试验三双容水箱液位定值控制系统试验-化工控制工程试验中心
试验三双容水箱液位定值控制系统试验-化工控制工程试验中心
试验三双容水箱液位定值控制系统试验-化工控制工程试验中心过程控制系统与工程实验指导书沈阳工业大学工程学院目录实验一单容自衡水箱液位特性测试实验 (3)实验二单容液位定值控制系统实验 (6)实验三双容水箱液位定值控制系统实验 (8)实验四水箱液位串级控制系统实验 (10)实验五下水箱液位前馈-反馈控制系统实验 (12)实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。
2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。
二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机、MCGS 工控组态软件、RS232/485转换器1只、串口线1根3.万用表一只三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=A dtdh (1-1) 将式(1-1)表示为增量形式ΔQ 1-ΔQ 2=Adt h d ? (1-2) 式中:ΔQ1,ΔQ2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh =0;当Q1发生变化时,液位h 随之变化,水箱出口处的静压也随之变化,Q2也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ? 或 R=2Q ??h (1-3) 式中:R —阀F1-11的阻力,称为液阻。
实验三 水箱液位串级控制系统实验
(实验三)水箱液位串级控制系统实验报告班级测控四班学号0800201428 姓名王常玥一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为锅炉汽包,其液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为上水箱,又称副对象,其液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI 或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P 调节器。
本实验系统结构图和方框图如图4-2所示。
图4-2 水箱液位串级控制系统(a)结构图(b)方框图三、实验设备DDD-Z05-I实验对象及DDD-Z05-IK控制屏、DDD-Z05-III 电源控制柜一台、SA-12挂件一个、SA-13A挂件一个、计算机一台、万用表一个、实验连接线若干。
四、实验内容与步骤本实验选择上水箱和锅炉汽包,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-6、F2-14全开,F1-9 、F2-15开适当开度(F1-9﹥F2-15),其余阀门均关闭。
1.按照第一章1-6用网线和交换机连接操作员站和服务器,以及服务器和主控单元,“SA31 FM148现场总线远程I/O模块”、“SA31 FWM158现场总线远程I/O模块”挂件挂到屏幕上,并将挂件的通讯线街头插入屏内Profibus-DP总线接口上,将控制屏左侧Profibus-DP总线连接到主控单元DP口,并按照下面的控制屏接线图连接实验系统。
双容水箱液位定值控制系统实验
双容水箱液位定值控制系统实验双容水箱液位定值控制系统一、实验目的1( 通过实验,进一步了解双容对象的特性。
2( 掌握调节器参数的整定与投运方法。
3( 研究调节器相关参数的改变对系统动态性能的影响。
二、实验设备1( THJ-2型高级过程控制系统装置。
2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只三、实验原理本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图控制量。
基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。
本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。
如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。
图6-1为实验系统的结构图,图6-2为控制系统的方框图。
四、实验内容与步骤1( 图6-1所示,完成实验系统的接线。
2( 接通总电源和相关仪表的电源。
3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。
4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。
5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。
6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。
7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
双容水箱液位串级控制系统DCS实训报告毕业论文
DCS实训报告双容水箱液位串级控制系统一、实训目的(1)、熟悉集散控制系统(DCS)的组成。
(2)、掌握MACS组态软件的使用方法。
(3)、培养灵活组态的能力。
(4)、掌握系统组态与装置调试的技能。
二、实训容及要求以THSA-1型生产过程自动化技术综合实训装置为工业对象。
完成中水箱和下水箱串级液位控制系统的组态。
要求:设计液位串级控制系统,并用MACS组态软件完成组态。
包括:(1)、数据库组态。
(2)、设备组态。
(3)、算法组态。
(4)、画面组态。
(5)、在实验装置上进行系统调试。
三、工程分析THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。
因此,该系统包括:(1)、该系统有2个AI点LT1、LT2,1个AO点LV1。
(2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块FM151用于控制电动控制阀的开度LV1。
并且FM148的设备号为2号,FM151的设备号为3号。
(3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。
LV1按3号设备的第1通道。
(4)、系统配备1个现场控制站10站,1台服务器兼操作员站。
四、实训步骤1、工程的建立(1)、打开:开始程序 macsv组态软件数据库总控。
(2)、选择工程/新建工程,新建工程并输入工程名;Demo。
(3)、点击“确定”按钮,然后在空白处选择“demo”工程。
工程信息如下图所示:(4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。
然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。
(5)、数据库组态。
(a)、在菜单栏的“编辑”下,选择“编辑数据库”,弹出窗口,输入用户名和口令bjhc/3dlcz,进入数据库组态编辑窗口。
双容水箱液位定值控制和串级控制
式中,为槽 1 的时间常数,T1=R2C;T2 为槽 2 的时间常数,T2=R3C2。 经计算 T1=9.09,T2=17.43 上式即为双容液位过程的数学模型 与自衡单容过程的阶跃响应相比, 双容过程的阶跃响应一开始变化慢, 其原因是槽与槽 之间存在液体流通阻力而延缓了被控量的变化。显然,串联容器越多,则过控容量越大,时 间约延长。 双容过程也可以近似为有时延的单容过程。其做法是通过相应曲线Δ h2 的拐点作切线 (如虚线所示),与时间轴相交于 A 点,与Δ h2 的稳态值Δ h2 (∞)相交于 C 点,C 点在 时间轴上的投影为 B。此时,传递函数可近似为
图 7 双容水箱液位阶跃响应曲线
本课程设计采用负阶跃,得到响应曲线如图 8 所示。
图 8 双容水箱液位的负阶跃响应曲线(2)
根据上述公式,计算其特征参数 K、T1、T2 及传递函数。
K
h 2() 输入稳态值 12.3 = =12.3 xO 阶跃输入量 1 t1 t2 5.1 2.25 = =3.4 2.16 2.16
变化量(流量的变化量与原流量的比)则随阀杆位置的不同而不同。所以,线性调节阀在小 开时流量的相对变化量大,灵敏度高,控制作用强,容易产生振荡:而在大开度时流量的相 对变化量小,灵敏度低控制作用弱。由此可知,当线性调节阀工作在小开度或大开度时,其 控制性能均较差,因为不宜用于负荷变化大的过程。
第二章双容水箱特性Hale Waihona Puke 测试= q1 - q 2
h1 R2
q 2 = C2 dh 2 dt
= q 2 q3
h 2 R3
q3
式中,分别为流过阀 1、2、3 的流量;分别为槽 1、2 的液位;分别为槽 1、2 的容量系 数;分别为阀 2、3 的液阻。 进行拉斯变换,整理后的传递函数为
guokong解析
长沙学院CHANGSHA UNIVERSITY专业训练与创新实习报告过程控制系统实习系部:电子信息与电气工程系专业年级班级:11 电气 1 班学生姓名:伍小东学号:2011024114瞿瞾指导教师:成绩评定:2014年11 月目录实验一单容自衡水箱液位特性测试实验 (3)实验二单闭环流量定值控制系统 (6)实验三双容水箱液位定值控制系统 (8)实验四水箱液位串级控制系统 (10)实验六锅炉内胆温度特性的测试 (15)实验七三容水箱液位定值控制系统 (17)实验八锅炉夹套水温定值控制系统 (19)实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T 和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备实验对象及控制屏、各类电路挂件、计算机一台、万用表一个、导线若干;三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图2-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。
图3-1 单容自衡水箱特性测试系统(a)结构图(b)方框图四、实验内容本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。
图3-2 仪表控制单容水箱特性测试实验接线图五、实验数据曲线图3-3 单容自衡水箱对象特性测试曲线图六、实验总结本次实验是自衡水箱的特性曲线测量,因此在测量的时候应不需要操作人员或仪表等干预,而是依靠其自身重新恢复平衡。
双容水箱液位定值控制系统实验报告
XXXX大学电子信息工程学院专业硕士学位研究生综合实验报告实验名称:双容水箱液位定值控制系统专业:控制工程姓名: XXX学号:XXXXXX指导教师: XXX完成时间:XXXXX实验名称:双容水箱液位定值控制系统实验目的:1.通过实验进一步了解双容水箱液位的特性。
2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。
3.研究调节器相关参数的改变对系统动态性能的影响。
4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。
5.掌握双容液位定值控制系统采用不同控制方案的实现过程。
实验仪器设备:1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。
实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
本实验系统结构图和方框图如图所示。
方案设计及参数计算:单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。
系统的给定量是某一定值,要求系统的被控制量稳定至给定量。
单回路控制系统方框图调节器参数的整定方法(一)经验法系统参数δ(%)T I(min) T D(min)温度20~60 3~10 0.5~3流量40~100 0.1~1压力30~70 0.4~3液位20~80(二)临界比例度法根据临界比例度δk和振荡周期T S,按下表所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。
双容水箱串级PID控制实验液位
双容水箱液位串级PID控制实验一、实验目的1、进一步熟悉PID调节规律2、学习串级PID控制系统的组成和原理3、学习串级PID控制系统投运和参数整定二、实验设备1、四水箱实验系统DDC实验软件2、PC机(Window 2000 Professional 操作系统)三、实验原理1、控制系统的组成及原理一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级”控制器。
两个控制器都有各自的测量输入,但只有主控制器具有自己独立的设定值,只有副控制器的输出信号送给被控对象,这样组成的系统称为串级控制系统。
本仿真系统的双容水箱串级控制系统如下图所示:图17-1 本仿真系统的双容水箱串级控制系统框图串级控制器术语说明主变量:y1称主变量。
使它保持平稳使控制的主要目的副变量:y2称副变量。
它是被控制过程中引出的中间变量副对象:上水箱主对象:下水箱主控制器:PID控制器1,它接受的是主变量的偏差e1,其输出是去改变副控制器的设定值副控制器:PID控制器2,它接受的是副变量的偏差e2,其输出去控制阀门副回路:处于串级控制系统内部的,由PID控制器2和上水箱组成的回路主回路:若将副回路看成一个以主控制器输出r2为输入,以副变量y2为输出的等效环节,则串级系统转化为一个单回路,即主回路。
串级控制系统从总体上看,仍然是一个定值控制系统,因此,主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。
但是串级控制系统和单回路系统相比,在结构上从对象中引入一个中间变量(副变量)构成了一个回路,因此具有一系列的特点。
串级控制系统的主要优点有:1)副回路的干扰抑制作用发生在副回路的干扰,在影响主回路之前即可由副控制器加以校正2)主回路响应速度的改善副回路的存在,使副对象的相位滞后对控制系统的影响减小,从而改善了主回路的相应速度3)鲁棒性的增强串级系统对副对象及控制阀特性的变化具有较好的鲁棒性4)副回路控制的作用副回路可以按照主回路的需要对于质量流和能量流实施精确的控制由此可见,串级控制是改善调节过程极为有效的方法,因此得到了广泛的应用。
双容水箱液位数学模型的测定试验
双容水箱液位数学模型的测定实验一、实验目的1、获得双容水箱液位数学模型。
二、实验设备A3000-FS/FBS 常规现场系统,任意控制系统。
三、实验原理与介绍1、系统介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。
被调量为下水箱水位H 。
分析水位在调节阀开度扰动下的动态特性。
直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。
(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。
)调整水箱出口到一定的开度。
突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。
逻辑结构如图4-3所示。
通过物料平衡推导出的公式:0,122111=-+=+rH H dtdH T R k H dt dH T u μ,图4-3双容水箱液位数学模型的测定实验其中R1、R2为线性化水阻。
212212122111,,R R R r R R R R F T R F T +=+==。
那么: μμ122212221)(R rk H T dt dH T T dtH d T T =+++。
4、参考结果双容水箱水位阶跃响应曲线,如图4-5所示:图4-5 双容水箱液位飞升特性平衡时液位测量高度215 mm ,实际高度215 mm -3.5 mm =211.5mm 。
对比单容实验,双容系统上升时间长,明显慢多了。
但是在上升末端,还是具有近似于指数上升的特点。
按照理论有一个拐点。
四、实验要求1、要求使用不同的给定值获得不同的曲线。
2、给出双容水箱液位数学模型。
五、实验内容与步骤1、在A3000-FS上,将手动调节阀JV205、JV201完全打开,并使中水箱、下水箱闸板具有一定开度,其余阀门关闭。
2、在A3000-CS上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪输出端连到电动调节阀(FV101)控制信号端。
3、打开A3000电源,调节阀(FV101)通电。
4、在A3000-FS上,启动右边水泵,给中水箱注水。
三容液位定值控制实验
三容液位定值控制实验是一种常见的控制工程实验,用于演示和研究在不同流量输入条件下,如何通过控制阀门开度来实现三个容器的液位保持在设定值上。
以下是一个简单的三容液位定值控制实验的步骤:
1. 实验装置准备:
- 准备三个相互连接的容器,可以使用玻璃容器或塑料容器。
- 在每个容器中安装液位传感器,用于测量液位。
- 在每个容器上安装控制阀门,用于调节液位。
- 连接液位传感器和控制阀门到控制系统或数据采集设备。
- 连接流量控制装置或泵到容器的进水口。
2. 设定液位控制参数:
- 根据实验目的和要求,设置每个容器的液位设定值。
- 设定控制系统的采样时间和控制算法。
3. 启动实验:
- 打开流量控制装置或泵,使液体流入容器。
- 启动控制系统,开始实时监测液位,并根据设定值调节控制阀门的开度。
4. 数据记录和分析:
- 实时记录每个容器的液位数据和控制阀门的开度。
- 分析液位控制的稳定性和响应性能,评估控制系统的性能。
5. 参数调整和再次实验:
- 根据实验结果,可以调整控制系统的参数,如控制增益、积分时间等。
- 再次进行实验,观察和比较不同参数设置下的液位控制性能。
通过这个实验,可以帮助学生理解和实践液位控制的基本原理和方法,培养他们在控制工程中的实验和问题解决能力。
同时,可以对比不同控制算法和参数设置对控制系统性能的影响,进一步提高学生对控制系统设计和调节的理解和掌握。
双容水箱液位定值控制系统实验报告
双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。
2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。
3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。
4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。
5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。
6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。
7.记录不同设定值下液位的控制效果,并分析数据。
8.关闭水源,停止实验。
实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。
当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。
实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。
实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。
P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。
通过PID控制器的联合作用,可以实现对液位的稳定控制。
从实验结果分析可以看出,PID控制器的参数设置非常重要。
当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。
因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。
结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
AE2000双容水箱液位串级PID控制实验(7~10号实验装置)
上、中水箱液位串级PID控制实验一、实验目的1、掌握串级控制系统的基本概念和组成。
2、掌握串级控制系统的投运与参数整定方法。
3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。
二、实验设备AE2000型过程控制实验装置、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。
三、实验原理上水箱液位作为副调节器调节对象,中水箱液位做为主调节器调节对象。
控制框图如图9-1所示:图9-1上水箱下水箱液位串级控制框图四、实验内容和步骤1、设备的连接和检查1).打开以丹麦泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的切换阀门。
2).打开上水箱出水阀和中水箱的出水阀开至适当的开度。
3).检查电源开关是否关闭2、系统连线图图9-2实验接线图1).将上水箱液位信号接至8017的AI0通道,将中水箱液位信号接至8017的AO0通道。
2).将8024的AO1通道接至气动调节阀的控制信号输入端。
3).电源控制板上的三相电源空气开关、丹麦泵电源开关打在关的位置。
3、启动实验装置:1).打开电源带漏电保护空气开关。
打开电源总开关,电源指示灯点亮,即可开启电源。
打开单相泵电源。
2).启动计算机DDC组态软件,进入实验系统相应的实验3).建立工作点将副回路的PID控制器设成手动单击实验界面中的副回路PID控制器标签打开副回路PID控制器界面,然后单击副回路PID控制器的“手动”按钮a、设定工作点单击副回路PID控制器界面中MV柱体旁的增/减键,设置MV(U1)的值c、进行对象动态特性测试(参见已做过的实验)给MV一个阶跃,将1号和3号水箱的液位变化数据记录在表1中:根据实验数据用两点法建立3号和1号水箱的传递函数,作为PID初始参数计算的依据。
4)调节串级的后级a、设置PID参数根据对象特性,查表计算PID初始参数,P=I=D=,并将参数输入到控制器中,并进行微调,使内回路控制效果达到最佳。
双容型水箱实验报告
机械电子工程原理实验报告双容型水箱液位及PID控制综合实验组员:XXXXXX年X月实验一压力传感器特性测试及标定测量实验一、实验目的1、了解本实验装置的结构及组成。
2、掌握压力传感器的实验原理及方法,对压力传感器进行标定。
二、实验设备1、德普施双容水箱一台。
2、PC 机及 DRLINK4.5 软件。
三、实验原理图 1-1 传感器装置图本实验传感器如图1-1所示,使用二个扩散硅压阻式压力传感器,分别用来测量上水箱水柱压力,下水箱水柱压力。
扩散硅压阻式压力传感器实质是硅杯压阻传感器。
它以N型单晶硅膜片作敏感元件,通过扩散杂质使其形成4个P型电阻,形成电桥。
在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,使电桥有相应输出。
经过后级电路的放大处理之后输出0~5V之间的电信号。
扩散硅压力传感器的输出随输入呈线性关系,输出特性曲线一般是一条直线,一般使用传感器前需要对此传感器进行标定,通常的做法是取两个测量点(x1,y1)和(x2, y2)然后计算特性直线的斜率K和截距B 即可。
由于扩散硅压力传感器承受的水压力及水的液位高度成正比,因此扩散硅压力传感器通常也用来测量液位高度。
四、实验内容及结果图1-2 上水槽压力传感器特性测试及标定测量实验图1-3 下水槽压力传感器特性测试及标定测量实验5)压力传感器的标定系数值表。
表1-1 压力传感器标定系数值传感器K值B值液位1传感器0.06440-7.98567液位2传感器0.065166-12.63056)依据压力传感器标定系数值绘制的压力传感器特性曲线如图1-3,图1-4所示:图1-3 上水槽压力传感器特性曲线图1-4 下水槽压力传感器特性曲线五、思考题1.在做本实验的时候,为何2次标定的液位高度不能够太接近?答:由于液位高度及电压值为线性关系,故2次标定的液位高度要保持一定距离,这样可以有效降低系统误差。
在控制过程中由于水泵抽水压力冲击传感器等影响会对液位传感器产生一定程度的干扰。
双容自衡水箱液位特性的测试实验报告
XXXX大学电子信息工程学院专业硕士学位研究生综合实验报告实验名称:双容自衡水箱液位特性的测试专业:控制工程姓名学号:指导教师:完成时间:实验名称:双容水箱特性的测试实验目的:1.掌握双容水箱特性的阶跃响应曲线测试方法;2.根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K、T1、T2及传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
实验仪器设备:1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。
实验原理:所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠自身重新恢复平衡的过程。
图1所示为双容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-11全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h的变化反映了Q 1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。
图1 双容水箱对象特性测试系统(a)结构图 (b)方框图方案设计及参数计算:双容水箱的数学模型可用一个二阶加时滞环节来描述。
双容对象两个惯性环节的时间常数可按下述方法来确定。
在图2所示的阶跃响应曲线上求取:(1))(h.thtt∞==224)(1时曲线上的点B和对应的时间t1;(2))(h.thtt∞==2282)(时曲线上的点C和对应的时间t2。
双容型水箱实验报告
机械电子工程原理实验报告双容型水箱液位与PID控制综合实验组员:XXXXXX年X月实验一压力传感器特性测试及标定测量实验一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力传感器的实验原理及方法,对压力传感器进行标定。
二、实验设备1、德普施双容水箱一台。
2、PC 机及DRLINK4.5 软件。
三、实验原理图1-1 传感器装置图本实验传感器如图1-1所示,使用二个扩散硅压阻式压力传感器,分别用来测量上水箱水柱压力,下水箱水柱压力。
扩散硅压阻式压力传感器实质是硅杯压阻传感器。
它以N型单晶硅膜片作敏感元件,通过扩散杂质使其形成4个P型电阻,形成电桥。
在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,使电桥有相应输出。
经过后级电路的放大处理之后输出0~5V之间的电信号。
扩散硅压力传感器的输出随输入呈线性关系,输出特性曲线一般是一条直线,一般使用传感器前需要对此传感器进行标定,通常的做法是取两个测量点(x1,y1)和(x2,y2)然后计算特性直线的斜率K和截距B即可。
由于扩散硅压力传感器承受的水压力与水的液位高度成正比,因此扩散硅压力传感器通常也用来测量液位高度。
四、实验内容及结果图1-2 上水槽压力传感器特性测试及标定测量实验图1-3 下水槽压力传感器特性测试及标定测量实验5)压力传感器的标定系数值表。
表1-1 压力传感器标定系数值传感器K值B值液位1传感器0.06440 -7.98567液位2传感器0.065166 -12.63056)依据压力传感器标定系数值绘制的压力传感器特性曲线如图1-3,图1-4所示:图1-3 上水槽压力传感器特性曲线图1-4 下水槽压力传感器特性曲线五、思考题1.在做本实验的时候,为何2次标定的液位高度不能够太接近?答:由于液位高度与电压值为线性关系,故2次标定的液位高度要保持一定距离,这样可以有效降低系统误差。
在控制过程中由于水泵抽水压力冲击传感器等影响会对液位传感器产生一定程度的干扰。
题目5 三容水箱液位定值控制系统
题目5 三容水箱液位定值控制系统一、程设计主要任务及要求1、了解三容水箱液位定值控制系统的结构和组成。
2、应用经验法和动态特性参数法进行三阶系统PID调节器参数的整定。
3、分析PI、PID两种控制方式对本控制系统的作用。
4、研究调节器相关参数的变化对系统静、动态性能的影响。
二、课程设计使用的实验设备实验设备1. THJ-FCS型高级过程控制系统实验装置。
2. 计算机及相关软件。
三、工作原理本控制系统结构图和方框图如图5-1所示。
图5-1 三容液位定值控制系统(a)结构图(b)方框图控制系统以上、中、下三只水箱串联作被控对象,下水箱的液位高度为系统的被控制量。
由第二章双容特性测试实验可知,三容对象是一个三阶环节,它可用三个惯性环节来描述。
本实验要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
四、控制系统流程图控制系统的流程图如图5-2所示。
图5-2 实验控制系统的流程图在本实验中,被控量下水箱液位(检测信号LT3)和执行机构阀门定位器均为带PROFIBUS-PA通讯接口的部件,挂接在PROFIBUS-PA总线上,二者通过不同的访问地址加以区分,PROFIBUS-PA总线通过LINK和COUPLER组成的DP链路与PROFIBUS-DP 总线交换数据,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP,由于PROFIBUS-PA总线和PROFIBUS-DP总线都是双向传输的通讯网络,这样既完成了现场测量信号到CPU的传送,又使得控制器CPU315-2 DP发出的控制信号经由PROFIBUS-DP总线到达PROFIBUS-PA总线来控制执行机构阀门定位器。
水箱液位定值控制实验
水箱液位定值控制实验一、单回路与串级控制系统概述1.单回路控制系统:下图为单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。
系统的给定量是某一定值,要求系统的被控制量稳定至给定量。
由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。
图12-1 单回路控制系统方框图(1)干扰对系统性能的影响:①干扰通道的放大系数、时间常数及纯滞后对系统的影响。
干扰通道的放大系数Kf会影响干扰加在系统中的幅值。
若系统是有差系统,则干扰通道的放大系数愈大,系统的静差也就愈大。
如果干扰通道是一惯性环节,令时间常数为Tf,则阶跃扰动通过惯性环节后,其过渡过程的动态分量被滤波而幅值变小。
即时间常数Tf越大,则系统的动态偏差就愈小。
通常干扰通道中还会有纯滞后环节,它使被调参数的响应时间滞后一个τ值,但不会影响系统的调节质量。
②干扰进入系统中的不同位置。
复杂的生产过程往往有多个干扰量,它们作用在系统的不同位置,如下图所示。
同一形式、大小相同的扰动作用在系统中不同的位置所产生的静差是不一样的。
对扰动产生影响的仅是扰动作用点前的那些环节。
图12-2 扰动作用于不同位置的控制系统(2)控制规律的选择:PID 控制规律及其对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。
① 比例(P)调节纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快。
由于比例调节只有一个参数,所以整定很方便。
这种调节器的主要缺点是系统有静差存在。
其传递函数为: GC(s)= KP =δ1(12-1)式中KP 为比例系数,δ为比例带。
② 比例积分(PI)调节PI 调节器就是利用P 调节快速抵消干扰的影响,同时利用I 调节消除残差,但I 调节会降低系统的稳定性,这种调节器在过程控制中是应用最多的一种调节器。
其传递函数为:G C (s)=K P (1+s 1I T )=δ1(1+s1I T ) (12-2)式中T I 为积分时间。
双容水箱液位PID控制实验
上海电力学院实验报告过程控制实验课程题目双容水箱液位PID控制实验班级姓名学号同组成员指导老师时间 2011-5-16 上海电力学院电力与自动化工程学院一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理2、进一步熟悉PID 的调节规律3、进一步熟悉PID 控制器参数的整定方法二、实验设备1、四水箱实验系统硬件平台2、PC 机(Window XP操作系统)三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。
双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如下图所示:双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。
其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。
单回路调节系统可以满足大多数工业生产的要求,只有在单回路调节系统不能满足生产更高要求的情况下,才采用复杂的调节系统。
2、PID 调节规律PID控制是比例、积分、微分控制的简称。
在生产过程自动控制的发展历程中,PID控制是历史最久、生命力最强的基本控制方式。
目前,PID控制仍然是得到最广泛应用的基本控制方式。
常用的PID控制规律有:P、PI、PD、PID,可根据被控对象的特点和控制要求选择其中之一作为控制器。
3、PID 控制器参数的实验整定方法双容水箱液位PID控制器参数整定,是为了得到某种意义下的最佳过渡过程。
我们这里选用较通用的“最佳”标准,即要求在阶跃扰动作用下,被调量的波动具有衰减率0.75左右,在这个前提下,尽量满足准确性和快速性的要求。
常用的实验整定方法有:a、动态特性曲线法b、稳定边界法c、衰减曲线法四、实验步骤1、实验前准备工作2、进入实验运行四水箱实验系统DDC 实验软件,进入首页界面;选择实验模式为“实验装置”;单击实验菜单,进入双容水箱液位PID 控制实验界面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制系统与工程实验指导书沈阳工业大学工程学院目录实验一单容自衡水箱液位特性测试实验 (3)实验二单容液位定值控制系统实验 (6)实验三双容水箱液位定值控制系统实验 (8)实验四水箱液位串级控制系统实验 (10)实验五下水箱液位前馈-反馈控制系统实验 (12)实验一 单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。
2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。
二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机、MCGS 工控组态软件、RS232/485转换器1只、串口线1根3.万用表一只三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=A dtdh (1-1) 将式(1-1)表示为增量形式ΔQ 1-ΔQ 2=Adt h d ∆ (1-2) 式中:ΔQ1,ΔQ2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh =0;当Q1发生变 化时,液位h 随之变化,水箱出口处的静压也随之变化,Q2也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ∆ 或 R=2Q ∆∆h (1-3) 式中:R —阀F1-11的阻力,称为液阻。
图1-1 单容自衡水箱特性测试系统 (a )结构图 (b )方框图将式(1-2)、式(1-3)经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为W 0(s )=)()(1s Q s H =1RCs R +=1s +T K (1-4) 式中T 为水箱的时间常数,T =RC ;K 为放大系数,K =R ;C 为水箱的容量系数。
若令Q1(s )作阶跃扰动,即Q1(s )=sx 0,x0=常数,则式(2-4)可改写为 H (s )=TT K 1s /+×s x 0=K s x 0-T K 1s x 0+ 对上式取拉氏反变换得h(t)=K x 0(1-e -t/T ) (1-5)当t —>∞时,h (∞)-h (0)=Kx0,因而有 K=x 0h h )()(-∞=阶跃输入输出稳态值 (1-6) 当t=T 时,则有 h(T)=K x 0(1-e -1)=0.632K x 0=0.632h(∞) (1-7)式(1-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2(a )所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。
也可由坐标原点对响应曲线作切线OA ,切线与稳态值交点A 所对应的时间就是该时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。
图1-2 单容水箱的阶跃响应曲线如果对象具有滞后特性时,其阶跃响应曲线则为图1-2(b ),在此曲线的拐点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。
图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为: H(S)=TsKe s+-1τ (1-8) 四、实验内容与步骤1. 按图1-1接好实验线路,并把阀V1和F1-11开至某一开度,且使V1的开度大于F1-11的开度。
2.接通总电源和相关的仪表电源,并启动磁力驱动泵。
3.把调节器设置于手动操作位置,通过调节器增/减的操作改变其输出量的大小,使水箱的液位处于某一平衡位置。
4.手动操作调节器,使其输出有一个正(或负)阶跃增量的变化(此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一定的调节时间后,水箱的液位进入新的平衡状态。
5.启动计算机记下水箱液位的历史曲线和阶跃响应曲线。
五、实验报告要求1.画出单容水箱液位特性测试实验的结构框图。
2.根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。
六、思考题1.做本实验时,为什么不能任意改变出水阀F1-11开度的大小?2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?3.如果采用中水箱做实验,其响应曲线与下水箱的曲线有什么异同?并分析差异原因。
实验二单容液位定值控制系统实验一、实验目的1.了解单闭环液位控制系统的结构与组成。
2.掌握单闭环液位控制系统调节器参数的整定。
3.研究调节器相关参数的变化对系统动态性能的影响。
二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3. 万用表一只三、实验原理图2-1 中水箱单容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图2-1所示。
被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
四、实验内容与步骤1.完成系统的接线。
2.接通总电源和相关仪表的电源。
3.打开阀F1-1、F1-2、F1-7和F1-11,且把F1-10控制在适当的开度。
4.选用单回路控制系统实验中所述的某种调节器参数的整定方法整定好调节器的相关参数。
5.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给中水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。
6.启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,适量改变阀F1-7的开度,以作为系统的扰动,观察并记录在阶跃扰动作用下液位的变化过程。
7.适量改变PI的参数,用计算机记录不同参数时系统的响应曲线。
五、实验报告要求1.用实验方法确定调节器的相关参数。
2.列表记录,在上述参数下求得阶跃响应的动、静态性能指标。
3.列表记录,在上述参数下求得系统在阶跃扰动作用下响应曲线的动、静态性能指标。
六、思考题1.如果采用下水箱做实验,其响应曲线与中水箱的曲线有什么异同?并分析差异原因。
2.改变比例度δ和积分时间TI对系统的性能产生什么影响?实验三双容水箱液位定值控制系统实验一、实验目的1.通过实验,进一步了解双容对象的特性。
2.掌握调节器参数的整定与投运方法。
3.研究调节器相关参数的改变对系统动态性能的影响。
二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3. 万用表一只三、实验原理本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
本实验系统结构图和方框图如图3-1所示。
图3-1 双容液位定值控制系统(a)结构图 (b)方框图四、实验内容与步骤1.完成实验系统的接线。
2.接通总电源和相关仪表的电源。
3.打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。
4.单回路控制系统实验临界比例度法或4:1衰减振荡法整定调节器的相关参数。
5.设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。
6.启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃扰动(给定量增加5%~15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位变化过程。
7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
用计算机记录此时系统的动态响应曲线。
五、实验报告要求1.用实验方法确定调节器的参数。
2.列表表示在上述参数下,系统阶跃响应的动、静态性能。
3.列表表示在上述参数下,系统在扰动作用于中水箱或下水箱时输出响应的动态性能。
4.列表表示经调试后求得的调节器参数和相应系统阶跃响应的性能指标。
六、思考题1.为什么本实验较上水箱液位定值控制系统更容易引起振荡?如果达到同样的动态性能指标,为什么本实验中调节器的比例度和积分时间常数均要比前两个实验大?2.你能说出下水箱的时间常数比中水箱时间常数大的原因吗?实验四水箱液位串级控制系统实验一、实验目的1. 熟悉串级控制系统的结构与特点。
2.掌握串级控制系统的投运与参数的整定方法。
3.研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3. 万用表一只三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。