第11章 - 平稳过程
第十二章-平稳随机过程
若T为离散集, 称平稳过程{X(t), t T }为 平稳序列.
广义平稳过程
严平稳过程
严平稳过程 二阶矩存在 广义平稳过程
严平稳过程 正态过程 广义平稳过程
8
例1 设{Xk , k = 1,2,…}是互不相关的随机变量 序列, E[Xk ] = 0, E[Xk ²] = σ², 则有
解 由假设, Θ的概率密度为
f
(
)
1
/
T, 0,
0 T,
其 它.
于是, X(t)的均值函数为
T
E[ X (t)] E[s(t )]
0
s(
t
)
1 T
d
1
t T
s( )d
Tt
10
利用s(φ)的周期性, 可知
E[X (t)] 1 T s( )d 常数. T0
而自相关函数
RX (t, t ) E[s(t )s(t )]
• 当X(t)和Y(t)是联合平稳随机过程时, W(t) = X(t) +Y(t)是平稳随机过程.
18
事实上, E[W(t)]= E[X(t)] + E[Y(t)] = 常数.
E[W (t)W (t )] E{[X (t) Y (t)][X (t ) Y (t )]} E[ X (t)X (t ) X (t)Y (t ) Y (t)X (t ) Y (t)Y (t )] E[ X (t)X (t )] E[ X (t)Y (t )] E[Y (t)X (t )] E[Y (t)Y (t )] RX ( ) RXY ( ) RYX ( ) RY ( ) RW ( )
t1, t2,, tnT, t1+h, t2 +h,,tn+h T, 若(X(t1), X(t2),, X(tn))与
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【
第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。
(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。
这种平稳经常称为严平稳,它是从概率分布的角度去定义的。
其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。
序列{ 1 2 }t x t =:,,…是同分布的。
不平稳的随机过程称为非平稳过程。
因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。
但是,要指出某些序列不是平稳的却很容易。
(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。
协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。
由此立即可知x t 与x t+h 之间的相关性也只取决于h。
如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。
由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。
随机过程-平稳过程
FX () S() , d X
随机过程——西安电子科技大学数学系 冯海林
对平稳时间序列有相类似的结果.
设X={Xn, n=0, ±1, ±2,…}是平稳时间序列,则其 相关函数可以表示为 1 jm R(m) X e dFX (), m 0, 1, () 2
1 t T s( )s( )d T t
只与 有关系.
所以X是平稳过程.
随机过程——西安电子科技大学数学系 冯海林
例2 对复随机过程 Z t=Xt +jYt 若mZ(t)是复常数, RZ(t,t+τ )=RZ(τ ),则称 Z={Zt, -∞<t<+ ∞}为复平稳过程. 设Ak和ω k分别是实随机变量和实常数(k=1,2…,n),
随机过程西安电子科技大学数学系冯海林平稳过程的谱分解平稳过程的谱分解随机过程西安电子科技大学数学系冯海林平稳过程的谱分解定理551是均方连续的平稳过程则其相关函数可以表示为上非负有界单调不减右连续且f随机过程西安电子科技大学数学系冯海林所以f是某个随机变量w的特征函数即存在分布函数g随机过程西安电子科技大学数学系冯海林随机过程西安电子科技大学数学系冯海林称函数f为平稳过程x相关函数的谱展开式或谱分解式
k 1
E[Ak ]=0时,上式与t无关.
随机过程——西安电子科技大学数学系 冯海林
R(t , t ) E[Zt Z t ] Z E[ Ak e jk t Ak e jk ( t ) ]
k 1 k 1 n n
= E[ Ak Al ]e j (l k )t e jl
令
Zt Ak e
k 1
n
jk t
平稳随机过程及其遍历性
6
f X (x1, x2 , t1, t2 ) f X (x1, x2 , )
随机过程X(t)的自相关函数,自协方差函数都是 平稳的。
都与时间无关
RX (t1, t2 ) x1x2 f X (x1, x2;t2 t1)dx1dx2
x1x2
➢ 二阶平稳(n=2) 严平稳随机过程的二维概率密度只与 t1, t2的 时间间隔有关,而与时间起点无关。 n 2, t t1, t2 t1时,二维概率密度:
fX (x1, x2 ,t1,t2 ) f X (x1, x2,t1 t,t2 t)
fX (x1, x2 , 0,t2 t1) f X (x1, x2, )
平稳随机过程及其遍历性
随机过程可分为平稳与非平稳两大类, 严格地说, 所 有信号都就是非平稳得, 但就是, 平稳信号得分析要容 易得多, 而且在电子系统中, 如果产生一个随机过程得 主要物理条件在时间得进程中不改变, 或变化极小, 可 以忽略, 则此信号可以认为就是平稳得、 如接收机得 噪声电压信号, 刚开机时由于元器件上温度得变化, 使 得噪声电压在开始时有一段暂态过程, 经过一段时间 后, 温度变化趋于稳定, 这时得噪声电压信号可以认为 就是平稳得。
或
X (很t) 小m,X 即使X (两t 者 )的 m相X 关程度较强,则 也不会
太大,所以K并X 不( )能准确表示关联程度的大小。为了消除
实际应用中,通过上式来判定过程得平稳性就是很不容易得,因此 在实际中往往不需要所有时间都平稳,只要观测得有限时间平稳 就行了。
3
f X (x1,, xn ,t1 t,,tn t) f X (x1,, xn ,t1,,tn )
(2) 特性 ➢ 一阶平稳(n=1) 严平稳随机过程得一维概率密度函数与时间无关 n 1, t t1 时,对于一维概率密度有: fX (x1, t1 t) f X (x1, t1) f X (x1, 0) f X (x1)
大连海事大学 平稳随机过程
平稳随机过程
• 严平稳随机过程
– 性质1: X(t)的均值,均方值和方差也都是 常数,不再是时间的函数
E ( X (t )) x1 p X ( x1 )dx1 m X
E[ X (t )] x12 p X ( x1 )dx1
2 2 2 D[ X (t )] (x1 mX)p X ( x1 )dx1 X
证: RX ( ) E[ X (t ) X (t )]
E[ X (t ) X (t )] RX ( )
平稳随机过程
• 平稳过程的自相关函数性质
– 3.自相关函数在 0具有最大值 – 物理意义:同一时刻随机过程自身的相关性最强 – 注意:不排除 0 时,也有可能出现同样的最大 值,如周期平稳过程 RX (0) RX ( )
1
所以,X(t)是宽平稳的 • (2)讨论X(t)是否是严平稳的 令 t t1 过程的状态为
平稳随机过程
x sin 2t1a1 sin( 2t1a1 )
这表明,过程的一维变量x与a是双值关系,于 是求得过程的一维概率密度为
da1 da2 1 p X ( x, t ) p(a1 ) p( a 2 ) dx dx t 1 x 2
E[ X (t ) X (t )] R X ( )
平稳随机过程
• 例:设随机过程为
X (t ) a cos(0t ) N (t ) 式中,a, 0为常数,Φ 为 (0,2 ) 上均匀分布的随机
变量,N(t)为一般平稳过程,对于所有t而言, Φ 与N(t)皆统计独立,求得其相关函数为
a2 R X ( ) E[ X (t ) X (t )] cos 0 RN ( ) 2
平稳过程
二维分布函数
F 2 ( x1 , x 2 ; t1 , t 2 ) F 2 ( x1 , x 2 ; t1 , t 2 )
F 2 ( x1 , x 2 ; 0 , ) F 2 ( x1 , x 2 ; )
上式表明:严平稳过程的一维分布函数 于参数 t ,
F1 ( x 1 ) 不依赖
2
2
X X
2 2
2 X
(常数);
E [ X ( t ) X ( t )]
x 1 x 2 f 2 ( x 1 , x 2 ; t , t ) dx 1 dx 2
x 1 x 2 f 2 ( x 1 , x 2 ; ) dx 1 dx 2 R X ( )
I 给出,任意时刻 1
t 的电报
内信号变化的次数,已知 { N ( t ), t 过程,则 { X ( t ), t 0} 是一个平稳过程. 泊松过程的定义
P{ N (t ) N (t ) k }
0 , k 0 ,1, 2 ,
( | |) k!
2
n 维正态分布 ( X 1 , X 2 , , X n ), 概率密度
f ( x 1 , x 2 , , x n ) 1 ( 2 )
n 2 1
exp{
2
1 2
(x ) C
'
1
( x )}
(det C )
其中
x1 x2 x x n
(仅依赖于 ,而不依赖于 t );
E {[ X ( t ) EX ( t )][ X ( t ) EX ( t )]} E [ X ( t ) X ( t )] E [ X ( t )] E [ X ( t )]
第11章 OLS用于时间序列数据的其他问题
11.3 回归分析中使用的高度持续性时间序列 通常将弱相关过程称为零阶单整I(0),经 过一阶差分后成为弱相关过程的,称为一 阶单整I(1),即有一个单位根。 判断时间序列是否为I(1):判断一个时间 序列是否有单位根在18章里有正式的单位 根检验。一个直观的方法是计算样本的自 ˆ ,如果数值比较大,如0.9以 相关系数 上,存在单位根可能性很大,往往需要差 分变换。
t
2
t1 t2 tm
t1 h
t2 h
tm h
11.1平稳和弱相关时间序列
由于平稳性是对DGP而言,对某个时间序列数 据是否由一个平稳过程生成是比较难以判断, 但非平稳的判断有时比较容易,如存在时间 趋势的数据一定是不平稳的,因为其均值随 时间变化。 协方差平稳过程(covariance stationary process):对于具有有限二阶矩的随机过程 E xt 为常数(2) xt : t 1, 2, ,如果(1) var xt 为常数(3) t , h 1, cov xt , xt h 仅取决于h,而不取决于t。
11.3 回归分析中使用的高度持续性时间序列 许多时间序列并不满足弱相关性,我们无法 借助于大数定律和中心极限定理,直接对 高度持续性时间序列进行回归分析,可能 产生谬误回归。 高度持续性时间序列 随机游走过程(random walk): yt yt 1 et ,et : t 1, 2, 是均值为0和方差 为常数的独立同分布序列。 反复迭代可得: yt et e1 y0
11.1平稳和弱相依时间序列
平稳性和弱相关为什么对回归分析如此重要? 对时间序列数据而言,它取代了随机抽样 假定使大数定律和中心极限定理成立,由 此我们能够一般性地证明OLS的合理性。 常用的平稳弱相关的时间序列模型: MA(1):一阶移动平均过程: xt et 1et 1 是均值为0,方差为常数的 e : t 0,1, 2, 独立同分布序列。
4平稳随机过程
P{X (t) } p{X (t) } 1 2
而正负号在区间(t,t+ρ)内变化的次数N(t,t+ρ) 是随机的,且假设N(t,t+ρ)服从泊松分布,亦 即事件
AK {N (t, t ) k} 的概率为
P( Ak )
(o)k
k!
e ,
k
0,1,2,,
第12页,共33页。
x(t) I
n
E X (ti )X (t j ) ai a j
i , j1
E[ n
X
(t
i
)
a
i
]2
0
i1
第17页,共33页。
4.平稳相关与互相关函数
(1)定义: 设{X(t)},{Y(t)},tT为两个平稳过程,如果它
们的互相关函数RXY(t,t+)只是 的函数,即 RXY(t,t+)=E[X(t)Y(t+)]= RXY(),则称{X(t)},{Y(t)}是平
证:(1)由Cauchy-Schwarze不等式
{E[X(t)]}2E[X2(t)]<+,
所以E[X(t)]存在。 在严平稳过程的定义中,令h=-s,由定义X(s)与X(0)同分
布,所以E[X(t)]= E[X(0)]为常数。一般记为X.
第4页,共33页。
(2) 由Cauchy-Schwarze不等式
平稳随机过程
引言
第1页,共33页。
一、严平稳随机过程
1.定义:设{X(t),tT}是随机过程,如果对于任意的常数h和任
意正整数n,及任意的n维随机向量(X(t1),X(t2),…,X(tn))和 (X(t1+h),X(t2+h),…,X(tn+h))具有相同的分布,则称随机过程 {X(t),tT}具有平稳性,并同时称此过程为严平稳过程。
6-1平稳过程-定义和例子
…
2 , ak k
为平稳序列
E[Z (n)]
R(n, m n) E[Z (n)Z (n m)
k
ARMA
k j
a a E[ X (n k ) X (n m j)]
k j
k
aa
k
则对于任意的实数t和实数列{n },
X (t )
n jnt Z e n
为平稳过程,
具有互不相关随机振幅不同频率的随 机振动的叠加为平稳过程。
解放军电子技术学院
卢
首先,可证 X N (t )
n N
N
Z n e jnt 均方收敛。 令
X (t ) l.i.m X N (t )
E[ X ( t ) ] E[ X ( s ) ] E[ X ( s )] 0,
解放军电子技术学院
卢
E[ X ( t ) ] 0,
即
E[Y ( t )] E[ X ( t )] 0.
(2) 对过程X(t) 有结论:
A.当 s 与 t 分属不同T 区间, X(s)与X(t) 相互独立,
m k
R ( m)
2
E[Z 2 (n)]
解放军电子技术学院
k
2 2 a k
卢
例 设
{Zn ,n 0, 1, 2, }
…
是复随机序列且
n n 2 n
2 E[Z n ] 0, E[ Z n Z m ] n n ,m ,
有限维分布不随时间 解放军电子技术学院 的推移而改变.
西安交通大学研究生随机过程——平稳过程.pdf
第4章 平稳过程粗略地说,“平稳过程”是指其统计特征不随时间推移而变化的一类随机过程.在随机过程理论中有两种不同含义的平稳过程——严平稳过程和宽平稳过程.本章着重研究后者并介绍宽平稳过程相关函数的性质、谱密度及其性质以及各态历经等方面的内容.4.1 二阶矩随机变量空间与均方微积分4.1.1 二阶矩随机变量空间定义4.1.1 给定概率空间(Ω,F ,P ),设X 为定义在(Ω,F ,P )上的复值随机变量,令{}2:||,ˆX E X =<∞H(4.1.1)称H 为二阶矩随机变量空间. 注 (1) 所谓二阶矩随机变量空间H 就是定义在(Ω,F ,P )上的二阶矩存在的复值随机变量全体.因2||X E X ∈<∞H ,即,而期望运算本质上是积分运算,故二阶矩存在这一概念与普通微积分的平方可积概念相对应. (2) 显然,(实值)随机变量是复值随机变量的特例,因而H 中也包含了二阶矩存在的所有(实值)随机变量. (3) H 中的元在几乎处处相等的意义下是相同的,即若X , Y ∈H ,且P {X = Y } = 1,则称X=Y .在本章以后的讨论中都按此注释理解. 对H 中的元定义通常意义下的加法运算,再定义H 中的元与复数域C (相应地,实数域R )中的元的数乘运算,容易验证H 对这两种运算封闭.事实上,若X , Y ∈H ,由Cauchy-Schwarz 不等式[]222||||||,E X Y E X E Y ≤<∞则222||||2||||,E X Y E X E X Y E Y +≤++<∞X Y ∈H 即+。
222||||||X αE αX αE X αX ∈∈=<∞∈C R H H 若,(相应地,),则,即。
此外,H 显然还满足以下条件:,,,X Y Z αβ∈∈C R H 若,(相应地,),则,()(),0,()0,()(),(),(),1.X Y Y X X Y Z X Y Z X X X X αβX αβX αβX αX βX αX Y αX αY X X +=+⎫⎪++=++⎪⎪+=⎪+−=⎪⎬=⎪⎪+=+⎪+=+⎪⎪⋅=⎭由此可得下面的结论. 定理4.1.2 H 是复数域C (相应地,实数域R )上的线性空间.延伸阅读在H 中引入二元运算:(,)(),,,ˆX Y E X Y X Y =∀∈H其中Y Y 表示对取共轭(下同).由Cauchy-Schwarz 不等式知,这样的二元运算是有意义的.不仅如此,还容易验证它具有如下性质12,,,,,,αβX X X Y ∈∈C H 对任意任意有1212(,)(,),(,)(,)(,),(,)0,0(,)0.Y X X Y αX βX Y αX Y βX Y X X X X X =+=+≥==当且仅当时,满足上述条件的二元运算(·, ·)称为H 上的内积(inner product ).当一个线性空间可以引入内积时,称其为内积空间. 若X , Y ∈H 满足(X , Y )= 0,则称X 与Y 正交(orthogonal ). 上面引进的内积与正交概念实际上是对具体问题所涉及的类似概念的抽象.例如,在n 维欧氏空间上就有向量内积与正交概念;在讨论周期函数的Fourier 级数展开时,也遇到过在[-π, π]上的三角函数系{}1,cos ,sin ,,cos ,sin ,x x nx nx ""的内积与正交概念,等等. 如果X , Y ∈H ,且EX = 0 = EY ,那么X 与Y 正交蕴含X 与Y 不相关,反之亦然.对X , Y ∈H ,令(,)ˆd X Y =(4.1.2)可以验证这里引入的d (·, ·)满足以下条件,(,)(,),,,(,)(,)(,),,,,(,)0,(,)0.d X Y d Y X X Y d X Z d X Y d Y Z X Y Z d X Y X Y d X Y =∈≤+∈≥==H H 当且仅当时, 称d (·, ·)为H 上的距离(distance )或度量(metric ).当一个抽象集合可以引入距离时,称其为距离空间(度量空间). 在H 上引进上述距离d (·, ·)使其成为距离空间,就为我们在H 上讨论所谓的均方微积分奠定了基础.4.1.2 均方微积分同普通微积分一样,我们先来介绍均方极限概念,并将此概念贯串于均方连续、均方导数以及均方积分等概念中.1. 均方极限定义4.1.3 设,(1)n X X n ∈≥H ,若2lim ||0,n n E X X →∞−=(4.1.3)则称{},1n X n ≥均方收敛于X , 亦称X 是X n 当n →∞时的均方极限,记作(..)lim n n m s X X →∞=,这里m.s.是mean square 的缩写. 注 (1) 均方收敛就是第1章介绍的2阶平均收敛.(2) 由(4.1.2)式可知,(4.1.3)式表示(,)0()n d X X n →→∞,故均方收敛就是H 中按距离d (·, ·)收敛.下面讨论均方极限的一些性质.定理4.1.4 (Cauchy 准则) {}(1),1n n X n X n ∈≥≥H 设,则均方收敛的充要条件是2,lim||0.m n n m E X X →∞→∞−=(4.1.4)证 必要性:{},1,n X n X ≥∈H 设均方收敛于 因2222||||2||||,m n m n m n X X X X X X X X X X ⎡⎤−=−+−≤−+−⎣⎦故2220||2||||0(,).m n m n E X X E X X E X X m n ⎡⎤≤−≤−+−→→∞⎣⎦即(4.1.4)式成立.充分性:设(4.1.4)式成立,要证明存在某个,X ∈H 使得{},1n X n ≥均方收敛于X .这涉及到空间H 的完备性,其证明要用到测度论知识,此处从略.□通常,将满足 (4.1.4)的随机序列{},1n X n ≥称为均方Cauchy 列.故定理4.1.4表明:随机序列{},1n X n ≥均方收敛当且仅当它是均方Cauchy 列.定理 4.1.5 ,,(1)n X Y X n ∈≥H 设,若(..)lim (..)lim ,n n n n m s X X m s X Y →∞→∞==, 则P {X =Y }=1, 即 X=Y .证 因22220||||2||||0(0),n n n n E X Y E X X X Y E X X E X Y n ⎡⎤≤−=−+−≤−+−→→⎣⎦故得2||0E X Y −=,此即P { X=Y } = 1.□定理4.1.6 ,,,,,,,, 1.n m n X Y X Y a b a n m ∈∈≥C H 设(1) ()(..)lim lim ()()lim ()(..)lim .n n n n n n n n m s X X E X E X E X E m s X →∞→∞→∞→∞===若,则,亦即(2),(..)lim (..)lim lim()().n m n m n m n m m s X X m s Y Y E X Y E XY →∞→∞→∞→∞===若,,则(3) (..)lim (..)lim n n n n m s X X m s Y Y →∞→∞==若,,则aX n + bY n 也均方收敛,且有 (..)lim().n n n m s aX bY aX bY →∞+=+(4) (..)lim lim (..)lim n n n n n n n m s X X a a m s a X aX →∞→∞→∞===若,,则.证 (1) 因0|||()|0(),n n EX EX E X X n ≤−=−≤→→∞lim ()().n n E X E X →∞=故(2) 因0|()()||()|()()()()()()()()0(,),n m n m n m m n n m m n E X Y E XY E X Y XY E X X Y Y E X Y Y E X X Y E X X Y Y E X Y Y E X X Y n m ≤−=−=−−+−+−⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦≤−−+−+−⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦≤→→∞,lim()(n m n m E X Y E XY →∞→∞=故(3)、(4)的证明比较简单,留给读者作练习.□性质(1)、(2)表明均方极限运算与期望运算可以交换顺序,这一良好性质是由均方极限概念本身所决定的.注意:均方极限运算不具备乘积运算性质,即,(..)lim (..)lim n n n n m s X X m s Y Y →∞→∞==若,,则下列结论未必成立:22(..)lim (..)lim nn n n n m s X X m s X Y X Y →∞→∞==,等.定理4.1.7(均方收敛准则) {}(1)1n n X n X n ∈≥≥H 设,则,均方收敛的充要条件是,lim()n m n m E X X →∞→∞存在.证 必要性:{},1.n X n X ≥∈H 设均方收敛于由定理4.1.6(2),得2,lim()()||.n m n m E X X E X X E X →∞→∞==<∞充分性:,lim().n m n m E X X a →∞→∞=设因2||()()()()()()0(,)m n m n m n m m m n n m n n E X X E X X X X E X X E X X E X X E X X a a a a m n ⎡⎤−=−−⎣⎦=−−+→−−+=→∞ 故由定理4.1.4知,{X n , n ≥ 1}均方收敛.□以上讨论了随机序列形式的均方极限概念.同普通微积分一样,可以很方便地将其推广到随机函数形式,并可写出相应的性质(请读者试着写一写). 有了均方极限概念,就可以定义均方连续、均方导数和均方积分等概念,而且借助均方极限性质还可以来研究它们的相应性质. 2. 均方连续在以下的讨论中总假定{}{}(),(),X t t T Y t t T =∈=∈X Y ,为二阶矩过程(复值或实值),X ∈H ,参数集T 为R 或其上的一个区间.定义4.1.8 {}(),X t t T =∈X 设, 若对固定的t 0∈T ,有0(..)lim ()(),t t m s X t X t →=(4.1.5)则称X 在 t 0处均方连续.若X 在T 上的每一点处都均方连续,则称X 在T 上均方连续.定理4.1.9 (均方连续准则) X 在T 上均方连续的充要条件是对任意t ∈T ,相关函数 R X (·, · )在(t , t )点处二元连续.证 必要性:设X 在T 上均方连续,则对任意t ∈T ,有Δ0(..)lim (Δ)().t m s X t t X t →+=由定理4.1.6(2),得Δ0,Δ0Δ0,Δ0lim(Δ,Δ)lim(Δ)(Δ)()()(,),s t s t R t s t t E X t s X t t E X t X t R t t →→→→++⎡⎤=++⎣⎦⎡⎤=⎣⎦=X X故R X (·, · )在(t , t )点处二元连续.充分性:设任意t ∈T ,R X (·, · )在(t , t )点处二元连续.由2|(Δ)()|(Δ)(Δ)(Δ)()()(Δ)()()(Δ,Δ)(Δ,)(,Δ)(,)E X t t X t E X t t X t t E X t t X t E X t X t t E X t X t R t t t t R t t t R t t t R t t +−⎡⎤⎡⎤⎡⎤⎡⎤=++−+−++⎣⎦⎣⎦⎣⎦⎣⎦=++−+−++X X X X (,)(,)(,)(,)0(Δ0),X X X X R t t R t t R t t R t t t →−−+=→知X 在t 点处均方连续,再由t ∈T 的任意性,得X 在T 上均方连续.□推论4.1.10 {}(),X t t T =∈X 设的相关函数为R X (·, · ),则R X (·, · )在{}(,):t t t T ∈上是二元连续的等价于它在{}(,):,s t s T t T ∈∈上是二元连续的.证 充分性是显然的,往证必要性.设R X (·, ·)在{}(,):t t t T ∈上是二元连续的.由定理4.1.9知,X 在T 上均方连续,故对任意s 0, t 0∈T ,有00(..)lim ()(),(..)lim ()().s s t t m s X s X s m s X t X t →→==根据定理4.1.6的 (2),得0000,,0000lim(,)lim()()()()(,).s s t t s s t t R s t E X s X t E X s X t R s t →→→→⎡⎤=⎣⎦⎡⎤=⎣⎦=X X此即R X (·, · )在{}(,):,s t s T t T ∈∈上是二元连续的.□ 3. 均方导数定义4.1.11 {}(),X t t T =∈X 设,若对固定的t 0∈T ,均方极限00Δ0(Δ)()(..)limΔt X t t X t m s t→+− (4.1.6)存在,则称X 在t 0点处均方可导,并称这一极限为X 在t 0点处的均方导数,记作0d ()()d t tX t X t t =′或.若X 在T 上的每一点处都均方可导,则称X 在T 上均方可导,X 的均方导数记作d ()().d X t X t t′或 {}(),X t t T ′′=∈X 也是一个二阶矩过程,称之为X 的导数过程.如果′X 在t ∈T 均方可导,那么称X 在t 点处二阶均方可导,′X 的均方导数记作22d ()(),d X t X t t ′′或 称为X 的二阶均方导数.类似地,可定义更高阶的均方导数.定理4.1.12 (均方可导准则){}(),X t t T =∈X 在t ∈T 均方可导的充要条件是,在(t , t )点处相关函数R X (·, · )存在下列极限0,0(,)(,)(,)(,)lim.h l R t h t l R t h t R t t l R t t hl→→++−+−++X X X X (4.1.7)证 X 在t ∈T 均方可导,即0()()(..)lim h X t h X t m s h→+−存在.根据定理4.1.7,上述均方极限存在的充要条件是0,0()()()()lim h l X t h X t X t l X t E h l →→⎡+−+−⋅⎢⎣⎦存在.将分子上的各项展开并逐项取期望,即要求极限0,0(,)(,)(,)(,)limh l R t h t l R t h t R t t l R t t hl →→++−+−++X X X X存在,证毕.□下面的定理刻画了均方导数具有的性质. 定理4.1.13 (1) 若X 在t (∈T )点处均方可导,则X 在t 点处均方连续. (2) 若X 在T 上均方可导,其均方导数为′X , 则d [()][()],d E X t E X t t′=(4.1.8)221212121221()()()()()().E X t X t E X t X t E X t X t t t t t ∂∂⎡⎤⎡⎤⎡⎤′′==⎣⎦⎣⎦⎣⎦∂∂∂∂(4.1.9) (3) 若X ∈H 为随机变量,则X 对t 的均方导数为0,即0.X ′=(4) 若X ,Y 均方可导,a , b 为常数,则a X + b Y 也均方可导,且有[]()()()().aX t bY t aX t bY t ′′′+=+ (4.1.10)(5) 若f 是普通的可导函数,X 是均方可导的二阶矩过程,则f X 也均方可导,且有[]()()()()()().f t X t f t X t f t X t ′′′=+ (4.1.11)由均方导数的定义和均方极限的性质便不难证明定理4.1.13,证明留给读者.注 (1) 定理4.1.13的(2)表明均方导数运算与期望运算可交换顺序. (2) 两个均方可导的二阶矩过程X 与Y 的乘积X Y 未必均方可导.例4.1.14 设二阶矩过程X = { α cos (λt + Θ),-∞ < t < ∞},其中α,λ为常数,Θ为随机变量且Θ ~ U (0, 2π).因()cos cos sin sin ,X t αλt Θαλt Θ=− 由定理4.1.13的(3) ~ (5)知()(cos )cos (sin )sin sin cos cos sin sin()X t αλt Θαλt Θαλλt Θαλλt Θαλλt Θ′′′=−=−−=−+ 故X 在(-∞, +∞)上均方可导,从而它在(-∞, +∞)上也是均方连续的.4. 均方积分定义 4.1.15 {}(),()X t a t b f t a t b =≤≤≤≤X 设为二阶矩过程,()为普通函数,考虑区间[a, b ]的任意划分:a = t 0 < t 1 <…< t n -1< t n = b , 作和式11()()(),nkk k k k f ξX ξt t −=−∑1[,]k k k ξt t −∈其中.11Δmax()k k k nt t −≤≤=−记, 若均方极限1Δ01(..)lim ()()()nk k k k k m s f ξX ξt t −→=−∑存在且这一极限与区间[a, b ]的划分及{ξk }的选取无关,则称f X 在[a , b ]上均方可积,并称此极限为f X 在[a , b ]上均方积分,记作()()d ba f t X t t ∫,即 1Δ01()()d (..)lim ()()().ˆnb k k k k ak f t X t t m s f ξX ξt t −→==−∑∫定理4.1.16(均方积分准则)若二重积分()()(,)d d b b aaf s f t R s t s t ∫∫X 存在,则 f X 在区间[a , b ]上均方可积. 证 考虑区间[a , b ]的任意两个划分:011011;,n n m m a t t t t b a t t t t b −−′′′′=<<<<==<<<<="" 分别作和式1111()()();()()(),nmkk k k jjjj k j f ξX ξt t f ηX ηt t −−==′′−−∑∑11[,],[,].k k k j j j ξt t ηt t −−′′∈∈其中 1111Δmax(),Δmax().k k j j k nj mt t t t −−≤≤≤≤′′′=−=−记 欲证f X 在区间[a , b ]上均方可积,即要证明1Δ01(..)lim ()()()nk k k k k m s f ξX ξt t −→=−∑存在.由均方收敛准则(定理4.1.7)知,只要证明下面的极限11Δ0,Δ01111Δ0,Δ01111Δ0,Δ011lim ()()()()()()lim ()()()()()()lim()()(,)()()n m k k k k j j j j k j n mkj k j k k j j k j nmkj k j k k j j k j E f ξX ξt t f ηX ηt t f ξf ηE X ξX ηt t t t f ξf ηR ξηt t t t −−′→→==−−′→→==−−′→→==⎡⎤′′−−⎢⎥⎢⎥⎣⎦⎡⎤′′=−−⎣⎦′′=−−∑∑∑∑∑∑X (4.1.12) 存在即可.现在,已知二重积分()()(,)d d b ba af s f t R s t s t ∫∫X(4.1.13)存在,故(4.1.12)式中的极限自然存在,并且其极限值就是(4.1.13)中的积分.□下面讨论均方积分的一些性质. 定理4.1.17 (1) 若X 在[a , b ]上均方连续,则X 在[a , b ]上均方可积. (2) 若 f X 在区间[a , b ]上均方可积,则[]()()d ()()d .bbaaE f t X t t f t E X t t ⎡⎤=⎢⎥⎣⎦∫∫(3) 若二重积分()()(,)d d b baaf s f t R s t s t ∫∫X 存在,则()()d ()()d ()()(,)d d .b b b b a a a aE f s X s s f t X t t f s f t R s t s t ⎡⎤⋅=⎢⎥⎣⎦∫∫∫∫X特别,若(,)d d b b X aaR s t s t ∫∫存在,则2()d (,)d d .b b b X aaaEX t t R s t s t =∫∫∫(4) 若X 和Y 在[a , b ]上均方可积,则αX + βY 在[a , b ]上均方可积(其中α, β为常数)且[]()()d ()d ()d .b bbaaaαX t βY t t αX t t βY t t +=+∫∫∫(5) 若X ∈H ,f (t )为[a , b ]上的可积函数,则()d ()d .bbaaXf t t X f t t =∫∫(6) ()d ()d ()d bc ba acX t t X t t X t t =+∫∫∫,其中X 在最大的积分区间上均方可积.(7) 若X 在[a , b ]上均方连续,则()()d ()t aY t X s s a t b =≤≤∫在区间(a , b )均方可导,且()().Y t X t ′=(8) 若X 在[a , b ]上均方可导,且′X 在[a , b ]上均方连续,则()d ()().b aX t t X b X a ′=−∫均方积分的上述性质,大都可利用均方积分定义以及均方极限的性质予以证明.4.2 平稳过程的基本概念4.2.1 定义与例定义4.2.1 设过程X = { X (t ), t ∈T },若对任意n ≥1,任意n 个时刻t 1,…,t n ∈T 及任意τ (t k +τ∈T , k =1, 2, …, n ),都有()()11(),,()(),,()dn n X t X t X t τX t τ=++""(4.2.1) 则称X 为严平稳过程.(4.2.1)式中的符号“d =”表示等号两端的n 维随机向量具有相同的概率分布,即它们的分布函数是相等的.由定义可知,严平稳过程的任何有限维分布对时间的推移是保持不变的. 在应用中,想要依据上述等式来判断一个随机过程的平稳性,一般是很难办到的.通常的做法是,对于一个被考察的随机过程,如果影响过程的周围环境和主要因素都不随时间推移而变化的话,那么就认为它是平稳的. 当一个严平稳过程还是二阶矩过程时,一方面,过程的均值函数和相关函数都存在.另一方面,因为()()1212()(),(),()(),(),ddX t X t τX t X t X t τX t τ=+=++,所以[][]1212[()][()],()()()().E X t E X t τE X t X t E X t τX t τ=+=++前一个等式表明过程的均值函数为常数.在后一个等式中,令τ = -t 1(不妨假定参数集T 含0时刻),即可看出相关函数的值不依赖于t 1 、t 2的起始时刻,而只可能与两个时刻的间隔 t 2–t 1有关.概言之,过程的一阶矩和二阶矩不随时间推移而改变,这就引出另一种平稳过程. 定义4.2.2 设X = {X (t ), t ∈T }为二阶矩过程(实值或复值).若它满足条件(1) 对任意t ∈T ,E [X (t )] = m X (m X 为某一常数),(2) 对任意t ∈T 及t + τ∈T ,[()()]E X t X t τ+不依赖于t ,则称X 为宽平稳过程.当参数集T 为可列集时,称X 为宽平稳序列. 一般地来讲, 严平稳过程不一定是宽平稳过程, 因为严平稳过程未必都存在二阶矩.反之,宽平稳过程也不一定是严平稳过程,因为宽平稳过程只保证过程的一阶矩、二阶矩不随时间推移而改变,但这些条件不足以保证过程的有限维分布也不随时间推移而改变.如果将严平稳与宽平稳概念放在二阶矩过程类中来进行比较,那么严平稳过程一定是宽平稳过程,反之仍未必成立. 下面讨论的平稳过程若无特别申明均指宽平稳过程.几个平稳过程的例子. 例4.2.3 设{ X (n ), n = 0,±1,±2,…}是互不相关的随机序列,且E [X (n )]=0, D [X (n )]=σ 2 ( n = 0,±1,±2,…),证明它是平稳序列. 证 { X (n ) }显然是二阶矩过程.因为过程的均值函数 E [X (n )]= 0 ( n = 0,±1,±2,…).相关函数2,0,[()()]0,0,σm E X n X n m m ⎧=+=⎨≠⎩当当 不依赖于n ,所以{ X (n ) }是平稳序列. □ 注 (1) 在自然科学和工程技术领域中,称本例给出的过程为白噪声序列或纯随机序列,这是一种常用的噪声模型. (2) 进一步地,若假定X (n ) ~ N (0, σ 2 ) ( n = 0,±1,±2, …),则称{X (n ), n = 0,±1,±2,…}为正态白噪声序列. 例4.2.4 设{X (n ), n = 0,±1,±2,…}是白噪声序列,令()()(0,1,2,),Nk k Y n a X n k n ==−=±±∑"其中N 为某个固定的正整数,01,,,N a a a "为常数组,证明{Y (n ), n = 0,±1,±2,…}是平稳序列.证 因为均值函数[()][()]0(0,1,2,)Nk k E Y n a E X n k n ==−==±±∑"为常数,又相关函数0000||2[()()]()()()()0,||,||N N k j k j N N k j k j N m k m k k E Y n Y n m E a X n k a X n m j E a a X n k X n m j m N a a σm N ====−+=⎡⎤+=−+−⎢⎥⎣⎦⎡⎤=−+−⎢⎥⎣⎦>⎧⎪=⎨≤⎪⎩∑∑∑∑∑不依赖于n ,所以{Y (n ), n =0,±1,±2,…}是平稳序列.□ 注 (1) 称{Y (n ) }是白噪声序列{X (n ) }的滑动和. (2) 由白噪声序列{X (n ) },还可构造如下随机序列()()(0,1,2,),kk Z n aX n k n +∞=−∞=−=±±∑" (4.2.2)其中{a k , k = 0,±1,±2,…}是常数列,对每一固定的n ,(4.2.2)式的右端的级数均方收敛,则称{Z (n )}是白噪声序列{X (n )}的无限滑动和.不难证明, {Z (n )}也是平稳序列.例4.2.5 设过程{}()(1),0t μY t X t ==−≥Y , 其中(1) X 为随机变量,且11~1212X −⎛⎞⎜⎟⎝⎠,(2) {},0t μt ≥是强度为λ的泊松过程, (3) X 与{},0t μt ≥相互独立, 试证 Y 为平稳过程.证 首先,2220,()(1)121121,EX E X ==−×+×=即X ∈H . 再由2(1)1,tμ−≡便知Y 为二阶矩过程.其次,考察Y 的均值函数和相关函数.[]()[(1)][(1)]()((3))0(0).t t μμE Y t E X E E X t =−=−⋅=≥由条件[]22()()(1)(1)()(1).t t τt t τt t τμμμμμμE Y t Y t τE X E E X E ++++++⎡⎤+=−⎣⎦⎡⎤=−⋅⎣⎦⎡⎤=−⎣⎦当τ > 0时,~()t τt μμP λτ+−, 得202(1)(1)(1)()(1)!.t t τt t τt t τtμμμμμμμk λτkk λτE E E λτek e +++++−−−∞=−⎡⎤⎡⎤−=−⎣⎦⎣⎦⎡⎤=−⎣⎦=−=∑ 当τ < 0时,类似可得2(1)t t τμμλτE e ++⎡⎤−=⎣⎦, 因而[]2||()().λτE Y t Y t τe −+= 因Y 的均值函数为常数0,相关函数为2||λτe −不依赖于t ,故Y 为平稳过程.□4.2.2 自相关函数及其性质定理4.2.6 设X = { X (t ), t ∈T }是平稳过程.记()()()R τE X t X t τ⎡⎤=+⎣⎦X 为X 的自相关函数,则R X (τ)具有以下性质,(1) R X (0)≥0;(2) | R X (τ) | ≤ R X (0);(3) ()()R τR τ−=X X ;(4) R X (τ)是非负定的,即对任意正整数n 和任意n 个实数t 1,…,t n 和任意n 个复数z 1,…, z n ,都有11()0.n nk l l k k l Rt t z z ==−≥∑∑X证 (1) 22(0)|()|d ()0t R E X t x F x +∞−∞==≥∫X .(2) 由Cauchy-Schwarz不等式,得()()()(0).R τE X t X t τR ⎡⎤=+≤==⎣⎦X X(3) 因为()()E X t X t τ⎡⎤+⎣⎦不依赖于t 仅为两时刻之差(t +τ) -t = τ的函数,而-τ = t -(t +τ),所以()()()()()().X X R τE X t τX t E X t X t τR τ⎡⎤⎡⎤−=+=+=⎣⎦⎣⎦(4) 由平稳过程自相关函数的定义及期望运算的性质,得1111111121()()()()()()()()0.n nn nk l l k l k l kk l k l n nl l k k l k n n l l k k l k nkkk Rt t z z E X t X t z z E X t z X t z E X t z X t z EX t z=========⎡⎤−=⎣⎦⎡=⎢⎥⎣⎦⎡=⎢⎥⎢⎥⎣⎦=≥∑∑∑∑∑∑∑∑∑X□注 易知平稳过程的自协方差函数也不依赖于t ,记作C X (τ),且有2()()||C τR τm =−X X X .C X (τ)也具有上述四条性质(只需将(1)~(4)中的R 换成C 即可).需要指出,在上述四条性质中,非负定性是平稳过程自相关函数的本质特性.理论上可以证明,任何一个在t = 0处连续且f (0) ≠ 0的函数f (t ),若f (t )是非负定的,则它必是某个平稳过程的自相关函数.4.2.3 互相关函数及其性质设X = {X (t ), t ∈T }, Y = {Y (t ), t ∈T }是两个平稳过程.若()()E X t Y t τ⎡⎤+⎣⎦不依赖t ,则称X 与Y 是平稳相关的或平稳联系的,此时,它们的互相关函数()()E X t Y t τ⎡⎤+⎣⎦为单变量τ的函数, 记作R XY (τ),即 ()()().ˆR τE X t Y t τ⎡=+⎣⎦XY注 (1) 平稳相关是一个相互概念,即,若X 与Y 平稳相关,则Y 与X 也平稳相关.(2) 平稳相关随机过程的互协方差函数也不依赖于t ,记作C XY (τ),并且()().C τR τm m =−XY XY X Y定理4.2.7 若平稳过程X = {X (t ), t ∈T }与平稳过程Y = {Y (t ), t ∈T }是平稳相关的,它们的互相关函数(互协方差函数)为R XY (τ)(C XY (τ)),则 (1) ()()(()())R τR τC τC τ=−=−YX XY YX XY 相应地,;(2)()(()R τC τ≤≤XY XY 相应地, 定理4.2.7的证明方法与前一定理类似,故从略.4.3 平稳过程的谱分析4.3.1 相关函数的谱分解相关函数能进行谱分解源于它具有非负定性.为了说明这一点,先介绍两个定理. 定理4.3.1(Bochner-Khintchine ) 函数φ(t )(-∞ < t < ∞)可表示为()d ()itx φt e F x +∞−∞=∫(4.3.1)的充要条件是:φ(t )非负定、连续且φ(0) = 0,其中F (x )为分布函数(F (-∞) = 0,F (+∞) =1).定理4.3.2(Herglotz ) 数列{},0,1,2,n c n =±±"可表示为d ()πin x n πc e G x −=∫(4.3.2)的充要条件为它是非负定的,其中G (x )是定义在[],ππ−上的有界、单调非降、右连续函数. 定理4.3.3 (1) 若均方连续的平稳过程{ X (t ), -∞< t <+∞}的相关函数为R X (τ),则R X (τ)可表示为1()d (),,2i τωR τe F ωτπ+∞−∞=−∞<<+∞∫X(4.3.3)其中()Fω 是定义在(-∞, +∞)上的单调非降、右连续有界函数. (2) 若平稳序列{}(),0,1,2,X n n =±±"的相关函数为R X (m ),则R X (m )可表示为11()d (),0,1,2,,2πi m ωπR m e F ωm π+−==±±∫X" (4.3.4)其中1()F ω 是定义在[-π, +π]上的单调非降、右连续有界函数.证 (1) 若R X (0)=0,由|()|(0),X X R τR τ≤∀−∞<<+∞,得()0,X R ττ≡−∞<<+∞,此时,取()F ωc = (c 为常数),则(4.3.3)式成立.若R X (0)≠0,令()()(0)R τR τR =X X ,易知()Rτ 满足下列条件:① ()R τ 是连续函数;② (0)1R = ;③ ()R τ 是非负定的.从而由Bochner-Khintchine 定理知,()Rτ 可表示成 ()d (),,i τωR τe F ωτ+∞−∞=−∞<<+∞∫X 其中F (ω)是某个随机变量的分布函数.于是[]1()d 2(0)()21d (),2i τωi τωR τe πR F ωπe F ωπ+∞−∞+∞−∞==∫∫X X其中()2(0)()F ωπR F ω=X是定义在(-∞, +∞)上的单调非降、右连续有界函数. (2)的证明可直接引用Herglotz 定理.□(4.3.3)、(4.3.4)式分别称为R X (τ)、R X (m )的谱分解式,而1()()F ωF ω 与称为平稳过程与平稳序列的谱函数.如果不计常数之差,那么谱函数是由相关函数唯一确定的.若1()()F ωF ω (相应地,)是绝对连续的,即存在S X (ω),使得 ()()d ,ωF ωS λλC −∞=+∫X1()()d ωX πF ωS λλC −=+∫ (相应地,),则称S X (ω)为平稳过程的谱密度.数学上已经证明:若相关函数R X (τ)满足条件()d R ττ+∞−∞<∞∫X ,则存在谱密度S X (ω),使得1()()d ,,2i τωR τe S ωωτπ+∞−∞=−∞<<+∞∫X X(4.3.5)其中()()d ,.i τωS ωe R ττω+∞−−∞=−∞<<+∞∫X X(4.3.6)以上两式表明,相关函数R X (τ)和谱密度S X (ω)之间构成了Fourier 变换对,即[][]1()()()()S ωR τR τS ω−==X X X X FF,.对于平稳序列{}(),0,1,2,X n n =±±"的相关函数R X (m ),若它满足条件()m R m +∞=−∞<∞∑X ,则存在谱密度()()S ωπωπ−≤≤X ,使得1()()d ,0,1,2,,2πi m ωπR m e S ωωm π+−==±±∫X X " (4.3.7)其中()(),.i m ωm S ωeR m πωπ+∞−=−∞=−≤≤∑X X(4.3.8)4.3.2 谱密度的物理意义本段将先介绍确定信号的功率谱密度概念,并由此引申出平稳随机信号的功率谱密度.然后来分析功率谱密度与谱密度之间的关系. 1. 确定信号的功率谱密度 当确定信号x (t ) (-∞< t <+∞)满足Fourier 积分定理中的条件时,可以对它作频谱分析,即可求得x (t ) (-∞< t <+∞)的频谱函数()()d ,i ωt x F ωx t e t +∞−−∞=∫其中1()()d .2i ωtx x t F ωe ωπ+∞−∞=∫ 上式表明,信号x (t )可表示为谐波分量1()d 2i ωt x F ωe ωπ的无限叠加,其中为圆频率,谐波分量的振幅为1()d 2x F ωωπ.以f 表示频率,由ω =2πf 可知,谐波分量又可表示为2(2)d i πf t x F πf e f ,相应的振幅为(2)d x F πf f .由频谱分析理论知,谐波分量在频带[f , f + d f ]中的能量为2(2)d x F πf f .若2()d x t t +∞−∞<∞∫,则Parseval 等式(能量积分公式)221()d ()d 2xx t t F ωωπ+∞+∞−∞−∞=∫∫ 成立.Parseval 等式表明:若信号的总能量有穷,则它等于各谐波分量能量的叠加.故Parseval 等式又称为信号总能量的谱表示式.式中的2()x F ω称为信号x (t )的能量谱密度.但在实际应用中,例如周期信号,其总能量为无穷大.此时,我们转而考虑信号x (t ) 在(-∞, +∞)上的平均功率:21lim()d ,2T TT x t t T +−→∞∫因为它往往是有穷的.令(),||,()0,||.T x t t T x t t T ≤⎧=⎨>⎩显然,x T (t )也满足Fourier 积分定理的条件,故其频谱(;)()d ()d .T i ωt i ωt x T TF ωT x t e t x t e t +∞+−−−∞−==∫∫另外,因为22()d ()d T T Tx t t x t t +∞+−∞−=<∞∫∫,所以对x T (t )及其频谱F x (ω; T )成立Parseval 等式221()d (;)d ,2Txx t t F ωT ωπ+∞+∞−∞−∞=∫∫ 由此可得222111lim()d lim(;)d 22211lim (;)d .22Tx T T T xT x t t F ωT ωTπTF ωT ωπT++∞−−∞→∞→∞+∞−∞→∞==∫∫∫相应于能量谱密度,称上述等式右端的被积函数21lim (;)2x T F ωT T→∞ 为信号x (t )的功率谱密度. 2. 平稳随机信号的功率谱密度 现在,我们把上面讨论的方法及其结果转到平稳过程的场合中来,有22111()d (;)d .222T T X t t F ωT ωT πT++∞−−∞=∫∫X在上式两端取期望,并令T →∞,得22111lim ()d lim (;)d 222T TT T E X t t E F ωT ωTπT ++∞−−∞→∞→∞⎡⎤⎡⎤=⎢⎥⎣⎦⎣⎦∫∫X (4.3.9) 上式左端为平稳随机信号X (t ) (-∞< t <+∞)的平均功率. 记21()lim(;),ˆ2T S ωE F ωT T→∞⎡⎤=⎣⎦X (4.3.10)称S (ω)为X (t )的功率谱密度.根据均方积分的性质并注意到2()(0)E X t R ⎡⎤=⎣⎦X ,则(4.3.9)式的左端为21lim()d (0),2TT T E Xt t R T +−→∞⎡⎤=⎣⎦∫X从而有1(0)()d .2R S ωωπ+∞−∞=∫X(4.3.11)由此可知R X (0)为平稳随机信号的平均功率. 3.功率谱密度S (ω)与谱密度S X (ω)的关系设相关函数R X (τ)绝对可积,即()d R ττ+∞−∞<∞∫X ,由上一段讨论可知,存在谱密度S X (ω),且有()()d .i ωτS ωR τe τ+∞−−∞=∫X X另一方面,把(;)()d T i ωt TF ωT X t e t +−−=∫X 代入(4.3.10)式,得21212211()21121()lim ()d ()d 21lim ()d d 2T T i ωt i ωt T T T T Ti ωt t T TT S ωE X t et X t e t T R t t e t t T ++−−−→∞++−−−−→∞⎡⎤=⎢⎥⎣⎦=−∫∫∫∫X对二重积分作变量替换:112221,τt t τt t =+=−,变量替换的Jaccobi 行列式为111212221212(,)1.ˆ(,)2t t ττt t J t t ττττ∂∂∂∂∂===∂∂∂∂∂ 积分区域的变换见图4.3.1.得212()2112212()d d ()||d d TTi ωt t TTi ωτDR t t et t R τe J ττ++−−−−−−=∫∫∫∫XX{}2222022221221220002()d d ()d d T τT T τi ωτi ωτT R τe ττR τe ττ+−−−−⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦∫∫∫∫X X()2222222||()d Ti ωτTT τR τe τ−−=−∫X 因而()2222222222221()lim2||()d 2||lim 1()d .2Ti ωτTT Ti ωτT T S ωT τRτe τTτR τe τT −−→∞−−→∞=−⎛⎞=−⎜⎟⎝⎠∫∫XX令||1(),||2,()20,||2.TτR ττT R τT τT ⎧⎛⎞−≤⎪⎜⎟=⎝⎠⎨⎪>⎩X X 则222()lim ()d i ωτTT S ωR τe τ+∞−−∞→∞=∫Xτ1显然,lim ()()|()|d TT R τR τR ττ+∞−∞→∞=<∞∫X X X ,且因,故有()lim ()d lim ()d ()d ().Ti ωτT T i ωτT i ωτS ωR τe τR τe τR τe τS ω+∞−−∞→∞+∞−−∞→∞+∞−−∞====∫∫∫X X X X由此可见,从物理学角度引入的功率谱密度与从数学角度引入的谱密度是相同的,故以后统一用S X (ω)表示平稳过程的(功率)谱密度.4.3.3 谱密度与互谱密度的性质设平稳过程{ X (t ), -∞< t <+∞}的相关函数为R X (τ).我们知道,当R X (τ)绝对可积时,平稳过程的谱密度(有时也称之为自谱密度)S X (ω)为()()d .i ωτS ωR τe τ+∞−−∞=∫X X自谱密度S X (ω)是实的、非负的偶函数.这是因为()()cos()d ()sin()d 2()cos()d .S ωR τωττi R τωττR τωττ+∞+∞−∞−∞+∞−∞=−=∫∫∫X X X X所以S X (ω)是实的偶函数.又因()()()S ωFωF ω′=X ,而是单调非降的,故S X (ω)是非负的. 需要指出,用功率谱密度的定义式((4.3.10)式)也能方便地推证谱密度的上述性质.设平稳过程X = { X (t ), -∞< t < +∞}与平稳过程Y = { Y (t ), -∞< t < +∞}是平稳相关的,其互相关函数为R X Y (τ),类似于自谱密度的数学定义,当互相关函数绝对可积时,记()()d ,,ˆi ωτS ωR τe τω+∞−−∞=−∞<<+∞∫X Y X Y(4.3.12)称S X Y (ω)为X 与Y 的互谱密度.仿照功率谱密度的定义方法,同样可以把互谱密度定义为[]1()lim(;)(;).ˆ2T S ωE F ωT F ωT T→∞=−X Y X Y (4.3.13)互谱密度通常是ω的复函数,它不像自谱密度那样有鲜明的物理意义.引入互谱密度的目的在于从频率角度来刻画两个平稳过程的平稳相关性. 互谱密度具有下列性质:(1) ()()S ωS ω−=X Y X Y (共轭对称性), ()()S ωS ω=X Y Y X .(2) Re[S X Y (ω)]与Re[S Y X (ω)]为偶函数,Im[S X Y (ω)]与Im[S Y X (ω)]为奇函数.(3) ()S ω≤X Y .证 (1)()()()d ()d ()d ().i ωτi ωτi ωτS ωR τe τR τe τR τe τS ω+∞−−−∞+∞−∞+∞−−∞−====∫∫∫X Y XY XY XY X Y()()d ()d ()d ().i ωτττi ωτi ωτS ωR τe τR τe τR τe τS ω+∞−∞=−+∞−−∞+∞−−∞==−==∫∫∫X Y XY XY Y X Y X(2) 由()()cos()d ()sin()d ,S ωR τωττi R τωττ+∞+∞−∞−∞=−∫∫XY XY XY得Re ()()cos()d ,Im ()()sin()d .S ωR τωττS ωR τωττ+∞−∞+∞−∞⎡⎤=⎣⎦⎡⎤=−⎣⎦∫∫XY XY XY XY故Re[S X Y (ω)]为偶函数,Im[S X Y (ω)]为奇函数.再由(1)知,Re[S Y X (ω)]=Re[S X Y (ω)],Im[S Y X (ω)] = -Im[S X Y (ω)],这就证明了性质(2). (3) 注意到互谱密度的另一种表达式[]1()lim(;)(;),ˆ2T S ωE F ωT F ωT T→∞=−X Y X Y由Cauchy-Schwarz 不等式可得.==□4.3.4 相关函数与谱密度之间的变换从前面的讨论中得知,在一定条件下,相关函数R X (τ)与谱密度S X (ω)构成Fourier 变换对:[][]1()()d (),ˆ1()()d ().ˆ2i ωτi ωτS ωR τe τR τR τS ωe ωS ωπ+∞−−∞+∞−−∞====∫∫X X X X X X F F(相应地,互相关函数R X Y (τ)与互谱密度S X Y (ω)也构成Fourier 变换对.)因而,它们之间的相互转换一般有两种计算方法:其一,利用Fourier 变换表,结合Fourier 变换的性质,通过查表的方式来计算.其二,直接计算积分((4.3.5)或(4.3.6)式),此时,会遇到复值函数的积分,在某些条件下,可利用留数定理来进行计算. 1. 查表计算法 表4.3.1给出了最常用的相关函数和谱密度之间的变换.因其中出现R X (τ)或S X (ω)是δ函数,故先简单介绍δ函数及其广义Fourier 变换. 若δ(x -x 0)满足以下条件000,,(1)()0,.x x δx x x x ∞=⎧−=⎨≠⎩0(2)()d 1.δx x x +∞−∞−=∫则称δ(x -x 0)是在x = x 0的δ函数. 上述定义最初是由著名的物理学家狄拉克(Dirac )引入的,因而这种函数也称为狄拉克函数.δ函数不是通常意义下的函数.因为按照古典积分理论,定义中的两个条件是彼此矛盾的,所以不存在一个普通的实函数能同时满足这些条件.实际上,δ函数是一种广义函数,在广义函数论中,它被定义为某基本函数空间上的连续线性泛函.因其中涉及到的数学理论已远远超出本课程所讨论的范围,故不予展开.这里仅介绍δ函数的一条重要性质(筛选性). 若f (x )为无穷次可微函数,则有00()()d ().δx x f x x f x +∞−∞−=∫(4.3.14)工程上,称δ(x )为单位脉冲函数.根据δ函数的筛选性,形式上有[]0()()d 1.i ωτi ωττδτδτe τe +∞−−=−∞===∫F亦即,时域上的单位脉冲函数δ(·)与频域上的常数1构成了一对(广义)Fourier 变换. 同理,形式上有[]1111()()d .222i ωτi ωτωδωδωe ωe πππ+∞−−∞====∫F频域上的单位脉冲函数δ(·)与频域上的常数1/(2π)构成了一对(广义)Fourier 变换. 例4.3.4 已知平稳过程的谱密度为242(),32ωS ωωω=++X 求该平稳过程的相关函数. 解 S X (ω)在(-∞, +∞)上绝对可积,且有2221().21S ωωω=−++X由Fourier变换的线性性质及表4.3.1,得[]11122|||()()21211.2ττRτSωωωe−−−−=⎡⎤⎡⎤=−⎢⎥⎢⎥++⎣⎦⎣⎦=−X XFF F□例4.3.5求平稳随机电报信号(见例4.2.5)的谱密度.解已知平稳随机电报信号的相关函数为2||()λτRτe−=X,其中λ> 0为常数.2||λτe−在区间(-∞, +∞)上是绝对可积的,故[]2||224()()4λτλSωRτeωλ−⎡⎤===⎣⎦+X XF F.□例4.3.6设随机过程{}00cos()sin(),Aωt Bωt t=+−∞<<+∞X,其中ω0为常数,A与B为相互独立的随机变量且都服从正态分布N(0, σ 2 ).(1) 证明X是平稳过程;(2) 求X的谱密度.解(1) 因对任意的,t−∞<<+∞有[]0000()cos()sin()()cos()()sin()0.m t E Aωt BωtE Aωt E Bωt=+=+=X又[]22002(,)()()()cos()()sin()()0cos(),R t tτE X t X tτE Aωt E Bωt E ABσωτ+=+=+==X()不依赖于t,故X是平稳过程,且其相关函数为2()cos()Rτσωτ=X.(2) 由2()cos()Rτσωτ=X,查表4.3.1,得[][][]2200()()cos()()().SωRτσωtσπδωωδωω===−++X XFF□需要指出,本题中的相关函数2cos()σωτ不满足绝对可积条件,因而不能保证可对它施行通常意义下的Fourier变换,但在引入δ函数及其(广义)Fourier变换之后,因为cos()ωτ与[]00()()πδωωδωω−++构成一对(广义)Fourier变换,所以可求得2()cos()XRτσωτ=的(广义)Fourier 变换.这表明,δ函数及其(广义)Fourier 变换的引进大大拓宽了可施行Fourier 变换的函数类,它对工程技术中许多重要函数的频谱分析带来极大的便利. 例4.3.7 设平稳过程的谱密度为2(),,S ωσω=−∞<<+∞X求该过程的相关函数.解 []1122()()()R τS ωσσδτ−−⎡⎤===⎣⎦X X FF.□通常把均值为零而谱密度为常数的平稳过程称为白噪声过程(简称白噪声).这个名称来自白光可分解成各种频率的光谱,且其功率频是均匀分布的.2. 直接计算积分法有时需要通过直接计算(4.3.5)或(4.3.6)式,来进行相关函数与谱密度之间的转换. 例4.3.8 设平稳过程的谱密度为200,||,()0,||.σωωS ωωω⎧≤=⎨>⎩X 求该过程的相关函数.解 因为()(,)S ω−∞+∞X 在上绝对可积,所以0022000201()()d 21d 2sin(),0,,0.i ωτωi ωτωR τS ωe ωπσe ωπσωωττπωτσωτπ+∞−∞+−==⎧≠⎪⎪=⎨⎪=⎪⎩∫∫X X□本例中的平稳过程称为低通白噪声.利用复变函数围道积分及留数概念,可以计算形如()d ,(0)i a x f x e x a +∞−∞>∫的积分,其中f (·)为有理函数,分母比分子至少高一次幂,f (·)在实轴上无奇点.此时,上述积分存在,记z k 为f (z )在上半平面内的奇点,由留数定理知,()d 2Res (),.i a x iazk kf x e x πi f z e z +∞−∞⎡⎤=⎣⎦∑∫(4.3.15)例4.3.9 用直接积分法,求例4.3.4中的R X (τ).解 当τ > 0时,2()i τz τR τ+∞−==⎤=⎥⎦==X 故当τ > 0时,有()τR τ−=X (4.3.16)另一方面,当τ < 0时,-τ > 0,把-τ代入上式,得()τR τ−=X 再由相关函数的性质知,R X (·)是偶函数,故当τ < 0时,有()()τR τR τ=−=X X (4.3.17)结合(4.3.16)、(4.3.17)两式,可得|||()0.ττR ττ−=≠X最后,当τ = 0时,2(0)1.22R +∞∞====−X于是,|||().ττR ττ−=−∞<<∞X □表4.3.1。
严平稳过程
二. 严平稳过程的一维、二维分布函数的性质
一维分布函数
F1(x1;t1) F1(x1;t1 )
F1(x1;0)
F1(x1)
取 t1,
上式表明:严平稳过程的一维分布函 数 F1(x1 , t1 )不依赖于参数 t1。
二维分布函数 F2 (x1, x2 ;t1,t2 ) F2 (x1, x2 ;t1 ,t2 ) 取 t1,
P{X (t1) x1, X (t2 ) x2 , , X (tn ) xn}
P{X (t1 ) x1, X (t2 ) x2,, X (tn ) xn}
(2)对连续状态随机过程:
f (x1, x2 , , xn ;t1,t2 , ,tn )
f (x1, x2,, xn;t1 ,t2 ,,tn )
2X X2
2 X
(字特征均为常数,与参数 t无关;
E[X (t)X (t )] x1x2 f2 (x1, x2 ;t,t )dx1dx2
x1x2 f2 (x1, x2; )dx1dx2
RX ( )
(仅依赖于τ = t2-t1, 而不依赖于 t );
四.严平稳过程的数字特征的性质 以连续状态严平稳过程{X (t),t T}为例
E[X (t)] xf1(x,t)dx
xf1(x)dx
X (常数);
E[X 2(t)]
x2
f1(x,
t)dx
x2
f1(x)dx
X2 (常数);
D[X (t)] E[X 2(t)] (E[X (t)])2
则称X(t)为严平稳过程,或称狭义平稳过程。
取 t1, 则:
F(x1, x2 , , xn ;t1,t2 , ,tn )
F(x1, x2 ,, xn ;t1 ,t2 ,,tn )
2-2-平稳随机过程和各态历经过程
2.2 平稳随机过程和各态历经过程
A2 2
cosc
14
例题
比较统计平均(例1)与时间平均,得
mX= mX
R(τ)= R( )
因此,随机相位余弦波是各态历经过程。
15
2、应用
一般随机过程的时间平均是随机变量,但各态历经过程 的时间平均为确定量,因此可用任一样本函数不可能无限长, 只要足够长即可。
A
2
[cosct
2
0
cosd
sin ct
2
0
sind ] 0(常数)
8
例题
X(t)的自相关函数为
R(t1, t2 ) E[ X (t1) X (t2 )]
E[ A cos(ct1 ) A cos(ct2 )]
A2 2
E cosc (t2
t1) cos[c (t2
t1) 2 ]
2 X
mX2
此值在[-1,1]之间。rX ( ) 0 表示不相关,rX ( ) 1 表
示完全相关。rX ( ) 0 表示正相关,表明两个不同时刻起
伏值(随机变量与均值之差)之间符号相同可能性大。
27
相关时间
当相关系数中的时间间隔大于某个值,可以认为两个不同 时刻起伏值不相关了,这个时间就称为相关时间。
22
⑵ R(τ) =R(-τ) [R(τ)是偶函数]
证明:
R( ) E[X (t)X (t )],令t ' t ,即t t '
精品文档-随机过程——计算与应用(研究生)(冯海林)-平稳过程1
平稳过程的定义 定义 5.1.1 设X={Xt,t∈T}是随机过程,如果对任意的
n 1, t1, t2 , , tn T和实数,当t1 ,t2 , , tn T时,
n维随机变量 (Xt1 , Xt2 , , Xtn )和 (Xt1 , Xt2 , , Xtn ) 有相同的联合分布函数,即
则
mX (t)
xdFt (x)
xdF (x)与t无关,为常数
RX (s,t )
x1x
2d
Fs,t (x1, x2 )
x1
x2
dF0,t
s
(
x1,
x2
),仅与时间间隔有关系
随机过程引论——西安电子科技大学数学与统计学院 冯海林
用定义判断一个过程的严平稳性是困难的. 在理论与应用上多的是宽平稳过程.
Ft1,t2 , ,tn (x1, x2 , , xn ) Ft1 ,t2 , ,tn ( x1, x2 , , xn )
则称X是严平稳过程.
随机过程引论——西安电子科技大学数学与统计学院 冯海林
例5.1.1 设N={Nt,t≥0}是参数为λ 的泊松过程,对任意固定 的常数a>0,令
Xt =Nta Nt ,
例5.1.6 设{An,n=1,2,…N} 和{Bn,n=1,2,…N}是两列实值 随机变量序列.且
E[An ] E[Bn ] 0, E[AnBm ] 0,
E[AnAm ] E[BnBm ] n2mn , 设n >0,定义随机过程:
N
Xt [Ak cos(kt) Bk sin(kt)], t (, ), k 1
2[a 2 min(0, ) min(a, ) min(0, a)]
随机过程-2-平稳过程
CXY (t, t ) RXY (t, t ) mX (t)mY (t ) RXY ( ) mX mY CXY ( )
平稳相关随机过程互相关函数的性质( CXY ( ) 也具有相同的性质) ① RXY ( ) RYX ( ) ② RXY ( ) RX (0) RY (0)
例5 X (t), t ,X(t)只取 I , P{X (t) I} P{X (t) I} 1 2
[t,t ] 内正负号变化次数记为 N (t,t ),服从参数为 , ( 0)
的泊松分布。判断X(t)的平稳性。
复平稳过程
定义: {Z (t), t T}是复随机过程,若 mZ (t) mZ , (complex constant)
讨论 Z (t) 的平稳性。
复平稳过程的协方差函数
CZ (t1, t2 ) RZ (t1, t2 ) mZ (t1)mZ* (t2 ) RZ (t2 t1) | mZ |2
CZ ( ) CZ (t, t )
DZ (t) CZ (t, t) CZ (0)
§2 相关函数的性质
一、自相关函数的性质
mX (t) mX
f ( x1, x2;t1, t2 ) f ( x1, x2;t1 , t2 )
RX (t1, t2 ) x1x2 f ( x1, x2;t1, t2 )dx1dx2
x1x2 f ( x1, x2;t1 , t2 )dx1dx2
RX (t1 , t2 )
k
例3 X (t) a cos(0t Φ) ,a,0 为正常数,Φ ~ U[0,2 ]
判断 X (t) 是否弱平稳。
例4 X (t) Acos0t B sin0t, t , 0 为正常数, A, B独立,EA EB 0, DA DB 2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面来考虑平稳过程的一、二维概
率密度及数字特征。 利用定义式,令 h t1 有
f1 x1 ; t1 f1 x1 ;t 1 h f1 x1 ;0 f1 x1 f 2 x1 , x 2 ; t1 ,t 2 f 2 x1 , x2 ;t 1 h,t 2 h
E{[ N ( t h) N ( t )][ N ( t h) N ( t )]}
为简单起见,不失一般性,可设 0
当 h 时;见图(a)
t
th
t t h
(a)
由于区间 ( t , t h) 与区间 ( t , t h)
但正态过程例外,因为它的概率密度 函数可由均值和协方差矩阵完全确定。所 以,如果均值,自相关函数不随时间的推 移而变化,则概率密度函数也不随时间的 推移而变化。
例:设 { X n , n 0, 1, 2,} 是实的互不相 关随机变量序列, 且 E[ X n ] 0,D[ X n ] 2 , 试讨论随机序列的平稳性。 解: 因为 E[ X n ] 0, 而
RX ( n, n ) E[ X n X n ]
2 E ( X n ), E ( X n ) E ( X n ),
0 0
D( X n ) [ E ( X n )] , 0 , 0 0
2
, 0 0 , 0
第十一章
•
• • • • •
平稳过程
序言
第一节 第二节 第三节 第四节 第五节 平稳过程的概念 平稳过程相关函数性质 各态历经性 随机过程的功率谱密度 随机过程通过线性系统分析
序
言
平稳过程是很重要、应用很广的一类过 程,工程领域中所遇到的过程很多可以认为 是平稳的。例如:实际场合中的各种噪声和 干扰,都可以认为是平稳的。平稳过程是随 机过程重点内容之一。 本章在相关理论范围内主要讨论平稳过 程的数字特征;各态历经性;相关函数的性 质和功率谱密度。
X ( t ) N ( t h) N ( t )
只需证明 X ( t ) 是平稳过程。 事实上 E[ X ( t )] E[ N ( t h) N ( t )]
( t h) t h
是常数;
而
RX ( t , t ) E[ X ( t ) X ( t )]
而自相关函数
RX ( t , t ) E[ X ( t ) X ( t )]
E[ S ( t ) S ( t )]
0
T
1 S ( t ) S ( t ) d T
1 T t t S ( )S ( )d T
X ( t ) 的均值函数 E[ X ( t )] E[ S ( t )] T 1 0 S ( t ) d T 1 T t t S ( )d T 利用S ( ) 的周期性, 可得 1 T E[ X ( t )] 0 S ( )d 常数; T
{ N ( t ) , t 0} 为泊松过程。
试讨论平稳Leabharlann 。X(t)+I
t
-I
解: X ( t ) 的均值函数
E[ X ( t )] I P{ X ( t ) I } ( I ) P{ X ( t ) I } I I 0 是常数 ; 2 2 若 X ( t ) 在 [t, t ) 内变化偶数次,
x1 X
2
f1 x1 dx1
2 X
RX ( t , t ) E[ X ( t ) X ( t )]
x1 x2 f 2 x1 , x2 ; dx1dx2 RX ( )
C X ( t , t ) RX t , t X ( t ) X ( t ) RX C X
满足下列条件,则称作为随机电报信号。 ㈠ 相继取值+I或-I , 且
1 P{ X ( t ) I } P{ X ( t ) I } 2 ㈡ 在任意区间 [t, t ) 内信号变化的次数
N ( t , t ) 服从泊松分布
( )k P{ N ( t , t ) k } e , k 0,1,2, k! 也即在区间 [0, t ) ,电报信号变化次数
严平稳的含义:过程的统计特性与所 选取的时间起点无关。换句话说,整个过 程的统计特征不随时间的推移而变化。 若随机过程为连续型的,定义也等价 于其密度函数满足:
fn x1 , x2 , xn ; t1 , t2 ,, tn
fn x1 ,, xn; t1 h, t2 h,, tn h
2 X
由一、二维概率密度的特性可知:
• 严平稳过程的均值函数,均方值函数和方差函 数(如果存在)均为常数 • 严平稳过程的自相关函数及协方差函数只依赖 于参数间距 而与起点无关
二、宽平稳随机过程 要确定一个随机过程的概率分布函数 族,并且判定严平稳条件式对一切n成立, 这在实际上是很困难的,而了解它的某些 数字特征却是可能的,因而工程上根据实 际需要往往只在相关理论范围内考虑平稳 过程问题。所谓相关理论是指:只限于研 究随机过程一、二阶矩的理论。
~ U (0,2 )
, ,
其密度函数为: 1 f ( ) 2 0
(0,2 )
其它
E[ X ( t )] 0
2
RX ( t , t )
1 a cos( 0 t ) d 0 2 是常数 ;
E[a cos( 0 t ) a cos( 0 t 0 )] 2 2 1 0 a cos( 0 t ) cos( 0 t 0 ) d 2 2 a cos( 0 ) 仅依赖于 。 2
2
其中, 为整数,故随机序列的均值
为常数, 相关函数仅与 有关。因此,它
是平稳随机序列。
例:设随机过程 X ( t ) a cos( 0 t ) 式中, a, 0 为常数, 是在 (0,2 ) 上 服从均匀分布的随机变量, 证明 X ( t )是 平稳过程。 证: 由于
不相重叠,根据 N ( t )是独立增量,
X ( t ) 的自相关函数为:
RX ( t , t ) E[ N ( t h) N ( t )] E[ N ( t h) N ( t )]
因此, X ( t ) 是平稳过程。
例:设 S ( t ) 是一周期为T 的函数, 是 在 (0 , T )上服从均匀分布的随机变量。 称 X ( t ) S ( t ) 为随机相位周期过程。 试讨论它的平稳性。 解: 的密度函数为:
1 , ( 0, T ) f ( ) T 其它 0 ,
若对任意整数,有
E X n X
是常数;
E X n X n RX
仅依赖τ,而与 n 无关;
则称 X ( n)为平稳序列。
顺便指出:今后凡是提到“平稳过程”除特别 指明外,通常都是指宽平稳过程。
由于宽平稳过程的定义只涉及到一、 二维概率密度有关的数字特征,所以一个 严平稳过程只要均方值有界,就是宽平稳 的。但反之则不一定。
由此可导出严平稳过程的数字特征:
X (t ) E X t
x1 f1 x1 dx1 X
(t ) E X
2 X
2 X
2
2 2 t x1 f1 x1 dx1 X
( t ) D X ( t )
I 2 P{ X ( t ) X ( t ) I 2 } ( I ) P{ X ( t ) X ( t ) I }
2 2
I
2
n 0
P { N ( t , t ) 2 n}
2 n 0
( I )
P{ N ( t , t ) 2n 1}
则 X ( t ) 和 X ( t ) 必同号, 且乘积为I 2; 若变号奇数次, 则乘积为 I 2 。
即:
I 2 , N ( t , t ) 偶数 X (t ) X (t ) 2 I , N ( t , t ) 奇数
而自相关函数:
RX ( t , t ) E[ X ( t ) X ( t )]
2n 2 n 1
I e
2
( )k 2 2 k! I e n 0
自相关函数仅与 有关。 所以 { X ( t ) , t 0} 是平稳过程。
X ( t ) 的相关函数图如下:
RX ( )
I
2
0
例: 证明泊松过程是平稳增量过程。 证:设 { N ( t ) , t 0} 为泊松过程, 强度为 ,对任意实数 h , 令:
利用 S ( ) S ( ) 的周期性, 可得
1 T RX ( t , t ) 0 S ( )S ( )d T RX ( )
自相关函数仅与 有关。 因此, X ( t ) 是平稳过程。
例:随机电报信号 若随机过程
{ X ( t ) , t ( , )}
定义: 若随机过程 X t , t T 满足
E X t X
是常数;
E X t X t RX
仅依赖τ ,而与t无关;
E[ X 2 ( t )]
二阶矩存在。
则称 X t 为宽平稳过程。 (或称广义平稳过程。)
特别,若 { X ( n), n 0,1,2,}