1.2展开与折叠课件(新)
合集下载
《展开与折叠》第二课时参考课件
合作探究 达成目标
【小组讨论2】下图是一些立体图形的展开图,用它们 能围成怎样的立体图形?先想一想,再折一折,看看 得到的图形与你想象的是否相同.
【反思小结】展开与折叠是立体图形与平面图形的相 互转化过程,判断平面图形是什么图形的展开可以通 过折叠来判断.
总结梳理 内化目标
1.我知道了什么?圆柱的侧面展开图是长 方形,圆锥的侧面展开扇形.
1.2拿出一个制作漂亮的正方体纸盒展示给学 生看,又拿出另外一个同样制作的正方体纸盒的平 面展开图给学生看并用手慢慢地折叠成正方体纸盒.
教师:人们是如何将平面纸做成如此漂亮的纸 盒的呢?教师拿出圆柱形圆锥形实物展示沿虚线展 开,侧面是一个什么图形会是什么图形?
展开
1.认识立体图形与平面图形的关系,了解立体图形 可由平面图形围成,立体图形可展开为平面图形; 了解圆柱、圆锥的侧面展开图,能根据展开图判断 立体模型;
2.通过实践操作,在经历和体验图形的转换过程中, 初步建立间概念,发展几何直觉.
合作探究 达成目标
活动一:阅读教材,思考:棱柱的各面有何特征?剪 一剪,看一看,图中的棱柱沿某些棱剪开,展开成一 个平面图形,你能得到哪些形状的平面图形?
上面?(字母朝外) (3)如果C面在右面,D面在后面,那么哪一个面会在
上面?(字母朝外)
达标检测 反思目标
解:由图可知,“A”与“F”相对,“B”与“D”相对, 则“C”与“E”相对. (1)因为面“A”与面“F”相对,所以A面是长方体的底部 时,F面在上面. (2)由图可知,如果F面在前面,B面在左面,那么“E”面 在下面,因为“C”与“E”相对,所以C面会在上面. (3)由图可知,如果C面在右面,D面在后面,那么“F”面 在下面,因为“A”与“F”相对,所以A面会在上面.
展开与折叠课件PPT
01
读开头、读领头句、读结尾。
2.扫描式阅读。即阅读时视线要垂直移动,
02
瞄准重要字词即可。比如在阅读“那么,有
没有一种快速阅读的方法呢?”这句话时,
只要抓住“有学识快速阅读”这两个关键
词语,就理解这个句子的基本意思了
1.2 展开与折叠
快速阅读有三种表现方式
3.组合式阅读,即群读。要想做到群读需要经过不
北师大版 数学 七年级 上册
1.2 展开与折叠 (第1课时)
导入新知
1.2 展开与折叠
在生活中,我们经常见到正方体形状的盒子,为了 设计和制作的需要,我们应了解正方体盒子展开后的平 面图形.
将纸盒完全展开后 形状是怎样的?
导入新知
1.2 展开与折叠
做一做 下面图形中,都能围成一个正方体吗?
(1)
1.下面六个正方形连在一起的图形,经折叠后能围成正方体的图 形有哪几个?
√
A
B
C
√
E
F
D√
√
G
课堂检测
基础巩固题
1.2 展开与折叠
2.(广东深圳中考)把图折成一个正方体的盒子,折好 后与“中”相对的字是( C ) A.祝 B.你 C.顺 D.利
课堂检测
1.2 展开与折叠
基础巩固题
3.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图 中红线将其剪开展成平面图形,想一想,这个平面图形是( A )
1.2 展开与折叠
感谢观看
1.2 展开与折叠
初中生要掌握快速阅读的能力,这对 提高阅读效率是非常必要的。 高效学习经验 阅读书籍有快有慢
1.2 展开与折叠
初三学生刘某以737分的高分在7万名考生中 独占鳌头,成为重庆市近十年来中考丢分最 少的人,其中四科都是满分,这样的好成绩让 人瞠目。尽管如此,刘峻琳似乎还不满 足:“再仔细数学其实也可以拿满分
读开头、读领头句、读结尾。
2.扫描式阅读。即阅读时视线要垂直移动,
02
瞄准重要字词即可。比如在阅读“那么,有
没有一种快速阅读的方法呢?”这句话时,
只要抓住“有学识快速阅读”这两个关键
词语,就理解这个句子的基本意思了
1.2 展开与折叠
快速阅读有三种表现方式
3.组合式阅读,即群读。要想做到群读需要经过不
北师大版 数学 七年级 上册
1.2 展开与折叠 (第1课时)
导入新知
1.2 展开与折叠
在生活中,我们经常见到正方体形状的盒子,为了 设计和制作的需要,我们应了解正方体盒子展开后的平 面图形.
将纸盒完全展开后 形状是怎样的?
导入新知
1.2 展开与折叠
做一做 下面图形中,都能围成一个正方体吗?
(1)
1.下面六个正方形连在一起的图形,经折叠后能围成正方体的图 形有哪几个?
√
A
B
C
√
E
F
D√
√
G
课堂检测
基础巩固题
1.2 展开与折叠
2.(广东深圳中考)把图折成一个正方体的盒子,折好 后与“中”相对的字是( C ) A.祝 B.你 C.顺 D.利
课堂检测
1.2 展开与折叠
基础巩固题
3.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图 中红线将其剪开展成平面图形,想一想,这个平面图形是( A )
1.2 展开与折叠
感谢观看
1.2 展开与折叠
初中生要掌握快速阅读的能力,这对 提高阅读效率是非常必要的。 高效学习经验 阅读书籍有快有慢
1.2 展开与折叠
初三学生刘某以737分的高分在7万名考生中 独占鳌头,成为重庆市近十年来中考丢分最 少的人,其中四科都是满分,这样的好成绩让 人瞠目。尽管如此,刘峻琳似乎还不满 足:“再仔细数学其实也可以拿满分
六年级数学上册1.2展开与折叠 教学PPT
下面是一个正方体的展开图,图中已标出 三个面在正方体中的位置,E表示前面,F表示右面, D表示上面,你能判断另外三个面A、B、C在正方体 中的位置吗?
A
BCD
E
F
课堂小结:
1、本节课我们通过对正方体表 面展开的深入研究,使我们对正 方体的展开有更深的认识。
2、通过微课自学,我们了解了 常见几何体的展开图。
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
A B CDE
F
练一练
如图1—6的图形都是正方体的展开图吗?
图1
图2
图3
是
是
是
图4
图5
图6
是
不是
不是
练一练
下面图形都是正方体的展开图吗?
图(1)
不是
图(2)
不是
图(3)
是
图(4)
不是
图(5)
不是
图(6)
不是
练一练
•
1、命运把人抛入最低谷时,往往是人 生转折 的最佳 期。谁 若自怨 自艾, 必会坐 失良机 !
•
•
2、成功的秘诀是努力,所有的第一名 都是练 出来的 。
•
•
3、目标的实现建立在我要成功的强烈 愿望上 。
•
•
4、不管失败多少次,都要面对生活, 充满希 望。
•
•
5、人生,最宝贵的莫过于光阴;人生 ,最璀 璨的莫 过于事 业;人 生,最 快乐的 莫过于 奋斗。
•
•
6、成功就是简单的事情不断地重复做 。
•
•
7、卓越的人一大优点是:在不利与艰 难的遭 遇里百 折不挠 。
•
•
8、伟人与常人最大的差别就在于珍惜 时间。
A
BCD
E
F
课堂小结:
1、本节课我们通过对正方体表 面展开的深入研究,使我们对正 方体的展开有更深的认识。
2、通过微课自学,我们了解了 常见几何体的展开图。
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
A B CDE
F
练一练
如图1—6的图形都是正方体的展开图吗?
图1
图2
图3
是
是
是
图4
图5
图6
是
不是
不是
练一练
下面图形都是正方体的展开图吗?
图(1)
不是
图(2)
不是
图(3)
是
图(4)
不是
图(5)
不是
图(6)
不是
练一练
•
1、命运把人抛入最低谷时,往往是人 生转折 的最佳 期。谁 若自怨 自艾, 必会坐 失良机 !
•
•
2、成功的秘诀是努力,所有的第一名 都是练 出来的 。
•
•
3、目标的实现建立在我要成功的强烈 愿望上 。
•
•
4、不管失败多少次,都要面对生活, 充满希 望。
•
•
5、人生,最宝贵的莫过于光阴;人生 ,最璀 璨的莫 过于事 业;人 生,最 快乐的 莫过于 奋斗。
•
•
6、成功就是简单的事情不断地重复做 。
•
•
7、卓越的人一大优点是:在不利与艰 难的遭 遇里百 折不挠 。
•
•
8、伟人与常人最大的差别就在于珍惜 时间。
《展开与折叠》课件
通过复杂的折叠机构设计,实现自行车的可折叠性,便于携带和存储。
折叠式自行车
通过简单的折叠机构设计,实现家具的可折叠性,节省空间并方便搬运。
折叠式家具
THANKS
感谢您的观看
折纸艺术是一种以纸张为主要材料的艺术形式,通过折叠、剪切、拼贴等技巧创造出各种形态的作品。在折纸艺术中,展开与折叠是基本的技巧之一,通过不同的折叠方式可以形成各种不同的形态和图案。折纸艺术的应用范围广泛,可以用于装饰、礼品、玩具等方面。
详细描述
通过简单的折叠技巧,将一张纸折叠成千纸鹤的形态,具有观赏和装饰价值。
千纸鹤
通过复杂的折叠技巧,将一张纸折叠成各种有趣的玩具,如战斗机、动物等。
折纸玩具
总结词
探讨产品设计中的展开与折叠原理,分析其在现代产品设计中的应用和价值。
要点一
要点二
详细描述
在产品设计中,展开与折叠是一种常见的结构形式。通过巧妙的设计,可以让产品在展开时呈现完整的功能和形态,而在折叠状态下则便于携带和存储。这种结构形式广泛应用于各种产品领域,如家居用品、办公用品、电子产品等。产品设计中的展开与折叠需要考虑材料、结构、工艺等方面的因素,以确保产品的实用性和美观性。
展开与折叠在日常生活中有着广泛的应用,如纸盒的制作、包装、折纸艺术等。
展开的基本形式
线性展开是一种常见的展开方式,其特点是展开后的形状或结构呈直线或线段排列。定义实例 Nhomakorabea特点
例如,纸盒的拆开、拉链的拉开等都属于线性展开。
线性展开具有简单、直观的特点,便于理解和操作。
03
02
01
旋转展开是指展开后的形状或结构围绕某一点进行旋转,形成圆周或类似圆周的排列。
根据内容选择
北师大版七年级数学上册 1.2.2棱柱、圆柱、圆锥的展开图 课件 (共25张PPT)
9.下图是某长方体形状包装盒的表面展开图.根据图中的数据,可知该包装盒的容积是(包装盒材料的厚度忽略不计)( )
A
A. B. C. D.
10.(空间观念)妈妈给小丽的圆柱形杯子(底面直径为,高为 )用布料做了一个杯套(只包住侧面和下底面) (不考虑杯子厚度,计算结果用 表示)
(1) 至少要用布料________ ;
6.将如图所示的圆锥的侧面展开,则点和点 在展开图中的对应位置可能是( )
C
A. B. C. D.
知识点二 圆柱的展开与折叠
3.下图是某几何体的平面展开图,则这个几何体是( )
B
A.三棱柱 B.圆柱 C.圆锥 D.长方体
4.以下图形中,能折叠成圆柱的是( )
D
A. B. C. D.
一个棱锥形的“走马灯”,正方形作底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意” 的字样.则在A,B,C处依次写上的字可以是( )
8.如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使, 重合,则所围成的几何体是( )
D
A. B. C. D.
易错点 几何体与平面展开图之间的对应关系混乱
7.[2024·四川德阳] 走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日.在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成
A
A.吉 如 意 B.意 吉 如 C展开图
课堂小结
知识点一 棱柱的展开与折叠
1.下左图是某个几何体的平面展开图,该几何体可能是( )
D
A. B. C. D.
(2) 这个杯子最多可以盛水多少立方厘米?
A
A. B. C. D.
10.(空间观念)妈妈给小丽的圆柱形杯子(底面直径为,高为 )用布料做了一个杯套(只包住侧面和下底面) (不考虑杯子厚度,计算结果用 表示)
(1) 至少要用布料________ ;
6.将如图所示的圆锥的侧面展开,则点和点 在展开图中的对应位置可能是( )
C
A. B. C. D.
知识点二 圆柱的展开与折叠
3.下图是某几何体的平面展开图,则这个几何体是( )
B
A.三棱柱 B.圆柱 C.圆锥 D.长方体
4.以下图形中,能折叠成圆柱的是( )
D
A. B. C. D.
一个棱锥形的“走马灯”,正方形作底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意” 的字样.则在A,B,C处依次写上的字可以是( )
8.如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使, 重合,则所围成的几何体是( )
D
A. B. C. D.
易错点 几何体与平面展开图之间的对应关系混乱
7.[2024·四川德阳] 走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日.在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成
A
A.吉 如 意 B.意 吉 如 C展开图
课堂小结
知识点一 棱柱的展开与折叠
1.下左图是某个几何体的平面展开图,该几何体可能是( )
D
A. B. C. D.
(2) 这个杯子最多可以盛水多少立方厘米?
最新六年级数学上册1.2展开与折叠 2鲁教版五四制优选教学课件
你的承诺和誓言总归太遥远,你总归太缥缈。当我不在是你生命中的独一无二,我宁愿离去,也不愿在一份残缺的爱里苦苦挣扎。 你总归是我命中未了的缘和劫,我们也终究错过了!如果上天能够重新来过,我会绕过那个和你认识的地方,遇见你也许就是没有结果,可我也能释怀了。 我不能抱着那些回忆来折磨自己,我也不想就这样颓废的麻木的去过每一天了。你给的一切在回忆的沼泽里只会让我放不下,你走后在每一个似曾相识的场景里我总是会不由自主的想起你,我会盯着你送的东西久久的发呆,也会因为看到某个熟悉的背影,而伤心落泪。
我终于能很轻松地说我们错过了,你终究是那个错的人,我也决定放下了!余生很长,放下错的人,才能拥抱属于我的幸福。徐志摩曾说过:“一生中至少该有一次,为了某个人而忘记了自己,不求结果,不求同行,不求曾经拥有,甚至不求你爱我,只求在我最美的年华里,遇见你。”我不知道自己是何等的幸运能在茫茫人海中与你相遇?我也不知道你的出现是恩赐还是劫?但总归要说声“谢谢你,谢谢你曾来过……” 还记得初相识时你那拘谨的样子,话不是很多只是坐在那里听我不停地说着各种不着边际的话。可能因为紧张我也不知道自己想要表达什么?只知道乱七八糟的在说,而你只是静静地听着,偶尔插一两句。想想自己也不知道一个慢热甚至在不熟的人面前不苟言笑的我那天怎么会那么多话?后来才知道那就是你给的莫名的熟悉感和包容吧! 有一句话说:“人的一生会遇到两个人,一个惊艳了时光,一个温柔了岁月。” 惊艳了时光的那个人,是青春回忆里最绚烂、最耀眼的存在,不后悔跟他经历过的快乐与感动,哪怕后来的大风大浪都是他给的,但还是想对他说,有生之年,欣喜相逢。
终于下定决心把你归还于人海了!其实很早就在逼自己慢慢的去放手了,每次听着你那冠冕堂皇的话我尽然差点相信了我和你会有以后…… 我没有你善于伪装,我学不会做最坏的人,我也不想浪费太多的时间和精力去等一个不可能的结果!虽然先动心、动情的人是你,无数次主动和挽留的人也是你,可我还是学不会去做一个你渴望中的人。 这一路有快乐、有坎坷、有心酸。记得你曾对我说过:“这一路来太多的心酸和坎坷自己必须好好珍惜才是……”你也说过:“我不必有顾虑,你会珍惜你会好好保护着我……”这些话在耳边响起犹如昨天,那么悦耳那么清晰。可我不想这样原地不动的去等待和期望了,我准备回头了,回到我的原点,回到不是和你开始的原地了……。
我终于能很轻松地说我们错过了,你终究是那个错的人,我也决定放下了!余生很长,放下错的人,才能拥抱属于我的幸福。徐志摩曾说过:“一生中至少该有一次,为了某个人而忘记了自己,不求结果,不求同行,不求曾经拥有,甚至不求你爱我,只求在我最美的年华里,遇见你。”我不知道自己是何等的幸运能在茫茫人海中与你相遇?我也不知道你的出现是恩赐还是劫?但总归要说声“谢谢你,谢谢你曾来过……” 还记得初相识时你那拘谨的样子,话不是很多只是坐在那里听我不停地说着各种不着边际的话。可能因为紧张我也不知道自己想要表达什么?只知道乱七八糟的在说,而你只是静静地听着,偶尔插一两句。想想自己也不知道一个慢热甚至在不熟的人面前不苟言笑的我那天怎么会那么多话?后来才知道那就是你给的莫名的熟悉感和包容吧! 有一句话说:“人的一生会遇到两个人,一个惊艳了时光,一个温柔了岁月。” 惊艳了时光的那个人,是青春回忆里最绚烂、最耀眼的存在,不后悔跟他经历过的快乐与感动,哪怕后来的大风大浪都是他给的,但还是想对他说,有生之年,欣喜相逢。
终于下定决心把你归还于人海了!其实很早就在逼自己慢慢的去放手了,每次听着你那冠冕堂皇的话我尽然差点相信了我和你会有以后…… 我没有你善于伪装,我学不会做最坏的人,我也不想浪费太多的时间和精力去等一个不可能的结果!虽然先动心、动情的人是你,无数次主动和挽留的人也是你,可我还是学不会去做一个你渴望中的人。 这一路有快乐、有坎坷、有心酸。记得你曾对我说过:“这一路来太多的心酸和坎坷自己必须好好珍惜才是……”你也说过:“我不必有顾虑,你会珍惜你会好好保护着我……”这些话在耳边响起犹如昨天,那么悦耳那么清晰。可我不想这样原地不动的去等待和期望了,我准备回头了,回到我的原点,回到不是和你开始的原地了……。
北师大版数学七年级上册:1.2 第1课时 正方体的展开与折叠 课件
想一想:下图中的图形经过折叠能否围成一个正方体. 动手折一折ቤተ መጻሕፍቲ ባይዱ!
说一说:下列的哪个图形能折叠成正方体?
一线不过四
图1
图2
田凹应弃之
图3
图4
图5
图6
图7
图8
图9
图10
例题讲解
例2 如图,将4×3的网格图剪去5个小正方形后,图中
还剩下7个小正方形,为了使余下的部分(小正方形之间
至少要有一个边相连)恰好能折成一个正方体,需要再
第一章 丰富的图形世界
1.2.1 正方体的展开与折叠
情境导入 例题讲解 课堂小结
获取新知 随堂演练
情境导入
在生活中,我们经常见到正方体形状的盒子.
你知道这些正方体形状的盒子是怎样制作的吗?你能不能 制作一个?
活动1:将一个正方体的表面沿某些棱剪开,能展成一 个平面图形吗?你能得到哪些平面图形?分组比赛.
剪去1个小正方形,则应剪去的小正方形的编号是( C )
A.7
B.6
C.5
D.4
活动3:按下列步骤操作并回答相关问题. (1)把刚展开的立方体平面图再恢复成立方体; (2)标出相对面的小正方形,可以把相对面用相同字母
或相同的颜色或相同的图案来标注;
(3)你能发现相对面在展开图上的位置有什么规律吗?
相 对 两 面 不 相 连
要求:展开 后每个面至 少有一条棱 与其他面相 连.
11
获取新知
正 方 体 的 种 不 同 的 展 开 图
你们将它 们分类吗?
第一类,1,4, 1型,共六种。
第二类,2,3,1型,共三种。
第三类,2,2,2型,只有一种。 第四类,3,3型,只有一种。
2024年秋季学期新北师大版数学7年级上册课件1.2.1 展开与折叠(第2课时 )
课堂检测
5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,则它的所有侧面的面积之和为______.
120cm2
课堂检测
把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如下表:
颜色
红
黄
蓝
白
紫
绿
花的朵数
1
2
3
4
5
6
现将上述大小相同、颜色、花朵分布完全一样的四个正方体拼成一个水平旋转的长方体,如图所示,那么长方体的下底面共有 朵花.
三棱锥的平面展开图
探究新知
四棱锥的平面展开图
探究新知
五棱锥的平面展开图
探究新知
五棱柱
问题2 下图折叠后的立体图形是什么?
探究新知
练一练 以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
探究新知
圆柱、圆锥的展开图
圆柱展开后的平面图形是什么样的?
思考1 圆柱侧面展开后,得到的平面图形是什么样的?
巩固练习
(2)这个五棱柱共有多少条棱?它们的长度是多少?
答:将其侧面沿一条棱剪开,展开图是一个长方形,长为4×5=20(cm),宽为6 cm,因而面积是20×6=120(cm2).
答:这个五棱柱共有15条棱,其中5条侧棱的长度都是6 cm,其他棱长都是4 cm.
(3)沿一条侧棱剪开将其侧面展成一个平面图形,这个图形 是什么形状?面积是多少?
三棱柱
探究新知
解: (2)因为AB=5,AD=3,BE=4,DF=6,
方法:此题是将动手操作和计算相结合,了解立体图形表面展开图与立体图形间的关系,掌握图形面积的计算(公式)是解本题的关键.由表面展开图可知立体图形的表面积等于表面展开图各部分图形面积之和.
5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,则它的所有侧面的面积之和为______.
120cm2
课堂检测
把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如下表:
颜色
红
黄
蓝
白
紫
绿
花的朵数
1
2
3
4
5
6
现将上述大小相同、颜色、花朵分布完全一样的四个正方体拼成一个水平旋转的长方体,如图所示,那么长方体的下底面共有 朵花.
三棱锥的平面展开图
探究新知
四棱锥的平面展开图
探究新知
五棱锥的平面展开图
探究新知
五棱柱
问题2 下图折叠后的立体图形是什么?
探究新知
练一练 以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
探究新知
圆柱、圆锥的展开图
圆柱展开后的平面图形是什么样的?
思考1 圆柱侧面展开后,得到的平面图形是什么样的?
巩固练习
(2)这个五棱柱共有多少条棱?它们的长度是多少?
答:将其侧面沿一条棱剪开,展开图是一个长方形,长为4×5=20(cm),宽为6 cm,因而面积是20×6=120(cm2).
答:这个五棱柱共有15条棱,其中5条侧棱的长度都是6 cm,其他棱长都是4 cm.
(3)沿一条侧棱剪开将其侧面展成一个平面图形,这个图形 是什么形状?面积是多少?
三棱柱
探究新知
解: (2)因为AB=5,AD=3,BE=4,DF=6,
方法:此题是将动手操作和计算相结合,了解立体图形表面展开图与立体图形间的关系,掌握图形面积的计算(公式)是解本题的关键.由表面展开图可知立体图形的表面积等于表面展开图各部分图形面积之和.
北师大版数学七年级上册1.2《展开与折叠》(第2课时)课件
作业
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 祝
2 3
4 5 6
前 你
似 程 锦6的图形都是正方体的展开图吗?
图1 是
图2 是
图3 是
图4 是
图5 不是
图6 不是
下面图形都是正方体的展开图吗?
图(1)
图(2)
图(3)
不是
不是
是
图(4)
图(5)
图(6)
不是
不是
不是
一个正方体的表面沿某些棱剪开,可得到十一种不同的平面 图形,这些平面图形经过折叠后又能围成一个正方体
中间两个面 中间没有面
楼 梯 天 天 见 三、三 连一线
想一想,做一做
1.把一个正方体的表面沿某些棱剪 开,展成一个平面图形,你能得到下 面的些平面图形吗?
一线不过四
×
×
田凹应弃之
×
×
×
×
相间、“Z”端是对面
A
B
A
B
A和B为相对的两个面
间二、拐角邻面知
C D C
D
C和D为相邻的两个面
总结规律:
正方体的表面展开图用“口诀”:
一线不过四,
田凹应弃之;
相间、“Z”端是对面, 间二、拐角邻面知。
1. 下列哪个平面图形沿虚线折叠不能 围成正方体的是( B )
2.右图需再添上一个面,折叠后才能围 成一个正方体,下面是四位同学补画的 情况(图中阴影部分),其中正确的是 ( B )
A
B
C
D
3. 下面图形中,哪些是正方体的表 面展开图?
堂清检测
1.下列哪些是正方体的展开图?
A
B
C
D
E
F
F
图形的展开与折叠
中间四个面
上、下各一面
第一类,1,4, 1型,共六种。
中间三个面
第二类,2,3,1型,共三种。
一、二隔河见
中间两个面
第三类,2,2,2型,只有一种。
楼 梯 天 天 见
中间没有面
三、三 连一线
第四类,3,3型,只有一种。
总结规律: 中间四个面 中间三个面
上、下各一面 一、二隔河见
2 3
4 5 6
前 你
似 程 锦6的图形都是正方体的展开图吗?
图1 是
图2 是
图3 是
图4 是
图5 不是
图6 不是
下面图形都是正方体的展开图吗?
图(1)
图(2)
图(3)
不是
不是
是
图(4)
图(5)
图(6)
不是
不是
不是
一个正方体的表面沿某些棱剪开,可得到十一种不同的平面 图形,这些平面图形经过折叠后又能围成一个正方体
中间两个面 中间没有面
楼 梯 天 天 见 三、三 连一线
想一想,做一做
1.把一个正方体的表面沿某些棱剪 开,展成一个平面图形,你能得到下 面的些平面图形吗?
一线不过四
×
×
田凹应弃之
×
×
×
×
相间、“Z”端是对面
A
B
A
B
A和B为相对的两个面
间二、拐角邻面知
C D C
D
C和D为相邻的两个面
总结规律:
正方体的表面展开图用“口诀”:
一线不过四,
田凹应弃之;
相间、“Z”端是对面, 间二、拐角邻面知。
1. 下列哪个平面图形沿虚线折叠不能 围成正方体的是( B )
2.右图需再添上一个面,折叠后才能围 成一个正方体,下面是四位同学补画的 情况(图中阴影部分),其中正确的是 ( B )
A
B
C
D
3. 下面图形中,哪些是正方体的表 面展开图?
堂清检测
1.下列哪些是正方体的展开图?
A
B
C
D
E
F
F
图形的展开与折叠
中间四个面
上、下各一面
第一类,1,4, 1型,共六种。
中间三个面
第二类,2,3,1型,共三种。
一、二隔河见
中间两个面
第三类,2,2,2型,只有一种。
楼 梯 天 天 见
中间没有面
三、三 连一线
第四类,3,3型,只有一种。
总结规律: 中间四个面 中间三个面
上、下各一面 一、二隔河见