配位滴定的酸度选择和控制.
配位反应及配位滴定法

铜氨溶液 的组成 配合物 的定义
由以上实验事实可以推知,在铜氨溶液 中,无简单Cu2+离子,有简单SO42-离子, 无大量NH3,根据进一步的实验(元素 含量分析)可以得出铜氨晶体的组成为 [Cu(NH3)4]SO4
配合物是由可以给出孤对电子或多个不 定域电子的一定数目的离子或分子(称为配 体)和具有接受孤对电子或多个不定域电子 NH3 NH3 的空位(空轨道)的原子或离子(统称中心 原子)按一定的组成和空间构型所形成的化 Cu2+ 合物。
配体——配合物中与形成体结合的提供孤电子对的离子或中性 配合物中与形成体结合的提供孤电子对的离子或中性 配体 分子。 CO等等 等等。 分子。如NH3、CN-、CO等等。 提供配体的物质——配合剂,如NaOH等。 配合剂, NaOH等 提供配体的物质 配合剂 配位原子——配体中直接提供孤电子对与形成体形成配位键的 配体中直接提供孤电子对与形成体形成配位键的 配位原子 原子。 原子。常见的配位原子为电负性较大的非金属原 子。如N、O、S、C和卤素等原子。 和卤素等原子。 根据一个配体中所含配位原子数目的不同,配体可分为单齿和 根据一个配体中所含配位原子数目的不同, 多齿配体。 多齿配体。 单齿配体—— 一个配体中只有一个配位原子, 一个配体中只有一个配位原子, 单齿配体 如NH3、OH-、CN- 、SCN-等。 多齿配体—— 一个配体中有2个或2个以上配位原子, 一个配体中有2个或2个以上配位原子, 多齿配体 如[Cu(en)2]2+。
6.1
配合物基本概念
一、配合物的定义
+
加入酒 精过滤
配合物的形成 CuSO4+4NH3=[Cu(NH3)4]SO4
把纯净的深蓝色 的硫酸四氨合铜 晶体溶于水,分 成三分,进行如 理实验: 深蓝色 晶体
配位滴定法

=αY(H)+αY(N)-1
当αY(H)或αY(N)>>1,αY≈αY(H)+αY(N) 或αY(H)>>αY(N) ,αY≈αY(H): αY(N)>>αY(H),αY≈αY(N) 例 某溶液中含有EDTA、Pb2+和(1)Ca2+,(2)Mg2+, 浓度均为0.010mol/L。在pH=5.0时,对于EDTA与Pb2+ 的反应,计算两种情况下的 αY 和lgαY值。
M+Y MY
稳定常数 K MY
MY M Y
讨论: KMY↑大,配合物稳定性↑高,配合 反应完全
某些金属离子与EDTA的形成常数
lgK
Na+ 1.7
lgK
lgK
14.3 15.4 16.1 16.5 16.5 18.0 18.8
lgK
Hg2+ Th4+ Fe3+ Bi3+ ZrO2+ 21.8 23.2 25.1 27.9 29.9
HOOCH 2CH2C N HOOCH 2CH2C CH2CH2COOH H2 C H2 C N CH2CH2COOH
3.乙二胺二乙醚四乙酸(EGTA)
Ethylene glyceroldiamine tetraacetic acid 对Ca2+的选择性强
HOOCH 2C N HOOCH 2C H2 C H2 C O H2 C H2 C O H2 C H2 C N CH 2COOH CH 2COOH
O C
O CH2 CH2 Ca CH2 O C O O C CH2 O N
O
二、金属离子-EDTA配位化合物的特点 1.配合物结构为五元环螯合物。 2.配位比较简单,多为1:1
配位滴定法3

【例】在pH=10测定Ca2+、Mg2+, 微量的Al3+干扰测定 若用F-掩蔽Al3+ K(AlF63-) =1019.84 KAlY =1016.13
但是,CaF2 、 MgF2 为沉淀, 干扰被测离子,一 般不用F-掩蔽,而用三乙醇胺掩蔽
分 析 化 学
Analytical Chemistry
主讲:罗跃中
项目四 配位滴定法
湖南化工职业技术学院
Analytical Chemistry 分析化学
①最高酸度(最低 pH) EDTA 滴定单一金属离子 M的最适酸度: 当被测金属离子的浓度为 时, lg K ' MY lg K MY lg0.01mol/L Y(H)
2016/2/29
湖南化工职业技术学院
Analytical Chemistry 分析化学
直接滴定法优点:方便,准确
【例】水硬度的测定: Ca2+、 Mg2+
lgKCaY = 10.7, lgKCa-EBT = 5.4
lgKMgY = 8.7, lgKMg-EBT = 7.0
在pH=10.0的氨性缓冲溶液中,EBT为指示剂,
当 CM = CN lgK ≥ 5.0
可用条件稳定 常数判断
2016/2/29
湖南化工职业技术学院
Analytical Chemistry 分析化学
滴定M:①最高酸度(最低pH),同单一离子滴定 当CM=0.01mol/L时, lg K′MY = lgKMY - lgαY(H) ≥ 8 ∴lgαY(H) ≤ lgKMY – 8 pH ≥ ? ②最低酸度(最高pH ) (2) pH a、考虑N不干扰:△lgK + lg ( CM / CN ) ≥ 5 即:lg(K′MYCM) -lg (K′NYCN ) ≥ 5 控 又由于准确滴定M时 lg(K′MYCM) ≥ 6, 制 故lg (K′NYCN ) ≤1,当CN=0.01 mol/L时 lgαY(H) ≥ lg K′NY -3 pH ≤ ? b、考虑M水解的酸度: K sp
分析化学第17讲配位滴定法3

100% 0.02%
102.00 1010.99
三、配位滴定中酸度的选择和控制
• 根据前面的讨论可知,金属离子被准确滴定的
条件之一是应有足够大的K’MY值。但是K’MY除 了由绝对形成常数决定外,还受溶液中酸度、
辅助配位剂等条件的限制,所以当有副反应存
在时,cM=0.01mol·L-1条件下的判别式应为:
10pM '
[Y ']sp 10pY ' [M ' ]sp 10pM' cM ,sp
在计量点附近:
[ M ' ]sp [Y ' ]sp
cM ,sp
Kபைடு நூலகம்
' MY
(4)
Et
[Y ' ]sp
10pY ' [ M ' ]sp cM ,sp
10 pM '
cM ,sp
K
' MY
10pY ' 10pM ' cM ,sp
• Fe3+、A13+、Ni2+和Ti4+等离子,能封闭二甲酚 橙指示剂,一般可用氟化物掩蔽A13+;用抗坏 血酸掩蔽Fe3+和Ti4+;用邻二氮菲掩蔽Ni2+。
• 最后值得提出的是:在工厂的操作规程中,常 提到半二甲酚橙这种指示剂。二甲酚橙与半二 甲酚橙的性质、作用基本上一致。
(四)1-(2-吡啶偶氮)-2-萘酚(PAN) • 纯PAN是橙红色晶体,难溶于水,可溶于碱或
① 酸度增大时,lgY增大,lgK’MY减小,对滴定 不利。
② 酸度减小时,虽然lgY减小,lgK’MY增大,对 滴定有利,但是,酸度太小时,金属离子也可能
化学分析第六章配位滴定法

39
(一) 滴定曲线的计算 [M ][' M] YV ' M CM VMVY [Y ]'[M] Y'VY CY VMVY
K'MY [MY]' [M]' [Y]'
KMY、CM、CY、VM、VY已知,可算出[M]
pH=2, lgY(H)=13.79, lg Zn(OH)=0 pH=5, lgY(H)=6.54, lg Zn(OH)=0
pH=2时: lgKZnY = lgKZnY - lgY(H)= 16.5-13.79=2.71
pH=5时: lgKZnY = 16.5- 6.54 = 10.05
37
例:计算pH11时,[NH3]=0.1mol/L时lgK’ZnY
25
αα 1 Y Y(HY ) (N)
26
2. 金属离子M的副反应系数 M
配位效应系数 M(L):由于其它配位剂L的存
在,溶液中金属离子M与配位剂Y进行 主反应能力降低的现象。
M L ML
ML2
ML
辅助n配 位效应
+Y
MY
27
[M] ML [M]
[M []M[LM ]2]L [M n] L [M]
O
H 2C
C O
C H 2C O
N
Ca O
O
H2 C CH2
N CH2
O
C
CH2 O
C
O 6
EDTA螯合物的模型
7
EDTA-M的特点:
• 配位比是1:1 • 配合物稳定性高 • 配位反应速度快 • 大多数配合物无色
分析化学 第四章 配位滴定法

通辽职业学院
第二节 乙二胺四乙酸的性质及其配合物
一、乙二胺四乙酸的性质 1.乙二胺四乙酸的结构与性质 乙二胺四乙酸的结构
HOOCH2C HOOCH2C CH2COOH N CH2 CH2 N CH2COOH
从结构式所知, EDTA 为四元有机弱酸。用 H4Y 表示其化学式。 EDTA 为白色粉末状结晶,微溶于水,由于溶解度太小,不宜作滴 定液。利用 EDTA 难溶于酸和一般有机溶剂,易溶于氨水和氢氧化 钠等碱性溶液等性质,常制备成相应的钠盐,其化学名称为乙二胺 四乙酸的二钠盐,用Na2H2Y· 2H2O表示,也简称EDTA。EDTA钠盐 为白色粉末状结晶,有较好的水溶性。
分析化学
通辽职业学院
2.乙二胺四乙酸在水溶液中的电离平衡 在水溶液中,EDTA分子中互为对角线的两个羧基 上的H+会转移到氮原子上,形成双偶极离子。
HOOCH2C
+
N OOCH2C H
CH2 CH2
N H CH COOH 2
+
CH2COO
-
在强酸性溶液中,两个羧酸根可再接受H+而形成 H6Y2+,因此EDTA可看作六元酸,在溶液中有六级 离解平衡: 分析化学
通辽职业学院
EDTA在水溶液中的六级离解平衡:
H6 Y2+ Y+ H+ H+ + H5 Y+
K a1 [H ][H5 Y ] 100.9 2 [H6 Y ]
H5
+ H4Y
H4Y H3Y H2 Y2-
H + + H3Y H+ + H2Y2H+ H+ + HY3-
配位滴定的方式

nA
a t
nT
cAVA
a t
cTVT
mA MA
a t
cTVT
TA
cA M A 1000
TT/A
mA VT
a t
cT M A 1000
A% a cTVTM A 100 A% TT/AVT 100
t S 1000
S
谢 谢 大 家!
配位滴定的方式
01 单一离子的滴定条件
CONTENTS目 录
02 混 合 离 子 的 滴 定 条 件 03 使用掩蔽剂的选择性滴定
01
单一离子的滴定条件
单一离子的滴定条件 1. 准确滴定的判别式 2. 滴定的适宜酸度范围 3. 滴定的最佳酸度 4. 缓冲溶液的作用
混合离子的滴定条件 1. 控制酸度分步滴定 2. 使用掩蔽剂选择性滴定
利用金属离子与配体CN-形成的配合物稳定性的差异, 分步滴定。
解蔽剂:甲醛 Zn(CN)24 4HCHO = Zn2+ +4CH2 (OH)CN+4OH
1. Cu2 , Co2 , Ni2 , Hg2等,稳定,不能解蔽 2. Zn2 , Cd2等,稳定性中等,能解蔽 3. Ca2 , Mg2 , Pb2 , 稀土离子等,不稳定 测定时, 1. 用EDTA测总量; 2. pH=10时,KCN掩蔽第一、二组,测第三组; 3. 加入甲醛,解蔽第二组,测第二组;
判别式
lg(CMSP
K
' MY
)
6
lg
K' PbY
6
lg
0.02 2
8
lgY(H)
lg
KPbY
lg
K' PbY
18.04 8
配位滴定法

1 1[ L] 2 [ L] n [ L]
2
n
可见,M(L)是配位剂平衡浓度[L]的函数,[L] 越大,副反应越严重, M(L) 值也越大。
水解效应与配位效应类似,金属离子的lg M(OH)
见P422附录表6-2。
(2)金属离子的总副反应系数M
• 两种配位剂L和A存在:
(3)配位剂总的副反应系数
• 1、写出副反应系数的定义式,
[Y`] Y(H) [Y]
Y ( N )
[Y ] [ NY ] [Y ] 1 K NY [ N ] [Y ] [Y ]
[Y ] [Y ] [ HY ] [ H 6Y ] [ NY ] Y [Y ] [Y ] Y ( H ) Y ( N ) 1
Cu2+和NH3的配位反应分四级反应:
Cu2+ + NH3
Cu(NH3)2+ + NH3
Cu(NH3)2+ Cu(NH3)32+
K1=104.31 K3=103.04
Cu(NH3)22+ K2=103.67 Cu(NH3)42+ K4=102.30
Cu(NH3)22+ + NH3
Cu(NH3)32+ + NH3
铬黑T(EBT) 二甲酚橙(XO)
7~10
<6
蓝
亮黄
红
红紫
钙指示剂(NN)
10~13 纯蓝
酒红
水的总硬度(Ca2+,Mg2+)
Ca2+
Al3+(返滴定法)
四、标准溶液的配制和标定
1.EDTA标准溶液
EDTA-2Na• H2O
配位滴定法-PPT课件全

[Ca’]1 =
0.02
0.1000(初始钙浓度) 20.00+19.98
= 0.02 0.1000(初始钙浓度) / 2 39.98 / 2
0.02
C sp ca2
39.98 / 2
1.0
103
C sp ca2
PCa’1
3.0
log
C sp ca2
滴定至100.1%时
[Ca’]2
=
[CaY [Y’]2 K
sp
100%
cM(SP)
稳定常数定义可知
化学计量点时:
K' MY
[MY ]sp [M ']sp[Y ']sp
滴定终点时:
K' MY
[MY ]ep [M ']ep[Y ']ep
取对数后分别为
pM
' sp
pYs'p
lg
K
' MY
lg[MY ]sp
pM
' ep
pYe'p
lg
K
' MY
lg[MY ]ep
接近化学计量点 [MY ]sp [MY ]ep
pM ' pY ' 0
化学计量点时[MY] sp
CM (sp)
K' MY
[MY ]sp [M ']sp[Y ']sp
所以 [M ']sp =[Y ']sp =
CM (sp) K'
MY
Y' M'
TE(%) ep
ep 100%
cM(sp)
Y' 10pY' M' 10pM'
无机化学第15章配位滴定

6Y
2
]
Y(H )
1H6
Y[ H2+
]
[HH5Y]2+
+H[+H ] 3 K
[H
a1
]4
HHK54YY6KK+[65HKH4]KH5K3Y346KYK- +2+5HH+K+K 6 6K K 5[5K H K44 K ]63KKKK2aa6K32K15K 4K 3
Y[H]
=
CY [Y]
式中[Y]为参加配位的EDTA浓度,即平衡浓度;
CY为EDTA总浓度,即分析浓度; αY[H]为EDTA的酸效应系数。
2019年10月19 日3时12分
Y(H )
CY [Y 4 ]
[Y
4
]
[HY
3
]
[H
2Y 2 ] [H3Y [Y 4 ]
]
[H
2、EDTA螯合物 EDTA能与许多金属离子生成稳定螯合物。一 般情况下配位比为1:1。
M 2+ + H2Y2-
不随 P H而 变
M2+ +
HY3-
M2+ + Y 4-
MY 2- + 2 H + MY2- + H +
MY2 -
PH= 4~ 5 PH= 7~ 9 P H > 10
M2 + + H2Y2-
5.2 10-3
100% 52%
0.010
即溶液中仅有48%的Mg2+被EDTA滴定。
山东大学期末考试复习-水分析化学[第三章配位滴定法]山东大学期末考试知识点复习
![山东大学期末考试复习-水分析化学[第三章配位滴定法]山东大学期末考试知识点复习](https://img.taocdn.com/s3/m/5a0fb5ca7c1cfad6185fa726.png)
第三章配位滴定法一、配位滴定法概述配位滴定是以配合反应为基础的滴定分析方法。
它以配位剂作标准溶液直接或间接地滴定被测溶液,形成配位化合物,并选用适当的指示剂确定滴定终点。
用于配位滴定的配位剂:无机配位剂如CN-、F-等和有机配位剂如氨羧配位剂使用较广泛:氨基三乙酸(NTA) 乙二胺四丙酸(EDTD) 乙二胺四乙酸(EDTA)二、EDTA的性质及配合物1.EDTA的离解平衡在强酸溶液中,H4Y的两个羧酸根可再接受质子,形成H6Y2+,这样ED—TA相当于一个六元酸,有6级离解平衡可见,EDTA具有中强二元酸的性质-- H4Y+2NaOH====Na2H2Y+2H2O EDTA在水溶液中有七种存在型体(表3—1):C(H4Y)=[H6Y2+]+[H5Y+]+[H4Y]+[H3Y-]+[H2Y2-]+[HY3-]+[Y4-]EDTA在不同pH值下的主要存在型体表3—1pH≥12时,只有Y4- 型体,此时Y4- 的分布分数δy4-≈1。
EDTA微溶于水,其溶解度为0.02g/100mL水(22℃),难溶于酸和一般有机溶剂,易溶于氨水和氢氧化钠溶液。
故常用它的二钠盐,也简称EDTA(Na2H2Y·2 H2O,M=372.24),其溶解度为11.2g/100mL 水(22℃),浓度为0.3mol/L;0.01mol/L EDTA溶液的pH值为4.8。
2.EDTA与金属离子形成的配合物的特点配位性广泛;配位比简单的为1:1;配合物稳定;配合物易溶于水;EDTA与无色的金属离子生成无色配合物,与有色金属离子生成更深的配合物。
三、配合物在溶液中的离解平衡1.配合物的稳定常数金属离子(M)与配合剂(L)形成1:1型配合物时:对于相同配位数的配离子,K fθ值越大,该配离子在水中越稳定,K dθ越大,表示配离子越易离解。
金属离子(M)与配合剂(L)形成1:n型配合物时:βn——总稳定常数以K fθ表示。
3.溶液中各级配合物的分布溶液中金属离子M的总浓度为C M,配位体L的浓度为C L,根据物料平衡:C M=[M]+[ML]+[ML2]+…+[ML n]=[M](1 +β1[L]+β1[L] 2+…+βn[L] n)根据分布分数定义,则各级配合物的分布分数:可见,配合物的分布分数δ1仅是[L]的函数,由δ和C M可求各级配合物的平衡浓度。
提高配位滴定选择性的方法中“控制酸度”的探讨

提高配位滴定选择性的方法中“控制酸度”的探讨2009年3月第3期(总第124期)广西轻工业GuANGxIJ0uRNALoFLIGHTINDusTRY化工与材料提高配位滴定选择性的方法中"控制酸度"的探讨马永梅(淮阴工学院生化学院,江苏淮安223003)'【摘要】对国内一些无机及分析化学,分析化学等教材中提高配位滴定选择性的方法申"控制酸度"进行了探讨,透彻地分析了"控制酸度"的实质.提出"控制酸度"不是提高配位滴定选择性的方法之一;对配住滴定中混合离子分步滴定的最高酸度控制问题的不同观点进行了综述与评论,提出了一些修改建议.【关键词】配位滴定;选择性;酸度【中图分类号】0655.2【文献标识码】A【文章编号】1003—2673(2009)02—39—021"控制酸度"不是提高配位滴定选择性的方法之一大学授课进度较快,学生需自己多看教材,大学教学工作者有责任做好教材的编写或提出修改建议工作.目前众多《无机及分析化学》,《分析化学》等教材将"控制酸度"作为提高配位滴定选择性的方法之一Il-,笔者认为这是不恰的.掩蔽法,预先分离和用其它配位剂这些提高配位滴定选择性的方法都需要控制一定范围的酸度才能准确滴定,难道这些方法也称为"控制酸度"吗?r冉者,测定单一金属离子也需要控制一定范闹的酸度才能准确滴定:众多《无饥及分析化学》,《分析化学》等教材中"提高配位滴定选择性的方法I控制酸度"所述选择性测定某一离子的方法实质卜并不足为控制了溶液酸度,所以消除了干扰,而是共存离子N(混合离子中除去待测离子以外的离子)本身对待测离子测定无着影响,这可以从判断能含利用控制酸度进行分步滴定的条什(设金属离子M,N共l存,且K>K,,,准确滴定M 一般膻满足△(1gKc)>16(或5)或△(1gKc)≥6(或5)一)看出,这种情况下控制酸度的目的和测定单一金属离子的相同,如控制酸效,控制金属离子的水解效等.例如Fe"和Znz+共存,f,f在pH=2时以磺基水杨酸为指示剂,用乙二胺四乙酸直接滴定Fe",此时zn'不.L.jY一形成稳定的配合物.1gK(FeY一)=24+23.1gK(ZnY一)=16.36,后者比前者稳定性差得多,滴定时【1f认为Y苒'先jFe"形成配合物,Zn与Y一的配位反应可不计.在这里控制pH=2是为了控制酸效应,控制Fe"离子的水解效以及保征磺基水杨酸指示剂作用的合适pH范用,但不改变Zn与Fe"消耗Y一的比例,因为根据Fe,与Y4-,Zn一jY的配位平衡式,有如下关系:Fe3++Y一=FeYK—:.()Fe-f"-丽1024?23IZn:'+Y一=ZnY!一式(1)÷式(2)可得:!÷!!:10,s,(3)c(Fe")c(zn"),一,,2一,在此控制PH:2不改变擘÷的值,从而c【Fe—c(Zn—J不改变Znz的共存对Fe"测定的影响程度,所以并未提高滴定的选择性.一些学者认为,控制较高的酸度可以使共存离子N不与EDTA形成稳定的配合物,从而消除干扰I1,3】.在较高的H浓度下共存离子N不与EDTA形成稳定的配合物是因为H与Y一反应,使Y与共存离子N配位能力下降.此时Yl二j待测离子配位能力也下降.从上面的例子叮以看出,它们下降的幅度是相等的.换个角度来讲,控制较高的H浓度,H一jY一反应,降低了Y一浓度,抑制了Y一与共存离子N的配位反应,但H' 与Y一反应,H'消耗的Y一量大大增加.随酸度升高而增大,当酸度不太低时,N不发生水解,a.为定值,则随酸度升高而增大J.因此控制较高的酸度,实质上并未减弱共存离子N的干扰,反而增强了H的干扰.在Ca",Mg.共存的溶液中,加入NaOH,使溶液的pH>12.此时Mg形成Mg(OH)2沉淀而不干扰ca'的测定p1.该例子看上去通过控制酸度提高了配位滴定选择性,但教材皆将其编写于"沉淀掩蔽法"标题下.教材中"提高配位滴定选择性的方法1.控制酸度"下讨论的控制酸度是控制较高的酸度,使干扰离子不与EDTA形成稳定的配合物,同时考虑酸度对待测金属离子1gK的影响,待测金属离子的水解效应以及指示剂作用的合适pH范闸,并不涉及利用沉淀反应降低干扰离子浓度以消除干扰."控制酸度"不能作为提高配位滴定选择性的方法之一."混合离子的滴定"标题下可设三个小标题:a.准确分步滴定的条件.}】.酸度控制;c.提高配位滴定选择性的方法.提高配位滴定选择性的方法有:掩蔽法,预先分离和用其它配位剂.将目前众多《无机及分析化学》,《分析化学》等教材中"提高配位滴定选择性的方法1.控制酸度"改成上述的"混合离子的滴定h.酸度控制",严谨准确,条理清楚,学生将很容易理解,极大提高他们自学的主动性和积极性.【作者简介】马永梅(1969一),女.江苏扬州人,副教授,从事基础化学教学和废水处理研究工作.392混合离子分步配位滴定的最高酸度控制常见《无机及分析化学》,《分析化学》等教材中对混合离子分步配位滴定的最高酸度控制问题的观点有:a.设金属离子lYl,N共存,且KMY>K…则Y《=dY(NI:K"所对应的酸度值为最高酸度值171.b.设金属离子M,N共存,且K>K准确滴定M一般应满足A(1gK'c)≥6(或5)或/x(1gK'c)>16(或5),cM=10tool?L.'时,lgKMY≥87),1g.=lgKMrlgKMY≤1gKMY7),据此求出1g仅最大值,即可得相应的最高酸度J.c.在滴定金属离子M时,若有另一金属离子N共存,1gKMY:1gKM,一1gY—lg111当M的剐反应町忽略时,则W由下式求出滴定允许的Y副反应系数的最高值()1g(n,)=lgKMY一1gKM,lApM'I-0.2.1Etl:0.1%,cM=2X10I2tool?L时,1g(旺Y)…=lgKMY一8考虑到共存离子效应,Y的实际副反应系数Y=,lm+qY一1若>(Ct.Y)…,由于0【Ⅲ≥l,于是有Y>(dY)….说明N一jY的副反应严重,Y的实际副反应系数超过了滴定允许的Y副反应系数的最高值,这时不能准确滴定M.若.≤(,),则町根据下式计算出滴定允许的酸效系数的最高值,fI{.=(QY)一Of.Y+1:(Y)一KY【N】sP其对应的pH值为滴定允许的最低pH值.上述观点争论性较大,学生很难掌握,直接影响教学效果,因此我们有必要做好这方面统一工作.观点a认为=所对应的酸度值为最高酸度值是不合珊的,该观点偏离了准确分少滴定的条件:1gcK≥6(或5).观点h未考虑OL对K的影响,在O/.较大的情况下也是不合理的.持观点c的学者很少,笔者认为该观点基本上是合理的,但有些地方可进一步完善.先,cM=2Xl0-ztool?L可改为cM=10-2tool?L一,这样与单一金属离子测定中一致,且由1gcK>16可推出lgKMY≥8;下而可改为:1gKⅥY=1gKMY一1gOf-,一1gM当M的剐反应可忽略时,1gOf.=1gK一1gKv当IZXpM0.2,lEtI≤0.1%,cM=10.tool?L时,1gKMY≥8,1g(Y)=1gKMY一8,(0/.Y()m=(,)…一,m+l这样推导更合乎逻辑,表达更清楚.40上述a,b,c三种观点中,观点c与单一金属离子测定的相关理论一致,如果经过l,~Ja修改,则严谨准确,可作为混合离子分步配位滴定的最高酸度控制问题的统一观点.3结论(1)"控制酸度"不是提高配位滴定选择性的方法之一,仪是滴定中溶液pH值控制问题;(2)混合离子分步配位滴定的最高酸度控制问题的不同观点可进行统一,一些内容可进一步完善.参考文献【1】武汉大学无机及分析化学(第二版)『M1.武汉:武汉大学出版社, 2003.12j2华东理工大学分析化学教研组,成都科技大学分析化学教研组.分析化学(第四版)【M】.北京:高等教育出版社,1995.f3】浙江大学无机及分析化学(第一版)[MI北京:高等教育出版社,2003f4】南京大学《无机及分析化学》编写组.无机及分析化学(第三版)[M1. 北京:高等教育出版社,1998【5J颜秀茹,肖新亮.无机化学与化学分析(第一版)『M1.天津:天津大学出版社.2004.【6】倪静安.无机及分析化学(第一版)【M】北京:化学工业出版社,1998. 17】李蕾,曾小梅,赖晓绮.络合滴定中选择性滴定的酸度控制问题的探讨【l】.赣南师范学院学报,2002,(3):39—42f8】傅献彩大学化学(第一版)[M1北京:高等教育出版社,1999.【9j李龙泉.定量化学分析(第二版)[MI.合肥:中国科学技术大学出版社, 2005【1o】李龙泉.在分析化学中关于混合离子络合滴定的最低允许pH值的探讨U1.教育与现代化,1995,(3):42—44.【11j王玉华.浅谈络合滴定的允许酸度煤质技术,2000,(3)27~30【121王全林EDTA配位滴定金属离子最高酸度的计算固原师专学报(自然科学),1996,17(3):10—13【13l王敦清,李先春EDTA配位滴定中适宜酸度控制的集论教学法江西师范大学学报(自然科学版),1995,19(3):279—281.)【141鄢传微,董祖东.络合滴定的最佳酸度范围及指示剂的选择Ull四川师院学报(自然科学版),1995,27(3):99—101.f15】王东援.各种干扰对络合滴定误差的影响U】沈阳药学院学报, 1994,11(1):73—78.【16】陈兰化.关于配位滴定中溶液酸度的影响和pH值的控制U1.淮北煤师院学报,1998,19(4):77—79.【l71李先文配位滴定指示剂确定终点最佳酸度的选择Ul_;胃南师专学报(自然科学版),1994,(2):4—8【181麦亮民.试论提高络合滴定选择性的理论依据U】.佛山大学佛山师专学报,l989,7(2):85—88.。
配位滴定法

1
K1
[ ML ] [ M ][ L ]
2
K 1K
2
[ ML 2 ] [ M ][ L ] 2
n
K 1K
2
K
n
[ ML n ] [ M ][ L ] n
可方便地计算出各级配合物的浓度
[ ML ] 1[ M ][ L ] [ ML 2 ] 2 [ M ][ L ]2
[ ML n ] n [ M ][ L ]n
配位滴定法
§1 概述 配位滴定法:以配位反应为基础的滴定分析
分析方法 配位滴定反应必须具备的条件: 1、反应定量进行
2、生成的配合物有足够的稳定性 CMKMY′≥106
3、反应迅速,有适当的方法确定终点
一、EDTA的性质及其配合物
一、乙二胺四乙酸的性质与离解
H HO O2 2C C O OC C NH H -2-C C 2 H -H NC C2 2 C H C HO OO O
1[H][H]2 [H]3 [H]4
[H]5
Ka6
K K K K K K K K K K K K K K a6 a5
a6 a5 a4
a6 a5 a4 a3
a6 a5 a4 a3 a2
[H]6
K K K K K K a6 a5 a4 a3 a2 a1
[Y']为平衡后所有未与配位的EDTA总浓度 [Y4-]为EDTA有效浓度
在酸性溶液中形成六元酸H6Y2+ Y 4- H 3H - 2 Y 2H - 3 Y -H 4 Y H 5 Y +H 6 Y 2
各种形式的分布与pH有关,只有Y4才与金属离子生成配合物
EDTA常用H4Y表示,难溶于水和一般有机溶 剂,易溶于碱液,生成相应的盐,故商品常为乙
无机及分析化学教案第12章配位滴定法

第十二章配位滴定法§12-1 概述配位滴定法是以配位反应为基础的滴定分析方法。
它是用配位剂作为标准溶液直接或间接滴定被测物质。
在滴定过程中通常需要选用适当的指示剂来指示滴定终点。
本章重点介绍以乙二胺四乙酸(EDTA)为滴定剂的配位滴定分析方法。
一、配位滴定剂(EDT A)大多数金属离子都能与多种配位剂形成稳定性不同的配合物,但不是所有的配位反应都能用于配位滴定。
能用于配位滴定的配位反应除必须满足滴定分析的基本条件外,还能生成稳定的、可溶于水的中心离子与配体比例恒定的配合物。
由多基配体与金属离子形成的具有螯合环结构的配合物称为螯合物。
螯合物稳定性高,螯合比恒定,能满足滴定分析的基本要求。
目前应用最多的滴定剂是乙二胺四乙酸等氨羧有机配位体,它们能与大多数的金属离子形成稳定的可溶的螯合物,能满足配位滴定的要求。
因此配位滴定法主要是指形成螯合物的配位滴定法。
乙二胺四乙酸简称EDTA,或EDTA酸,常用H4Y表示。
其结构式为:在水溶液中,乙二胺四乙酸两个羧基上的质子转移到氮原子上,形成双偶极离子:在酸度较高的溶液中,H4Y的两个羧基可再接受两个H+而形成H6Y2+,这样它就相当于一个六元酸,有六级离解平衡。
H4Y在水中的溶解度低(22 0C时每100ml水溶解0.02g),所以常用的是其二钠盐Na2H2Y·2H2O,(也称EDTA)作为滴定剂。
它在水溶液中的溶解度较大,22 0C时每100ml水可溶解11.2g,此时溶液的饱和浓度约为0.3mol·L-1,pH值约为4.4。
在水溶液中,EDTA有H6Y2+、H5Y+、H4Y、H3Y-、H2Y2-、HY3-、Y4-七种型体存在,但是在不同的酸度下,各种型体的浓度是不同的,他们的浓度分布与溶液pH的关系如图12-1所示。
由图可见,在pH<1的强酸性溶液中,EDTA主要以H6Y2+型体存在;在pH为2.67~6.16的溶液中,主要以H2Y2-型体存在;在pH>10.26的碱性溶液中,主要以Y4-型体存在。
配位滴定法应用

配位滴定法应用一、提高配位滴定挑选性的办法因为EDTA的配位能力相当强,致使它能与许多金属离子形成稳定的协作物,而得到非常广泛的应用。
同时,也正由于如此,当用EDTA滴定一种离子时,溶液里若存在其他离子,就可能干扰滴定。
所以,怎样设法降低EDTA与干扰离子形成协作物的稳定性,或者是降低溶液中干扰离子的浓度(以减小EDTA与干扰离子生成协作物的表观稳定常数),有效地消退共存离子的干扰,是提高配位滴定挑选性的首要问题。
1.控制酸度消退干扰因为各种金属离子1gK稳存在着差别,它们要形成稳定协作物所允许的最低pH也各不相同。
因此,在金属离子混合溶液中,只要满足式(7-6)和式(7-7)的条件,就可以利用控制溶液酸度的方法,排解干扰离子N对被测定金属离子M的干扰。
2.利用掩蔽消退干扰为了提高配位滴定的挑选性或避开对金属离子指示剂的封闭,常加入某些掩蔽剂以降低干扰离子的浓度,使之不与EDTA配位。
现介绍几种常用的办法。
①配位掩蔽法。
利用配位反应降低干扰离子的浓度,以消退干扰的办法,称配位掩蔽法。
这是一种应用最广泛的办法。
例如,用EDTA测定水中Ca2+与Mg2+时,Fe3+和A13十等的存在会发生干扰,滴定前可先加入三乙醇胺,使其与Fe3+、A13十生成更稳定的协作物,因为Fe3+、A13十在pH=2~4之间即能发生氢氧化物沉淀,故必需先将溶液调至酸性后加入三乙醇胺,然后再调至pH=10~12,方可滴定Ca2+与Mg2+。
②沉淀掩蔽法。
利用沉淀反应降低干扰离子的浓度,以消退干扰的办法,称沉淀掩蔽法。
如,有Mg2+共存时用EDTA测定Ca2+,可先用NaOH调溶液pH大于12,Mg2+则生成Mg(OH)2沉淀,即可消退干扰。
此处的OH-就是Mg2+的沉淀掩蔽剂。
但因为沉淀反应掩蔽效率低,又易发生“共沉淀现象”等弱点,阻碍尽头的观看,故应用较少。
③氧化还原掩蔽法。
利用氧化还原反应来转变干扰离子的价态,以消退干扰的办法,称氧化还原掩蔽法。
配位滴定法

配位滴定法概述一. 配位反应的普遍性配位物具有极大的普遍性。
严格地说,简单离子只有在高温气态下存在。
在溶液中,由于溶剂化的作用,不存在简单离子。
因此,溶液中的金属离子(Mn+)“应该”以M(H2O)nn+ 表示。
溶液中的配位反应实际上是配位体与溶剂分子间的交换,在水溶液中:M(H2O)n + L ==M(H2O)n-1 L + (H2O)稳定性:小<大但通常可简化为:M+L==ML——以配位(交换)反应为基础进行滴定分析的方法即“配位滴定法”。
例:AgNO标液滴定CN-:Ag ++ 2CN- ==[Ag(CN)2]- ,K=1.0′1021以KI为指示剂,终点生成AgI, 溶液浑浊。
配位反应在分析化学中应用非常广泛,许多显色剂、萃取剂、沉淀剂、掩蔽剂等都是配合物。
二. 配合物的分类按配位体所含配位原子的数目可分为单齿配位体(:F-, :NH3 ) 和多齿配位体 ( H2N-CH2-CH2-NH2 ) 。
前者形成单齿(非螯合)配合物,后者形成螯合物。
(一)单齿配位化合物——掩蔽和辅助配位M+n L==MLn(L只有一个配位原子)与多元酸相似,单齿配合物时逐级形成的(分步),一般相邻两个之比较接近,稳定性不高。
例:配合离子的形成过程Cu+ NH3== Cu(NH3)2+k1 = 1.4′104Cu(NH3)2++ NH3== Cu(NH3)22+k2= 3.1′103Cu(NH3)22++ NH3== Cu(NH3)32+k3= 7.8′102Cu(NH3)32++ NH3== Cu(NH3)42+k4 = 1.4′102(1)分步稳定常数:k,1/k = k离n ——分步离解常数(2)累计稳定常数:b第一级累积稳定常数b1 = k1第二级累积稳定常数b2= k1 k2┇┇第n级累积稳定常数b4 = k1 k2…kn(3)总稳定常数K:K= b n(二)螯合物配位体中含二个以上配位原子,与金属离子配位有二个以上结合点形成环状结构形象地称为螯合物螯合物的特点:同种配位原子的稳定性:螯合物 >非螯合物环多 > 环少大环 > 小环由于螯合物的稳定性一般较大,有利于滴定分析。
配位滴定法2

单一金属离子滴定的适宜pH范围 (1) 最高允许酸度(pH低限)
若ΔpM=±0.2, 要求 Et≤0.1%, 则lgcM· K’(MY)≥6, 若cM=0.01mol· L-1,则 lgK’(MY)≥8 (不考虑αM) lgK(MY’)= lgK(MY)-lgαY(H)≥8, 有 lgαY(H) ≤lgK(MY) - 8 对应的pH即为pH低, 例如: K(BiY)=1027.9 lgY(H)≤19.9 pH≥0.7 K(MgY)=108.7 lgY(H)≤0.7 pH≥9.7 K(ZnY)=1016.5 lgY(H)≤8.5 pH≥4.0
Mg2+-铬黑T(■)+ EDTA = 铬黑T (■) + Mg2+- EDTA
(二)、金属指示剂必备的条件
1. 在滴定的pH范围内,游离指示剂本 身的颜色与金属离子配合物的颜色应有 显著的差别; 注 意: 许多金属指示剂不仅具有配位剂 的性质,而且本身也是多元酸(碱),能随 溶液pH值的变化而显示出不同的颜色。 因此,使用金属指示剂,必须选择合适 的pH范围。
32
指示剂铬黑T(EBT)本身是酸碱物质
H3In
pKa1 H2In- pKa2
HIn2蓝
pKa3 11.6
In3橙 pH
紫红 3.9 紫 红 6.3
HIn2-蓝色----MIn-红色
EBT使用pH范围:7-10
(二) 二甲酚橙 (xylenol orange--XO)
二甲酚橙指示剂为易溶于水的紫色结晶,存
考虑到浓度和条件常数对滴定突跃的共同 影响,用指示剂确定终点时, 若ΔpM=±0.2, 要求 Et≤0.1% 则需lgcM· K’(MY)≥6.0