纳米碳酸钙制备
类球状纳米碳酸钙的制备
类球状纳米碳酸钙的制备类球状纳米碳酸钙的制备随着纳米材料的广泛应用和研究,纳米粒子的学科研究越来越活跃。
在生物医学、材料科学、能源储存和转换等领域中,类球状纳米碳酸钙的制备成为研究热点。
因此,本文将着重介绍类球状纳米碳酸钙的制备方法及其应用。
一、类球状纳米碳酸钙的制备方法目前,类球状纳米碳酸钙的制备方法主要有两种:化学合成和生物法制备。
1. 化学合成法化学合成法是通过化学反应将碳酸钙合成成类球状纳米粒子,该方法需要使用化学试剂并进行严格的实验室操作。
一般而言,化学合成法主要分为两个步骤:沉淀法与稳定化法。
(1)沉淀法:将钙离子与碳酸根离子置于反应体系中,通过加入酸或碱,使得钙离子与碳酸根离子发生反应,生成沉淀物。
其中有一种常见分解沉淀物的方法――高温水热法。
将制备好的碳酸钙沉淀物置于高压釜内进行水热处理,可得到类球状纳米碳酸钙。
(2)稳定化法:将碳酸钙分散于水或其他介质中,通过添加表面活性剂等化学品,使其能够稳定地存在于溶液中,从而制得类球状纳米碳酸钙。
2. 生物法制备生物制备法是利用微生物、植物、动物等生物体或其代谢物产生的物质合成类球状纳米碳酸钙。
与传统化学合成法相比,生物制备法更加环保、易操作,且得到的产物质量较高。
主要包括细胞外合成法、微生物发酵法和植物提取法等。
(1)细胞外合成法:将酵母、细菌等微生物细胞培养于含有钙离子和碳酸根离子的培养基中,启动微生物代谢过程并利用其外泌物中产生的物质合成类球状纳米碳酸钙。
(2)微生物发酵法:将钙离子和碳酸根离子加入到发酵培养基中,使用发酵菌(如甘露聚糖)进行发酵,同时利用发酵泥中的生物体或其代谢产物合成类球状纳米碳酸钙。
(3)植物提取法:从植物的坚硬组织部分提取出含有钙离子和碳酸根离子的物质,使用植物的细胞壁组分并通过水热处理,最终制备出类球状纳米碳酸钙。
二、类球状纳米碳酸钙的应用1. 医药领域类球状纳米碳酸钙被广泛应用于医药领域,主要是因为它们具有出色的生物相容性、可降解性、易吸附等性质。
【精品文章】常见纳米碳酸钙的制备工艺及特点简介
常见纳米碳酸钙的制备工艺及特点简介
纳米技术是当前粉体技术的热点,纳米技术和材料的研究、生产及其应用在我国已经初见成效,纳米碳酸钙是其中最具代表性的产品之一。
我国目前纳米碳酸钙的生产工艺种类较多,本文选取了几种常见的工艺技术介绍给各位读者,期望能起到一些科普和技术推广的作用。
1、夹套反应釜法
该工艺方法是将25℃以下的氢氧化钙乳液泵入碳化反应罐中,通入二氧化碳,在搅拌状态下,进行碳化反应,通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件制备纳米碳酸钙。
该法因搅拌气-液接触面积大,反应较均匀,产品粒径分布较窄等,已成为近几年纳米碳酸钙生产的主要方法。
夹套反应釜法因受温度变化的影响,粒径变化频率较大,且碳酸钙生产过程中的碳化过程是一种放热反应,要保证产品细度,就要严格要求控制温度。
由于制冷设备的投入、维护费用和电能消耗相对较高。
2、乳液法
乳液法大致可分为两种: 一种是微乳液法,另一种为乳状液膜法。
微乳液法主要利用微乳液中液滴大小可控的特性, 将可溶性碳酸盐与钙盐分别溶于组成完全相同的微乳液中, 再混合反应,由于反应被控制在较小的区域内进行,因而可得到纳米级碳酸钙晶粒, 再将其与溶剂分离,即得产品。
而乳状液膜法则是利用孔径为几个微米活几十微米的膜材料作为分散介质,分散相压入到连续相中时,被微小孔膜剪切成微小粒径的液滴, 进入连续相,从而实现微米尺度的相互混合。
碳化法制备纳米碳酸钙的工业合成方法
世上无难事,只要肯攀登
碳化法制备纳米碳酸钙的工业合成方法
纳米碳酸钙的制备方法按制备过程中是否发生化学反应分为化学方法和物理方法,其中化学方法包括碳化法、乳液法、夹套反应釜法、复分解法。
碳化法是生产纳米级轻质碳酸钙的主要方法。
首先,将精选的石灰石煅烧,得到氧化钙和窖气。
然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力作用下粉碎、多级悬液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浊液。
然后通入二氧化碳气体,加入适当的晶形控制剂,碳化至终点,得到要求晶形的碳酸钙浆液。
再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。
碳化是整个生产工艺的核心,根据碳化反应过程二氧化碳气体与氢氧化钙悬浮液接触方式的不同,纳米碳酸钙的工业合成方法可分为间歇鼓泡法、喷雾碳化法、喷射吸收法和超重力碳化法。
间歇鼓泡法
间歇鼓泡碳化法是目前国内外大多采用的方法。
间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳通过冷冻机降温到25℃以下,泵入碳化塔,通入CO2 混合气,在搅拌下进行碳化反应。
通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。
该法可以生产普通微细碳酸钙,但对于生产纳米级碳酸钙就需要严格控制一些工艺条件,如碳化反应温度、石灰乳浓度等,而且也相应地需对鼓泡塔做一些改进,比如加搅拌器、挡板或通过气体分布器控制等,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。
陈先勇等人采用间歇鼓泡碳化法,通过对碳化反应温度、灰乳密度、添加剂等因素的严格控制,成功制得粒度分布均匀、平均粒径为40nm 左右的单分散球形纳米碳酸钙产品。
多级喷雾碳化法。
纳米碳酸钙的生产工艺
工业生产技术的不断革新,给许多新型的产品生产带来可能,其中一种纳米级的碳酸钙颗粒就可运用于多个行业中去。
目前主要采用的制作工艺可以分为炭化法、连续喷雾碳化法、超重力碳化法等。
我们来一一去进行了解。
制备纳米碳酸钙的方法有物理法和化学法。
物理法就是对天然石灰石、白垩石进行机械粉碎而得到。
但是粉碎的粒度是有限的,只有采用特殊的方法和机械才有可能达到0.1μm以下。
所以生产纳米碳酸钙主要采用化学法。
(一)碳化法这种制备方法是主要的一种生产方式。
将精选的石灰石煅烧,得到氧化钙和窑气。
使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入CO2气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。
按照碳化过程中CO2气体与氢氧化钙悬浮液接触方式的不同,可将碳化法分为间歇鼓泡碳化法、连续喷雾碳化法和超重力碳化法,以及在间歇鼓泡碳化法基础上改进的非冷冻法。
该法投资少,易于转化,为国内外大多数厂家所采用。
但是这种方法生产效率低、气液接触差、碳化时间长、粒径粗且不均匀。
(二)连续喷雾碳化法喷雾碳化法是将石灰乳用喷头喷成雾状,从塔顶喷下,将一定浓度的CO2以某一速度从塔底上升,与雾状石灰乳发生反应。
对于连续喷雾碳化,则重复进行以上过程,最后可获得粒径小于0.1μm的纳米碳酸钙。
该法生产纳米碳酸钙效率高,经济效益可观,并能实现连续自动大规模生产,另外,具有很高的科学性和技术性。
但设备投资较大。
(三)超重力碳化法利用旋转造成一种稳定的、比地球重力加速度高的多的超重力环境,极大地增加气液接触面积,强化气-液之间的传质过程,从而提高碳化速度。
同时,由于乳液在旋转床中得到高度分散,限制了晶粒的长大,即使不添加晶形控制剂,也可以制备出粒径为15~30nm的纳米碳酸钙。
纳米碳酸钙的制备及用途
一、纳米碳酸钙的制备
纳米碳酸钙的制备方法主要有碳化法、复分解法和化学气相沉积法等。其中, 碳化法是最常用的制备方法,其主要原理是在高温高压条件下,将二氧化碳气体 与氢氧化钙溶液反应生成碳酸钙沉淀。具体制备过程包括配料、搅拌、碳化、过 滤、干燥和表面处理等步骤。
为了获得高质量的纳米碳酸钙,需要注意以下几点:
纳米碳酸钙的制备及用途
目录
01 一、纳米碳酸钙的制 备
02
二、纳米碳酸钙的用 途
03
三、纳米碳酸钙的市 场现状和前景
04 四、结论
05 参考内容
随着科技的不断发展,纳米技术在各个领域的应用越来越广泛。其中,纳米 碳酸钙作为一种重要的纳米材料,具有广阔的应用前景和市场价值。本次演示将 详细介绍纳米碳酸钙的制备方法、用途及市场发展情况,以期让更多人了解这一 纳米材料的优势和应用价值。
功能性纳米碳酸钙在许多领域都有广泛的应用,例如橡胶、塑料、涂料、化 妆品和生物医学等。由于其良好的分散性和高透明度,它可以作为塑料的增强填 料和透明剂。此外,纳米碳酸钙还可以用于药物输送,如抗癌药物和疫苗的载体。
五、结论
功能性纳米碳酸钙的制备及性质研究具有重要的实际意义。其制备方法的改 进和性质的优化将进一步拓宽其应用领域,提高其使用性能。对其磁学性质和生 物相容性的进一步研究也将为纳米碳酸钙在生物医学领域的应用带来新的可能。
摘要纳米碳酸钙是一种具有重要应用价值的无机纳米材料,在橡胶、塑料、 涂料、油墨等领域得到广泛应用。本次演示总结了纳米碳酸钙的制备及改性应用 研究进展,并分析了其未来的发展趋势和应用前景。
引言纳米碳酸钙是一种由钙离子和碳酸根离子组成的无机纳米粒子,具有轻 质、高比表面积、吸油性等特性。制备纳米碳酸钙的方法主要有化学沉淀法、气 相水解法、界面沉淀法等。纳米碳酸钙经过改性处理后,可进一步提高其应用性 能,如表面改性技术、插层改性技术等。
纳米碳酸钙制备工艺分析
纳米碳酸钙制备工艺分析纳米碳酸钙(nano-CaCO3)是一种具有广泛应用前景的新型纳米材料,可用于陶瓷制品、橡胶制品、塑料制品和涂料等多个行业。
其制备工艺主要包括溶液法、加热碳化法和高压碳酸盐法。
本文将对这些制备工艺进行详细的分析。
首先是溶液法。
该方法通过将硝酸钙和碳酸钠等钙源溶解在水中,然后通过化学反应沉淀出纳米碳酸钙。
这种方法的优点是简单易行,可控性好,能够得到均一分散度较好的纳米碳酸钙颗粒。
然而,溶液法存在一些问题,如反应溶液的酸碱度、温度和搅拌速度等因素对纳米碳酸钙的形貌和颗粒大小具有较大影响,需要进行严密的实验条件控制。
其次是加热碳化法。
该方法通过将一定质量比的钙源与一定比例的碳源混合,在高温下加热反应,使其发生碳化反应生成纳米碳酸钙。
这种方法具有高效、高产出等优点,制备出的纳米碳酸钙具有较好的纯度和形貌。
然而,加热碳化法也存在一些问题,如反应条件的控制较为困难,高温容易引起固相和气相反应的竞争,而且产生的纳米碳酸钙颗粒分散性较差。
最后是高压碳酸盐法。
该方法通过将高压二氧化碳气体与钙氢氧化物反应,生成纳米碳酸钙。
这种方法具有操作简便、反应效果好等优点,制备出的纳米碳酸钙颗粒形状规整、分散性好。
然而,高压碳酸盐法也存在一些问题,如需要较高的压力和温度,设备要求较高。
总的来说,纳米碳酸钙制备工艺各有优缺点,选择合适的制备工艺需要考虑到具体应用的要求以及成本和技术条件的综合因素。
未来的研究方向可以是改进现有制备工艺,提高纳米碳酸钙的颗粒分散性和控制其形貌的技术,以满足不同应用领域对纳米碳酸钙的需求。
纳米碳酸钙的合成工艺研究
纳米碳酸钙的合成工艺研究纳米碳酸钙(Nano CaCO3)是一种颗粒尺寸小于100纳米的碳酸钙粉体材料。
与传统的微米级碳酸钙相比,纳米碳酸钙具有较大的比表面积、高反应活性、良好的机械性能和透明度等特点,广泛应用于领域,如橡胶、塑料、涂料、纺织品、食品、医药等。
本文将介绍纳米碳酸钙的合成工艺研究。
纳米碳酸钙的合成方法多种多样,常用的合成工艺包括溶液法、气相法和固相法等。
以下将分别介绍这三种常用工艺。
溶液法是一种常用的纳米碳酸钙合成方法。
一般来说,该方法通过在钙盐溶液中加入碳酸盐溶液,通过化学反应使碳酸盐与钙盐反应生成纳米碳酸钙。
在该方法中,反应温度、pH值、反应时间等条件对纳米碳酸钙的产率和粒径均具有重要影响。
较高的温度和碱性条件有利于产生较小颗粒尺寸的纳米碳酸钙。
此外,对溶液饱和度的控制也是纳米碳酸钙合成的关键。
通过合理调节溶液浓度和反应时间,可以控制纳米碳酸钙的尺寸和分布。
气相法是另一种常用的纳米碳酸钙合成方法。
该方法主要通过在高温环境下将有机碳源与氧化钙进行热解反应,生成纳米碳酸钙。
常用的有机碳源包括甲烷、丙烷等。
热解温度、反应时间和气体流速等因素对纳米碳酸钙的形貌和分布起着重要作用。
通常情况下,较高的热解温度和较长的反应时间有利于产生较小的颗粒尺寸和较窄的分布。
固相法是一种低成本的纳米碳酸钙合成方法。
该方法通过在固相条件下进行反应,使钙源和碳源在高温下发生化学反应,生成纳米碳酸钙。
常用的钙源包括石灰石和氢氧化钙,而常用的碳源包括葡萄糖、醋酸钠等。
反应温度、反应时间和原料比例等因素对纳米碳酸钙的合成具有重要影响。
较高的反应温度和较长的反应时间有利于生成较小的颗粒尺寸和较高的产率。
纳米碳酸钙的合成工艺研究主要集中在优化合成条件、控制颗粒尺寸和分布以及提高产率等方面。
例如,通过合理调节反应温度、pH值和反应时间等条件,可以获得所需的纳米碳酸钙颗粒尺寸和形貌。
此外,利用表面活性剂和分散剂等添加剂可以改善纳米碳酸钙颗粒的分散性和稳定性。
生产纳米碳酸钙的工艺流程
生产纳米碳酸钙的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 石灰石煅烧:将石灰石(主要成分是碳酸钙)在高温下煅烧,分解为氧化钙(CaO)和二氧化碳(CO2)。
纳米碳酸钙的制备
6/21/2024
——
——
天津市分析仪器厂 WKB—1 P max=0.6MPa V max=0.8m3/h 武汉仪表元件厂 LZB—4 精度为±10L/h
上海伟业仪器厂 pHS—3C 精度为±0.01
上海雷磁仪器厂 DDS—11A 精度为±0.1uV/cm
力在20000t/a左右,实际需求量在80000—100000t,国
产纳米碳酸钙因产品晶形结构不同及是否活化处理,
价格各异,价位在2000—6000元/t。由于纳米碳酸钙附
加值高(为普通碳酸钙价格的10—20倍),且潜在市
场广阔,纳米碳酸钙已成为国内科研开发的热点,并
成为碳酸钙生产企业发展的目标 [5—9]。
纳米碳酸钙一般指特征维度尺寸在纳米数量级 (1—100nm)的碳酸钙颗粒[1],包括了轻质碳酸钙行 业中统称的超细碳酸钙(粒径0.02—0.1μm)和超微细 碳酸钙(粒径≤0.02μm),是一种新型高档功能性填 充材料。它具有纳米材料所特有的性能,如体积效应、 表面效应等。普通碳酸钙用作填料仅起到增容降价的作 用,而纳米碳酸钙不仅可以起到增容降价的作用,而且 用于塑料、橡胶和纸张中,还具有补强作用。因此,纳 米碳酸钙的研制、开发,受到国内外的关注[24]。
3、了解碳酸钙产品的有关性能参数。
6/21/2024
11
二、实验任务
1、 测定碳化过程中pH值和电导率随时间 的变化曲线;
2、 测定碳酸钙产品的性能参数。
6/21/2024
12
三、实验原理
其热C化a(学O方H)程2悬式浮可液以与表C示O2为气:体进行碳化反应式,
C ( O ) 2 ( a s ) H H 2 O ( l ) C 2 C O 3 ( s ) a 2 H 2 O ( C l ) 7 . 1 K O 1 / m 8
纳米碳酸钙的原材料
纳米碳酸钙的原材料
纳米碳酸钙是一种新型材料,由于其高度纯净、粒径小、比表面积大
等特点,在各种领域都得到了广泛的应用。
那么,纳米碳酸钙的原材
料是什么呢?本文将会一一介绍。
1. 碳酸盐矿物
纳米碳酸钙的主要原材料是碳酸盐矿物,如方解石、白垩、珊瑚等。
这些天然矿物在地壳中广泛存在,并且相对容易开采,可以充分利用
地球资源。
2. 化学法制备
除了天然矿物外,化学法制备也是纳米碳酸钙的重要原材料。
主要包
括碳酸和钙源。
碳酸源可以来自一氧化碳或氧气与甲烷或二氧化碳反
应得到的一氧化碳,而钙源则是钙盐溶液。
这种制备方法可以制备纯
净的纳米碳酸钙,并且粒径也可以控制。
3. 生物法制备
生物法制备是利用生物质或微生物制备纳米碳酸钙。
这种方法环保,
可再生,但是生产成本较高。
生物法制备可以从乳清、脱脂奶、鱼骨
等来源中提取碳酸钙。
综上所述,纳米碳酸钙的原材料主要来源于天然矿物、化学合成、生
物法制备三种方法。
不同的制备方式由于原材料来源和生产工艺不同,纳米碳酸钙的纯净度,粒径大小和比表面积等特性也有所不同。
在实
际应用中,我们可以选择适合自己需求的纳米碳酸钙。
纳米碳酸钙的制备及粒径、形貌控制
纳米碳酸钙的制备及粒径、形貌控制
纳米碳酸钙的制备方法有很多,常见的有化学共沉淀法、溶胶凝胶法、水热法等。
其中,化学共沉淀法是一种简单易操作、成本较低的方法,也是应用最广泛的制备方法之一。
化学共沉淀法的制备步骤如下:
1. 将钙盐和碳酸盐的溶液混合,将pH值调节到8左右。
2. 加入一定量的表面活性剂,如CTAB、SDS等,使反应产物均匀分散。
3. 在搅拌的条件下,缓慢滴加含有碱性离子的溶液,如氢氧化钠溶液,使溶液pH值升高,从而促进反应。
4. 继续搅拌反应一定时间,然后离心、洗涤、干燥,得到纳米碳酸钙粉末。
通过控制反应条件,可以实现纳米碳酸钙的粒径、形貌控制。
主要的影响因素包括反应温度、pH值、反应时间、离子浓度、添加剂种类等。
例如,提高反应温度和pH值可以促进反应速度,但同时也容易导致晶体生长,从而增大颗粒大小;添加适量的表面活性剂可以提高反应产物的稳定性和均匀性,有利于得到较为均一的纳米颗粒。
除了化学共沉淀法,还可以采用其他方法来实现纳米碳酸钙的制备和粒径、形貌控制。
例如,溶胶凝胶法可通过不同的预处理和处理条件实现纳米颗粒的控制,水热法可以获得形貌较为复杂的纳米颗粒等。
纳米碳酸钙的制备方法及碳酸钙水分仪使用方法
纳米碳酸钙的制备方法及碳酸钙水分仪使用方法摘要:纳米碳酸钙作为一种优良的填料,具有色白质纯、易于着色、化学性质稳定、成本低廉、粒径和粒子形状可以控制等优势,已经成功地应用在橡胶、塑料、涂料、油墨、造纸等领域。
鉴于纳米碳酸钙优越的性能。
更多的潜在价值也正成为开发热点。
一、纳米碳酸钙制备方法⑴化学方法分为碳化法、苏尔维法、联钙法、苛碱法和氯化钙-苏打法五种方法,其中应用最多的是碳化法,其次是氯化钙-苏打法,其它三种方法应用很少,在此主要介绍碳化法的生产原理。
①碳化法制得的碳酸钙称为轻质碳酸钙或沉淀碳酸钙,其基本方法如下:石灰烧制:CaCO3——CaO+CO2+Q1消化反应,也称化灰反应:CaO+H2O—Ca(OH)2+Q2碳化反应:Ca(OH)2+CO2——CaCO3↓+Q3②苏尔维法(Solvay),即在生产纯碱的过程中联产碳酸钙。
其化学反应过程如下:③联钙法。
以废石灰渣和氯碱工业的廉价盐酸为原料生产碳酸钙。
用盐酸处理消石灰得到氯化钙溶液,氯化钙溶液在吸入氨气后用二氧化碳进行碳化便得到碳酸钙沉淀。
其化学反应过程如下:④苛化碱法。
在烧碱(NaOH)的生产过程中,可得到副产品轻质碳酸钙。
即在纯碱水溶液中加入消石灰,即可生成碳酸钙沉淀,并同时得到烧碱水溶液,最后碳酸钙沉淀经脱水、干燥和粉碎便制得轻质碳酸钙。
其化学反应过程如下:⑤氯化钙—苏打法。
在纯碱水溶液中加入氯化钙进行复分解反应,并进行快速冷却而生成无定形的碳酸钙沉淀,然后经脱水、干燥和粉碎而制得沉淀碳酸钙。
总之,采用上述化学方法生产的轻钙粉体的主要特点是:a粒度小,一般平均粒径在数微米以下;b粒度分布窄,可视为单分散粉体;c粒子晶型多样化,应用于不同行业需要不同的晶型。
⑵物理方法习惯上也称研磨法,即由天然矿物直接经机械粉碎所得产品,因其比重大于轻钙,故名重质碳酸钙(简称重钙,GCC)。
其加工过程又分为干法和湿法两种研磨工艺,产品分普通型,如双飞粉200目、三飞粉(325目、45~125μm)、细粉(325~1250目、10~45μm),超细型(>1250目、2~10μm),超细活性型(经表面活化处理)三种。
纳米碳酸钙的生产工艺
纳米碳酸钙的生产工艺纳米碳酸钙是一种具有广泛应用前景的纳米材料,其生产工艺的优化对于提高产品质量和降低生产成本至关重要。
本文将介绍纳米碳酸钙的生产工艺,并探讨其中的关键步骤和技术。
一、原料准备纳米碳酸钙的制备首先需要准备适当的原料。
通常使用的原料是石灰石或大理石,这些矿石富含碳酸钙。
在原料准备阶段,矿石首先被破碎和磨细,以获得适合生产纳米碳酸钙的颗粒尺寸。
二、碱法制备碱法制备是生产纳米碳酸钙的主要方法之一。
该方法将石灰石与碱性溶液反应,生成碳酸钙沉淀。
具体步骤如下:1. 将石灰石与碱性溶液(如氢氧化钠溶液)混合,调节pH值到适当范围。
2. 在搅拌条件下,使溶液中的碳酸钙沉淀形成。
3. 通过过滤和洗涤,将碳酸钙沉淀分离出来。
4. 将分离得到的碳酸钙沉淀进行干燥,得到纳米碳酸钙产品。
三、超声波法制备超声波法制备纳米碳酸钙是一种新兴的制备方法,其通过超声波作用下的物理过程来产生纳米级的碳酸钙颗粒。
具体步骤如下:1. 将石灰石颗粒悬浮在溶液中,并加入表面活性剂以提高悬浮液的稳定性。
2. 使用超声波设备,对悬浮液进行超声波处理。
超声波的作用下,石灰石颗粒逐渐破碎,并形成纳米级的碳酸钙颗粒。
3. 对悬浮液进行离心分离,以分离出纳米碳酸钙颗粒。
4. 将分离得到的纳米碳酸钙颗粒进行干燥,得到最终产品。
四、气相沉积法制备气相沉积法是一种高温下制备纳米碳酸钙的方法。
该方法通过热分解碳源来产生纳米碳酸钙颗粒。
具体步骤如下:1. 将适量的碳源(如甲烷)和氧化钙(CaO)混合,形成反应气体。
2. 将反应气体引入高温反应炉中,通过热分解反应生成纳米碳酸钙颗粒。
3. 控制反应条件,如温度、气体流速等,以控制纳米碳酸钙颗粒的尺寸和形貌。
4. 将反应产物冷却,并进行收集和分离。
5. 对分离得到的纳米碳酸钙颗粒进行干燥和粒度分析,得到最终产品。
五、应用前景纳米碳酸钙具有广泛的应用前景。
在橡胶、塑料、涂料等材料中,纳米碳酸钙可以作为增强剂和填充剂,提高材料的力学性能和热稳定性。
超细纳米碳酸钙生产制备工艺方法及装置
超细纳米碳酸钙生产制备工艺方法及装置超细纳米碳酸钙(Ultrafine Nanometer Calcium Carbonate)是一种重要的无机功能材料,具有广泛的应用前景。
本文将介绍一种超细纳米碳酸钙的生产制备工艺方法及装置。
一、工艺方法超细纳米碳酸钙的制备方法主要包括化学合成法和物理法两种。
1. 化学合成法化学合成法是通过化学反应将溶液中的钙离子和碳酸根离子反应生成碳酸钙沉淀,再经过后处理过程得到超细纳米碳酸钙产品。
该方法具有反应速度快、操作简单、产量高等优点。
化学合成法的具体步骤如下:(1)将含有钙离子的溶液与含有碳酸根离子的溶液缓慢混合;(2)调节溶液的pH值,使之适合碳酸钙的形核和生长;(3)控制反应温度和时间,促进碳酸钙的沉淀和成长;(4)将沉淀物进行过滤、洗涤、干燥等后处理步骤。
2. 物理法物理法是通过机械研磨或超声波处理等物理力作用将粗颗粒的碳酸钙颗粒分散、破碎,最终得到超细纳米碳酸钙产品。
该方法具有工艺简单、设备投资少等优点。
物理法的具体步骤如下:(1)将粗颗粒的碳酸钙颗粒置于研磨机或超声波设备中;(2)通过机械作用或超声波作用,将碳酸钙颗粒逐渐破碎、分散;(3)控制研磨时间和超声波处理时间,使得颗粒尺寸逐渐减小;(4)对处理后的样品进行过滤、洗涤、干燥等后处理步骤。
二、装置介绍超细纳米碳酸钙的生产制备装置主要包括反应槽、控制系统、过滤系统、洗涤系统、干燥系统等组成部分。
1. 反应槽反应槽是实施化学合成法时的关键设备,用于混合含有钙离子和碳酸根离子的溶液,并通过调节pH值、温度等参数控制反应过程。
2. 控制系统控制系统用于监测和控制反应过程中的温度、pH值、搅拌速度等参数,保证反应条件的稳定性和一致性。
3. 过滤系统过滤系统用于从反应溶液中分离出碳酸钙沉淀,常用的过滤设备有压滤机、离心机等。
4. 洗涤系统洗涤系统用于对过滤后的碳酸钙沉淀进行洗涤,去除杂质和未反应的溶液。
5. 干燥系统干燥系统用于将洗涤后的碳酸钙沉淀进行干燥处理,得到最终的超细纳米碳酸钙产品。
微纳米碳酸钙的制备与分析
微纳米碳酸钙的制备与分析微纳米碳酸钙是一种新型的功能材料,其具有优异的分子屏障及催化活性,在药物载体、高分子材料、高效能工况、污染物处理等领域中具有广阔的应用前景。
本文介绍了微纳米碳酸钙的制备方法以及分析技术,并结合介绍其在各领域中的应用。
一、微纳米碳酸钙的制备微纳米碳酸钙的制备主要有两种方法,即水法法和乳液法。
1.水法制备水法制备的微纳米碳酸钙基于晶体形态材料的改性,主要利用化学改性的方法,产生的微纳米碳酸钙的粒径小、表面积大、吸附性能强,具有优良的功能性能。
主要步骤:(1)选择合适的质量比,用碳酸钙粉末缩成细屑;(2)将碳酸钙细屑加入适量的氯化钠溶液,并将其搅拌至完全溶解;(3)再将其加入含有氨基有机酸的溶液,并置于温度为60℃的水浴中调节pH值,使之成核;(4)将温度提高至90℃,调整反应时间至2h,使微碳酸钙经历继续反应;(5)将微碳酸钙加入水溶液并进行搅拌,使其粒径微小,并用离心来分离微碳酸钙;(6)将微碳酸钙粉末置于空气中进行干燥,完成水法制备。
2.乳液法制备乳液法制备的微纳米碳酸钙以乳液的形式产生,该法简便快速,碳酸钙微粒的粒径均匀,其形态可控,更容易表现出特性化的性能。
主要步骤:(1)制备乳液:准备固定比例的碳酸钙粉末、有机聚氧乙烯醚和水,充分搅拌,令其混合成乳状状液;(2)预处理乳液:将搅拌好的乳液通过高压泵经过高压处理,以获得粒径小的碳酸钙微粒;(3)离心回收:将乳液经过离心处理,以提高粒子的纯度;(4)干燥回收:将得到的微粒置于空气中进行干燥,即可得到所需的微碳酸钙。
二、微纳米碳酸钙的分析微纳米碳酸钙的粒径一般处于几十纳米到1微米之间,常见的分析技术有:电子显微镜(SEM)、扫描尺度X射线衍射(SXRD)、紫外可见(UV-Vis)、傅立叶变换红外光谱(FT-IR)、分子吸收分析(TGA)、激光粒度仪(LPS)等。
(1)电子显微镜(SEM)SEM是用电子代替光子,在表面分析粒度和形貌上实现1000倍以上的放大和高分辨率,能分析微纳米碳酸钙的形貌和图案,较好地确定微碳酸钙的表征尺寸。
纳米碳酸钙的制备和应用技术
纳米碳酸钙的制备和应用技术纳米碳酸钙在众多领域的应用相当广泛,它具有很强的生物相容性和可降解性能。
因此,纳米碳酸钙的制备和应用技术成为了研究和开发的热门选项。
本文就从制备和应用两个角度,对纳米碳酸钙的相关技术展开探讨。
一、纳米碳酸钙的制备技术1. 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米碳酸钙制备方法,其优点是简便易操作、反应速度快、控制性好。
首先,将所需原料经过适当的处理(如溶解、乳化等)得到一种亚微米级别的胶体溶液。
随后在适当的条件下采用热、化学、光等方式对溶胶进行凝胶化处理,待凝胶化结束后,对凝胶进行干燥、烧结等处理即可得到所需产物。
2. 水相沉淀法水相沉淀法是一种比较常用的制备纳米碳酸钙的方法,其过程相对简单,且所需原料容易寻找。
该方法的具体实施过程为,将Ca2+和CO3 2-的水溶液混合,搅拌反应,沉淀产物后进行洗涤、干燥或烧结等处理得到所需产物。
3. 水热法水热法是制备纳米碳酸钙颗粒的经典方法之一,该方法适用于生成一定规模的均匀颗粒。
具体方法是在水中加入适量的氢氧化钙和碳酸氢钠,搅拌反应后直接通过调节反应温度和时间来控制所得产物的大小和形貌。
二、纳米碳酸钙的应用技术1. 生物医学领域纳米碳酸钙在生物医学领域中的应用主要是基于其良好的生物相容性和可降解性能而实现的,比如在骨骼修复、药物输送、医学成像等方面。
研究表明,纳米碳酸钙颗粒具有较低的毒性和对身体无害的特点,可以作为骨骼修复材料或药物携带平台,用于治疗骨质疏松症、癌症等疾病。
2. 环保领域纳米碳酸钙在环保领域中的应用主要涉及农业、水处理、环保建材等方面。
在农业方面,由于其具有优异的土壤改良能力,可以降低土壤酸化程度、改善土壤结构和肥力,从而提高农业产量。
在水处理方面,碳酸钙可以通过与重金属离子形成络合物,有效地降低水中重金属离子含量,净化水源。
在环保建材方面,纳米碳酸钙透明、耐候性强,可以应用于玻璃、涂料、纸张等产品的制造。
3. 食品工业纳米碳酸钙在食品工业中的应用主要体现在食品增稠剂、酸化剂等方面。
纳米碳酸钙制备工艺分析
纳米碳酸钙制备工艺分析纳米碳酸钙又被称为超微细碳酸钙,其平均粒子直径大约为40nm。
工艺试验室制备超细碳酸钙通常采用碳化法、复分解法、微乳法三种途径,工业上则一般采用碳化法。
1、纳米碳酸钙的制备方法(1)复分解法复分解法是在一定条件下,将水溶性钙盐(如氯化钙,硫酸钙等)与水溶性碳酸盐(如碳酸铵,碳酸钠等),通过液相到固相的反应过程制得纳米碳酸钙。
试验室使用这种方法制取碳酸钙时,可以通过掌握反应物浓度、反应温度、生成物的过饱和度以及加入适当的添加剂等操作方法,得到粒径小于0.1μm、比表面积大、具有较好溶解性的无定形碳酸钙产品。
这种方法制得的纳米碳酸钙纯度比较高,也有具有很好的白度,但在制取不同晶形的产品时需要很高的成本,所以目前国内外很少采用这种方法工业制取纳米碳酸钙。
(2)碳化法①间歇鼓泡碳化法与复分解法不同,间歇鼓泡碳化法是目前国内外制备纳米碳酸钙广泛采用的方法。
其操作步骤是首先将1.04-1.06g/cm3的Ca(OH)2浆液降温到25℃以下,再将浆液打入到碳化塔中,留意保持一定的液位,然后从碳化塔的底部向塔内通入CO2或者CO2和空气的混合气体,掌握合理的溶液浓度、反应温度、气液比以及添加剂等条件,可以间歇制得纳米级碳酸钙。
②连续喷雾法也是通过碳化法来制取纳米碳酸钙,步骤是将Ca(OH)2浆液通过压力式喷嘴从碳化塔的顶部向下呈雾状喷出,与此同时从塔的底部向上通入CO2或者CO2和空气的混合气体,使喷下的Ca(OH)2浆液与CO2充分接触,发生反应。
这种方法明显增加了CO2气体和Ca(OH)2浆液的接触面积,反应过程可以通过掌握石灰乳的浓度、液滴直径、流量、反应气液比等条件,在常温下制得直径在0.04-0.08μm的纳米碳酸钙。
通过连续喷雾法制得的CaCO3粒径分布窄,颗粒外形比较规则,而且简单分散,综合品质要优于间歇鼓泡法,但由于这种方法能耗较大,而且喷嘴简单发生堵塞,造成了高额生产成本,故难以普及。
纳米碳酸钙生产技术18
活性轻钙
干法活化 湿法活化
≥96
≥92
≥95
≤0.35
≤0.5
≤0.002
≤0.001
9.0~108ml/g
≤0.1
≤0.01
≤0.05
≤0.01
≤0.005
≤0.001
专用纳米碳酸钙
橡塑专用钙 树脂油墨专用钙
≥90
≥95
≥85
≤0.5 ≤0.005
≤1.5 细度≤15μm
3 纳米碳酸钙生产的工艺流程
纳米碳酸钙与普通轻钙和活性轻钙的工艺比较
❖ 从普通轻钙,到活性轻钙,再到活性纳米钙,其工艺流程的变化 规律总的来说是越来越复杂,主要区别在于:
❖ ⑴ 设备方面,纳米钙多了制冷设备、活化设备、沉降槽、解聚 分散机等。
❖ ⑵ 添加剂方面,纳米钙多了晶形导向剂、分散剂、活性剂。 ❖ ⑶ 对原料的要求不同,纳米钙要求生石灰品质高;工艺用水要
❖ 填充剂、添加剂、补强剂、改性剂及增白剂,以节约母料、增容 增量、降低成本、改善制品品质、增强制品功能,增加制品附加 值等。
按专门用途、不同晶形、粒径大小分类
专门用途 晶形分类
粒径分类
⑴
橡胶专用钙 无规则体 微粒钙 >5μm
⑵
塑料专用钙 纺锤体 微粉钙 1~5μm
⑶
涂料专用钙 立方体 微细钙0.1~1μm
❖ 俗称纳米级碳酸钙(简称NCC或NPCC)。
2、纳米碳酸钙的特性与分类
❖ 纳米碳酸钙——碳酸钙行业中的“后起之秀”,作为一种新型高 档无机功能性填料、目前唯一吨价位在万元以内的纳米材料、目 前唯一达到万吨级规模的纳米产业、应用最广泛的纳米产品,
❖ 在增韧性、补强性、透明性、触变性、流平性和消毒杀菌等应用 方面的性能,从而大大拓宽了纳米碳酸钙的应用领域,极大地改 善和提高了相关行业的产品性能和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、了解碳酸钙生产的工艺流程及过程特性; 2 、了解碳化过程的特性及 pH 值和电导率随 时间的变化规律; 3、了解碳酸钙产品的有关性能参数。
2018/11/9 11
二、实验任务
1、 测定碳化过程中pH值和电导率随时间 的变化曲线; 2、 测定碳酸钙产品的性能参数。
2018/11/9
12
三、实验原理
2018/11/9 9
我国从上世纪 80年代开始研制和生产纳米碳酸钙, 80年代末实现工业化生产,由于纳米碳酸钙生产技术
含量高,国内尚未形成规模,再加上品种少,产量低,
生产工艺及设备落后,质量不稳定,迄今为止高档产
品仍主要依靠进口。目前,需求量在80000—100000t,国
2018/11/9 3
3、按照晶形可分为:纺锤形、立方形、球形、片状、针 形、棒形等。
0.5μm 图3-1 纺锤形CaCO3电镜照片 Fig.3-1 TEM of spindle nanometer CaCO3
2018/11/9
100nm 图3-2 立方形纳米CaCO3电镜照片 Fig.3-2 TEM of cubic nanometer CaCO3
产纳米碳酸钙因产品晶形结构不同及是否活化处理, 价格各异,价位在2000—6000元/t。由于纳米碳酸钙附 加值高(为普通碳酸钙价格的 10—20倍),且潜在市 场广阔,纳米碳酸钙已成为国内科研开发的热点,并 成为碳酸钙生产企业发展的目标 [5—9]。
2018/11/9 10
一、实验目的
纳米技术是化工材料科学领域的一个新的生长点。 由于纳米技术能显著的改善材料的物理和化学性能, 因而使材料的应用领域大大拓展。本实验以纳米碳酸 钙的制备为对象,初步探讨超细化制备技术,以达到 以下目的。
4
143nm 图 3-3 链状纳米CaCO3电镜照片 Fig.3-3 TEM of chain nanometer CaCO3
2018/11/9
100nm 图3-5 片形CaCO3电镜照片 Fig.3-5 TEM of flake CaCO3
5
100nm 图3-7 球形纳米CaCO3电镜照片 Fig.3-7 TEM of spherical nanometer CaCO3
2018/11/9
100nm 图3-8 棒形CaCO3电镜照片 Fig.3-8 TEM of virgulate CaCO3
6
4、碳酸钙按照表面处理与否又可分为普通碳酸钙 和活性碳酸钙。活性碳酸钙是用表面改性剂对轻质 碳酸钙或重质碳酸钙进行表面改性而制得。 5、碳酸钙按照生产工艺及碳化设备,可分为间歇 鼓泡法、喷雾碳化法、喷射吸收法、超重力反应结
Ca(OH ) 2 (s) Ca 2 (aq) 2OH (aq)
CO2 (aq) OH (aq) HCO3 (aq)
2 HCO3 (aq) OH (aq) CO3 (aq) H 2O(aq)
2018/11/9
2 Ca 2 (aq) CO3 (aq) CaCO3 (s)
纳米碳酸钙的制备
化工专题实验
2018/11/9
1
实验导读
碳酸钙是一种重要的无机化工产品。 由于其具有价格低、原料广、无毒无害 等显著优点,被广泛应用于塑料、橡胶、 造纸、涂料、油墨、化妆品等行业,起 到增加体积、降低成本的作用,具有极 佳的经济效益。
2018/11/9 2
碳酸钙的分类
1 、按生产方法:轻质碳酸钙(是将石灰石等原料煅烧生
13
该反应体系涉及气液固三相,包括化学反应、成核及晶体 生长三个步骤,是一个复杂的过程,该反应体系存在着 CO2的扩散传质和 Ca(OH)2的溶解,并存在着晶体成核与晶
体生长的竞争。
在碳酸钙的生产过程中,碳化过程是核心环节。碳化过程
是在气—液—固三相反应体系中进行的,涉及到Ca(OH)2
固体的溶解、CO2气体的吸收和CaCO3微粒的结晶等,其反
Ca(OH)2悬浮液与CO2气体进行碳化反应式, 其热化学方程式可以表示为:
Ca(OH ) 2 (s) H 2O(l ) CO2 CaCO3 (s) 2H 2O(l ) 71.18KJ / mol
根据水溶液的电离理论,该碳化反应可以按照下列 步骤进行:
CO2 ( g ) CO2 (aq)
成石灰和二氧化碳,再加水消化石灰生成石灰乳,然
后再通入二氧化碳碳化生成碳酸钙,最后脱水、干燥 和粉碎而制得)和重质碳酸钙(是用机械方法直接粉 碎天然的方解石、石灰石等而制得)。 2、碳酸钙按平均粒径又可分为:微粒碳酸钙d>5μ m、微 粉 碳 酸 钙 1μ m < d ≤5μ m 、 微 细 碳 酸 钙 0.1μ m < d ≤1μ m ;超细碳酸钙 0.02μ m < d ≤0.1μ m ;超微细 碳酸钙d≤0.02μ m。
2018/11/9
8
从发展情况看,国外生产及市场较为成熟。 日本在超细碳酸钙的研制、生产、应用方面处于 国际领先地位,20世纪20年代日本白石公司已经 研制出超细碳酸钙产品白燕华 CC、DD、CDD等 产品,50年代日本开始工业化生产纳米碳酸钙。 美国着重于超细碳酸钙在造纸和涂料上的应用, 美国MTI公司已经成为国际上最大的轻质碳酸钙 生产商,其中包括多种晶形的纳米碳酸钙产品。 英国侧重于高档涂料应用, ICI 公司主宰着国际 高档涂料用超细碳酸钙市场。
应过程也极其复杂。研究碳化过程,试验中采用电导率仪
晶法、超声空化法和内循环法。
2018/11/9
7
纳米碳酸钙
纳米碳酸钙一般指特征维度尺寸在纳米数量级 ( 1—100nm )的碳酸钙颗粒 [1] ,包括了轻质碳酸钙行 业中统称的超细碳酸钙(粒径0.02—0.1μ m)和超微细 碳酸钙(粒径≤0.02μm ),是一种新型高档功能性填 充材料。它具有纳米材料所特有的性能,如体积效应、 表面效应等。普通碳酸钙用作填料仅起到增容降价的作 用,而纳米碳酸钙不仅可以起到增容降价的作用,而且 用于塑料、橡胶和纸张中,还具有补强作用。因此,纳 4]。 米碳酸钙的研制、开发,受到国内外的关注[2-