,2x+4y取得最小值4.答案:47.已知复平面上△AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,则|+|=________.【解析】复平面上△AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,设AB的中点为D,则=,由向量加法的平行四边形法则,得+=2=3=3+3i,故|+|=3.答案:38.复平面内有A,B,C三点,点A对应的复数是3+i,向量对应的复数是-2-4i,向量对应的复数是-4-i,则B点对应的复数为________.【解析】因为表示的复数是2+4i,表示的复数是4+i,所以=-=(4+i)-(2+4i)=2-3i,故=+=(3+i)+(2-3i)=5-2i,所以B点对应的复数为zB=5-2i.答案:5-2i三、解答题(每小题10分,共30分)9.已知复数z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i,(x,y∈R)设z=z1-z2=14-11i,求z1+z2.【解析】由z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,y∈R),z=z1-z2=14-11i,得(5x-3y)+(x+4y)i=14-11i, 所以解得所以z1=(3x+y)+(y-4x)i=-7i,z2=(4y-2x)-(5x+3y)i=-14+4i,z1+z2=-14-3i.10.已知z1,z2∈C,|z1|=|z2|=1,|z1+z2|=,求|z1-z2|.【解析】方法一:设z1=a+bi,z2=c+di,其中a,b,c,d∈R,则z1+z2=(a+c)+(b+d)i,z1-z2=(a-c)+(b-d)i,由|z1|2=|z2|2=1,|z1+z2|2=3,得a2+b2=1, ①c2+d2=1,②(a+c)2+(b+d)2=3,③将①②代入③,得ac+bd=.所以|z1-z2|2=(a-c)2+(b-d)2=a2+b2+c2+d2-2(ac+bd)=1,所以|z1-z2|=1.方法二:由z1,z2∈C,|z1|=|z2|=1,|z1+z2|=,根据复数与向量的对应关系以及平行四边形法则可知,z1,z2,z1+z2所对应的点围成菱形ABCD,如图,在△ABC中,由余弦定理,得cos∠ABC==-,所以∠ABC=120°,∠BAD=60°,所以△ABD是等边三角形,所以=1,即=1.11.已知平行四边形ABCD中,与对应的复数分别是3+2i与1+4i,两对角线AC与BD相交于P点.(1)求对应的复数;(2)求对应的复数;(3)求△APB的面积.【解析】(1)由于四边形ABCD是平行四边形,所以=+,于是=-,而(1+4i)-(3+2i)=-2+2i,即对应的复数是-2+2i.(2)由于=-,而(3+2i)-(-2+2i)=5,即对应的复数是5.(3)由于==-=,==,于是·=-,而||=,||=,所以··cos∠APB=-,因此cos∠APB=-,故sin∠APB=,故=||||sin∠APB=×××=.即△APB的面积为.4、复数的乘、除运算基础练习一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.(2020·全国Ⅰ卷)若z=1+i,则|z2-2z|=( )A.0B.1C. D.2【解析】选D.由z=1+i得,z2=2i,2z=2+2i,所以|z2-2z|=|2i-(2+2i)|=2.2.(2019·全国卷Ⅱ)设z=i(2+i),则=( )A.1+2iB.-1+2iC.1-2iD.-1-2i【解析】选D.由z=i(2+i)=-1+2i,则=-1-2i.3.在复平面内,复数的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.复数z=====+i,所以z的共轭复数=-i,对应的点为,位于第四象限.4.已知i为虚数单位,z=i2 019+i2 020的共轭复数为( )A.1+iB.1-iC.-1+iD.-1-i【解析】选A.因为z=i2 019+i2 020=i4×504+3+i4×505=i3+1=1-i,所以z的共轭复数为1+i.5.设复数z的共轭复数是,若复数z1=3+4i,z2=t+i,且z1·是实数,则实数t等于( )A. B.C.-D.-【解析】选A.因为z2=t+i,所以=t-i.z1·=(3+4i)(t-i)=3t+4+(4t-3)i,又因为z1·∈R,所以4t-3=0,所以t=.6.(多选题)对于非零复数a,b,以下四个命题一定为真的有( )A.a+≠0B.(a+b)2=a2+2ab+b2C.若|a|=|b|,则a=±bD.若a2=ab,则a=b【解析】选BD.对于A,取a=-i,则a+=0,A不正确;对于B,对于任意复数a,b,一定有(a+b)2=a2+2ab+b2, B正确;对于C,取a=1,b=i,|a|=|b|,但a≠±b,C错误;对于D,由a2=ab及a≠0,得a=b,D正确.所以正确的命题是BD.二、填空题(每小题5分,共10分)7.(1+i)2-=________.【解析】(1+i)2-=2i-=-+i.答案:-+i8.若复数z满足i·z=1+2i,其中i是虚数单位,则z的实部为________.【解析】设z=a+bi,则i·(a+bi)=ai+bi2=ai-b=1+2i,故a=2,b=-1,故z=2-i,实部为2.答案:2三、解答题(每小题10分,共20分)9.已知复数z1=(-1+i)(1+bi),z2=,其中a,b∈R.若z1与z2互为共轭复数,求a,b的值.【解析】z1=(-1+i)(1+bi)=-1-bi+i-b=(-b-1)+(1-b)i, z2====+i.由于z1和z2互为共轭复数,所以有解得10.若f(z)=2z+-3i,f(+i)=6-3i,求f(-z).【解析】因为f(z)=2z+-3i,所以f(+i)=2(+i)+()-3i=2+2i+z-i-3i=2+z-2i.又因为f(+i)=6-3i,所以2+z-2i=6-3i.设z=a+bi(a,b∈R),则=a-bi,所以2(a-bi)+(a+bi)=6-i,即3a-bi=6-i.由复数相等的定义,得解得所以z=2+i,故f(-z)=2(-2-i)+(-2+i)-3i=-6-4i.提升练习一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.在复平面内,复数+(1+i)2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选 B.+(1+i)2=+i+(-2+2i)=-+i,对应点在第二象限.2.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1-z2|=0,则=B.若z1=,则=z2C.若|z1|=|z2|,则z1·=z2·D.若|z1|=|z2|,则=【解析】选 D.A项,|z1-z2|=0⇒z1-z2=0⇒z1=z2⇒=,真命题;B项,z1=⇒=z2,真命题;C项,|z1|=|z2|⇒|z1|2=|z2|2⇒z1·=z2·,真命题;D项,当|z1|=|z2|时,可取z1=1,z2=i,显然=1,=-1,即≠,假命题.3.(多选题)下列叙述正确的是( )A.方程3x2-2x+1=0的两个根互为共轭虚数B.设i是虚数单位,则复数i3-=iC.a=1是复数(a+i)(1-ai)为实数的充要条件D.a=6是复数为纯虚数的充要条件【解析】选ABD.方程3x2-2x+1=0的Δ<0,两个根为共轭虚数,选项A正确.i3-=-i-=-i-=-i+2i=i,选项B正确.因为复数(a+i)(1-ai)=2a+(1-a2)i为实数的充要条件是a=±1,所以a=1是复数(a+i)(1-ai)为实数的充分不必要条件,选项C不正确.因为=,所以当a=6时,复数为纯虚数,反之成立,选项D正确.4.已知集合M=,i是虚数单位,Z为整数集,则集合Z∩M 中的元素个数是( )A.1B.2C.3D.4【解析】选C.由已知得M={-1,-i,0,2},Z为整数集,所以Z∩M={-1,0,2},即集合Z∩M中有3个元素.二、填空题(每小题5分,共20分)5.已知i为虚数单位,则=________.【解析】===-1.答案:-16.已知i是虚数单位,z=,则|z|=________.【解析】因为==i,所以z==·=i1 009·=i4×252+1·=i·=-+i, |z|=1.答案:17.已知复数z1=-1+2i,z2=1-i,z3=3-4i,它们在复平面上对应的点分别为A,B,C,若=λ+μ(λ,μ∈R),则λ+μ的值是________.【解析】由已知得=(3,-4),=(-1,2),=(1,-1),根据=λ+μ,得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),所以解得所以λ+μ=1.答案:18.设x,y为实数,且+=,则x+y=________.【解析】+=可化为+=,即+i=+i,由复数相等的充要条件知所以所以x+y=4.答案:4三、解答题(每小题10分,共30分)9.已知复数z满足|z|=5,且(3+4i)z是纯虚数,求z.【解析】设z=x+yi(x,y∈R),因为|z|=5,所以x2+y2=25,又(3+4i)z=(3+4i)(x+yi)=(3x-4y)+(4x+3y)i是纯虚数,所以解得或,所以z=4+3i或z=-4-3i.10.设z为虚数,求证:z+为实数的充要条件是|z|=1.【证明】设z=a+bi(a,b∈R,b≠0),于是z+=a+bi+=a+bi+=+i,所以b≠0,(z+)∈R⇔b-=0⇔a2+b2=1⇔|z|=1.11.若虚数z同时满足下列两个条件:①z+是实数;②z+3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z;若不存在,请说明理由.【解题指南】假设存在虚数满足题意,设虚数的代数形式,代入运算,看解方程组是否有解.【解析】假设存在虚数z满足题意,设z=a+bi(a,b∈R且b≠0),z+=a+bi+=a+bi+=+i.因为z+是实数,所以b-=0.又因为b≠0,所以a2+b2=5.①又z+3=(a+3)+bi的实部与虚部互为相反数,所以a+3+b=0.②由①②得解得或故存在虚数z,z=-1-2i或z=-2-i.。

高等数学下册第七章习题答案详解

高等数学下册第七章习题答案详解

高等数学下册第七章习题答案详解1. 在空间直角坐标系中,定出下列各点的位置:()123A ,,;()2,3,4B -; 2,3,4C --(); D 3,4,0();()0,4,3E ;3,0,0F (). 解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限; 点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上.2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0;在yOz 面上的点,x =0; 在zOx 面上的点,y =0.3. 对于x 轴上的点,其坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0;y 轴上的点,x =z =0; z 轴上的点,x =y =0.4. 求下列各对点之间的距离: (1) (000),,,(234),,; (2) (000),,,(23,4)--,; (3) (2,3,4)--,() 1,0,3; (4) (4,2,3)-,(2,1,3)-.解:(1)22223429s =++=(2) 2222(3)(4)29s =+-+-=(3) 222(12)(03)(34)67s =++-++=(4) 222(24)(12)(33)35s =--+++-=5. 求点(4,3,5)-到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 22204(3)552s =+-+=222(44)(30)(50)34x s =-+--+-=2224(33)541y s =+-++=2224(3)(55)5z s =+-+-=.6. 在z 轴上求一点,使该点与两点(4,1,7)A -和(3,5,2)B -等距离. 解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z =即所求点为M (0,0,149). 7. 试证:以三点(4,1,9)A ,(10,1,6)B -,(2,4,3)C 为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形.习题7-21. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图12. 设2,3=-+=-+-u a b c v a b c .试用a,b,c 表示23-u v . 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c3.把ABC ∆的BC 边五等分,设分点依次为1234,,,D D D D ,再把各分点与A 连接,试以,AB BC ==c a 表示向量123,,A D A D A D 和4D A .解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a3335D A BA BD =-=--c a444.5D A BA BD =-=--c a4. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯=5. 一向量的终点为点(2,1,7)B -,它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0). 6. 一向量的起点是1(4,0,5)P ,终点是2(7,1,3)P ,试求: (1) 12P P 在各坐标轴上的投影; (2) 12P P 的模;(3) 12P P 的方向余弦; (4) 12P P 方向的单位向量.解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==- (2) 22212(74)(10)(35)14PP =-+-+-=(3) 123cos 14x a PP α==121cos 14y a PP β==122cos 14z a PP γ-==(4) 120123{}141414141414PP PP ===-e j . 7. 三个力123(1,2,3),(2,3,4),(3,4,5)=---F F F 同时作用于一点,求合力R 的大小和方向余弦. 解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)222||21421=++=R cos cos cos 212121αβγ=== 8. 求出向量,235=++=-+a i j k b i j k 和22=--+c i j k 的模,并分别用单位向量,,a b c e e e 来表达向量,,a b c .解:222||1113=++=a222||2(3)538=+-+=b222||(2)(1)23=-+-+=c3, 38, 3. a b c ===a e b e c e9. 设358,247,54,=++=--=+-m i j k n i j k p i j k 求向量43=+-a m n p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j . 10. 已知单位向量a 与x 轴正向夹角为π3,与其在xOy 平面上的投影向量的夹角为π4.试求向量a .22223===34411cos cos cos 1cos ,cos ,42112112,,.222222a πππαγγαβγββ++===±⎧⎧⎪⎪±-±⎨⎨⎪⎪⎪⎪⎩⎭⎩⎭由已知得单位向量的分向量:,或由知从而所求向量为,,或11. 已知两点12(2,5,3),(3,2,5)M M --,点M 在线段12M M 上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 12. 已知点P 到点(0012)A ,,的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+122226570cos 6, 749z z z x y z γ==⇒==++ 又122222190cos 2, 749xx x x y z α==⇒==++ 122223285cos 3, 749y y y x y z β==⇒==++ 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 13. 已知,a b 的夹角2π3ϕ=,且3=a , 4=b ,计算: (1) ⋅a b ;(2) (32)(2)-⋅+a b a b .解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b14. 已知(4,2,4),(6,3,2)=-=-a b ,计算:(1) ⋅a b ; (2) (23)()-⋅+a b a b ;(3) 2-a b .解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=15. 已知32,2=+-=-+a i j k b i j k , 求: (1) ⨯a b ; (2) 27⨯a b ;(3) 72⨯b a ; (4) ⨯a a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .16 已知向量a 和b 互相垂直,且3,4==a b , 计算: (1) ()()+⨯-a b a b ;(2) (3)(2)+⨯-a b a b .解:(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 习题7-31. 求过点(41,2),-,且与平面32611x y z -+=平行的平面方程.解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.2. 求过点0(1,7,3)M -,且与连接坐标原点到点0M 的线段0OM 垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=03. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2.故所求平面方程为1424x y z ++= 4. 求过(1,1,-1),(2,-2,2)-和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.5. 指出下列各平面的特殊位置,并画出其图形: (1) 0y =; (2) 310x -=; (3) 2360x y --=; (4) 0x y -=; (5) 2340x y z -+=.解:(1) y =0表示xOz 坐标面(如图2) (2) 3x -1=0表示垂直于x 轴的平面.(如图3)图2 图3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图4) (4) x –y =0表示过z 轴的平面(如图5)(5) 2x -3y +4z =0表示过原点的平面(如图6).图4 图5 图66. 通过两点(1,1,1)和(2,2,2)作垂直于平面0x y z +-=的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1} 由题知n ·n 1=0, n ·l =0 即00, .0A B C C A B A B C +-=⎧⇒==-⎨++=⎩所求平面方程变为Ax -Ay +D =0又点(1,1,1)在平面上,所以有D =0 故平面方程为x -y =0.7. 求通过下列两已知点的直线方程: (1)()1,2,1,(3,1,1)--;(2) (3,1,0),(1,0,3)--.解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 8. 求直线234035210x x z x y z +--=⎧⎨-++=⎩的标准式方程和参数式方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩9. 决定参数k 的值,使平面29x ky z +-=适合下列条件: (1) 经过点(5,4,6)-;(2) 与平面230x y z -+=成π4的角. 解:(1) 因平面过点(5,-4,6) 故有 5-4k -2×6=9 得k =-4.(2) 两平面的法向量分别为 n 1={1,k ,-2} n 2={2,-3,1} 且122123π2cos cos ||||42514k k θ⋅-====+⋅n n n n 解得70k =±10. 确定下列方程中的l 和m :(1) 平面2350x ly z ++-=和平面620mx y z --+=平行; (2) 平面3530x y lz -+-=和平面3250x y z +++=垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n11. 通过点(11,1),-作垂直于两平面10x y z -+-=和210x y z +++=的平面. 解:设所求平面方程为Ax +By +Cz +D =0其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =012. 求平行于平面375x y z -+=,且垂直于向量2i j k -+的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则1(52).30n =±+-e i j k 13. 求下列直线的夹角: (1) 533903210x y z x y z -+-=⎧⎨-+-=⎩和2223038180x y z x y z +-+=⎧⎨++-=⎩;(2) 2314123x y z ---==-和38121y z x --⎧=⎪--⎨⎪=⎩.解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是 12126cos 0.2064135785θθ⋅==≈⋅'≈︒s s s s 14. 求下列直线与平面的交点: (1) 11,2310126x y zx y z -+==++-=-;(2)213,2260232x y z x y z +--==+-+= 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 15. 求点(121),,到平面22100x y z ++-=的距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =.故垂足为485(,,)333,且与点(1,2,1)的距离为222122()()()1333d =++= 即为点到平面的距离.习题7-41. 建立以点(13-2),,为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2. 一动点离点(20-3),,的距离与离点(4-6,6),的距离之比为3,求此动点的轨迹方程. 解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.3. 指出下列方程所表示的是什么曲面,并画出其图形:(1)2222a a x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭; (a 为正常数)(2)22149x y -+=;(3)22194x z +=;(4)20y z -=; (5)220x y -=;(6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7. (2)母线平行于z 轴的双曲柱面,如图8.图7 图8 (3)母线平行于y 轴的椭圆柱面,如图9. (4)母线平行于x 轴的抛物柱面,如图10.图9 图10 (5)母线平行于z轴的两平面,如图11.(6)z轴,如图12.图11 图124. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y zx++=;(2)22369436x y z+-=;(3)222149y zx--=;(4)2221149y zx+-=;(5)22209zx y+-=.解:(1)半轴分别为1,2,3的椭球面,如图13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图14.图13 图14(3) 以x轴为中心轴的双叶双曲面,如图15.(4) 单叶双曲面,如图16.图15 图16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图17.图175. 作出下列曲面所围成的立体的图形: (1)2222x y z a ++=与()0,02az z a ==>为常数; (2)4x y z =++,0,1,0,2x x y y ====及0z =; (3)24,0,0,0z x x y z =-===及24x y +=; (4)226,0,0,0z x y x y z =-+===()及1x y +=. 解:(1)(2)(3)(4)分别如图18,19,20, 1所示.图18 图19图20 图216. 求下列曲面和直线的交点:(1)222181369x y z ++=与342364x y z --+==-; (2)22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).7. 设有一圆,它的中心在z 轴上、半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.8. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面2x =; (2) 平面0y =; (3) 平面5y =; (4) 平面2z =.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.9. 求曲线2222222,x y z a x y z ++=+=在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩10. 建立曲线22,1x y z z x +==+在xOy 平面上的投影方程. 以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题七1.填空题:(1)过(0,1,0)且与平面1x y z -+=平行的平面方程为1x y z -+=-(2)点(2,1,0)到平面3450x y z ++=的距离(3)原点关于平面6291210x y z +-+=的对称点是 (-12,-4,18) 。

【最新】基础数学7章 精练参考答案——07

【最新】基础数学7章 精练参考答案——07

第七章立体几何考点精练参考答案一、问题求解1、【答案】:D【解析】:长:宽=2:1=6:3,宽:高=3:2,则长:宽:高=6:3:2设长、宽、高分别为x 6,x 3,x 2,则()2202364=++⨯x x x ,5=x 则长方体的体积4500101530236=⨯⨯=⋅⋅=x x x V cm 3.2、【答案】:E【解析】:设竖式箱子有x 个,横式箱子有y 个.因为箱子无盖,则竖式箱子需长方形木板4张,正方形木板1张,横式箱子需要长方形木板3张,正方形木板2张,则⎩⎨⎧=+=+160234034y x y x ,解⎩⎨⎧==6040y x .3、【答案】:B 【解析】:圆柱体体积公式:h r V 2=π,即75.635.13)5.1('222=⨯=⋅=h r h r V V ππ.4、【答案】:B【解析】:圆柱体原体积:h r V 2=π,变化后的体积121'h r V π=,其中2111==h r h r ,则112,2r h r h ==.由题意可得12126h r h r ππ=,33121212121226r r r r r r h r h r =⨯⨯==,316=r r ,即底半径增加到原来的36倍.5、【答案】:D【解析】:设原来圆柱体的高和底面半径均为1,则变化前圆柱体的体积为π=V ,变化后的圆柱体的体积为183.13.17.02'=⨯⨯=πV ,故体积增大到原来的%3.118.6、【答案】:E【解析】:设长方体的长、宽、高分别为c b a ,,,则与一个顶点相邻的三个面面积分别为ac bc ab ,,,则长方体体积为151553=⨯⨯=⋅⋅==ac bc ab abc V .7、【答案】:B【解析】:(正方体的外接球模型)正方体的体对角线等于球的直径R a 232=,R R a 33232==,正方体体积最大为333938332R R a =⎪⎪⎭⎫ ⎝⎛=.8、【答案】:B【解析】:球的表面积公式:24r S π=,若表面积增大9倍,212449r r ππ=⨯,31=rr 则半径增大3倍.球的体积公式为334r V π=,则()V r r V 273427334'33=⨯=⨯=ππ,即体积增加到原来的27倍.二、充分判断题9、【答案】:A【解析】:圆柱侧面积公式rhS π2=(1)21052cm rr S ππ=⨯⨯=,条件充分.(2)220252cm S ππ=⨯⨯=,条件不充分.10、【答案】:E【解析】:(1)a h =,2232ar a h r ππ=,没有给出半径r 与边长a 的关系,所以无法推出结论,条件不充分.(2)242a rh =π,22a rh =π,a r a r a a h r 223232==π,没有给出半径r 与边长a 的关系,所以无法推出结论,条件不充分.联合条件(1)和条件(2),⎩⎨⎧==242a rh a h π,a r 2=π,π2=a r ππππππ422223232=⎪⎭⎫ ⎝⎛⋅=⋅==a r a a r a h r .。

高中数学必修二第七章复数基础知识手册(带答案)

高中数学必修二第七章复数基础知识手册(带答案)

高中数学必修二第七章复数基础知识手册单选题1、已知z =a −2+(1+2a)i 的实部与虚部相等,则实数a =( ) A .2B .−2C .3D .−3 答案:D分析:由题可得a −2=1+2a ,即得. 由题可知a −2=1+2a , 解得a =−3. 故选:D . 2、复数z =|√3+i |的虚部是( )A .−12B .12C .−12i D .12i 答案:A分析:先根据模的定义计算,并化简得到z =12−12i ,再根据虚部的定义作出判定.∵z =|√3+i|=√(√3)+12=1−i 2=12−12i ,∴z 的虚部为−12, 故选:A. 3、复数2−i1+3i在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:C分析:利用复数的除法可化简2−i1+3i ,从而可求对应的点的位置. ∵2−i1+3i=(2−i )(1−3i )10=−1−7i 10,所以该复数对应的点为(−110,−710),在第三象限.故选:C.4、在复平面内,把复数3−√3i对应的向量按顺时针方向旋转π3,所得向量对应的复数是()A.2√3B.−2√3i C.√3−3i D.3+√3i答案:B分析:由题意知复数3−√3i对应的向量按顺时针方向旋转π3,需要把已知向量对应的复数乘以复数的沿顺时针旋转后的复数,相乘得到结果.解:∵由题意知复数3−√3i对应的向量按顺时针方向旋转π3,∴旋转后的向量为(3−√3i)[cos(−π3)+i sin(−π3)]=(3−√3i)(12−√3i2)=32−3√3i2−√3i2+3i22=−2√3i.故选:B.5、若z(1−2i)=2+i,则复数z̅=()A.-1B.−i C.1D.i答案:B分析:由复数的除法运算和共轭复数的概念,即可求出结果.由z(1−2i)=2+i,得z=2+i1−2i =(2+i)(1+2i)(1−2i)(1+2i)=2−2+i+4i5=i,则z̅=−i.故选:B.6、复数1−cosθ−i sinθ(θ∈[0,2π))的三角形式是()A.2sinθ2(cosθ+π2+i sinθ+π2)B.2sinθ2(cosπ−θ2+isinπ−θ2)C.2sinθ2(cosθ−π2+i sinθ−π2)D.2cosθ2(cosπ−θ2+i sinπ−θ2)答案:C分析:根据余弦的二倍角公式以及诱导公式将复数的代数系数转化为三角形式即可求解.1−cosθ−i sinθ=2sin2θ2−2i sinθ2cosθ2=2sinθ2(sinθ2−i cosθ2)=2sinθ2(cosπ−θ2−i sinπ−θ2)=2sinθ2[cosπ−θ2+i sin(−π−θ2)]=2sinθ2(cosθ−π2+i sinθ−π2),故选:C.7、若i(1−z)=1,则z+z̅=()A.−2B.−1C.1D.2答案:D分析:利用复数的除法可求z,从而可求z+z̅.由题设有1−z=1i =ii2=−i,故z=1+i,故z+z̅=(1+i)+(1−i)=2,故选:D8、设(1+i)x=1+y i,其中i为虚数单位,x,y是实数,则|x+yi|=()A.1B.√2C.√3D.2答案:B分析:先利用复数相等求得x,y,再利用复数的模公式求解.因为(1+i)x=1+y i,所以{x=1y=x,解得{x=1y=1,所以|x+y i|=√x2+y2=√2.故选:B.多选题9、已知z1与z2是共轭复数(虚部均不为0),以下4个命题一定正确的是()A.z12<|z2|2B.z1z2=|z1z2|C.z1+z2∈R D.z1z2∈R答案:BC分析:z1与z2是共轭复数,设z1=a+bi(a,b∈R,b≠0),z2=a−bi.利用复数的运算性质及其有关概念即可得出合适的选项.因为z1与z2是共轭复数,设z1=a+bi(a,b∈R,b≠0),则z2=a−bi,对于A选项,当ab≠0时,z12=a2−b2+2abi,|z2|2=a2+b2,z12和|z2|2不能比大小,A选项错误;对于B 选项,z 1z 2=(a +bi )(a −bi )=a 2+b 2=|z 1z 2|,B 选项正确; 对于C 选项,z 1+z 2=(a +bi )+(a −bi )=2a ∈R ,C 选项正确; 对于D 选项,若ab ≠0,z 1z 2=a+bi a−bi=(a+bi )2a 2+b 2=a 2−b 2+2abi a 2+b 2∉R ,D 选项错误.故选:BC .10、在复平面中,已知复数(a +1)i 2021+(1−a)i 2020对应的点在第二象限,则实数a 的可能取值为( ) A .0B .1C .2D .3 答案:CD分析:化简复数,再由复数所在象限列不等式组,即可求解.因为复数(a +1)i 2021+(1−a)i 2020=(1−a)+(a +1)i 在第二象限,所以{a +1>01−a <0⇒a >1故选:CD.11、一个复数集X 称为某种运算的“和谐集”是指X 满足性质:①X ⊆C ;②∀a ,b ∈X 对某种规定的运算a ⊕b ,都有a ⊕b ∈X .则下列数集X 是相应运算的“和谐集”的是( )A .X ={x ∈c|x =i n ,∀n ∈Z},其中i 是虚数单位,规定运算:a ⊕b =ab ,(∀a ,b ∈X )B .X ={x ∈C|x ⋅x̅=1},规定运算:a ⊕b =ab ,(∀a,b ∈X)C .X ={x ∈C||x |≤1},规定运算:a ⊕b =ab ,(∀a ,b ∈X )D .X ={x ∈c||x̅|+|y ̅|≤|x −y |,y =1+i},规定运算:a ⊕b =a +b ,(∀a ,b ∈X ) 答案:ABCD分析:利用虚数单位的幂的运算性质可以判定A;利用共轭复数的性质可以判定B,利用复数的模的性质可以判定C;利用复数的模的三角不等式可以得到集合X 中的元素满足的充分必要条件是x ∈X⇔存在实数k ≤0,使得x =k(1+i),进而根据复数的加法运算公式可判定D.对于A,设a =i n 1,b =i n 2(n 1,n 2∈Z)则a ⊕b =ab=i n 1+n 2,∵n 1,n 2∈Z ,∴n 1+n 2∈Z ,所以i n 1+n 2∈X ,即a ⊕b ∈X ,故A 正确;对于B,∀a,b ∈X ,则a ·a −=1,b ·b −=1,故aa̅bb̅=1,即(ab )·(ab )−=1,∴ab ∈X , 即a ⊕b ∈X ,故B 正确;对于C,∀a,b ∈X ,则|a |<1,|b |<1,∴|a ·b |=|a ||b |<1,即a ·b ∈X , 即a ⊕b ∈X ,故C 正确;对于D,由于在复数范围内,|x̅|=|x |,|y ̅|=|y |,所以由|x|+|y |≤|x −y |⇔|x|+|y|≤|x −y |,有复数的模的不等式得到存在实数k ≤0,使得x =ky(k ≤0),又y =1+i ,于是x ∈X⇔存在实数k ≤0,使得x =k(1+i),∀a,b ∈X ,a =k (1+i ),b =k′(1+i)(k ≤0,k '≤0),所以a ⊕b =a +b =(k +k ′)(1+i),因为k ≤0,k '≤0,∴k +k ′≤0,所以即a ⊕b ∈X ,故D 正确; 故选:ABCD.小提示:本题考查复数的运算和模的性质,关键是认真审题,注意复数的模的性质的应用,常用的模的性质:|z 1z 2|=|z 1||z 2|,|z1z 2|=|z 1||z 2|,|z̅|=|z |,||z 1|−|z 2||≤|z 1+z 2|≤|z 1|+|z 2|(左侧取等号的条件是存在存在实数k ≤0,使得z 1=kz 2(z 2≠0),右侧取等号的条件是存在存在实数k ≥0,使得z 1=kz 2(z 2≠0),共轭复数的性质有z 1z 2̅̅̅̅̅̅=z 1̅z 2̅,λz 1+μz 2̅̅̅̅̅̅̅̅̅̅̅̅=λz 1̅+μz 2̅(λ,μ∈R),这些公式不难证明,在考试中往往十分有用. 填空题 12、已知(−1+√3i )3(1+i )6=a +b i (a,b ∈R ),则a +b =____________.答案:1分析:利用复数四则运算法则,计算(−1+√3i )3(1+i )6=i ,然后利用复数相等,得a =0,b =1,得答案.(−1+√3i )3(1+i )6=[2(−12+√32i )]3[(1+i )2]3=88i 3=1−i =i ,所以a =0,b =1,从而a +b =1.所以答案是:1. 13、已知复数z =(−1+3i )(1−i )−(1+3i )i,若μ=z +m i (m ∈R),则当|μz |≤√2时,实数m 的取值范围是______________. 答案:[−√3+1,√3+1]分析:先对已知式子化简计算出复数z ,从而可得|z |,复数μ,代入|μz |≤√2中化简可得1+(m −1)2≤4,从而可求出实数m 的取值范围. z =(−1+3i )(1−i )−(1+3i )i=(2+4i )−(1+3i )i=1+i i=1−i ,所以|z|=√2,μ=1+(m −1)i .由|μz|≤√2得|μ|≤2,所以1+(m−1)2≤4,即(m−1)2≤3,解得−√3+1≤m≤√3+1.所以答案是:[−√3+1,√3+1]14、在△ABC中,若面积S=b2+c2−a24,则∠A=______.答案:π4##45∘分析:结合三角形面积公式与余弦定理得sinA=cosA,进而得答案.解:由三角形的面积公式得S=12bcsinA,S=b2+c2−a24所以b2+c2−a24=12bcsinA,因为b2+c2−a2=2bccosA,所以2bccosA4=12bcsinA,即sinA=cosA,因为A∈(0,π),所以A=π4所以答案是:π4解答题15、已知复数z=m(m−1)+(m2+2m−3)i,当m取何实数值时,复数z是:(1)纯虚数;(2)z=2+5i.答案:(1)m=0;(2)m=2.解析:(1)利用m(m−1)=0,(m2+2m−3)≠0,即可求解.(2)利用复数相等的条件实部与虚部分别相等m(m−1)=2,(m2+2m−3)=5即可求解.(1)若复数是纯虚数,则{m(m−1)=0m2+2m−3≠0,解得{m=0或m=1m≠−3且m≠1,所以m=0(2)利用复数相等的条件实部与虚部分别相等可得{m(m−1)=2m2+2m−3=5,m=2或m=−1 m=2或m=−4,即m=2解得{。

部编版高中数学必修二第七章复数带答案知识点归纳超级精简版

部编版高中数学必修二第七章复数带答案知识点归纳超级精简版

(名师选题)部编版高中数学必修二第七章复数带答案知识点归纳超级精简版单选题1、z =(2+i )2−4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2、已知i 是虚数单位,则复数z =2−i 20202+i 2021对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3、在复平面内,复数z =5i 3−4i (i 为虚数单位),则z 对应的点的坐标为( )A .(3,4)B .(−4,3)C .(45,−35)D .(−45,−35) 4、若复数z 满足z ⋅(2+i)=z ⋅(1−i)+1,则复数z 的实部为( )A .−32B .−1C .−12D .1 5、若复数z 满足(z -1)i =1+i 其中i 为虚数单位,则复数z 的共轭复数z̅=( )A .-2-iB .-2+iC .2-iD .2+i6、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|27、若z (1+i )=1−i ,则z =( )A .1–iB .1+iC .–iD .i8、设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限多选题9、已知复数z 1=1−3i ,z 2=3+i ,则( )A .|z 1+z 2|=6B .z 1−z 2=−2+2iC .z 1z 2=6−8iD .z 1z 2在复平面内对应的点位于第二象限10、下列关于复数知识的论述,错误的有( )A .在复数集内a 4−b 4因式分解的结果是(a +b )(a −b )(a 2+b 2)B .2+3i >1+3iC .在复平面内,虚轴上的点都表示纯虚数D .复数2+3i 的虚部为3i11、已知λ,μ∈R ,AB ⃑⃑⃑⃑⃑ =(λ,1),AC ⃑⃑⃑⃑⃑ =(−1,1),AD ⃑⃑⃑⃑⃑ =(1,μ),那么( )A .CB⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ =(λ−1,1−μ) B .若AB ⃑⃑⃑⃑⃑ ∥AD ⃑⃑⃑⃑⃑ ,则λ=2,μ=12C .若A 是BD 中点,则B ,C 两点重合D .若点B ,C ,D 共线,则μ=1填空题12、i 2 021=________.13、若复数z =(m 2+m −2)+(4m 2−8m +3)i ,(m ∈R)的共轭复数z 对应的点在第一象限,则实数m 的取值范围为___________.部编版高中数学必修二第七章复数带答案(四十九)参考答案1、答案:B分析:将复数化为标准形式再根据复数的几何意义即可确定.z =(2+i )2−4=−1+4i ,则z 在复平面内对应的点位于第二象限,故选:B.2、答案:D分析:先化简i 2020,i 2021,再利用复数的除法化简得解.z =2−i 20202+i 2021=12+i =2−i (2+i)(2−i)=2−i 5. 所以复数对应的点(25,−15)在第四象限,故选:D小提示:名师点评复数z =x +yi(x,y ∈R)对应的点为(x,y),点(x,y)在第几象限,复数对应的点就在第几象限.3、答案:D分析:根据复数运算法则进行运算后,再由复数的几何意义得解.因为z =5i 3−4i =5i (3+4i )(3−4i )(3+4i )=3i−45=−45+35i ,所以z =−45−35i ,所以复数z 所对应的点的坐标为(−45,−35).故选:D .4、答案:D分析:利用复数的四则运算以及共轭复数的概念,根据对应相等即可求解.设z =a +bi (a 、b ∈R ),则(a +bi)⋅(2+i)=(a −bi)⋅(1−i)+1,化简得(2a −b)+(a +2b)i =(a −b +1)−(a +b)i ,根据对应相等得:{2a −b =a −b +1a +2b =−(a +b ), 解得a =1,b =−23,故选:D.5、答案:D分析:根据复数的除法运算以及共轭复数的概念即可求解.因为(z-1)i=1+i,所以z=1+2ii =(1+2i)ii×i=2−i,所以z=2+i.故选:D.6、答案:D解析:举反例z1=2+i,z2=2−i可判断选项A、B,举反例z1=1,z2=i可判断选项C,设z1=a+bi,(a,b∈R),分别计算|z12|、|z1|2即可判断选项D,进而可得正确选项.对于选项A:取z1=2+i,z2=2−i,z12=(2+i)2=3+2i,z22=(2−i)2=3−2i,满足z12+z22=6>0,但z12与z22是两个复数,不能比较大小,故选项A不正确;对于选项B:取z1=2+i,z2=2−i,|z1−z2|=|2i|=2,而√(z1+z2)2−4z1⋅z2=√42−4(2+i)(2−i)=√16−20无意义,故选项B不正确;对于选项C:取z1=1,z2=i,则z12+z22=0,但是z1≠0,z2≠0,故选项C不正确;对于选项D:设z1=a+bi,(a,b∈R),则z12=(a+bi)2=a2−b2+2abi|z12|=√(a2−b2)2+4a2b2=√(a2+b2)2=a2+b2,z1=a−bi,|z1|=√a2+b2,所以|z1|2=a2+b2,所以|z12|=|z1|2,故选项D正确.故选:D.7、答案:D分析:先利用除法运算求得z,再利用共轭复数的概念得到z即可.因为z=1−i1+i =(1−i)2(1+i)(1−i)=−2i2=−i,所以z=i.故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.8、答案:C分析:先求出共轭复数再判断结果.由z =−3+2i,得z =−3−2i,则z =−3−2i,对应点(-3,-2)位于第三象限.故选C .小提示:本题考点为共轭复数,为基础题目.9、答案:BC分析:直接根据复数的运算、共轭复数、复数的模及复数的几何意义依次判断4个选项即可.由题可知,|z 1+z 2|=√42+(−2)2=2√5,A 不正确;z 1−z 2=−2+2i ,B 正确;z 1z 2=(1−3i )(3+i)=3+i −9i −3i 2=6−8i ,C 正确;对应的点在第四象限,D 不正确.故选:BC.10、答案:ABCD分析:由(a 2+b 2)=(a +bi)(a −bi)可判断A ;虚数不可比较大小可判断B ;原点表示实数0可判断C ;复数2+3i 的虚部为3可判断D选项A :在复数集内,由于i 2=−1,a 4−b 4因式分解的结果是(a +b )(a −b )(a +b i )(a −b i ),故A 错误; 选项B :虚数不可比较大小,故B 错误;选项C :在复平面内,虚轴上的点都表示纯虚数(除了原点),故C 错误;选项D :复数2+3i 的虚部为3,故D 错误.故选:ABCD11、答案:AC分析:根据向量运算、向量平行(共线)等知识对选项进行分析,从而确定正确选项.A 选项,CB ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑=(λ,1)−(1,μ)=(λ−1,1−μ),A 选项正确.B 选项,若AB ⃑⃑⃑⃑⃑ //AD ⃑⃑⃑⃑⃑ ,则λ⋅μ=1,故可取λ=3,μ=13,B 选项错误.C 选项,若A 是BD 的中点,则AB⃑⃑⃑⃑⃑ =−AD ⃑⃑⃑⃑⃑ ,即(λ,1)=(−1,−μ)⇒λ=μ=−1, 所以AB⃑⃑⃑⃑⃑ =AC ⃑⃑⃑⃑⃑ =(−1,1),所以B,C 两点重合,C 选项正确.D 选项,由于B,C,D 三点共线,所以BC ⃑⃑⃑⃑⃑ //BD⃑⃑⃑⃑⃑⃑ , BC⃑⃑⃑⃑⃑ =AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ =(−1,1)−(λ,1)=(−1−λ,0), BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB⃑⃑⃑⃑⃑ =(1−λ,μ−1), 则(−1−λ)×(μ−1)=0×(1−λ)⇒λ=−1或μ=1,所以D 选项错误.故选:AC12、答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i13、答案:(1,32)分析:根据条件先分析z 的对应点所在象限,根据象限内坐标的特点列出关于m 的不等式组,由此求解出结果. 因为z 对应的点在第一象限,所以z 的对应点在第四象限,所以{m 2+m −2>04m 2−8m +3<0 ,解得1<m <32,即m ∈(1,32), 所以答案是:(1,32).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档