多项式乘以多项式课件

合集下载

多项式与多项式的乘法

多项式与多项式的乘法
(a+b)(m+n)=am+an+bm+bn
实质上是转化为单项式×多项式 的运算
不要漏乘;正确确定各符号;结 果要最简
(x-1)2在一般情况下不等于x2-12.
[义务教育教科书]( R J ) 八 上 数 学 课 件
第十四章 整式的乘法与因式分解
14.1.4 整式的乘法
第3课时 整式的除法
导入新课
例2 已知am=12,an=2,a=3,求am-n-1的值. 解:∵am=12,an=2,a=3, ∴am-n-1=am÷an÷a=12÷2÷3=2.
方法总结:解此题的关键是逆用同底数幂的除法, 对am-n-1进行变形,再代入数值进行计算.
解:去括号,得40x-8x2=34-8x2+6x, 移项,得40x-6x=34, 合并同类项,得34x=34, 解得 x=1.
拓展提升
8.某同学在计算一个多项式乘以-3x2时,算成了加
上-3x2,得到的答案是x2-2x+1,那么正确
的计算结果是多少? 解:设这个多项式为A,则
A+(-3x2)=x2-2x+1, ∴A=4x2-2x+1.
am ÷an=am-n
验证:因为am-n ·an=am-n+n=am,所以am ÷an=am-n.
知识要点 同底数幂的除法
一般地,我们有
am ÷an=am-n (a ≠0,m,n都是正整数,且m>n)
即 同底数幂相除,底数不变,指数相减.
想一想:am÷am=? (a≠0) 答:am÷am=1,根据同底数幂的除法法则可得am÷am=a0.
3.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b
满足( C )

《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受


C. − 或0


D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 培养学生掌握多项式乘以多项式的运算方法和技巧。

3. 提高学生解决实际问题的能力,培养学生的数学思维。

二、教学内容1. 多项式乘以多项式的定义和性质。

2. 多项式乘以多项式的运算规则。

3. 多项式乘以多项式的例题解析和练习。

三、教学重点与难点1. 重点:多项式乘以多项式的运算方法和技巧。

2. 难点:理解多项式乘以多项式的概念和运算规则。

四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和意义。

2. 采用示例法,展示多项式乘以多项式的运算过程,让学生直观感受。

3. 采用练习法,让学生通过多做例题和练习题,巩固所学知识。

五、教学过程1. 导入:通过简单的数学问题,引入多项式乘以多项式的概念。

2. 新课讲解:讲解多项式乘以多项式的定义、性质和运算规则。

3. 示例解析:分析并解答几个多项式乘以多项式的例题。

4. 课堂练习:让学生独立完成一些多项式乘以多项式的练习题。

六、教学评价1. 通过课堂提问,检查学生对多项式乘以多项式的概念和运算规则的理解程度。

2. 通过课后作业和练习题,评估学生掌握多项式乘以多项式的运算方法和技巧的情况。

3. 结合学生的课堂表现和练习情况,综合评价学生的学习效果。

七、教学资源1. 教学PPT:制作多媒体教学课件,展示多项式乘以多项式的定义、性质和运算规则。

2. 练习题库:准备一批多项式乘以多项式的练习题,包括基础题和提高题。

3. 教学辅导书:提供相关的教学辅导书籍,供学生自主学习和复习。

八、教学进度安排1. 第一课时:讲解多项式乘以多项式的定义和性质。

2. 第二课时:讲解多项式乘以多项式的运算规则,示例解析。

3. 第三课时:课堂练习,学生独立完成练习题。

九、课后作业1. 完成课后练习题,巩固多项式乘以多项式的运算方法和技巧。

2. 选择一些提高题,挑战自己的极限,提高解决问题的能力。

《多项式乘以多项式》整式的乘除与因式分解PPT课件 (共12张PPT)

《多项式乘以多项式》整式的乘除与因式分解PPT课件 (共12张PPT)


练习: (1) (2x+1)(x+3); (2) 2 (3) ( a - 1) ; (4) (5) (x+2)(x+3); (6) (7) (y+4)(y-2); (8)
(m+2n)(m+ 3n): (a+3b)(a –3b ). (x-4)(x+1) (y-5)(y-3)
(x+2)(x+3) = 5x+6; 2 (x-4)(x+1) = x – 3x-4 2 (y+4)(y-2) = y + 2y-8 2 (y-5)(y-3). = y - 8y+15 观察上述式子,你可以 得出一个什么规律吗? 2 (x+p)(x+q) = x + (p+q) x + p q
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

《多项式乘多项式》PPT课件

《多项式乘多项式》PPT课件
观察上面四个等式,你能发现什么规律?
你能根据这个规律解决下面的问题吗?
(x a)(x b) x2 _(a___b_) x _a__b__
口答:
(x-7)(x+5) x2 (_-_2)x (_-_35)
(2)(7 3x)(7 3x) (3)n(n 2)(2n 1)
(4)(6a 5)2
法则
2.化简:
(1)(2x 1)(x2 3x 1)
(2)3x(x2 2x 1) 2x2(x 2)
3.先化简,再求值:
(3a 1)(2a 3) 6(a 1)(a 2) 其中 a 3
思考题 4、解方程
2x2 7x 6 x2 2x 1
x2 9x 7 x2 5x 5 (x2 2x 1)
x2 2x 1
注意!
• 1.计算(2a+b)2应该这样做:
(2a+b)2=(2a+b)(2a+b) =4a2+2ab+2ab+b2 =4a2+4ab+b2
切记 一般情况下
(2a+b)2不等于4a2+b2 .
(2) (x 7 y)(x 5y)
(3) (2m 3n)(2m 3n)
(4) (2a 3b)(2a 3b)
(5) (x+2y)2
你注意到了吗?
多项式乘以多项式,展开 后项数很有规律,在合并同类 项之前,展开式的项数恰好等 于两个多项式的项数的积。
需要注意的几个问题
1.漏乘 2.符号问题 3.最后结果应化成最简形式.
整式的乘除
11.4 多项式乘多项式
回忆 1.单项式乘单项式的法则 2.单项式乘多项式的法则
a c
b c
d

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生掌握多项式乘以多项式的运算法则。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的数学思维能力和团队协作能力。

二、教学内容1. 多项式乘以多项式的定义和运算法则。

2. 多项式乘以多项式的计算方法。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点1. 教学重点:多项式乘以多项式的运算法则和计算方法。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法1. 采用讲解法、演示法、练习法、讨论法等教学方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 分组讨论,培养学生的团队协作能力。

五、教学步骤1. 导入新课:通过复习单项式乘以单项式的运算法则,引出多项式乘以多项式的概念。

2. 讲解多项式乘以多项式的运算法则,并用多媒体课件展示计算过程。

3. 举例讲解多项式乘以多项式的计算方法,让学生跟随老师一起动手操作。

4. 进行课堂练习,让学生独立完成多项式乘以多项式的计算。

5. 组织学生进行分组讨论,探讨多项式乘以多项式在实际问题中的应用。

6. 总结本节课所学内容,强调多项式乘以多项式的运算法则和计算方法。

7. 布置课后作业,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对多项式乘以多项式的理解和掌握程度。

2. 评估学生在解决实际问题时,运用多项式乘以多项式的能力。

3. 观察学生在课堂上的参与程度、提问回答和小组合作情况,评价其数学思维能力和团队协作能力。

七、教学资源1. 多媒体课件:用于展示多项式乘以多项式的计算过程和实际应用案例。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 小组讨论工具:如白板、彩笔等,用于小组内讨论和展示。

八、教学进度安排1. 第1周:导入多项式乘以多项式的概念,讲解运算法则。

2. 第2周:讲解多项式乘以多项式的计算方法,进行课堂练习。

3. 第3周:探讨多项式乘以多项式在实际问题中的应用,进行小组讨论。

七年级数学下册第一章课件:多项式乘以多项式

七年级数学下册第一章课件:多项式乘以多项式

B )
4.(福州中考)计算:(x-1)(x+2)的结果是 x2+x-2 的面积是 xy-x+y-1
5.将一个长为 x,宽为 y 的长方形的长增加 1,宽减少 1,得到的新长方形 .
6.计算: (1)(2a+3b)(3a-b); (2)(-2m-1)(3m-2).
解:(1)原式=6a2+7ab-3b2; (2)原式=-6m2+m+2.
第一章 整式的乘除
4
整式的乘法
第3课时
多项式乘以多项式
多项式乘以多项式. 【例 1】计算: (1)(x+1)(x2-x+1); (2)(a-b)(a2+ab+b2).
【思路分析】用二项式 x+1 的每一项去乘以三项式 x2-x+1 的每一项,再 把积相加即可.
【规范解答】 (1)原式=x3-x2+x+x2-x+1=x3-x2+x2+x-x+1=x3+1;
解:a2+7a+12;a2+a-12;a2-a-12;a2-7a+12;(1)x2+(p+q)x+pq; (2)①x2-3016x+2016000;②x2-4015x+4030000;
(3)
11.若等式(x-5)(x-7)=x2-mx+35 成立,则 m 的值为 12 12.若(ax+3y)(x-y)的展开式不含 xy 项,则 a 的值为 3 .
13.如图,正方形卡片 A 类、B 类和长方形卡片 C 类若干张,如果要拼一 个长为(a+2b),宽为(a+b)的大长方形,那么需要 C 类卡片 3 张.
14.计算: (1)(3x+4)(2x-1); (2)(x+7)(x-6)-(x-2)(x+1).
解:(1)原式=6x2+5x-4; (2)原式=2x-40.
15.先化简,再求值: 3x(2x+1)-(2x+3)(x-5),其中 x=-2.

高等代数课件 第二章

高等代数课件 第二章

三、 多项式的带余除法定理
定理 设f x, gx F[x] ,且 gx 0,则存在
qx, rxF[x], 使得
f x gxqx rx
这里 rx 0,或者 0 rx 0 gx. 并且满足上述条件的 qx和r(x) 只有一对。
注1: qx, rx分别称为 gx除f (x)所得的商式和
余式
注2: gx 0, gx| f x rx 0.
使以下等式成立:
f xux gxvx dx
三、多项式的互素
1. 互素的定义
定义 3 如果 Fx 的两个多项式除零次多项式外
不再有其它的公因式,我们就说,这两个多项式互素.
2. 互素的性质
(1)定理 2.3.3 Fx的两个多项式 f x与gx 互素
的充分且必要条件是:在 Fx中可以求得多项式 ux
二.教学目的 1.掌握最大公因式,互素概念. 2.熟练掌握辗转相除法 3.会应用互素的性质证明整除问题
三.重点,难点 辗转相除法求最大公因式. 证明整除问题
一、最大公因式的定义
定义 1 令 f x和 gx是F [x]的两个多项式,若 是F [x]的一个多项式hx 同时整除 f x和gx ,那么 hx 叫做 f x与gx的一个公因式.
f1x, f2 x,, fk x,及 q1x, q2 x,, qk x,
使得
fk1x fk x qk1xgx

0 f x 0 f1x 0 gx
由于多项式 f1x, f2x,的次数是递降的, 故存在k使
fk x 0或0 fk x 0gx ,于是
qx q1x qk x及rx fk x
系数所在范围对整除性的影响
二、教学目的
1.掌握一元多项式整除的概念及其性质。 2.熟练运用带余除法。

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

多项式乘以多项式课件.ppt

多项式乘以多项式课件.ppt

3.先化简,再求值:
(x+3)(x-3)-x(x-6),其中x=2
观察下列各式的计算结果与相乘的两个 多项式之间的关系: (x+2)(x+3)=x2+5x+6 (x+a)(x+b) (x+4)(x+2)=x2+6x+8 = x2+(a+b)x +ab (x+6)(x+5)=x2+11x+30 (1)你发现有什么规律?按你发现的规律填空:
积的项数与原多项式的项数的积。 2.多项式的每一项分别与另一多项式的 每一项相乘时,要注意积的各项符号 的确定:
同号相乘得正,异号相乘得负 3.不要出现漏乘现象,运算要有顺序。
1. 先化简,再求值:
2
(2a-3)(3a+1)-6a(a-4) 其中a= 17
2.化简:(2x-1)(-3x)-(1-3x)(1+2x)
多项式与多项式相 乘的结果中,要把 同类项合并.
: (1) (x+2y)(5a+3b) (2) (2x–3)(x+4) ;
(3)(2a+b)2
(4)(x-2y)(x-y-3)
多项式乘以多项式,展开后项数有什么规律?
在合并同类项之前,展开式的项数恰好
等于两个多项式的项数的积。
几点注意:
1.多项式乘多项式的结果仍是多项式,
1.多项式与多项式相乘的法则:
2.会用整式乘法的法则,化简整式. 3.数学思想:转化,数形结合
(1)
(2)
(3)
12
(a+n)(b+m) = a(b+m)+n(b+m)

整式的乘除——整式的乘法(多项式乘以多项式)课件

整式的乘除——整式的乘法(多项式乘以多项式)课件
多项式与多项式相乘,先用一个多 项式的每一项乘另一个多项式的每一 项,再把所得的积相加。
用字母表示如下:
(m+b)(n+a)=mn + ma+ bn+ ba
【例1】计算: (1)(1−x)(0.6−x);
解: (1) (1−x)(0.6−x)
=0.6 - x -0.6 • x+ x• x = 0.6-1.6x+x2
课堂小结:
1、多项式与多项式相乘:先用一个多项式 的每一项乘另一个多项式的每一项,再把所 得的积相加。 2、运用多项式乘法法则,要有序地逐项相 乘,不要漏乘,并注意项的符号。 3、最后的计算结果一定要化简。
谢谢你的陪伴!
第一章 整式的乘法(北师大版七下) 1.4.3 多项式与多项式相乘
学习目标 1、会利用法则进行简单的多项式乘法运算。 2、理解多项式与多项式相乘运算的算理。
认识多项式与多项式相乘的式子:
(m+a) (n+b)
(1-x) (2-x)
(2x+3)(-x-1)
(2a-3b)(2b+3a)
多项式与多项式乘法法则:
两项相乘时,先定符号最后的结果要合并同类项.
(2)(2x + y)(x−y)。
解:原式=2x•x-2x•y+y•x-y•Y
=2x2-x•y-y2
随堂练习
(1)(2n +5)(n−3)
(2)(ax+b)(cxƻ5•n-5×3 解:原式=ax•cx+ax•d+b•cx+b•d
=2n2-6n+5n-15
=acx2+adx+bcx+bd
=2n2-n-15

12.3.1两数和乘以这两数的差 课件(共30张PPT)学案

12.3.1两数和乘以这两数的差 课件(共30张PPT)学案

新知讲解
解:(1)(3x+2y)(2y-3x) =(2y+3x)(2y-3x), =4y2-9x2;
(2)(-2m-3n)(2m-3n) =(-3n-2m)(-3n+2m), =9n2-4m2;
(3)(a2+b2)(a2-b2) =a4-b4
新知讲解
例2 计算 : 1998x2002. 解 1998x2002 =(2000-2)x(2000+2) = 20002-22 = 4000000-4 =3999996.
拓展提高
3、【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形, 把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图 1中的阴影部分面积,可以得到乘法公式______.(用含a,b的等式表示) 【应用】请应用这个公式完成下列各题: (1)已知4m2=12+n2,2m+n=4,则2m-n的值为__. (2)计算:20192-2020×2018. 【拓展】 计算:1002-992+982-972+⋯+42-32+22-12
拓展提高
解: 【探究】图1中阴影部分面积a2-b2, 图2中阴影部分面积(a+b)(a-b), 所以,得到乘法公式 (a+b)(a-b)=a2-b2 故答案为(a+b)(a-b)=a2-b2.
拓展提高
【应用】(1)由4m2=12+n2得,4m2-n2=12 ∵(2m+n)⋅(2m-n)=4m2-n2 ∴2m-n=3 (2)20192-2020×2018 =20192- (2019+1)×(2019-1) =20192- (20192-1) =20192-20192+1 =1

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 引导学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生运用多项式乘以多项式解决实际问题的能力。

二、教学内容1. 多项式乘以多项式的定义和性质。

2. 多项式乘以多项式的计算方法。

3. 多项式乘以多项式的应用。

三、教学重点与难点1. 重点:多项式乘以多项式的计算方法。

2. 难点:多项式乘以多项式的计算过程和应用。

四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和计算方法。

2. 采用示例法,演示多项式乘以多项式的计算过程。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学过程1. 导入:回顾多项式的基本概念,引导学生思考多项式乘以多项式的意义。

2. 讲解:讲解多项式乘以多项式的定义、性质和计算方法。

3. 示例:展示多个多项式乘以多项式的例子,让学生跟随步骤进行计算。

4. 练习:布置练习题,让学生独立完成,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和应用。

6. 作业:布置课后作业,让学生进一步巩固所学知识。

六、教学评价1. 评价目标:通过课堂表现、练习完成情况和课后作业,评价学生对多项式乘以多项式的理解程度和运用能力。

2. 评价方法:a) 课堂参与度:观察学生在课堂上的参与情况,包括提问、回答问题和互动等。

b) 练习正确性:检查学生练习题的完成情况,评估其计算的正确性和步骤的完整性。

c) 作业质量:评估学生课后作业的质量,包括答案的正确性、解题思路的清晰性和书写的规范性。

七、教学反思1. 反思内容:a) 教学方法的有效性:思考所采用的教学方法是否有助于学生的理解和掌握。

b) 学生反馈:根据学生的课堂表现和作业情况,反思教学内容是否适合学生的水平。

c) 教学进度:评估教学进度是否适宜,是否需要调整以满足学生的学习需求。

八、教学拓展1. 拓展内容:a) 多项式乘以多项式的推广:介绍多项式乘以多项式在其他数学领域的应用,如代数方程的求解等。

华师版八年级数学上册作业课件(HS) 第12章 整式的乘除 多项式与多项式相乘

华师版八年级数学上册作业课件(HS) 第12章 整式的乘除 多项式与多项式相乘
解:体积为(4x3-32x2+60x)cm3
17.(阿凡题 1072014)甲、乙两人共同计算一道整式乘法:(2x+ a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为 6x2+11x-10;由于乙漏抄了第二个多项式中x的系数,得到的结果 为2x2-9x+10. (1)你能知道式子中的a,b的值各是多少吗? (2)请你计算出这道整式乘法的正确结果.
14.计算下列各题: (1)(来自2-2m+3)(5m-1); 解:5m3-11m2+17m-3 (2)(3a+1)(2a-3)+(6a-5)(a-4); 解:12a2-36a+17 (3)(x-1)(x+2)(2x-1); 解:2x3+x2-5x+2 (4)(2x+1)(1-2x+4x2)-x(3x-1)(3x+1). 解:-x3+x+1
3.若(x-1)(x+3)=x2+mx+n,那么m,n的值分别是( C ) A.m=-2,n=-3 B.m=4,n=3 C.m=2,n=-3 D.m=-2,n=3 4.当3a-1=0时,代数式(a-3)(a-4)-(a-1)(a-3)的值为( C ) A.-6 B.0 C.8 D.10 5.计算:(1)(x+2)(x-3)=___x_2-__x_-__6____; (2)(-2m-1)(3m-2)=__-__6_m__2+__m__+__2__.
6.计算: (1)(a+3b)(2a-b); 解:2a2+5ab-3b2
(2)(x+y)(-2x-12y);
解:-2x2-52xy-12y2
(3)(a+b)(a2-ab+b2); 解:a3+b3 (4)(2x+1)(x-1)(2x-3). 解:4x3-8x2+x+3
知识点二:多项式与多项式相乘的应用 7.三个连续的奇数,若中间一个为a,则它们的积为( A ) A.a3-4a B.a3-6a C.4a3-a D.4a3-6a 8.若长方形的长为4a2-2a+1,宽为2a+1,则这个长方形的面积 是( D ) A.8a3-4a2+2a-1 B.8a3-1 C.8a3+4a2-2a-1 D.8a3+1

整式的乘法(三)——多项式乘多项式教案

整式的乘法(三)——多项式乘多项式教案

§14.1.4 整式的乘法——多项式乘多项式【教学内容分析】本节课通过“自主——合作”探究得到多项式乘以多项式的乘法法则,该法则是整式乘法的基础。

【教学目标】1.知识与技能目标⑴ 理解多项式与多项式的乘法法则。

⑵ 能够熟练地进行多项式与多项式的乘法。

2. 过程与方法目标⑴ 经历探索多项式与多项式的乘法法则的过程,进一步发展观察、归纳、概括的能力,发展学生有条理的思考及语言表达能力。

⑵ 经历探索多项式与多项式的乘法法则的过程,体会乘法分配律的作用和“化归”的思想。

3.态度价值观目标⑴ 通过探究面积的不同表示方法活动,使学生体验探究的过程,培养学生的创新能力。

⑵ 通过把一个多项式看成一个整体,发展学生的转化能力。

⑶ 通过对多项式与多项式的乘法法则的探索,让学生获得成功的体验,锻炼克服困难的意志。

【教学重点、难点】重点:多项式与多项式的乘法法则。

难点:多项式与多项式的乘法的法则的推导及综合运用。

【教学准备】 教学课件。

【教学过程】教学过程活动一 “自主——合作”探究一.创设情境 1. 已知m ·(p +q )=mp +mq ,如果将m 换成(a +b ),你能计算 吗?2. 问题:若将原长方形绿地的长增加b m 、宽增加q m ,你能用几种方法求出扩大后的长方形绿地的面积呢?方法一: 方法二: 方法三: 方法四: 教师鼓励学生思考,用不同的方法求出矩形的面积,得出多项式乘多项式运算法则 这些代数式之间有什么关系?请说明理由.归纳总结:多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加.()()q p b a ++ a p qb a b p q ++()();a p qb p q +++()();p a b q a b +++()();.ap aq bp bq +++ 活动二、提示:让学生明白多项式乘多项式运算时,需注意以下几点: ⑴ 不要漏乘; ⑵ 注意符号; ⑶ 结果最简活动三、例题讲解 运用法则活动四、变式训练,再攀高峰活动五、应用新知,推广应用活动六、能力提升注意:充分调动学生的积极性,培养学生"探究-发现-归纳"的数学思维 活动六、归纳小结,充实结构(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中体现了哪些思想方法?活动七、知识留恋,课后韵味布置作业:必做题:教材习题14.1第5、8题;选做题:教材习题14.1第14、15题.板书设计§14.1.4 整式的乘法(三)——多项式乘多项式活动一 自主—合作探究 活动二 大胆猜想 探索规律多项式乘多项式的运算法则活动三 应用新知 推广应用 活动四 变式训练 巩固提升 活动五 归纳小结 充实结构 活动六 知识留恋,课后韵味312x x ++()();8x y x y --()();22.x y x xy y +-+()() 213x x ++()();23m n n m +-()();22325.x x x ++-()() 21a -();【设计思想】1、在整个设计教学中,目的是想体现学生的参与意识,让学生在运算的过程中发现运算法则。

《多项式乘多项式》课件

《多项式乘多项式》课件
A.ab-bc+ac-c2 B.ab-bc-ac+c2 C.ab-ac-bc D.ab-ac-bc-c2
8.方程(x-1)(2x+1)=(2x-1)(x+2)的解为__x_=_14___. 9.商店经营一种产品,定价为12元/件,每天能售出8件,而每降价x 元,则每天多售出(x+2)件,则降价x元后每天的销售总收入是 __(-__x_2_+__2_x_+__1_2_0_)_元.
18.甲、乙二人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄 错了第一个多项式中 a 的符号,得到的结果为 6x2+11x-10;由于乙漏 抄了第二个多项式中 x 的系数,得到的结果为 2x2-9x+10.
(1)你能知道式子中 a,b 的值各是多少吗? (2)请你计算出正确结果. 解:(1)由题意,得(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x - 10 , (2x + a)(x + b) = 2x2 + (a + 2b)x + ab = 2x2 - 9x + 10 , 则 有 -a+(23ba=--2b9),=11,解得ab==--52, (2)(2x-5)(3x-2)=6x2-19x+10
3.若(x+2)(x-1)=x2+mx+n,则m+n=( C ) A.1 B.-2 C.-1 D.2 4.下列计算结果是x2-5x-6的是( B ) A.(x+6)(x-1) B.(x-6)(x+1) C.(x-2)(x+3) D.(x-3)(x+2)
5.(习题5变式)计算: (1)(x+1)(2x-1); 解:原式=2x2+x-1
10.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为( B ) A.M=N B.M>N C.M<N D.M与N的大小由x的取值而定 11.若(x2-mx-1)(x-2)的积中,x的二次项系数为0,则m的值是

多项式乘以多项式PPT课件

多项式乘以多项式PPT课件

多项式的乘法法则
多项式与多项式相乘, 先用一个 多项式的每一项乘以另一个多项式 的每一项, 再把所得的积相加.
2020年10月2日
3
例题教学
(1) (x+2y)(3a+2b)
解:原式= (x·3a) + (x·2b)+ (2y·3a) + (2y·2b)
=3ax+2bx+6ay+4by
(2) (2x–3)(x+4)
+(3y·(-xy) )+( 3y·2y )
2
=-2x3 +2x2y-4xy2+3x2y-3xy2+6y3
=-2x3 +5x2y-7xy2+6y3
2020年10月2日
5
展示风采
(1) (2a–3b)(a+5b) ;
(2) (xy–z)(2xy+z) ;
(3) (x–1)(x2+x+1) ;
2020年10月2日
解:原式= (2x·x) + (2x·4) + (-3·x) + (-3·4)
=2x2+8x+(-3x)+(-12)
=2x2+5x-12
2020年10月2日
4
(3) (-2x+3y)(x2-xy+2y2) 解:原式= (-2x·x2)+( -2x ·(-xy) )+(-2x·2y2 )+( 3y·x2 )
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 引导学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 多项式乘以多项式的概念和意义。

2. 多项式乘以多项式的计算方法和步骤。

3. 多项式乘以多项式的应用举例。

三、教学重点与难点1. 教学重点:多项式乘以多项式的计算方法和步骤。

2. 教学难点:理解多项式乘以多项式的概念和意义。

四、教学方法1. 采用直观演示法,通过示例让学生直观地理解多项式乘以多项式的概念和意义。

2. 采用讲授法,讲解多项式乘以多项式的计算方法和步骤。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学过程1. 导入:通过复习单项式乘以多项式的知识,引出多项式乘以多项式的概念。

2. 新课讲解:讲解多项式乘以多项式的计算方法和步骤,示例演示。

3. 课堂练习:布置一些简单的多项式乘以多项式的题目,让学生独立完成。

4. 解答疑问:针对学生在练习中遇到的问题,进行讲解和解答。

5. 课堂小结:总结本节课所学内容,强调多项式乘以多项式的概念和意义。

6. 作业布置:布置一些多项式乘以多项式的题目,让学生课后巩固。

六、教学反思1. 教师对自己在本节课的教学过程进行反思,分析教学方法的适用性、学生的学习效果等。

2. 思考如何改进教学方法,以提高学生的学习兴趣和参与度。

3. 对学生学习情况进行分析,找出学生的优点和不足,为下一步教学提供参考。

七、课后作业1. 布置一些多项式乘以多项式的题目,让学生课后巩固所学知识。

2. 鼓励学生进行自主学习,尝试解决遇到的困难。

3. 提醒学生在完成作业时注意计算准确性和书写规范。

八、拓展与延伸1. 引导学生思考多项式乘以多项式在实际生活中的应用。

2. 介绍一些与多项式乘以多项式相关的数学知识,如多项式除法、因式分解等。

3. 鼓励学生进行探索学习,提高学生的数学素养。

九、评价与反馈1. 对学生在课堂表现、作业完成情况进行评价,及时给予反馈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:原式 2x
2 2
4x 3x 6 ( x 1 ) 2 2 2x 7 x 6 x 1 2 x 7x 7
( x 2 x 1)
2
( x 1)( x 1)
1.
先化简,再求值:
(2a-3)(3a+1)-6a(a-4)
2 其中a= 17
2.化简 (2x-1)(-3x)-(1-3x)(1+2x)
课堂小结 ⒈本节课我们学习了多项式的乘法运算,在运算过程中要注
意:
①要注意先确定符号。 ②不要漏乘,记住两个“每一项”,一般地在没有合并同类 项 之前,两个多项式相乘展开后的项数是这两个多项式的项数 之积。 ③展开式中有同类项要合并。
⒉ 含同一个字母且相同字母的系数是1的两个二项式相乘
,其结果是一个关于“相同字母”的二次三项式,结果中的一 次 项系数、常数项分别是原多项式中两个常数项的和﹑积。
计算: -2X(3X2-X-5)
解:原式= - 6x3+ 2x2 +10x 单项式与多项式相乘,用单项式去 乘多项式的每一项,再把所得的 积相加。
动动脑: 这是一套四间房居室的平面图。怎样用代数式
求出它的面积呢?
m
n a b a
b b
m n
m

m n a b
n3;n)= am+an+bm+bn
3.解方程: (x+3)(x-3)-x(x-6)=3
分别计算下列各多项式与多项式的积 含同一个字母且相同字母的系数是1的两个二项式 ⑴(n+2)(n+3) = n2+5n+6
相乘,其结果是一个关于“相同字母”的二次三项式, ⑵(m-2)(m-3) = m2-5m+6 结 ⑶(x+2)(x-3) = x2-x-6 果中的一次项系数﹑常数项分别是原多项式中两个常 ⑷(y-2)(y+3) 数项的和﹑积。 = y2+y-6
3 4
1
2
3
4
多项式的乘法法则:
多项式与多项式相乘,先用一个 多项式的每一项分别乘另一个多项式 的每一项,再把所得的积相加.
在合并同类项之前,展开式的 思考:多项式乘以多项式,展开后项数 例1 计算: (1) (x+2y)(5a+3b) ; 项数恰好等于两个多项式的
有什么规律?
(2) (2x–3)(x+4) ; (x+2y)(5a+3b) 解: =5ax+3bx+10ay+6by (2x–3)(x+4) =2x2+8x–3x–12 解: =2x2+5x –12
比较所得的结果,你发现了什么﹖请用你的发现所得出的结论 直接做下面的填空︰ 2 结论( x +a)(x+b) = x +(a+b)x+ab 计算: +5m+4 ①(x-6)(x+1) = x2-5x-6 ②(m+1)(m+4) =m2 +5a-14 ③(a+7)(a-2) = a2 ④(y-4)(y-3) = y2-7y+12
项数的积。
学一学
感悟新知
计算:
(1) ( x 3 y )(x 7 y ) (2) (2 x 5 y)(3x 2 y) (3) ( x
y)(x xy y )
2 2
2 思考:(a+b)
应该怎么算?

2应该这样做: 1.计算(a+b)
(a+b)2=(a+b)(a+b) =a2+ab+ab+b2 =a2+2ab+b2
切记
2不等于a2+b2 (a+b)
.
需要注意的几个问题
1.漏乘 2.符号问题 3.最后结果应化成最简形式.
看谁算得好
(1)(x+2y)(5a+3b)
(2) (2x–3)(x+4)
2 (3)(2a+b)
(4)(x+y)(x –xy+y )
2
2
辨一辨

2
判别下列解法是否正确, 若错请说出理由.
2
(2 x 3)(x 2) ( x 1)
相关文档
最新文档