VoLTE-MOS优化思路及方法
2 Volte-MOS差点分析指导汇总
Volte MOS差点分析指导书1 概述1.1 MOS指标定义MOS值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS与人的主观感受映射关系如下:表1 MOS分和用户满意度一般情况下,MOS值大于等于3.8被认为是较优的语音质量,大于等于3.0被认为是可以接受的语音质量,低于3.0被认为是难以接受的语音质量。
中国移动对MOS分的定义为路测MOS分,基于宽带AMR(AMR WB)的POLQA算法打分。
1.2 MOS评分原则中国移动集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE的MOS值测试仅针对语音业务。
针对目前移动场景,VoLTE与VoLTE通话协商的编码为AMR-WB宽带编解码,提供高清语音体验;VoLTE与2G/3G CS业务互通协商的编码为AMR-NB窄带编码(与CS域的编解码相同),因此MOS测试采用VoLTE拨打VoLTE 的方式,测试宽带VoLTE编码的语音质量。
集团对MOS分的定义为路测MOS分,采用P.863算法进行评估。
集团对MOS测试工具要求:珠海世纪鼎利Pioneer、北京惠捷朗(CDS),现阶段测试终端是HTC M8T。
目前的MOS评分周期是9秒输出一个MOS分,主叫和被叫周期交替发送固定语料。
每隔9秒鼎利设备的主叫和被叫会输出一个MOS分,发送端发送语料的时候,接收端静默接收,不存在主被叫同时发送语料的情况,无论是主叫发语料还是被叫发语料,对端接收后都会在MOS盒和原始语料进行对比,所以主叫和被叫的MOS是一致的。
每个MOS语料发送周期内(9秒),连续的语音分为两段,每段时间2秒左右,总的发音时长4秒左右。
其余时间都是发送静默帧(SID)。
160ms发包周期的都是SID帧,20MS发包周期的都是有语音的RTP包。
1.3 MOS考核要求MOS平均分,即POLQA算法平均得分,目标值:3.5,挑战目标:4.0;MOS>3.0占比,即MOS得分>3.0的采样点占比,目标值:85%,挑战目标:90%;MOS>3.5占比,即MOS得分>3.5的采样点占比,目标值:80%,挑战目标:85%。
推荐VoLTEMOS感知提升方案总结5G先享官
VoLTE MOS感知提升方案总结1VoLTE及MOS介绍1.1VoLTE介绍VoLTE即Voice over LTE,是基于LTE网络数据域的语音业务方案。
该方案基于IMS,提供全IP通话。
LTE网络是一种全IP网络,全部业务承载于数据域上,可实现数据与语音业务在同一网络下的统一。
部署VoLTE将带来两方面的价值,一是提升无线频谱利用率、降低网络成本;二是提升用户体验。
VoLTE的体验明显优于传统电路域语音。
首先,高清语音和视频编解码的引入显著提高了通信质量;其次,VoLTE的呼叫接续时长大幅缩短,测试表明VoLTE比CS呼叫缩短一半以上。
1.2MOS介绍主观评价指以人为主体进行语音质量评价,由参与评听的评听人根据预先约定的评估准则对语音质量进行打分,它反映了评听人对语音质量好坏的一种主观印象。
主观评价方法比较繁杂,为了排除偶然因素,减少评价波动方差,需要参与评价的评听人数量较多(一般40人以上)。
但是由于人是语音的最终接受者,这种评价方法是语音质量的真实反映。
客观评估是指用机器自动判别语音质量.它从原理上又可分为两类评价方式:基于输入输出方式的主动式评估和基于输出方式的被动式评估。
主动式的评价是建立在原始语音信号和失真语音信号的误差对比上,大多数这种方式的客观评估采用数值距离或者描述听觉系统如何来感知质量的听觉模型来量化语音质量的好坏;被动式的客观评价是仅以语音系统的输出信号来评估语音质量的好坏。
1.2.1主观评价法国内外使用较多的主观评价方法包括平均意见分MOS(Mean Opinion Score平均意见值)法,韵母可懂度测量DRT(Diagnostic Rhyme Tests),失真平均意见分DMOS(Degradation Mean Opinion Score),满意度测量DAM (Diagnostic Acceptability Measure)等。
在实际语音质量评价中,MOS法最为常见。
VOLTE接通率优化思路及案例
VOLTE接通率优化思路及案例VOLTE (Voice over LTE) 是一种利用LTE网络传输语音和数据的技术。
VOLTE接通率优化是指通过调整和优化网络参数和配置,以提高VOLTE呼叫的接通率。
下面将介绍一些优化思路和案例,以提高VOLTE接通率。
1.数据分析和故障排查:首先,进行数据分析和故障排查是优化VOLTE接通率的基础。
通过分析呼叫失败原因、掉话率、信号覆盖和质量等指标,定位问题,并采取相应的措施进行修复。
2.优化VoLTE频谱资源:VOLTE需要分配适当的频谱资源以保证通话质量。
通过合理规划和配置频谱资源,避免与其他无线网络干扰,优化频谱利用率,提高VOLTE接通率。
3.参数优化:调整和优化网络参数是提高VOLTE接通率的重要手段。
例如,设置适当的调度算法、增加资源预留、调整拥塞控制参数等,以优化资源分配和控制,提高呼叫的接通率。
4.优化呼叫控制和信令处理:呼叫控制是VOLTE接通率的关键。
通过优化呼叫控制流程、有效处理和分发信令等方式,减少呼叫失败、超时等问题,提高VOLTE接通率。
5.扩充信号覆盖:信号覆盖是影响VOLTE接通率的重要因素。
通过添加、调整和优化基站、天线的位置和布局,加强覆盖,提高信号质量和接通率。
6.增加容量和优化网络拓扑:根据需求,增加基站和小区,扩充网络容量,分担负载,减少拥堵,提高VOLTE接通率。
同时,对网络拓扑进行优化,合理设计和布置小区,以提高效率和质量。
7.实时性网络优化:通过对网络信号和质量进行实时监测和优化,及时发现和解决问题,提高VOLTE接通率。
例如,利用实时数据和监控系统,对信道质量、拥塞情况等进行监测和控制。
下面以一个案例来说明VOLTE接通率的优化:地区的手机运营商发现VOLTE接通率较低,通过数据分析发现主要问题是信号覆盖不佳和呼叫控制流程不完善。
1.基站优化:首先,他们增加了一些基站,将基站的覆盖范围调整到更适合VOLTE通话的区域。
经典案例_开启UE级MRO提升volte业务MOS值
开启UE级MRO提升VOLTE业务MOS值目录一、问题描述 (3)二、分析过程 (5)三、解决措施 (7)四、经验总结 (8)开启UE级MRO提升volte业务MOS值【摘要】Volte业务采用MOS值来评估语音质量的好坏,采用POLQA算法,0分最差,5分最高,MOS采样点收集的是采样时间前8S的语音质量,所以分析MOS时,需要对采样值前8S UE本端的下行及对端的上行进行分析,MOS的影响因素包括:语音编码、覆盖、干扰、切换、基站负荷、基站故障、传输、核心网、测试终端、音频连接线等,本文主要讨论提升无线环境,降低不必要的乒乓切换来提升MOS值。
【关键字】VoLTE 乒乓切换 MOS【业务类别】VoLTE、优化方法一、问题描述目前在黄山屯溪区volte及数据业务拉网中发现较多重叠覆盖路段,这些路段切换频繁,数据业务速率较差,volte业务MOS值较低。
比如在市区旅游新村附近,短短1分钟内主被叫都发生了7次切换,并且基本发生在HS-市区-旅游新村-HFTA-448543-51扇区与HS-休宁县-新安养生谷-HFTA-448670-51扇区的乒乓切换,导致该路段MOS值在4以下。
通过网管统计HS-市区-旅游新村-HFTA-448543-51扇区切换对关系,该扇区与HS-休宁县-新安养生谷-HFTA-448670-51扇区全天切换在4200多次,其中乒乓切换次数达到1780多次,接近切换总次数的一半,如此频繁的切换严重影响了MOS值和数据业务速率。
旅游新村附近乒乓切换旅游新村乒乓切换二、分析过程3.1、本文讨论的是在不调整两扇区邻区间CIO和覆盖情况下仅开启UE级MRO功能,对比乒乓切换次数及MOS值的改善情况。
UE级MRO原理:UE级MRO feature是在服务小区和相邻小区之间检测到乒乓HO,并向相邻小区配置一个偏移(CIO)值,以避免进一步不必要的切换。
乒乓检测:eNB通过在HO准备期间分析UE历史信息来检测是否发生乒乓切换。
VOLTE优化思路和重点V1
一、现网参数和指标情况 (2)1.参数配置 (2)2.道路测试指标 (2)3.MR数据分析 (4)4.网管KPI指标 (5)4.1接通率 (5)4.2掉话率 (5)4.3 Esrvcc切换成功率 (6)二、现网问题 (7)1.道路问题 (7)1.1弱覆盖路段 (7)1.2覆盖质差路段 (8)2.网管指标问题 (9)2.1 MR覆盖分析 (9)3.核心网和终端问题 (12)3.1各网元配合问题 (12)3.2终端问题 (13)三、指标提升方案 (14)1.道路指标 (14)2.网管指标 (15)3.用户感知提升 (15)4.优化重点 (15)4.1Esrvcc优化 (15)4.2RTP包传输优化 (16)一、现网参数和指标情况1.参数配置站点开启Volte功能需以下动作:开启功能开关、合理配置各类切换参数、配置GSM邻区。
核查市区现网站点功能性参数配置均无异常。
核查市区现网配置Esrvcc邻区与GSM现网数据一致性,结果如下:2.道路测试指标12月25日DT市区网格测试指标网格内道路RSRP情况:网格内道路SINR情况:3.MR数据分析MR测量是TD-LTE系统的一项重要功能,测量上报结果除用于小区重选切换等事件的触发,也可用于系统维护,评估网络的运行状态。
字段MR.RSRP.XX (参考信号接收功率)定义为承载小区专用参考信号RE的功率线性平均值,是反映服务小区覆盖的主要指标。
根据采样点不同区间的分布可判断小区的大致覆盖情况,用于检测盲点/弱覆盖区域。
MR.RSRQ (参考信号接收质量)可用于判断下行参考信号的接收质量,用于小区的重选切换判断。
根据MR统计来分析VOLTE用户在LTE网络的保持性能,判断弱覆盖情况下触发SRVCC合理4.网管KPI指标4.1接通率算法:E-RAB建立成功数/E-RAB建立请求数*RRC连接建立成功次数/ RRC连接建立请求次数*100%2月份以来,现网VOLTE用户数量持续提升。
VoLTE语音感知问题原因分析与优化
8语音感知问题原因分析与优化8.1概述8.1.1 MOS指标定义MOS 值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS 与人的主观感受映射关系如下:一般情况下,MOS 值大于等于被认为是较优的语音质量,大于等于被认为是可以接受的语音质量,低于被认为是难以接受的语音质量。
中国电信对MOS 分的定义为路测MOS 分,基于宽带AMR(AMR WB)的POLQA 算法打分。
8.1.2 MOS取值方法中国电信集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE 的MOS值测试仅针对语音业务。
MOS测试采用VoLTEv1.0可编辑可修改拨打VoLTE的方式,测试宽带VoLTE编码的语音质量。
VoLTE语音MOS采样机制如下:1)主叫起呼,进行录音(8s左右);2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……8.1.3 影响MOS的主要因素影响VoLTE MOS值的因素主要有端到端时延、丢包、抖动等,如下:类别原因说明时延传输时延传输时延是指结点在发送数据时使数据块从结点进入到传输媒体所需的时间,即一个站点从开始发送数据帧到数据帧发送完毕(或者是接收站点接收一个数据帧的全部时间)所需要的全部时间,传输引入时延大于80ms,导致端到端时延大于200ms,通过ping包测试检测传输时延。
EPC转发时延排除空口时延和传输时延后,通过EPC抓包分析EPC转发时延问题空口时延空口是基站和移动电话之间的无线传输规范,定义每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换,影响空口时延的主要因素是数据传输时长、数据传输资源请求等待时间,以及数据处理导致的反馈延时等。
精品案例_VOLTE_MOS提升之语数分层策略
VOLTE_MOS提升之语数分层策略最佳实践推广目录一、问题描述 (3)二、分析过程 (3)三、解决措施 (5)四、经验总结 (11)VOLTE_MOS提升之语数分层策略最佳实践推广【摘要】芜湖无线中心应集团要求对南昌最佳实践进行推广,在芜湖进行试点实验。
从多频参数对比验证中寻找最适合现网参数组,与基于业务指配相结合,对比该参数与集团建议参数组性能差异,为后续提供分析建议。
【关键字】业务指配 MOS优良率语数分层【业务类别】VOLTE一、语音质量评估方法VOLTE语音可以给客户提供更佳的语音用户体验,帮助运营商应对OTT语音冲击和ARPU 值下降的不利趋势。
对运营商而言,部署VoLTE将带来两方面的价值,一是提升无线频谱利用率、降低网络成本。
二是提升用户体验。
VoLTE的体验明显优于传统电路域语音。
首先,高清语音和视频编解码的引入显著提高了通信质量;其次,VoLTE的呼叫接入时长相比CS呼叫接入时延大幅缩短,那么如何评价VOLTE语音质量?下面介绍几种方法:语音质量的评估方法包括主观评价和客观评价两大种类。
主观评价指以人为主体进行语音质量评价,由参与评听的评听人根据预先约定的评估准则对语音质量进行打分,它反映了评听人对语音质量好坏的一种主观印象。
主观评价方法比较繁杂,为了排除偶然因素,减少评价波动方差,需要参与评价的评听人数量较多(一般40人以上)。
但是由于人是语音的最终接受者,这种评价方法是语音质量的真实反映。
客观评估是指用机器自动判别语音质量.它从原理上又可分为两类评价方式:基于输入输出方式的主动式评估和基于输出方式的被动式评估。
在实际语音质量评价中, PESQ和POLQA是目前仍然广泛使用的语音质量评价方法。
PSQM 由于种种缺陷目前在实际中已经很少采用。
PESQ总的思路是对源信号和通过测试系统的退化信号进行电平调整到标准听觉电平,再用输入滤波器模拟标准电话听筒进行滤波。
对通过电平调整和滤波后的两个信号在时间上对准,并进行听觉变换,这个变换包括对系统中线性滤波和增益变化的补偿和均衡。
案例-Volte_MOS差点分析指导案例
Volte MOS差点分析指导案例1问题描述MOS值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS与人的主观感受映射关系如下:可以接受的语音质量,低于3.0被认为是难以接受的语音质量。
1.1影响MOS的主要因素影响Volte MOS值的因素主要有语音编码、端到端时延、抖动、丢包率等,如下:1.1.1语音编码以ASCOM工具为例,应用POLQA SWB 评估方法,采用某语音样本和AMR WB 23.85kbps语音编码,MOS值最好为4.14;采用同样的语音样本和AMR NB 12.2kbps语音编码,MOS值最好为3.1。
1.1.2端到端时延终端的语音编解码时延指的是终端从话筒采集语音到编码成AMR-NB 或AMR-WB 等码流;或者从AMR-NB 或AMR-WB 码流解码成语音并从听筒播放的处理时延空口的传输时延eNodeB的调度等待时延、空口误包吃重传以及分段均会影响空口的传输时延。
核心网的处理时延包括对语音包的转发时延,以及可能存在的语音编解码转换时延(譬如LTE终端拨打固定电话,两边终端的语音编解码方式不同,需要经过核心网媒体网关的编解码转换)。
传输网传输时延语音IP报文在传输网设备和链路上的传输时延1.1.3 丢包和抖动空口信号质量 空口信号质量差可能导致误包增加,过多的重传和分段会造成丢包和抖动增加。
eNodeB 的负载 当eNodeB 上负载较重时,包括CPU 占用率偏高或者高优先级业务的PRB 占用率偏高,可能导致部分用户的语音包不能及时调度,从而造成超时丢包或者抖动增加。
传输网络丢包或者抖动 传输网络上丢包或者存在抖动,会造成端到端丢包率上升和抖动增加。
4.154.083.843.73.022.512.041.522.533.544.50%0.10%0.50%1%3%5%10%丢包率VS MOS2 分析处理过程2.1 MOS 优化思路如上所述,影响MOS 的因素涉及端到端,具体可以归纳为两通道、三网元,需要拉通两管道三网元 空口管道 承载网管道CNeNodeBUE1.空口质量2.空口资源3.QoS 配置 1.大时延、抖动 2.丢包、乱序 1.核心网数据配置 2.组网结构3.流程配置 1.基站处理能力 2.算法特性限制 1.终端能力 2.语音编码 1.话务容量受限2.覆盖差3.丢包时延大4.频繁重选或者位置更新导致寻呼不到5.上下行干扰1.参数配置2.容量或能力限制3.传输质量问题4.UGW 到P-CSCF 传输异常1.TAU 和切换流程冲突、TAU 失败问题2.被叫域选失败3.网络侧路由配置缺失/错误导致路由选择失败4.Diameter 链路数据的捆绑方式5.UGW 数据转发失败6.CS-Retry 呼叫流程1.寻呼参数优化2.业务分层优化3.弱覆盖优化4.邻区优化5.RRC 重建6.乒乓切换1.参数编码设置2.软件编码限制3.主被叫终端、用户行为4.特殊场景优化5.终端ROHC 问题6.注册问题MOS 优化思路就是采用正确的测试方法,选用最合适的编码,配置合理的参数,同时4.124.114.14.052.891.561.522.533.544.516ms26ms46ms86ms166ms326ms抖动VS MOS降低丢包、误码对语音的影响。
VOLTE语音质量MOS典型影响因素的研究
VOLTE语音质量MOS典型影响因素的研究摘要:本文主要介绍LTE网络语音解决方案volte的MOS评估测试方式,并对影响MOS语音质量的关键因素加以分析,同时提出相关优化思路用于如何提升VOLTE语音质量進行指导。
关键词:4G;VOLTE;MOS;LTE1研究背景VOLTE技术能够带给4G用户最直接的感受就是接通等待时间更短,以及更高质量,更自然的音视频通话效果。
MOS是评价VOLTE语音质量的好坏的关键,直接关系着用户使用高清语音的真实感受。
MOS分的降低,直接会影响语音听字不清晰、说话吞字、感知差。
本文主要研究影响MOS的关键因素并提出相关优化思路用于指导现有VOLTE网络优化来提升用户语音通话感知。
2语音质量评估方法2、1什么是MOSMOS是一种语音评估方法,最初是根据听者的感受为依据进行统计并规范分值,其结果从低到高为:“1至5”,1为差,2为一般,3为正常,4为好,5为最好。
请参考图1所示。
在实际环境中,2-3已经是正常值,人耳很难辨别出差异,1-1、9属于衰落比较厉害,人耳可分辨。
目前,MOS算法有PAMS、PESQ、PSQM、PSQM+、POLQA、MNB等众多算法,POLQA算法目前是4G网络最科学,且与MOS相关性最好的算法,为ITU主推的算法,可以客观的评测通信网络的语音质量。
2、2ATU设备中MOS的计算方法CDS、鼎力和ASCOM工具都按照中国移动MOS测试规范,采用固定语料和固定MOS打分周期。
目前MOS打分周期是9秒输出一个MOS,主叫和被叫周期交替发送固定语料。
所以每隔9秒鼎力设备的主叫和被叫就会输出一个MOS分,发送端发送语料的时候,接收端静默接收,不存在主被叫同时发送语料的时候,无论是主叫发送语料还是被叫发送语料,对端接收后都在MOS盒与原始语料进行对比,所以主叫和被叫的MOS分是一样的。
3、1语音编码以ASCOM工具为例,应用POLQASWB评估方法,采用语音样本和AMRWB23、85kbp语音编码,MOS值最好为4、14、采用同样的语音样本和AMRNB12、2kbp语音编码,MOS值最好为3、1。
VoLTE高清语音MOS值提升方法
VoLTE高清语音MOS值提升方法【摘要】VoLTE业务即将商用,VoLTE业务体验用户逐渐增多,如何来评估、提升VoLTE语音质量显得愈发重要,除了原有传统的语音掉话率和语音误码率等指标来反映VoLTE语音质量外,MOS(Mean Opinion Score)值更能真实地体现VoLTE语音感知。
其主要原理是将用户接听和感知语音质量的行为进行调研和量化,由不同的调查用户分别对原始标准语音和经过无线网传播后的衰退声音进行客观感受对比,得出MOS分值。
一般市区内MOS值达到3以上的时候,就表明网络质量处于较好的水平,VoLTE则能提供高质量的音视频通话,MOS值的优化日显重要。
【关键字】VoLTE MOS值【故障现象】:为了解VoLTE网络现状,同车对标移动测试,MOS>=3.5占比、覆盖率、RTP丢包率优于移动,其余指标与移动相当,但移动VoLTE 已经商用,用户规模远高于电信,多用户影响较大。
电信整体覆盖SINR较差,RTP抖动较大,MOS>=3.5占比仍有优化空间。
MOS等级如下:【原因分析】:1、影响VoLTE MOS的因素丢包率对MOS的影响如下图所示,右侧的某个原始数据包经过传输后,接收端中没有此数据包,则该数据包被丢弃,严重影响MOS感知。
VoLTE中的丢包率 (Packet Loss Rate)是指测试中所丢失数据包数量占所发送数据组的比率,主要是通过统计最终的用户的应用层IP层的数据丢包RTP(承载传输协议,指IP层的数据应用传输协议)丢包率来反映最终的丢包情况。
时延对MOS的影响如上图所示,左侧的某个原始数据包经过传输后,接收端收到这个包比标准信号延迟了一段时间,则用户MOS感知下降。
时延是指一个报文或分组从一个网络的一端传送到另一个端所需要的时间。
它包括了发送时延,传播时延,处理时延,排队时延。
对于语音通话,一般人们能忍受小于150ms的时延,若时延太长,会使通信双方都不舒服。
SR周期精细优化解决Volte路测低MOS问题
SR周期精细优化解决VOLTE路测低MOS问题一、研究背景10月份开始的Volte评估测试,淮南部分区域测试出现MOS值偏低问题,结合测试无线环境对这些异常路段进行分析发现大部分路段无明显质差弱覆盖问题点,故开展对问题路段主占用小区影响Volte指标参数核查分析,发现SR调度周期设置不合理较多,本文主要研究SR调度周期对Volte测试MOS值影响。
二、问题分析基于大量的DT/CQT数据统计的MOS值和丢包率、抖动率指标(参考前期MOS与RTP丢包、抖动关系研究报告),分析三者的关联性,要达到MOS=4的优良指标,丢包率要低于0.3%、抖动小于8.75ms,和RTP时延相关性不大。
可以看出MOS均值与RTP抖动存在正相关性,而高RTP抖动现象与SR周期有关,因此解决高RTP抖动现象能够同时解决高RTP抖动、低MOS均值的问题。
MOS与丢包率关系图:MOS与丢包率关系图:➢SR周期对RTP抖动的影响说明:RTP包发送周期为20ms,当基站以20ms等间隔进行资源分配时,理论上RTP抖动可为0。
但当SR周期大于RTP包周期时,UE得不到及时调度,UE可能会缓存2个或多个语音包,并被一次性调度完,由于RTP包产生的时刻距离SR TTI不等,导致RTP抖动大。
理论上,SR周期越大,RTP抖动越大,MOS值偏低。
从Volte的角度出发,SR周期不要设置的小于20ms( 5ms,10ms),因为只有当有新的数据进入传输buffer时才需要SR(一般20ms)。
另一方面,如果设置为较大的周期 (40ms,80ms),虽然会提升小区的容量,但是可能会提升VoIP包的抖动。
当SR周期=80ms时,上行空口调度平均抖动理论计算值是25ms(根据RFC3550计算),详细计算见以下excel表格:Jittercalculation.xlsx说明:1)此计算只考虑了4个语音包一次调度完的情况,在实际调度中出现的其他情况没有考虑;2)没有考虑下行空口和核心网传输抖动;3)没有考虑UE处理RTP包的抖动;4)由于测试仪采用的算法可能不同,测试结果跟计算值可能会有偏差,此理论计算仅供参考。
VoLTE MOS 3.0占比指标提升指导书
VOLTE MOS 3.0占比指标提升指导书V1.0.0目录1VoLTE MOS 3.0占比指标概述 (4)1.1VoLTE MOS采样机制 (4)1.2MOS差的影响 (4)1.3影响MOS的因素 (4)2MOS低分析流程 (5)3优化界定方案 (6)3.1故障告警 (6)3.2上行干扰 (6)3.3下行质差 (7)3.4切换异常 (9)3.5TA越区覆盖 (11)3.6MR弱覆盖 (11)4MOS低问题解决案例 (12)4.1RLC分片功能部署提升MOS案例 (12)4.1.1功能介绍 (12)4.1.2功能实施 (12)4.1.3效果评估 (13)4.2通过优化上下链路不平衡小区改善MOS案例 (14)4.2.1功能介绍 (14)4.2.2方案实施 (14)4.2.3效果评估 (15)4.3通过开启上行NI频选功能改善MOS案例 (15)4.3.1功能介绍 (15)4.3.2方案实施 (16)4.3.3效果评估 (16)4.4通过调整语音业务的HARQ传输次数改善MOS案例 (16)4.4.1功能介绍 (16)4.4.2效果实施 (16)4.4.3效果评估 (17)1 VoLTE MOS 3.0占比指标概述1.1 VoLTE MOS采样机制语音质量主要体现在清晰、不失真、再现平面声象等几个方面。
早期语音质量的评价方式是凭人们在打通电话之后通过人耳来感知语音质量好坏的主观评价方式。
国际电信联盟ITU为这种语音质量的主观评价方式制订了相关的评测标准,即我们所熟知的MOS。
VoLTE 语音MOS采样机制如下:(1)主叫起呼,进行录音(8s左右);(2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);(3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);(4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……1.2 MOS差的影响MOS是广泛认同的语音质量标准,当MOS大于3时,用户使用VoLTE业务通话不会影响交流,而在MOS小于3时,基本无法听清,严重影响用户感知。
VoLTE--MOS提升指导书
1.MOS评估算法介绍E-Model 是基于设备损伤的测量方法,它关注全面的网络损伤因素,可较好适应在IP网络中语音质量的评估。
E-Model考虑语音信号传输过程中若干因素,如延时、抖动、丢包、编码器性能等网络损伤因素对语音质量的影响并将其综合为参数R,用以评估该语音呼叫的主观品质。
E-Model的计算公式为:R=Ro−Is−Id−Ie-eff+A。
其中Ro代表网络传输信噪比,Is代表设备劣化组合概率,Id代表由于时延及设备失效导致的叠加劣化,Ie代表由低比特率编码器带来的劣化系数。
系数A用于对用户环境状态(如室内/室外、低速移动、高速移动)的补偿。
由公式可知,语音质量(R值)的计算是通过估计一个连接的信噪比(Ro),然后从中减去网络损伤(Is,Id,Ie),最后再用呼叫者对语音质量的期望(A)进行补偿后得到,R越大,表明语音品质越好。
考虑到IP网络特性中的丢包/抖动/时延,及语音编码转换等因素,建议更换为以下语音质量损伤参数:A.丢包率Rl:接收包数量和发送包数量的比率,通过计算接收包数量和发送包数量的比率得到。
(信令监测)连续丢包3个以上RTP包就会吞一个字,如果连续丢包吞多个字就会出现断续问题。
B.抖动Rj:RTP数据包到达时刻统计方差的估计值,以时间标志为单位测量,用无符号整数表达。
(信令监测)超出100ms的抖动将会出现终端弃包。
C.时延Td:假设SSRC_n为发出一个接收报告块的接收机,源SSRC_n可以通过记录收到接收报告块的时刻A来计算到SSRC_r的环路传输时延。
(信令监测)语音时延超过2秒后通话感知较差。
D.编解码损伤:目前volte现网的语音编码只有两种:即AMR NB (12.2k)和AMR WB (23.85k),对应的R0是91和107。
10.2k以下的速率mos分低于3,人耳感知较差。
G.107协议定义R值和MOS分的对应关系如下:语音编码与R0的对应关系如下:E-Model算法将R值映射为MOS,这个MOS值并不是端到端的MOS值,而是IP网络端到端的MOS体现,为了和端到端的MOS区分,我们记为IP MOS。
精品案例_电信volte业务MOS值优化提升方法探究
基于volte业务MOS值优化提升方法探究目录一、问题描述 (3)二、分析过程 (3)三、解决措施 (6)四、经验总结 (9)宣城电信基于volte业务MOS值优化提升方法探究【摘要】VoLTE的MOS值直接影响到用户的直观语音体验,因此保证一个良好的VoLTEMOS值对于提升用户感知有着巨大的作用。
针对目前移动场景,VoLTE与VoLTE通话协商的编码为A MR-WB宽带编解码,提供高清语音体验;VoLTE与2G/3G CS业务互通协商的编码为AMR-NB窄带编码(与CS域的编解码相同),因此MOS测试采用VoLTE拨打VoLTE的方式,测试宽带VoLTE编码的语音质量。
影响VoLTEMOS值的因素主要有语音编码、端到端时延、抖动、丢包率等,需着手针对这些方面进行VoLTE的MOS值优化。
通过对MOS值优化理清思路,从测试方法、配置参数、提升策略等方面寻找最优方案,进而解决因覆盖、资源、干扰、切换等问题导致的MOS差点问题,提升VoLTE的MOS值,从而改善用户终端体验。
总结出了如高RRC重建导致MOS值偏低、切换问题的影响提升V oLTE用户感知等方面的解决案例来提升MOS值,为后续打造一张精品VoLTE网络提供了坚实的基础。
【关键字】VoLTE MOS值优化思路【业务类别】VoLTE一、问题描述安徽宣城电信市区RCU路测的指标中VoLTE MOS大于等于3.5占比的指标为94%左右,虽然满足考核指标93%,但是明显低于其他地市,需要针对问题点进行专项优化,提升指标。
在指标优化提升的同时,总结影响MOS值的主要因素以及优化提升MOS值的方法,为后续MOS优化提供方向以及理论指导。
二、分析过程2.1 MOS指标定义及影响因素分析(一)MOS值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS与人的主观感受映射关系如下:一般情况下,MOS值大于等于3.8被认为是较优的语音质量,大于等于3.0被认为是可以接受的语音质量,低于3.0被认为是难以接受的语音质量。
案例-农村平原场景Volte MOS值优化方法
农村平原场景Volte MOS值优化方法目录1概述 (3)2VoLTE MOS基础知识 (3)2.1Volte 语音质量评估 (3)2.2影响语音质量的因素 (3)2.2.1语音编码 (3)2.2.2RTP丢包 (4)2.2.3E2E时延 (5)2.2.4抖动 (5)3农村平原场景Volte MOS优化方法 (6)3.1农村平原场景特点 (6)3.2测试数据收集 (7)3.2.1VoLTE质量要求 (7)3.2.2荆州簇1路测指标 (7)3.3农村平原场景Volte MOS优化方法 (8)3.3.1基站故障告警 (8)3.3.2高负荷 (9)3.3.3上行干扰 (9)3.3.4覆盖优化 (9)3.3.5切换优化 (12)3.3.6重建优化 (13)4提升MOS值关键功能设置研究 (14)4.1切换数据前传功能开关参数研究 (14)4.2多目标重建功能参数研究 (15)4.3频繁切换抑制功能参数研究 (17)4.4VoLTE 跳频功能参数研究 (18)4.5HARQ增强功能参数研究 (19)4.6多点协同传输功能参数研究 (20)5案例 (21)5.1覆盖问题 (21)5.2干扰问题 (23)5.3RRC重建问题 (24)6总结 (26)1 概述2018年中国电信集团公司在全国层面开展了“双提升”行动,旨在提升电信核心竞争力,改善无线用户网络感知,打造无线品牌。
其中,提出了以Volte业务保障为核心,力争VoLTE全面商用的目标。
前期优化工作中,Volte参数配置及优化主要集中在城市及密集商业区域,对于农村区域的Volte优化则相对欠缺;Volte全面商用前,需对农村场景的Volte使用感知进行专项优化,全面提升用户满意度。
本次专项以湖北荆州簇1为基础,围绕“农村平原场景Volte MOS值提升”展开研究,总结形成农村平原场景Volte使用感知提升经验推广。
2 VoLTE MOS基础知识2.1 Volte 语音质量评估Volte通过全IP的4G网络和IMS服务器提供语音服务,其实现原理和传统的2G、3G语音服务有很大不同,如何判断重金投资的网络和研发的终端真正带来了更好的用户体验?如何衡量新的Volte语音服务语音质量优于2G、3G网络和几乎免费OTT应用?其中语音质量至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、VoL TE语音MOS采样点机制VoLTE语音MOS采样机制如下:(1)主叫起呼,进行录音(8s左右);(2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);(3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);(4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……二、VoL TE语音MOS优化分析方法1、MOS差的问题点定位测试log单次通话连续两个采样点MOS值小于3的问题点定义为MOS差的问题点。
注意事项:需剔除通话结束的最后一个采样点与下次通话第一个采样点的MOS值都小于3的问题点。
2、MOS优化分析方法由MOS采样点机制可以看出,MOS采样点收集的是采样时间点前8秒的语音质量,所以在分析的时候,需着重分析MOS采样时间前8秒UE本端的下行(包括:无线环境、语音编码、抖动、丢包、频繁切换、RRC重建、异频测量频次等),以及对端的上行(包括:频繁切换、RRC重建、异频测量频次等)。
三、VoL TE语音MOS值的影响因素及优化思路1、MOS值的影响因素MOS值的直接影响因素为:端到端时延、抖动、丢包;VoLTE端到端时延可以分解为:UE语音编/解码时延、空口传输时延、核心网的处理时延、传输网的传输时延。
丢包和抖动的影响因素包括:空口信号质量、eNB负载、传输网的丢包和抖动。
故将以上因素分解后,MOS的影响因素包括:语音编码、覆盖、干扰、切换、邻区、基站负荷、基站故障、传输、核心网、测试终端、人为操作失误等。
2、MOS值的优化思路结合以上影响因素和前期VoLTE拉网测试时遇到的MOS问题,共总结出四类问题点类型:无线问题、基站异常、测试规范和设备、核心网/传输。
在分析MOS问题时,我们首先要考虑基站是否正常工作,其次考虑测试是否规范、测试设备是否正常,再次判断是否为无线问题造成的,最后才考虑是否核心网及传输网引起的。
因此我们在分析MOS问题时,应该按以下步骤进行MOS优化:(1)基站问题:是指问题路段中心经纬度150米以内的基站及主瓣65度范围的小区,若存在基站负荷过大、影响业务的告警、断站等问题,必将影响MOS值。
处理方法:在测试前确保基站正常工作。
案例1:基站故障导致MOS值低问题描述:车辆由南向北行驶至清风路与两河大道交叉路口,UE占用金牛清淳一街-SCDHLS3HM3JN-D2的信号,无线环境RSRP为-116.81dbm,SINR为-2.5,MOS值1.14,经测试数据分析,发现UE未能收到距离清风路与两河大道交叉路口50米的华力汽车公司车队-SCDHLD3HM2GX站点信号,经查询告警得知,发现该站点网元断链,因而导致该路段出现弱覆盖现象,最终导致MOS值差。
处理建议:建议处理华力汽车公司车队-SCDHLD3HM2GX站点故障。
案例2:基站负荷过大,导致MOS值低问题描述:无线环境较好(RSRP为-95dBm左右,SINR为10左右),无频繁切换;但MOS打点前8s主被叫占用电子科大-SCDHLS0HM1CH-D5,抖动和丢包均比较异常(RTP Jitter为992ms,RTP Loss Rate为3.99%),后台查询电子科大-SCDHLS0HM1CH-D5问题发生时间点15分钟粒度的上行PRB峰值利用率为65.145%,上行PRB平均利用率为45.949%,初步判断为基站负荷过大导致调度不及时,从而影响了MOS值。
处理建议:解决电子科大-SCDHLS0HM1CH-D5负荷过大的问题。
(2)测试规范/测试设备:包括MOS设备调试造成的MOS设备性能低、MOS差、音频线松动、终端异常等。
处理方法:在测试前确保MOS设备正常工作、事先调试好MOS值、音频线插紧、检查终端等。
案例1:调试MOS导致MOS值低问题描述:周围站点状态正常,无线环境良好;本次问题发生在1月25日下午第一个正式log的第1次至第3次呼叫,连续21个MOS值均低于1.5(覆盖较好,无干扰和故障),车辆一直停留在北京华联双桥店门口,第4次起呼MOS值恢复正常,初步判断为当天下午刚开始测试时MOS设备有问题导致。
处理建议:建议按测试规范进行测试,测试前确保MOS设备正常工作。
案例2:无线环境良好,MOS采样点前8s信令丢失问题描述:周围站点状态正常,无线环境良好;主叫9:29:35发起INVITE请求,9:32:28出现低MOS,分析主叫前8s测试数据,此时占用春良宾馆-SCDHLD3HM3JJ-F3,此时RSRP=-87.25dbm,SINR=17,9:32:20至9:32:28主叫无信令交换,查看9:32:20无RTP丢包异常,RTP抖动正常,分析被叫LOG,无信令。
初步判断为终端问题导致MOS差。
处理建议:建议按测试规范进行测试,测试前确保UE终端正常工作。
(3)无线问题:主要包括弱覆盖(RSRP<-100dBm,SINR<0)、质差(RSRP>-100dBm,SINR<0)、频繁切换等。
引起弱覆盖的原因包括:周边缺站(需新规划)、已规划站点但未建设、周边基站故障、室分泄露、邻区漏配、切换参数不当。
质差包括弱覆盖质差和强覆盖质差,前者优先处理弱覆盖,后者通常是由MOD3干扰、GPS失步引起的干扰、外部干扰等干扰引起的。
频繁切换通常是由于网络结构不合理、天馈接反、切换参数设置不当造成的。
案例1:周边缺站(需新规划),弱覆盖导致MOS值低-SCDHLS2HM1JN-D3通话(RSRP-94~-115、SINR-9~15)邻区无更好接续小区,该路段为弱覆盖(连续覆盖路段约180米RSRP<-105),无线环境差导致低MOS(时间为14:58:30至14:58:41、14:59:11至14:59:45)。
该路段凤凰石油加油站-SCDHLS2HM1JN与汇泽路-SCDHLS3HM3JN站间距为600米左右,站间距过大不能够保证有效覆盖;周边无规划站点。
处理建议:建议在川建路新建站点(经度104.06242,纬度30.73527)案例2:已规划站点未建设,弱覆盖导致MOS值低问题描述:主叫UE在成双大道占用桐希亨-SCDHLS1HM1WH-D3时MOS低,在16:09:49的MOS统计为2.076,16秒后在16:10:04的MOS统计为1.401,UE所在路段周边小区的RSRP均在-105dbm左右,属于覆盖不足,核实在覆盖较差路段已有规划L3HZ156054簇桥老农管站,但未开通站点。
处理建议:建议尽快开通站点L3HZ156054簇桥老农管站。
案例3:周边站点故障,弱覆盖导致MOS值低问题描述:在一环路北一段路段被叫占用汇龙湾广场-SCDHLS3HM3JN-F2小区(RSRP=-109dBm SINR=-10),通过查询发现离问题路段最近的友纳克酒店-SCDHLS0HM1JN站点断站;处理建议:尽快恢复友纳克酒店-SCDHLS0HM1JN站点故障。
案例4:室分泄露,弱覆盖导致MOS值低问题描述:问题点前从“香伯伦酒店-SCDHLS0HM1JJ-D1”(RSRP为-101dBm,SINR为9)切换至室分小区“长城锦苑-SCDHLS4WM3JJ-F1”(RSRP为-90dBm),之后由于无法切换出至室外宏站,弱覆盖导致MOS值偏低。
处理建议:处理室分小区“长城锦苑-SCDHLS4WM3JJ-F1”的室分外泄问题。
案例5:邻区漏配,弱覆盖导致MOS值低问题描述:周围站点状态正常;UE沿八里桥路至南向北后右过程中,由于2016/1/25测试时查看八里桥路灯杆F-SCDHLD4HM3CH-F1到路段覆盖站点凤仪东路东端没有添加邻区关系,被叫UE占用八里桥路灯杆F-SCDHLD4HM3CH-F1(RSRP=-103dBm SINR=-10),无法发生切换到合适的小区,被叫电平质量较差且出现呼叫重建导致MOS质差处理建议:添加八里桥路灯杆F-SCDHLD4HM3CH-F1到凤仪东路东端站点所有小区的邻区关系。
案例6:切换参数不当,弱覆盖导致MOS值低问题描述:周围站点状态正常;辆沿新航路从西南向东北行驶,UE占用汇都工业园F-SCDHLS3HM2GX-F1的信号RSRP为-96dbm左右,SINR10.4左右,MOS值为1.52.随着车辆继续行驶且信号不断减弱,而顺康电子-SCDHLS1HM1GX-F1的电平到达了-83dbm左右都未能与汇都工业园F-SCDHLS3HM2GX-F1发生切换,因此因汇都工业园F-SCDHLS3HM2GX-F1与顺康电子-SCDHLS1HM1GX-D切换不及时引起MOS值差;处理建议:建议将汇都工业园F-SCDHLS3HM2GX-F1到顺康电子-SCDHLS1HM1GX-F1的小区偏移量CIO由0调整到6dB,加快两者之间的切换。
案例7:切换参数设置不当,频繁切换导致MOS值低问题描述:周围站点状态正常;测试车辆行驶至静渝路,由北向南行驶,主叫占用沙河农牧市场-SCDHLD3HM3JJ-F2小区,切换至异频小区千禧汽修厂-SCDHLS1HM1JJ-D2小区,测试车辆继续向南行驶RSRP电平衰减至-95dBm,回切至异频沙河农牧市场-SCDHLD3HM3JJ-F2小区,频繁异频切换导致低MOS.处理建议:测试时沙河农牧市场-SCDHLD3HM3JJ-F2在RSRP=-88dBm触发异频切换A4事件,建议将基于A4的A2门限调整为-100dBm。
案例8:网络结构不合理,频繁切换导致MOS值低问题描述:周围站点状态正常;UE在“人和商务楼-SCDHLS1HM1QY-D5”和“煤建公司-VCDHLS1HM1QY-D3”两个同频小区之间频繁切换,有异常丢包;问题路段为两个小区的中间位置。
处理建议:对“人和商务楼-SCDHLS1HM1QY-D5”和“煤建公司-VCDHLS1HM1QY-D3”进行RF优化,缓解两者间的频繁切换。
案例9:越区形成MOD3干扰,SINR差导致MOS值低问题描述:周围站点状态正常;服务小区为“东郊分局-VCDHLS0HM1JJ-D1”(频点为37900,PCI=262,RSRP 为-76.75dBm),邻区存在MOD3干扰小区“创意仓库-SCDHLS1HM1JJ-D1”(频点为37900,PCI=97,RSRP为-83.38dBm),导致MOS值偏低。
处理建议:“创意仓库-SCDHLS1HM1JJ-D1”离问题路段较远(有越区的情况),建议下压问题小区“创意仓库-SCDHLS1HM1JJ-D1”的下倾角,控制其在问题路段的覆盖。