热工仪表知识
热工仪表基础知识
热工仪表基础知识1.什么是测量?什么是热工测量?什么是热工测量仪表?答:测量就是通过实验的方法,把被测量与其所采用的单位标准量进行比较,得出被测量数值的过程。
热工测量就是在火力发电厂热力生产过程中对各种热工参数(如温度、压力、流量、液位等)进行的测量方法和过程。
热工测量仪表是指用来测量热工参数(如温度、压力、流量、液位等)的仪表。
2.热工仪表是由那几部分组成的?答:热工测量仪表是由传感器、变换器、显示器三大部分组成。
传感器是指将被测量的某种物理量按照一定的规律转换成能够被仪表检测出来的物理量的一类测量设备。
也称感受件,一次仪表。
变换器的作用是将传感器输出的信号传送给显示器。
也称连接件,中间件。
显示器的作用是反映被测参数在数量上的变化。
也称显示件,二次仪表。
3.按显示功能热工仪表分为那几类?答:按结构形式热工仪表分为:(1)指示仪表;是通过仪表的标尺和指针或液面、光点等的相对位置来显示被测参数瞬时值的显示仪表。
(2)记录仪表;能把被测量的瞬时值记录下来的仪表。
(3)信号仪表;能把被测参数是否超越允许值进行灯光、音响报警的仪表。
(4)调节仪表;除显示被测参数外,还可以进行调节参数的仪表。
(5)累积仪表;是对被测量进行累积叠加的仪表。
4.什么是示值的绝对误差?示值的相对误差?示值的引用误差?答:示值的绝对误差是指仪表的指示值(被校仪表的读数值)x与被测量的真实值(标准仪表的读数值)x0之间的代数差。
示值的绝对误差=x -x 0示值的相对误差是指示值的绝对误差与被测量的实际值之比。
示值的相对误差=%10000⨯-x x x 示值的引用误差是指示值的绝对误差与该仪表量程范围之比。
以百分数表示。
示值的引用误差=%100程下限仪表量程上限-仪表量0⨯-x x 5. 什么是仪表的基本误差?什么是仪表的测量误差?答:在规定的技术条件下,将仪表的示值和标准表的示值相比较,在被测量平稳地增加和减少的过程中,在仪表全量程取得的诸示值的引用误差中的最大者,称为仪表的基本误差。
热工测量及仪表基本知识 重点
热工测量●热工测量:是指压力、温度等热力状态参数的测量,通常还包括一些与热力生产过程密切相关的参数测量,如测量流量、液位、振动、位移、转速和烟气成分等。
●测量方法:按测量结果获取方式:直接、间接测量法;按被测量与测量单位的比较方式:偏差、微差、零差测量法;按被测量过程中状态分:静态、动态测量法。
●热工仪表组成:感受件,传送件,显示件。
●仪表的质量指标:准确度、线性度、回差、重复性误差、分辨率、灵敏度、漂移。
●热力学温标所确定的温度数值称为热力学温度也称绝对温度,用符号T表示。
单位为开尔文,用K表示。
●测量方法分类:接触式测温方法:膨胀式液体和固体温度计、压力式温度计、热电偶温度计和热电阻温度计、热敏电阻温度计。
非接触式测温方法:光学高温计,光电高温计、辐射温度计和比色温度计。
温度测量部分接触式测温(1)热电偶温度计①标准化热电偶:工艺上比较成熟,能批量生产、性能稳定、应用广泛,具有统一分度表并已列入国际和国家标准文件中的热电偶。
②非标准化的热电偶:进一步扩展高温和低温的测量范围;但还没有统一的分度表,使用前需个别标定。
●热电偶温度计:由热电偶、电测仪表和连接导线组成。
标准化热电偶-200~1600℃;非标准化热电偶-270~2800℃。
①测温范围广,可以在1K至2800℃的范围内使用;②精度高;③性能稳定;④结构简单;⑤动态特性好;⑥由温度转换的电信号便于处理和远传。
·8种标准化热电偶:S型、R型、B型、K型、N型、E型、T型、J型·四类非标准化热电偶:贵金属、贵—廉金属混合式、难熔金属、非金属●热电偶测温原理:热电效应:两种不同成分的导体(或半导体)A和B的两端分别焊接或绞接在一起,形成一个闭合回路,如果两个接点的温度不同,则回路中将产生一个电动势,称之为热电势,这种效应称为热电效应。
●热电偶的基本定律:均质导体定律、中间导体定律、连接温度(中间温度)定律。
①均质导体定律:由一种均质导体所组成的闭和回路,不论导体的截面积如何及导体各处温度分布如何,都不能产生热电势。
第2章 热工仪表概述PPT课件
量的
左右为宜。
A.3倍 B.10倍 C.1.5倍 D.0.75倍
2、重要场合使用的元器件或仪表,购入后需进行高、低温
循环老化试验,其目的是为了
。
A.提高精度
B.加速其衰老
C.测试其各项性能指标 D.提高可靠性
3、有一温度计,它的测量范围为0~200℃,精度为0.5级, 试求:
1)该表可能出现的最大绝对误差为
定点法:被检测表检测某种标准值,从而确定仪表的 示值误差.
示值比较法:被检仪表与标准仪表同时去测量同一 被测量,比较两者的指示值,确定仪表的质量指标
小结
1、了解仪表的三大组成部件 2、掌握仪表的误差、等级、线性度、灵敏度等
性能指标
练习题
1、在选购线性仪表时,必须在同一系列的仪表中选择适当
的量程。这时必须考虑到应尽量使选购的仪表量程为欲测
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
第2章 热工仪表概述
主要内容
❖一、热工仪表的组成及分类 ❖二、热工仪表的质量指标 ❖三、仪表的使用 本章主要介绍热工仪表的组成、分类、质 量指标及仪表使用等知识。
➢ 1. 热工测量: 热力状态参数;热力生产过程相关参数的测量。
(压力、温度等;流量、液位、振动、位移、转速、 烟气成分)
2.热工测量的作用:反映设备运行;为自动化装置 提供信号,为机组经济计算提供数据。
二、热工仪表的分类
热工测量仪表知识点
热⼯测量仪表知识点《热⼯测量仪表》知识点第1章:基础知识难点测量误差的表⽰形式误差产⽣的原因误差的种类掌握测量的基本概念误差的分类仪表的组成及其性能指标仪表的基本误差和允许误差仪表的引⽤误差仪表的精度等级仪表的防爆和防护了解检测技术与仪表的作⽤及发展测量的不确定度第2章:温度测量掌握温标与测温⽅法热电偶测温原理热电偶基本定律(推导和应⽤)热电偶测温补偿原因、原理和⽅法热电阻测温原理热电阻测温引线误差和消除⽅法了解膨胀式与压⼒温度计⼯作原理接触测温误差和对策⾮接触式测温原理和⽅法新型温度传感器第3章压⼒和压差测量掌握:压⼒的基本概念分类液柱式压⼒计⼯作原理(U形管、单管式、斜管式)弹性元件测压原理,各种弹性元件测压类型和范围弹簧管压⼒计测量压⼒特点和应⽤领域压⼒表量程选择⽅法、范围了解:了解其它弹性元件测量压⼒⽅法和原理第4章:机械量测量掌握电容式传感器灵敏度和⾮线性误差计算分析(变极距、变⾯积、变介电常数、差动式)电感式位移传感器⼯作原理(灵敏度、⾮线性误差计算分析)差动式、互感、⾃感式、差动变压器(⼯作原理)零点残余电压产⽣的原因和消除⽅法直流电桥和交流电桥的测量特点调制解调的基本概念电涡流传感器的基本⼯作原理、类型和应⽤场合光敏电阻、光敏晶体管⼯作原理和应⽤场合绝对式和增量式码盘的⼯作原理和区别第5章:流量测量掌握:流量测量现状及其原因分析常见的流量传感器类型节流式流量计的基本结构和⼯作原理和相关系数修正节流式流量计对流体要求常见的标准节流件性能常见的⾮标节流件标准节流装置的计算(两类命题、迭代流程)⽪托管和均速管流量计的基本⼯作原理电磁流量计的基本⼯作原理涡街、科⾥奥利、涡轮、转⼦、靶式流量计⼯作原理第6章:物位测量直读式、静压式、差压式、浮⼒式、称重式液位计⼯作原理汽包⽔位测量的重要意义汽包⽔位测量的难点重量⽔位、实际⽔位、虚假⽔位、⽰值⽔位概念引起汽包虚假⽔位的原因云母⽔位计的基本⼯作原理、引起误差的原因、缺点双⾊⽔位计的⼯作原理、引起误差的原因、信号远传的⽅法电接点⽔位计的⼯作原理和误差分析差压式⽔位计的基本⼯作原理(消除误差的改进⽅式,单室平衡、双室平衡容器)压⼒校正原理和⽅法第7章成分分析炉烟成分分析的重要性和分析⽅法热导式CO2分析仪的基本原理和实现⽅法氧化锆氧量计⼯作原理直插式和抽⽓式的优缺点第8章:检测新技术虚拟仪器基本概念软测量技术概念模糊传感器概念多传感器数据融合概念仪表习题⼀⼀、填空题1.绝对误差在理论上是指和被测量的之间的差值;仪表量程范围内最⼤的绝对误差和量程之⽐称为仪表的,将其去掉%的数值圆整后的数的数值为仪表的。
热工仪表基础知识
第一章 热工仪表概述
热力生产过程中对各种热工参数,如温度、 压力、流量、液位、物位及位移等状态参 数的测量称为热工测量。实现热工测量所 使用的工具称为热工仪表。 热工测量及仪表不仅在火电厂热力生产过 程中占有重要地位,在化工、石油、冶金 等工业部门及科学研究中也都不可缺少。
第一章 热工仪表概述
第二章 温度测量及仪表
华氏温标(oF)规定:在标准大气压下,冰的熔点为32 度,水的沸点为212度,中间划分180等分,每第分为报 氏1度,符号为oF。 摄氏温度(℃)规定:在标准大气压下,冰的熔点为0 度,水的沸点为100度,中间划分100等分,每第分为报 氏1度,符号为℃。
热力学温标又称开尔文温标,或称绝对温标,它规定分 子运动停止时的温度为绝对零度,定义为水三相点的热 力学温度的1/273.16,记符号为K。
1、为了使热电阻的测量端与被测介质之间有充分的热 交换,应合理选择测点位置,尽量避免在阀门,弯头及管道 和设备的死角附近装设热电阻. 2、带有保护套管的热电阻有传热和散热损失,为了减 少测量误差热电阻应该有足够的插入深度:
三、热电阻温度计
(1)对于测量管道中心流体温度的热电阻,一般都应将其测量端插入到管 道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米, 那热电阻插入深度应选择100毫米;
○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线 制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U, 再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消 除引线的电阻影响,主要用于高精度的温度检测。
三、热电阻温度计
对热电阻的安装,应注意有利于测温准确,安全可考及维 修方便,而且不影响设备运行和生产操作.要满足以上要 求,在选择对热电阻的安装部位和插入深度时要注意以下 几点:
(完整版)常见热工仪表基础知识
仪表基础知识1、测量误差概念1.1 、误差的分类按误差数值表示的方法分为:绝对误差、相对误差、引用误差;按误差出现的规律分为:系统误差(规律误差)、随机误差(偶然误差)、疏忽误差(粗大误差)1.2 、真值与约定真值(近似真值)、相对真值(标准表示值)1.3 、仪表的精度等级是指基本误差(仪表在规定参比工作条件下,即标准工作条件下的最大误差)的最大允许值,精度=(最大误差/ 测量范围)*100%2、化工过程仪表的分类2.1 、按读取测量值的位置可分为:就地测量仪表(如就地压力表、温度计、液位计、流量计等)和远传信号测量仪表(各类变送器、位置开关等)2.2 、按测量参数性质可分为:分析、流量、物位(液位)、压力、温度、电量、机械量等3、分析仪表3.1 、按分析目的分为:安全检测报警分析仪(可燃、有毒气体检测)、成分分析仪表3.2 、成分分析仪的分类:离线分析仪(分析室仪器)、在线分析仪(COD分析仪、PH计、F离子分析仪等)4、流量测量4.1 、流量的概念:是指单位时间内流过管道某一截面的流体数量。
分为体积流量和质量流量,质量流量皿=体积流量Q*流体密度p。
质量流量的常用单位有:kg/h、t/h等,体积流量的常用单位有:l/h、m3/h 等。
4.2 、流体流动状态的分类:A、层流(雷诺数Re〈2300)B、过渡流(2300〈Re〈4000)C、紊(湍)流(雷诺数Re〉4000)。
雷诺数是指流体惯性力与粘性力的比值。
4.3 、与流体有关的物理参数:温度、压力、密度、粘度、速度、流量等。
4.4 、流体的密度与温度、压力的关系:气体的密度随温度的升高而减小、随压力的增大而增大,液体的密度主要随温度升高而减小、而与压力关系不大。
4.5 、流量测量仪表种类有:涡街流量计、金属管转子流量计、孔板节流装置流量计、锥形管流量计、威力巴流量计、楔式流量计、质量流量计、电磁流量计等。
4.6 、流量计的分类流量测量方法和仪表的种类繁多,分类方法也很多。
常见热工仪表基础知识
仪表基础知识1、测量误差概念1.1、误差的分类按误差数值表示的方法分为:绝对误差、相对误差、引用误差;按误差出现的规律分为:系统误差(规律误差)、随机误差(偶然误差)、疏忽误差(粗大误差)1.2、真值与约定真值(近似真值)、相对真值(标准表示值)1.3、仪表的精度等级是指基本误差(仪表在规定参比工作条件下,即标准工作条件下的最大误差)的最大允许值,精度=(最大误差/测量范围)*100%2、化工过程仪表的分类2.1、按读取测量值的位置可分为:就地测量仪表(如就地压力表、温度计、液位计、流量计等)和远传信号测量仪表(各类变送器、位置开关等)2.2、按测量参数性质可分为:分析、流量、物位(液位)、压力、温度、电量、机械量等3、分析仪表3.1、按分析目的分为:安全检测报警分析仪(可燃、有毒气体检测)、成分分析仪表3.2、成分分析仪的分类:离线分析仪(分析室仪器)、在线分析仪(COD分析仪、PH计、F离子分析仪等)4、流量测量4.1、流量的概念:是指单位时间内流过管道某一截面的流体数量。
分为体积流量和质量流量,质量流量M=体积流量Q *流体密度ρ。
质量流量的常用单位有:kg/h、t/h等,体积流量的常用单位有:l/h、m3/h等。
4.2、流体流动状态的分类:A、层流(雷诺数Re〈2300) B、过渡流(2300〈Re〈4000) C、紊(湍)流(雷诺数Re〉4000)。
雷诺数是指流体惯性力与粘性力的比值。
4.3、与流体有关的物理参数:温度、压力、密度、粘度、速度、流量等。
4.4、流体的密度与温度、压力的关系:气体的密度随温度的升高而减小、随压力的增大而增大,液体的密度主要随温度升高而减小、而与压力关系不大。
4.5、流量测量仪表种类有:涡街流量计、金属管转子流量计、孔板节流装置流量计、锥形管流量计、威力巴流量计、楔式流量计、质量流量计、电磁流量计等。
4.6、流量计的分类流量测量方法和仪表的种类繁多,分类方法也很多。
热工仪表基础知识
热工仪表的定义、组成和分类
(3) 浮力式。基于阿基米德定理,漂浮于液面上的浮 子或浸没在液体中的浮筒,在液位发生变化时其浮力发生 相应的变化。这类液位检测仪表有浮子式、浮筒式和翻转 式等。 (4) 机械接触式。通过测量物位探头与物料面接触时 的机械力实现物位的测量。主要有重锤式、音叉式和旋翼 式等。 (5) 射线式。放射线同位素所发出的射线(如γ 射线) 穿过被测介质时因被介质吸收其强度衰减,通过检测放射 线强度的变化达到测量物位的目的。这种方法可以实现物 位的非接触式测量。
常用热工仪表介绍
1、常用热工仪表
热工仪表主要包括:压力变送器;差压变送器;压 力校验仪;热工信号校验仪;热电阻;热电偶;液位变送器; 温度变送器;压力传感器;智能数显仪;闪光报警仪;无纸 记录仪;流量积算仪;压力校验装臵;温度校验装臵等。
常用热工仪表介绍
压力变送器
常用热工仪表介绍
一般意义上的压力变送器主要由测压元件传感器 (也称作压力传感器)、测量电路和过程连接件三部分 组成。它能将测压元件传感器感受到的气体、液体等物 理压力参数转变成标准的电信号(如4~20mADC等), 以 供给指示报警仪、记录仪、调节器等二次仪表进行测量 、指示和过程调节。可分成一般压力变送(0.001MPa~ 35MPa)和微差压变送器(0~1.5kPa),负压变送器三 种。
热工仪表的定义、组成和分类
由于被测对象种类繁多,检测的条件和环境也有很大 的差别,因而物位检测的方法有很多。归纳起来有以下种: (1)直读式。采用在设备容器侧壁开窗口或旁通管方 式,直接显示物位的高度。这种方法最简单也最常见,方 法可靠、准确,但只能就地指示,主要用于液位检测和压 力较低的场合。 (2) 静压式。基于流体静力学原理,容器内的液面高度 与液柱质量形成的静压力成比例系,当被测介质密度不变 时,通过测量参考点的压力可测量液位。基于这种方法的 液位检测仪表有压力式、吹气式和差压式等。
(完整版)常见热工仪表基础知识
仪表基础知识1、测量误差概念1.1、误差的分类按误差数值表示的方法分为:绝对误差、相对误差、引用误差;按误差出现的规律分为:系统误差(规律误差)、随机误差(偶然误差)、疏忽误差(粗大误差)1.2、真值与约定真值(近似真值)、相对真值(标准表示值)1.3、仪表的精度等级是指基本误差(仪表在规定参比工作条件下,即标准工作条件下的最大误差)的最大允许值,精度=(最大误差/测量范围)*100%2、化工过程仪表的分类2.1、按读取测量值的位置可分为:就地测量仪表(如就地压力表、温度计、液位计、流量计等)和远传信号测量仪表(各类变送器、位置开关等)2.2、按测量参数性质可分为:分析、流量、物位(液位)、压力、温度、电量、机械量等3、分析仪表3.1、按分析目的分为:安全检测报警分析仪(可燃、有毒气体检测)、成分分析仪表3.2、成分分析仪的分类:离线分析仪(分析室仪器)、在线分析仪(COD分析仪、PH计、F离子分析仪等)4、流量测量4.1、流量的概念:是指单位时间内流过管道某一截面的流体数量。
分为体积流量和质量流量,质量流量M=体积流量Q *流体密度ρ。
质量流量的常用单位有:kg/h、t/h等,体积流量的常用单位有:l/h、m3/h 等。
4.2、流体流动状态的分类:A、层流(雷诺数Re〈2300) B、过渡流(2300〈Re〈4000) C、紊(湍)流(雷诺数Re〉4000)。
雷诺数是指流体惯性力与粘性力的比值。
4.3、与流体有关的物理参数:温度、压力、密度、粘度、速度、流量等。
4.4、流体的密度与温度、压力的关系:气体的密度随温度的升高而减小、随压力的增大而增大,液体的密度主要随温度升高而减小、而与压力关系不大。
4.5、流量测量仪表种类有:涡街流量计、金属管转子流量计、孔板节流装置流量计、锥形管流量计、威力巴流量计、楔式流量计、质量流量计、电磁流量计等。
4.6、流量计的分类流量测量方法和仪表的种类繁多,分类方法也很多。
热工仪表期末总结
热工仪表期末总结热工仪表是热能与工程的重要工具之一,用于测量和控制热工过程中的温度、压力、流量、液位等参数。
在本学期的学习过程中,我对热工仪表的原理、应用和调试方法有了更深入的了解。
在此,我将对本学期所学的内容进行总结。
一、温度测量在热工过程中,温度是一个重要的参数。
我们学习了几种常见的温度测量方法,包括热电偶、热电阻和红外测温。
热电偶是一种基于热电效应的温度传感器,具有简单、灵敏、鲁棒等优点。
热电阻是一种基于电阻温度特性的温度传感器,具有高精度、稳定性好等特点。
红外测温是一种能够无接触地测量物体表面温度的方法,适用于高温、易燃、易爆等环境。
我们通过实验了解了这些温度测量方法的原理和使用方法。
二、压力测量在热工过程中,压力是一个重要的参数。
我们学习了压力的单位、测量原理和传感器的选型。
常见的压力测量方法有压力传感器和压力表。
压力传感器是一种能够将压力信号转换成电信号的装置,具有高精度、稳定性好等特点。
压力表是一种通过弹簧的变形来显示压力大小的装置,可直观地观察到压力数值。
我们通过实验了解了这些压力测量方法的原理和使用方法。
三、流量测量在热工过程中,流量是一个重要的参数。
我们学习了流量的分类、测量原理和传感器的选型。
常见的流量测量方法有差压法、电磁法和超声波法。
差压法通过测量流体通过管道时引起的压力差来确定流量,适用于液体和气体的测量。
电磁法通过测量液体中感应电压的大小来确定流量,适用于导电液体的测量。
超声波法通过测量超声波在液体中传播时的声速变化来确定流量,具有非接触、不受杂质干扰等优点。
我们通过实验了解了这些流量测量方法的原理和使用方法。
四、液位测量在热工过程中,液位是一个重要的参数。
我们学习了液位的分类、测量原理和传感器的选型。
常见的液位测量方法有浮子法、压力法和超声波法。
浮子法通过浮子在液体中的浮沉来确定液位,适用于液体的测量。
压力法通过测量液体对压力传感器产生的压力来确定液位,适用于液体和气体的测量。
第七章热工仪表
一、 温度的测量
在加热炉中,准确的温度测量和控制是必不可少的。 测量温度的方法分二类: 1、接触式测温(如热电偶)-温度传感元件要紧靠被 测物体或直接置于温度场中; 2、非接触式测温(如光学高温计)-利用被测物体的 热辐射或辐射光谱分布随温度的变化来测量物体温度。
(2)获得真空的方法 ①用真空泵抽气:主要方法. ②吸附:辅助方法,加入吸附剂,将气体吸附. ③冷凝:辅助方法,用液氮将气体冷凝.
(3)常用真空泵
①机械真空泵:有旋片式真空泵、往复式真空泵、滑针式 真空泵等。一般能达到小于1Pa的低真空度。
②油扩散泵:由加热部分、冷却部分和喷射部分组成。工 作时经电炉加热使泵体内的扩散油挥发成蒸汽,油蒸汽沿 导管上升由喷嘴喷出。一般可达小于10-4Pa的高真空度。
二、气体流量的测定
实验室内常用的气体流量计有转子流量计 和毛细管 流量计两种 。 (1) 转子流量计 转子流量计由一根垂直带有刻度的玻璃管和 放入管中的一个转子所构成 。使用时,气体从 管的下口进入管中,使转子向上移动。 根据转 子位置高低即可由刻度上读出相应的 流量 。 (2) 毛细管流量计 毛细管流量计如图所示 。
热电偶名称
铂铑10-铂 PtRh10-Pt
极性 化学成分
使用温度(℃)
长期 短期
+ Pt90%,Rh10% 1300 1600
- Pt100%
铂铑30-铂铑6 + Pt70%,Rh30% PtRh30-PtRh6 - Pt94%,Rh6%
1600 1800
标准的热电偶是指冷端为0℃时的热电势,实际 测温条件下自由端不一定处于0℃,由此会带来误差, 应加以消除或修正。
热工仪表知识
粘度、易燃易爆程度等; 必须注意仪表安装使用的现场环境条化,如环境温度、电
磁场、振动等。
压力计的选用
高炉料罐压力使用
粒化渣冷水池使用
喷煤车间废气压力使用
高炉除尘液压站使用
压力变送器接线图
第三章 流量测量仪表
涡街流量计与差压流量计测量饱和蒸汽流量对比:
用标准孔板流量计来测量饱和蒸汽流量较为普遍,但存 在一些不足之处:其一,压力损失较大;其二,导压管、 三组间及连接接头容易泄漏;其三,量程范围小,一般为 3比1,对流量波动较大易造成测量值偏低。
而涡街流量计具有结构简单,涡街变送器直接安装于管 道上,克服了管路泄漏现象。另外,涡街流量计的压力损 失较小,量程范围宽,对饱和蒸汽测量量程比可达30比1。 因此,随着涡街流量计测量技术的成熟,涡街流量计的使 用越来越受到人们的青睐。
一体式电磁流量计
分体式电磁流量计(高炉工业水 流量计)
电磁流量计接线图
第六节:阿里巴流量计
阿里巴流量计(又称笛形均速管流量计)是根据皮托管测速原理发展起来的一 种新型差压流量检测元件。具有根据空气动力学设计,可大大降低传感器 处流体分离产生的误差,在同类产品中可达到更高精度,性能更加优于传 统的流量仪表。
一体化差压式流量计(喷煤车 间N2总管流量计)
流量孔板(高炉炉顶氮气总 管流量计)
第三节:转子流量计
浮子流量计,又称转子流量计,是变面积式流量计的一种,在一根由 下向上扩大的垂直锥管中,圆形横截面的浮子的重力是由液体动力 承受的,浮子可以在锥管内自由地上升和下降。在流速和浮力作用 下上下运动,与浮子重量平衡后,通过磁耦合传到与刻度盘指示 流量。一般分为玻璃和金属转子流量计。金属转子流量计是工业 上最常用的,对于小管径腐蚀性介质通常用玻璃材质,由于玻璃 材质的本身易碎性,关键的控制点也有用全钛材等贵重金属为材 质的转子流量计。
热工测量仪表基础知识培训课件
• 二、主要技术参数 • 1.温度计分为轴向型,径向型,135°三种型式。 • 2.温度计的精度等级为1级,1.5级、2.5级。 • 3.保护管的材料一般为1Gr18Ni9Ti不锈钢和钛合金,其所能承受的
公斤压力可达到64Kf/cm2。
• 4.温度计的接点为上、下限(常开),单限、双上限。
节
位
代号
• 2.热电偶的结构形式 • 为了保证热电偶可靠、稳定地工作,对它的结构要求如下: • 组成热电偶的两个热电极的焊接必须牢固; • 两个热电极彼此之间应很好地绝缘,以防短路; • 补偿导线与热电偶自由端的连接要方便可靠; • 保护套管应能保证热电极与有害介质充分隔离。
• 3.热电偶冷端的温度补偿
变面积式流量计的主要形式 是转(浮)子流量计,是由锥形玻 璃管和浮子组成,浮子能在垂直 安装的锥形玻璃管内上下移动。 被测流体自下向上流过管壁与浮 子之间环隙时,托起浮子向上, 这时管与浮子之间的环隙面积增 大,直到浮子两边压差所形成的 力与浮子重力相等时,浮子便处 在一个平衡位置。
流量变化时浮子两边压差所 形成的力也随之变化,使浮子又 在一个新的位置上重新平衡,浮 子浮起的高度即为流量计的读数。
表示意义
第一位
W
温度测量仪表
第二位 第
S
金属膨胀式温
度计
一
第三位
S
感温元件为
节
热双金属片
X
带电接点
第四位
度计保护管浸入被测介质中的长度必 须大于感温元件的长度,一般浸入长度大于75mm ,0-50℃量程的浸入长度大于150mm,以保证测量 的准确性。
• 2.双金属温度计在保管、使用安装及运输中,应 避免碰撞,保护管,切勿使保管弯曲变形及将表 壳当表板手用。
热工仪表及维护知识
2017/8/25
热工仪表及其维护
7
温度测量仪表及其维护
一、温度测量的基本概念
温度是国际单位制给出的基本物理量之一,它 是工农业生产、科学试验中需要经常测量和控制的主 要参数;从热平衡的观点看,温度可以作为物体内部 分子无规则热运动剧烈程度的标志;温度与人们日常 生活紧密相关。
温度是表征物体冷热程度的物理量。
热工仪表及其维护 2 2017/8/25
根据检测装臵动作原理不同,测量可以分为 ⑴直读法:被测量作用于仪表比较装臵,使比较装臵的某种参数按已知关系 随被测量发生变化,由于这种变化关系已在仪表上直接刻度,故直接可由仪表刻度 尺读出测量结果。 ⑵零值法(平衡法):将被测量与一个已知量进行比较,当两者达到平衡时, 仪表平衡指示器指零,这时已知量就是被测量值。 ⑶微差法:当被测量尚未完全与已知量相平衡时,读取它们之间的差值,由 已知量和差值可求出被测量值。如用不平衡电桥测量电阻。 根据仪表是否与被测对象接触,测量可分为:接触测量法和非接触测量法。 二、热工测量仪表的组成及分类 1、热工测量仪表的组成:炼铁厂中的热工参数,多数不能直接测量,一般是借 助一些物质的物理、化学性质的关联性把被测参数转变为其他便于直接测量的相关 量,以间接得出被测参数的数值。从仪表的各部分的功能和作用分为:感受部件、 传输变换部件及显示部件。 感受部件:测量仪表中直接与被测对象发生关系的部件,它感受到被测量(被测 信号)的大小,并产生一个相应的其他量(输出信号)输送至传输转换部件。 传输变换部件:传输变换部件接受感受部件送入的信号,并输送到显示部件。 显示部件:显示部件接受传输变换部件送入的信号并转变为测量人员可以辨识的 信号,它是与人直接联系的部件。 如果测量仪表的感受部件或变送器与显示部件相距较远,并各自成为一完整仪表 热工仪表及其维护 2017/8/25 3 ,则习惯称为感受仪表(一次仪表)及显示仪表(二次仪表)
热工仪表基础知识讲义ppt课件
温度是化工生产中既普遍而又十分重要的参
数之一。任何一个化工生产过程,都伴随着物质
的物理和化学性质的改变,都必然有能量的转化
和交换,而热交换则是这些能量转换中最普遍的
交换形式。因此,在很多煤化工反应的过程中,
温度的测量和控制,常常是保证这些反应过程正
常进行与安全运行的重要环节;它对产品产量和
质量的提高都有很大的影响。
8
1、 温度的测量与变送
由于热电极的材料不同,所产生的接触电势亦不同,因此不同
热电极材料制成的热电偶在相同温度下产生的热电势是不同的,这在
各种热电偶的分度表中可以查到。根据热电测温的基本原,理论上
似乎任意两种导体都可以组成热电偶。但实际情况它们还必须进行严
格的选择,热电极材料应满足如下要求。
1.在测温范围内其热电性质要稳定,不随时间变化。
t0
t0
2
3
1
A
B
t
热电偶温度计测量线路 1、热电偶 2、连接导线 3、电测仪表
7
1、 温度的测量与变送
热电偶是由两根不同的导体或半导体材料(如上图中的A和B) 焊接或绞接而成。焊接的一端称为热电偶的热端(测量端或 工作端),和导线连接的一端称为热电偶的冷端 (自由端)。 组成热电偶的两根导体或半导体称作热电极。把热电偶的热 端插入需要测温的生产设备中,A和B两种不同的物质,电 子密度高的向电子密度低的流动,产生电流,形成电动势, 一般为mV信号,经过测温仪计算为测量介质的温度。
主要内容
一、四大参数的测量原理及仪表 二、自动控制基础知识 三、调节阀 四、联锁系统的构成
1
一、四大参数的测量原理及仪 表
现场仪表测量参数的分类: 现场仪表测量参数一般分为温度、压力、
热工测量及仪表基础知识.完美版PPT
第一篇 热工测量的基础知识 第一章 热工测量基础
一 热工测量的基本概念 二 热工测量仪表的基础知识
一 热工测量的基本概念
一、测量工作的主要任务:获取有用的信息。
• 确定测量对象
• 选择测量工具(测量仪表) • 研究测量方法和测量原理
测量三要素
• 规ቤተ መጻሕፍቲ ባይዱ测量单位
• 分析测量误差
二、测量的定义
按照被测对象的特点,利用专门的测量工具通 过适当的实验或者对实验数据的分析计算实现被 测量x与相同性质的标准量(即规定的测量单位) Ux相比较获取比值得到测量结果(即测量值),并 且尽可能减小测量误差的全过程。
由SI单位加SI词头构成。
分析测量误差的意义
正确认识误差的性质,分析误差产生的原因。 从根本上,消除或减小误差
正确处理测量和实验数据,合理计算所得结果。 通过计算得到更接近真值的数据
正确组织实验过程,合理设计、选用仪表或测量方法。 根据目标确定最佳测量系统
五、测量误差:通过测量仪表测量得到的结果减去被测参
特点:对测量系统的动态响应要求很高,否则将引入较大的 测量误差。
(1)模拟式测量法
特点: 仪表结构简单,价格低廉,便于直观表示被测量变化的方向,读数容易 产生误差。
(2)数字式测量法
特点: 仪表结构复杂,测量速度高,精度好,读数直观,复现性好,功能多。
(3)屏幕式测量法
特点: 仪表能显示复杂的图形和曲线,显示直观,设备投资和技术要求高。
信息技术:信息的获取、传输和处理的技术。
检测(detection)技术的含义
第二章热工仪表概述
第二章热工仪表概述热工仪表是工业自动化系统中不可缺少的重要组成部分,它承担着监测、控制和保护热力设备的重要任务。
本章将对热工仪表的基本概念、分类和功能进行综述。
1. 热工仪表的基本概念热工仪表是指用于实时监测、测量、控制和调节热力过程中的各种参数和状态的仪器和设备。
它通过传感器采集温度、压力、流量等信号,并通过控制元件实现对热力设备的自动化控制。
2. 热工仪表的分类热工仪表根据其功能和应用领域的不同,可以分为以下几类:2.1 温度仪表:用于测量和控制热工设备内部的温度变化,常见的温度仪表包括温度传感器、温度控制器等。
2.2 压力仪表:用于测量和控制热工设备内部的压力变化,常见的压力仪表包括压力传感器、压力控制阀等。
2.3 流量仪表:用于测量和控制热工设备中的流体流量,常见的流量仪表包括流量计、流量开关等。
2.4 液位仪表:用于测量和控制热工设备内液体的液位高度,常见的液位仪表包括液位传感器、液位控制器等。
2.5 分析仪表:用于分析和检测热工设备中的气体、液体的组成和性质,常见的分析仪表包括气体分析仪、液相色谱仪等。
3. 热工仪表的功能热工仪表在热力设备中起着监测、控制和保护的作用,具体功能如下:3.1 监测功能:通过传感器实时监测热工设备中的参数,如温度、压力、流量、液位等,以获得工艺过程的准确数据。
3.2 控制功能:根据监测到的参数值,通过控制元件自动调节,实现对热工设备的自动控制,确保工艺过程的稳定和安全运行。
3.3 保护功能:当热工设备发生异常情况时,热工仪表可以及时发出警报信号,触发保护措施,如关闭阀门、切断电源等,以防止事故的发生。
4. 热工仪表的应用领域热工仪表广泛应用于各个领域的热力设备中,包括电力、石油化工、冶金、建筑、环保等行业。
在发电厂中,热工仪表用于监测和控制锅炉的温度、压力、流量等参数,以保证发电机组的正常运行。
在石油化工厂中,热工仪表用于监测和控制炼油过程中的各项参数,确保炼油装置的安全稳定运行。
热工仪表知识.ppt
反应较快,测量范围较广、精度可达0.2%,便于远距 离传送。所以在生产过程中可以实现压力自动检测、自动 控制和报警,适用于测量压力变化快、脉动压力、高真空 和超高压的场合。
第四节:智能型压力变送器
高可靠性的微控制器及高精度温度补偿; 将被测介质的压力信号转换成4~20mADC标准信号叠加
按仪表组合形式:可以分为 基地式仪表:将测量、显示、控制等各部分集中组装在一个表壳里,从而形成 一个整体,并且可就地安装的的一类仪表。
单元组合仪表:以统一的标准信号,将对参数的测量、变送、显示及控制等各种能够
独立工作的单元仪表(简称单元,例如变送单元、显示单元、控制单元等)相互联系 而组合起来的一种仪表
转子流量计的特点:
转子流量计是工业上和实验室最常用的一种流量计。 它具有结构简单、直观、压力损失小、维修方便等特 点。转子流量计适用于测量通过管道直径D<150mm 的小流量,也可以测量腐蚀性介质的流量。使用时流 量计必须安装在垂直走向的管段上,流体介质自下而 上地通过转子流量计。
1-节流元件 2-引压管路 3-三阀组 4-差压计
优点:
应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长; 应用范围广泛,至今尚无任何一类流量计可与之相比拟; 检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生
产。
缺点:
测量精度普遍偏低; 范围度窄,一般仅3:1~4:1; 现场安装条件要求高; 压损大(指孔板、喷嘴等)。
热工仪表知识
目录
第一章 测量仪表基本知识 第二章 压力测量仪表 第三章 流量测量仪表 第四章 物位测量仪表 第五章 温度测量仪表
第一章 测量仪表基本知识
第一节:热工自动化仪表的分类
热工仪表知识
红外线温度计
总结词
红外线温度计利用红外辐射的原理进行温度测量。
详细描述
红外线温度计通过测量目标发射的红外辐射强度来确定其温度。由于红外辐射不 受环境光和气体等因素的影响,因此红外线温度计具有测量速度快、准确度高、 非接触等优点,广泛应用于医疗、科研、工业等领域。
光学高温计
总结词
光学高温计是一种利用光学干涉原理 进行温度测量的仪器。
详细描述
热电偶由两种不同的导体或半导体材料组成,当两端存在温 差时,会产生热电势,通过测量热电势的大小即可确定温度 。热电偶具有测量范围广、精度高、稳定性好等优点,广泛 应用于工业生产和科学研究中。
热电阻
总结词
热电阻是一种基于电阻随温度变化的原理进行温度测量的元件。
详细描述
热电阻由金属导体材料制成,其电阻值随温度变化而变化。常见的热电阻有铜 热电阻和铂热电阻等。热电阻具有测量精度高、稳定性好、输出信号大等优点, 适用于各种温度测量场合。
详细描述
超声波液位计利用超声波在空气中传播的特性,通过测量超声波在液体表面反射的时间 来计算液位高度。具有非接触式测量、精度高、响应速度快等优点,但受介质声速、温
度等因素影响较大。
谢谢观看
超声波流量计
原理
利用超声波在流体中的传播速度来测量流量。
应用
适用于各种流体,特别是气体和液体的流量测量。
优点
非接触式测量,适用于各种管道材质和流体状态,测量准确度高。
缺点
对管道条件和安装要求较高,且价格相对较高。
05
液位测量仪表
浮力式液位计
总结词
基于浮力原理,通过测量浮子的位移来反映液位高度。
容易受到流体压力、温度和密度变化的影 响,且不适用于含有杂质或颗粒的流体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热工仪表知识————————————————————————————————作者: ————————————————————————————————日期:流量检测和仪表ﻫﻫ一流量测量的应用领域(一)为什么在国民经济中如此广泛采用流量测量和仪表?ﻫ流量测量是研究物质量变的科学,质量互变规律是事物联系发展的基本规律,量是事物所固有的一种规定性,它是事物的规模、程度、速度以及它的构成成份在空间上的排列组合等等可以用数量表示的规定性,因此其测量对象不限于传统意义上的管道流体,凡需掌握量变的地方都有流量测量的问题,例如城市交通的调度,需掌握汽车的车流量的变化,它是现代化城市交通管理需检测的一个参数。
流量和压力、温度并列为三大检测参数,对于一定的流体,只要知道这三个参数就可计算其具有的能量,在能量转换的测量中必须检测此三个参数,而能量转换是一切生产过程和科学实验的基础,因此流量和压力温度仪表得到最广泛的应用。
(二)流量测量技术和仪表的应用领域ﻫ1.工业生产过程ﻫ流量仪表是过程自动化仪表与装置中的大类仪表之一,它被广泛应用于冶金、电力、煤炭、化工、石油、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,它是发展工农业生产、节约能源、改进产品质量、提高经济效益和管理水平的重要工具,在国民经济中占有重要的地位。
在过程自动化仪表与装置中,流量仪表有两大功用:作为过程自动化控制系统的检测仪表和测量物料数量的总量表。
据统2.能源计量计,流量仪表的产值约占全部过程自动化检测仪表与装置产值的五分之一。
ﻫ能源分为一次能源(煤炭、原油、瓦斯气、石油气、天然气)、二次能源(电力、焦炭、煤气、成品油、液化石油气、蒸汽)及含能工质(压缩空气、氧、氮、氢、水)等。
1998年1月1日公布中华人民共和国节约能源法,说明我国的能源政策开发与节约并重,把节约放在优先的地位。
由于我国产业结构,产品结构不合理,生产设备和工艺落后,管理不善,能源的利用率只有32,比国际先进水平平均低10,每消耗一吨标准煤创造的国内生产总值,只有发达国家的二分之一到四分之一,我国每生产一吨钢综合煤耗为976公斤,而国际先进水平为650公斤。
风机、水泵、锅炉等应采用高效节能的先进设备。
能耗是考核企业管理水平的一个重要指标,要节能除采用先进设备与工艺外,主要是加强管理的问题,而管理必须配备计量系统才能进行定量的管理。
每个企业,对进厂、出厂、自产自用的能源进行计量,对生产过程中的分配、加工、转换、储运和消耗,生活和辅助部门的能耗进行计量。
目前我国流量计量系统正常工作的百分率比较低,除仪表质量外,尚有许多复杂原因影响正常运转,这些原因如介质条件恶劣、维修困难、校验问题大等。
现分别对几种主要能源的流量计量情况简介如下。
ﻫ水我国水资源人均只有世界的四分之一,且分布不均衡,北方严重缺水,全国有100多大中城市缺水,日缺水达1000万立方米以上,21世纪可能发生水危机,如大连从120公里碧流河引水,天津从230公里滦河引水,青岛从240公里黄河引水。
近年来黄河下游断流时间不断延长,断流处向上游延伸。
北京日高峰时日缺水达30万吨。
城市庞大的水管网进行输配,从水厂到用户水表种类繁多,大口径水表的计量精度一直存在问题,水表种类大致有孔板、电磁、超声、插入式流量计等,除孔板外,其它类型大口径水表的校验不断困扰着用户。
家用水表是个非常庞大的数目,我国家用水表年产量估计在1000万只以上,家用水表为叶轮式,不但精度低,计量抄表需大量人工亦是个问题。
福利型的水价导致水的严重浪费已引起国家的重视,亟需制订合理的水价以促进节约,但水价的提高如计量精度不相应提高亦会产生新的矛盾。
故家用水表型式性能的改进已提到议事日程。
煤气、天然气ﻫ城市气化率是现代化城市的标志之一,1985年全国城市煤气工作会议确定直辖市、省会、重点旅游城市、沿海开放城市及环保重点城市1990年气化率为40,2000年气化率为70,煤气的流量计量由于介质脏、含湿高、大口径、低流速、宽范围度等为困难的测量问题,几十年来一直未能很好的解决,去年制订的煤气主管道流量测量国家标准可望为解决此问题提供一些可能性。
由于环保的原因国家不鼓励更多地发展煤气而尽量用天然气。
ﻫ天然气是高效、清洁的燃料,优质的化工原料,并有望成为城市汽车的清洁燃料。
发展天然气是我国今后能源发展的重点。
我国天然气蕴藏量丰富,但目前产量很低,每年仅约200亿立方米,不及西欧小国荷兰的产量,美俄两国天然气年产量皆在5000亿立方米左右。
急剧增加产量以适应国民经济的需要已经势在必行。
国家制订计划到廿一世纪初天然气产量要比90年代初翻两番。
目前我国陆上已探明储量约1.3万亿立方米,主要分布在重庆、四川、陕甘宁、新疆等地。
1998年5月28日我国发表《中国海洋事业的发展》白皮书,其中关于石油资源内容如下:我国海域有30多个沉积盆地,面积近70万平方公里,石油资源量约250亿吨,天然气蕴藏量约为8.4万亿立方米。
天然气从气井开采经处理(脱硫、脱水)集输到城市要经过许多复杂的工艺过程,从计量角度对被测介质可分为三种类型:第一种类型:气井到集气站、脱硫厂及脱水厂称为原料气,具有多相、高压、腐蚀、中小口径等特点;第二种类型:处理厂出来后称为净化气,经长输管线送到城市,具有单相、中压、大口径、要求高精度计量的特点;第三种类型:城市广大用户使用的天然气,具有单相、低压或常压、中小口径、计量精度适中等。
一般气田纵横数百公里,几百口井,几十个集气站及处理厂用管网连在一起,输送到城市更是庞大的管网覆盖广大地区,这些管网中的气量分配,调度、经济核算皆需设置天然气计量站,装备大量的流量测量系统。
目前第一种类型尚无合适流量计可用,第二种类型采用孔板、涡轮、超声等,第三种类型除上述仪表外还有涡街、腰轮、膜式气量计(家用煤气表)等。
我国城市家用煤气表年产量在百万只以上。
蒸汽蒸汽分过热蒸汽和饱和蒸汽。
前者为单相介质,在火力发电厂中过热蒸汽做为推动汽轮机带动发电机发电,蒸汽流量测量对于电厂的生产质量及安全极为重要,现代火力发电厂机组为高压高温状态,过热蒸汽流量采用喷嘴测量,有国际标准或国家标准做为依据。
饱和蒸汽是由工业锅炉生产的一般为低压中温状态,它是汽水混合物,锅炉出口处为饱和蒸汽,但输送到用户处,由于管道热散耗含水量大的汽水混合物,它的流动为两相流,对于测量混相流是个困难的测量问题,至今尚无成熟的仪表可用.据估计我国煤产量1/3~1/4用于工业锅炉燃料,全国有几十万台工业锅炉,需配备数量巨大的蒸汽流量计,目前常用的仪表为孔板、涡街、均速管及分流旋翼式流量计,这些流量计在低干度下使用都不能令人满意,是急待解决的问题。
ﻫ油品燃料油从炼油厂生产后经油库到发油站供给汽车、船舶、飞机等交通工具使用油品计量涉及巨大经济利益,全国有数十万个计量站在工作着,油流量计更是一个极为庞大的数目。
目前大量使用的类型为容积式和涡轮流量计,容积式流量计类型很多,如椭圆齿轮、腰轮、刮板、旋转活塞、螺杆双转子,圆盘等等。
ﻫ3.环保工程人口剧增,工业生产迅猛发展使得环境严重恶化,已经达到危险的程度,国家把可持续发展列为国策,它将是二十一世纪的的最大课题。
空气污染、水污染要得到控制必须加强管理,而管理的基础是污染量的定量控制。
我国是以煤为主要能源的国家,全国有上百万的烟囱日夜不停地向大气排放浓烟,烟气排放控制成为根治污染的重要项目。
美国已经立法规定烟废气排放标准,每个烟囱必须安装烟气分析仪和流量计,组成连续排放监视系统(CEMS)。
烟废气流量测量属于困难的测量问题,它的难度有:ﻫ口径大,如烟囱不规则形状,几米周长;ﻫ气体组分变化不定;ﻫ流速范围大,从极低速到高速;脏污、灰尘、腐蚀;ﻫ流道为非圆截面,无相似性,通道内流速分布复杂;无直管段,阻流件形状复杂,速度畸变与旋转流;无法个别标定确定流量计仪表系数;静压,要求仪表低压损;ﻫ高温(200℃以上); ﻫ废液、污水排放已严重污染江河湖泊,使本来已经严重缺乏的水资源遭到破坏,已很紧张的水资源更是雪上加霜。
废液、污水排放的管理控制已是刻不容缓的任务。
但是废液污水流量计由于被测介质脏污、口径大、形状特殊、压头低、流速范围宽、不满管流等亦是流量测量的困难问题。
工厂企业及人民生活需要的流量计数量极为庞大,种类需多样化才能适应广泛需求。
ﻫ环保工程所需的流量计随着工程的深入发展将不断提出新的要求,如大规模的废水再生设备、城市垃圾处理设备、工矿企业的水循环利用系统等都需种类繁多的流量计。
ﻫ4.交通运输ﻫ交通运输有五种方式:铁路、公路、航空、水运和管道输送。
在五种方式中管道输送虽早已有之,但应用尚不普遍。
随着环保问题的突出,管道输送的特点引起人们的重视。
例如煤炭一直由铁路水运输送,装卸及敞开运输污染环境不容忽视,采用管道水力输送,不但迅速高效,密闭卫生是很大优点。
管道输送的物料有:原油、天然气、水、压缩空气、煤炭、谷物、水泥、矿物……。
世界管道运输主干线已达230万公里,我国1996年底仅为1.9万公里,处于落后状态。
管道运输必须装备流量计,它是控制、分配调度的眼睛,亦是安全性(监视物流堵塞)的监测系统。
管道运输流量计除传统的流量计如孔板、电磁、容积式外,近年出现的相关流量计是极具潜力的的新型流量计,国内已有用于混相流测量的实例。
5.生物技术ﻫ据说二十一世纪是生命科学的世纪,以生物技术为特征的产业将获得迅速发展,生物技术中需监测的物质很多,如血液、尿液、药液、营养液等等,其被监测对象很多为混相流、脉动流、非牛顿流体,亦是流量测量的难点。
6.科研实验ﻫ科研实验需要的流量计不但数量多,品种极为繁杂,据统计流量计有100多种,其中很大一部分是应科研实验之需,它们并不批量生产在市面出售。
我国有很多科研单位或大型企业有专门小组研制自己需要的流量计,特别是国防部门更是常事。
■化工中间试验工厂它是化工生产的一个中间环节,一种化工产品从实验室研制到大批量生产必须经中间试验,这种实验工厂可以说是生产实验数据的工厂,数据的准确可靠是第一位,这里流量计是必备的仪表,它是监测物料数量的仪表,由于规模小,大都是小、微流量的测量。
■发动机效率试验ﻫ发动机种类繁多,泵、风机、压缩机、动力机械等,发动机效率试验必须检测三个参数:温度、压力和流量。
一般认为流量测量比较困难,原因是其使用条件特殊,测量对象阻流件复杂,无直管段安装条件,流体组分变化,流动为脉动流等。
ﻫ7.海洋气象,江河湖泊这些领域为敞开流道,一般需检测流速,然后推算流量。
流速(流量)计一般所依据的物理原理及流体力学基础理论与密封管道虽有共通之处,但仪表原理及结构以及使用条件有很大差别,国际标准化组织(ISO)有专门技术委员会制订此类流量计的国际标准。