人教版八年级下册数学分式

合集下载

分式教案(2)

分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。

本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的运算方法,提高运算能力。

3. 学会解分式方程,提高解决问题的能力。

三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。

难点:分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。

问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。

2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。

3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。

4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。

5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。

6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。

7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。

8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。

9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。

10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。

六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。

分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。

初中数学八年级下册第十六章《分式方程》

初中数学八年级下册第十六章《分式方程》

新课标人教版初中数学八年级下册第十六章《16.3分式方程》精品教案教学目标(一)知识与技能目标经历分式方程概念、分式方程的解法过程,会解可化为一元一次方程的分式方程的解法,会检验根的合理性,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.(二)过程与方法目标经历“实际问题-分式方程方程模型-求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.(三)情感与价值目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点和难点1.教学重点:分式方程的解法及应用.2.教学难点:理解解分式方程时产生增根的原因,分式方程的应用.教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法与应用.教学过程1、情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量.你能找出这一问题中的所有等量关系吗?分组交流若设第一块试验田每公顷的产量为x kg,则第二块试验田每公顷的产量是__________kg.根据题意,可得方程_____________________2、解读探究(1)从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.求该客车由高速公路从甲地到乙地所需的时间.这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为x h,那么它由普通公路从甲地到乙地所需的时间为_________h.根据题意,可得方程_________________.学生分组探讨、交流,列出方程等量关系:①客车在高速公路上行驶的平均速度=在普通公路上的平均速度+45②由高速公路从甲地到乙地所需的时间×2=普通公路从甲地到乙地所需的时间方程:=+45(2)王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元;后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元;原定的人数是多少?你能找出这一问题中所有的等量关系吗?如果设原定是x人,那么每人平均分摊________元;人数增加到原定人数的2倍后,每人平均分摊________元;根据题意,可得方程________议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程.分式方程与整式方程有什么区别?做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足怎样的方程?3、随堂练习(1)据联合国《2003年全球投资报告》指出,中国吸收外国投资额达530亿美元,比上一年增加了13%.设我国吸收外国投资额为亿美元,请你写出满足的方程.你能写出几个方程?其中哪一个是分式方程?(2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2.5千米/小时,求轮船的静水速度.(3)根据分式方程编一道应用题,然后同组交流,看谁编得好4、学习小结本节课你学到了哪些知识?有什么感想?作业:P80习题3.6教学反思:。

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。

八年级下册数学知识点归纳笔记

八年级下册数学知识点归纳笔记

人教版八年级下册数学知识点总结第十六章分式1.分式的概念:若A、B表示两个整式,且分母B中含有字母,A称为分式。

分式有意义的条件是分母B≠0;分式值为则式子B0的条件是分子A=0且分母B≠0。

2.分式的基本性质:分式的分子与分母同乘(或除以)同一个不为0的整式,分式的值不变。

3.分式的运算:1.乘除运算:分式乘分式,分子相乘的积作积的分子,分母相乘的积作积的分母;分式除以分式,等于把除式的分子、分母颠倒后与被除式相乘。

2.加减运算:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分变为同分母分式,再加减。

4.分式方程:1.增根:分式方程化为整式方程后,未知数取值范围扩大,可能产生使原分式方程分母为0的根,即增根。

2.验根:解分式方程必须验根,将整式方程的解代入最简公分母,若最简公分母为0,则是增根,原方程无解;若最简公分母不为0,则是原方程的解。

第十七章勾股定理1.勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222c b a =+。

2.勾股定理的逆定理:若三角形三边长a 、b 、c 满足222c b a =+,则此三角形是直角三角形。

第十八章平行四边形1.平行四边形:1.定义:两组对边分别平行的四边形叫平行四边形。

2.性质:对边相等,对角相等,对角线互相平分。

3.判定:两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等、对角线互相平分的四边形是平行四边形。

2.三角形中位线:连接三角形两边中点的线段,平行于第三边且等于第三边的一半。

3.特殊的平行四边形:1.矩形:有一个角是直角的平行四边形,四个角都是直角,对角线相等且互相平分。

判定方法有一个角是直角的平行四边形、有三个角是直角的四边形、对角线相等的平行四边形。

2.菱形:有一组邻边相等的平行四边形,四边都相等,两条对角线互相垂直且每一条对角线平分一组对角。

判定方法有一组邻边相等的平行四边形、四条边相等的四边形、对角线互相垂直的平行四边形。

人教版八年级下册数学《分式PPT课件》公开课

人教版八年级下册数学《分式PPT课件》公开课

解:由分子 x -4=0,得x=±4
所以当x=±4时,分式 的值是零。
x -4 x(x+4)
1A、、⑴2x在 5下面B、四个1 有理C式、中x ,分8式为D、( B-)1 + x
考 考
你 7
3x
8
45
⑵ 当x=-1时,下列分式没有意义的是(
A、x 1 B、 x C、 2x
D、 x 1
C
的值是零?
解:(1) 由分子 x -1=0,得x=±1 (2)而当x=1时,分母x+1=2≠0
当x=-1时,分母x+1=0
(3)所以当x=1时,分式 的值是零。
x -1 X+1
训练3
阅读下面一题的解答过程,试判断是否正确, 如果不正确,请加以改正。
当x是什么数时,分式 x -4 的值是零?
x(x+4)
训练2
1、 分式无意义的条件是——————。
2、 分式有意义的条件是——————。
3、分式的值为零的条件是—————
————————————。
4、当x
时,分式 x 有意义。
X-2
X-1
5、当x
时,分式 4x+1 没有意义,当x
时,分式 X-1 的 值为零。
4x+1
例1、当x是什么数时,分式
x -1 X+1

在式子
A B
中,A、B可为任意整式,
是吗?请举例说明。
单项式
有 整式

多项式
式 分式
x5 3
a bc
训练1
1、把式子a÷(b+c)写成分式是
2、式子 (×)
中,因含有字母x故叫做分式 。

人教版八年级下册数学课本知识点归纳

人教版八年级下册数学课本知识点归纳

人教版八年级下册数学课本知识点归纳第十六章 分式一、分式1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 )2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。

用式子表示如下:(C ≠0) 其中A,B,C 是整式3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。

这个过程叫通分。

(分母为多项式时要分解因式)5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。

二、分式的运算1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

上述法则可以用式子表示:C B C A B A ⋅⋅=C B C A B A ÷÷=bcad c d b a d c b a bd ac d c b a =⋅=÷=⋅;3分式乘方法则:一般地,当n 为正整数时 这就是说, 分式乘方要把分子、分母分别乘方4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减。

上述法则可用以下式子表示:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 5.整数指数幂1.任何一个不等于0的数的0次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a ,也就是说a n (a≠0)是a -n 的倒数。

正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a +=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn b a ba =)(( n 是正整数);(b ≠0) 三、分式方程1. 分式方程:分母中含未知数的方程叫分式方程。

八年级数学下册 第十六章分式复习教案 人教新课标版

八年级数学下册 第十六章分式复习教案 人教新课标版

《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。

八年级数学下册第十六章《分式》单元 应用题大全 新课标人教版 (20)

八年级数学下册第十六章《分式》单元  应用题大全 新课标人教版 (20)

八年级数学下册第十六章《分式》单元应用题大全新课标人教版1. 乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地.求甲、乙的速度.2. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?3.4. 比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。

蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。

已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。

5. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理.6. 大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?7. 某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?8. 在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?9. 两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成. 乙队单独完成这项工程要多少天?10. 超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?11. 某花店老板用400元购买一批花瓶,途中不慎打碎了2个,他把余下的以每个高出成本30%的价格售出,一共获利68元,问:他购买了多少个花瓶?12. 某地决定新修一条公路,甲、乙两工程队承包此项工程。

分式的基本性质

分式的基本性质

a 一般地, 一般地,对于任意一个分数 有: b
3 15 = 4 20
9 3 = 24 8
a a⋅c = b b⋅c
a a ÷c = b b÷c
是数. (c≠0) 其中 , b , c是数 ) 其中a 是数
思考: 思考:
类比分数的基本性质,你能想出分式 类比分数的基本性质, 有什么性质吗? 有什么性质吗? 分式的基本性质: 分式的基本性质: 分式的分子与分母同乘(或除以)一个不 分式的分子与分母同乘(或除以) 等于0的整式,分式的值不变. 等于0的整式,分式的值不变. 上述性质可以用式子表示为: 上述性质可以用式子表示为: A A⋅C A A÷C = = B B ⋅C B B ÷C 是整式. (C≠0)其中A ,B,C是整式.
2
ab
2
,
a
2
( 2ab − b ) = 2 ab
看分母如何变化, 看分母如何变化, 想分子如何变化
观察分子分母如何变化
( x ) 6a b 2x 3a (1) = (2 ) = x + 3x x + 3 ( 4b 8b b + 1 (bn+n) (4 ) x − y = x − y (3 ) =
2 2
2
2
3、通分
3
1 2 (1) ; 2ab 5a b c
2 2
a b (2 ) ; 2 xy 3 x
2
3c a (3) ;− 2 ab 8bc
2
2
1 1 (4 ) ; y −1 y +1
归纳小结
1.分式的基本性质: 1.分式的基本性质: 分式的基本性质 2.分式的符号法则: 2.分式的符号法则: 分式的符号法则
例题讲解与练习 看分子如何变化, 看分子如何变化,想 课本P5)填空 填空: 例2(课本P5)填空:分母如何变化

八年级数学下册第十六章《分式》单元计算题大全新课标人教版(6)

八年级数学下册第十六章《分式》单元计算题大全新课标人教版(6)

⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版(6)⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版1. 计算:(1)11123x x x ++(2)3xy 2÷x y 262.2223189218a a a a a +-÷-+-+, 2221()2444x x xx x x x x+----+- 3. 计算题⑴22124a aa +-- ⑵22233mn mn n p p ÷ ?⑶112---x x x ⑷2222x y xy y x x x ??--÷-⑸ 121200523-??-+ ?⑹()()23323a b ab ----?(结果只含正整数指数幂)a cb ac ÷÷(4)42232)()()(abc ab c c b a ÷-?- (5)22233)()()3(x y x y y x y x a +-÷-?+5. 计算:x x x x -+--+11211 21211+++-+x x x xx x x x x x 13632+-+--)2122()41223(2+--÷-+-a a a aaa a a a a -?+--4)22( 6. 计算(1)3223322a b a c cd d a÷? ?-7. 计算:??+--- ++11111212x x x x x x 8. 22326123()()y y xy x x÷-.22234()()()x y y y x x ÷-, 9. 22222a b ab b a a ab a ?? -+÷+ ?-??10. 计算:()2222x 2xy+y x yxy+x xy x++÷-÷a a a 2122+-12.6532----x x x x x ; 211a a a +-+ 42()a a a a+-÷; 13. 计算:22()x y- 22)2(4yx y x -÷ 14. 计算(1)168422+--x x x x (2)mn nn m m m n n m -+-+--2 15. 计算:(1)232223(4)(2)x y z xy z -?- ;(2)9323496222-?+-÷-+-a a b a ba a .(3)2221()244x x x x x -+÷+--(4) 44()()xy xy x y x y x y x y -++--+16.化简:1441312-+-÷?--+x x x x x17. 22a b b a b a b a b a b --??÷ ?+-+??-18.2121()2a bca bc ---÷ 221()()x x x x ---÷- 30(0.25)(0.25)--+-332p mn p n n m ÷???? ??? ⑵2)22444(22-÷+-++--x xx x x x x (3)11141+-???? ??-+-a a a a a (4)()1632125.00 2+--?-?-π20. 计算:(1)222x y xy x y x y +--- (2)???? ??-÷??? ?-y x x y 1121. 22[()]33x y x yx y x x y x x +----÷+ 222212111a a a a a a a a --÷++++; 22.??-÷x y y x 346342;-y x x y x y x 22426438; 23. 化简:232224a a aa a a ??-÷ ?+--??. 24. 计算:(1)130)21()2()21(----÷- ;(2)329122---m m . 25.xy x xz xy x z y x y xy x z y x y x --+?--++÷---2222222222)(2)(; () yy y x xy xy -+?+-33212.27. 计算:)12()23()344(222222---÷++-?+--x x x x x x x x 28.215()()x xy x y x x x y x --+-÷- 42321()()x y x y y--÷29.(1+1m)÷22121m m m --+30. 计算⑴2332)2(2ab c d a cd b a ?÷-)((2)2228224a a a a a a +-??+÷ ?--??(3)44()()xy xy x y x y x y x y-++--+ (4)2233x y x y x y x x y x x ??+-??---÷ +? 31. 计算:()()()()()() c a a b b ca b b c b c c a c a a b ---++------32.222()111a aa a a ++÷++- 33.1)111(2-÷-+x x x34. 计算:(1))141)(141(+-+-+-a a a a a a (2) 1211111222+-+-÷??? ??---x x x x x 35. 计算:32)(y x y x --? 32232)()2(b a c ab ---÷)102.3()104(36- 2125)103()103(--?÷?36.624)373(+-÷+--a a a a 37. 计算下列各式:(1)22 33222)(b a ab ba b a b a ba -+--+÷(2)a a a a a a a a 444122)(22-+---+÷-38.计算(1)ab c 2cb a 22?(2)322542n m m n- (3)-÷x x y 27(4)-8xy xy 52÷ (5)39. 化简(1)2232129x y x y (2)222x x y xy -- (3)222221x x x --+ (4) 22 39m m m-- (5)()()2222x y z x y z --+-40. 计算: ()3322232n m n m --? 41.计算:33xx 1x 1+++ ⑵.计算:223x 1x 36x 6x x +-?-+ 42. 计算⑴5331111x x x x+---- ⑵22y xy x y y x -+- ⑶()432562b ab a ÷- (4)()113423-??--+--(5)(1a x -)÷22x a x -43. 计算:23011)31(64)3()1(4-+--?-+-π计算:y x yx28712÷ 44. 计算2222444(1)(4);282a a a a a a a --+÷-+--(2)0)1(213=-+--x x x x 45. 计算:(3)96312-++a a (4) 96-22; 46. 22211()961313a a a a a a -÷++++ 13(1)224a a a --÷-- 47.223252224x x x x x +??+÷ ?-+-??48. 计算:(1);(2)()2442444222-+-?-÷++-a a a a a a a(3)a b a ab ab a b a b a b a -+÷--?-2232 (4)2216168m m m -++÷428m m -+·2 2m m -+(5)(2b a )2÷(b a -)·(-34b a)3(6)a b ab a b a b ab a b 2222121121-+---÷---++49. 化简:221211241x x x x x x --+÷++-- 2121a a a a a -+?-÷50. 计算:(1)22424422x x xx x x x ??--+÷ ?-++-??(2) 121a a a a a --??÷- ,(3)()2111211x x x ??+÷-- ?--?(4)232224xx x x x x ??-÷ ?-+-??,51. 计算:(1)423223423b a d c cd ab ? (2)m m m m m --?-+-3249622 (3).(xy -x 2)÷xy y x - (4).24244422223-+-÷+-+-x x x x x x x x (5).12--x x ÷(x +1-13-x )(6).x x x x 3922+++969(8)x y y x y x y x y y x ----+-+2. (9).232323194322---+--+x x x x x 52. 计算:)2(121y x x yx y x x --++- 53.2243312()()22a a b a b b -÷- 2221644168282m m m m m m m ---÷++++,54. 计算:cd b a c ab 4522223-÷ 411244222--?+-+-a a a a a am m m 7149122-÷- 228241681622+-?+-÷++-a a a a a a a 55.计算3223322a b a c cd d a÷? ?-56. 计算:24424441622++++-÷++-m m m m m m m 57.11)1111(-÷--+a a a 58. 计算:(1) ()()322322y x z xy ---÷ (2) x yx y x xy x y x x -÷211111222+-+-÷??? ??---x x x x x 59. 化简下列各式1. 212312+-÷??? ??+-x x x2.2111a a a a -++-3. 22(1)b a a b a b-÷+-4.352242a a a a -??÷-- ?--??5.)2422(4222+---÷--x x x x x x6. (x 2+4x -4)÷ x 2-4 x 2+2x7. 1-aa a a a 21122+-÷- 8. 2211(1).a a a a--÷+ 9. 2112()x x xx x x +++÷+ 10. 6931x x x x --÷- ? ??11. 21(1)1xx x x x ??-÷+ ?--??12.39631122-+÷+---+x xx x x x x 13. 432112--÷??? ??--a a a 14. 1224422++÷--a a a a15.22444()2x x x x x x -+÷-- 16. ,1 11122--+÷-x xx x x 17. 260. 计算: aa --+242 61. 计算与化简:(1)222)2222(x x x x x x x --+-+- (2) 1- aa a a a 21122+-÷- 62. 2301()20.1252005|1|2---?++- ()3 22514-++-÷13-, 63. 2141326a a a -??+÷--64.(112-+a a +1)? a a a 122+-65. 计算与化简:(1)222x y y x ?;(2)22211444a a a a a --÷-+-;(3)22142a a a ---;(4)211a a a ---;(5)()()222142y x x y xy x y x +-÷-.66.计算43222??? ?-÷ - -x y x y y x 67. 计算 1、y x axyx y x y 2211-+- 3、1111-÷??--x x x 4、22224421y xy x y x y x y x ++-÷+-- 5、2 2221106532xyx y y x ÷? 6、m n n n m m m n n m -+-+--2 7、4412222+----+x x x x x x 8、x x x x x x x x 4)44122(22-÷+----+ 9.xx x x x x x x 4)44122(22-÷+----+ 10.2144122++÷++-a a a a a 68. 化简下列分式(1)232123ab b a - (2)232213n m nm - (3))1(9)1(322m ab m b a ---(4))(12)(2222x y xy y x y x -- (5)22112mm m -+- (6)222963a ab b aba +-- 69. 计算:(1)b a ab a b --- (2)324332??x y y x (3)()1302341200431-??--+- - (4)()()222234a a a a -÷-70. 211()(3)31a a a a +---- 71.计算:22121124x x x x ++?72. 计算:221.111x x x x x ??-÷ ?-+-?? 73. 计算(1) 22)2(4y x y x -÷ (2) 432221??--ab a b b a(3)2222255343m n p q mnp pq mn q ?÷ (4)??÷ - -a bc ab c c b a 223274. 计算:(1)(2x y )2·(2y x )3÷(-y x )4;(2)(2b a )2÷(b a -)·(-34b a)375. 计算:①3333x x x x -+-+-;②212211933a a a +--+-;③2111111x x x ++-+-. 76. 计算:(4a a -)÷2a a+.77.233()()()24b b b a a a -÷- 22136932x x x x x x +-÷-+-+ 78. 计算:①2114()22x x x x --?-+;②22214()244x x x x x x x x+---÷--+;③11x x x -?-;④211(1)(1)11x x x +---+;⑤342n m n m n m ÷-? (2)2324222263ab a c c d b b ??-??÷? ? ?-?80.??--+÷--252423x x x x 23111x x x x -??÷+- ?--??81. 计算:(1)1111-÷??? ?--x x x (2)4214121111xx x x ++++++- 82. 计算:11)121(2+-÷+-x x x 83.化简:(1-44822+++a a a )÷aa a 2442+-84. 计算:(1)222x y xy x y x y +--- (2)-÷ -y x x y 11 (3).)1(1aa a a -÷- (4). )(22ab b a a ab a -÷- 85.21(1)(2)x x x++÷+86. 计算:(1)44223x y c ??-(2) mn a a n m 4322? (3) 222 324835154b a n n b a -?。

16.3分式方程教案(人教新课标八年级下)

16.3分式方程教案(人教新课标八年级下)

§16.3 分式方程一、教材分析1、教学内容的地位和作用《分式方程》人教版数学八年级下册第十六章第三单元第一课时的内容,是建立在整式方程基础上的学习;分式方程是方程模型的一种,是刻画现实世界的有效模型,在数与代数中占有重要地位.分式方程与实际生活紧密联系,更能充分体现数学的科学性,体现数学的应用价值,能帮助学生从数量关系角度更准确清晰地认识、描述和把握现实世界,使学生完善知识结构,提高计算能力,获得必需的数学能力.2、教学目标基于以上分析和数学课程标准的要求,我制定了本节课的教学目标.知识技能:1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法.数学思考:能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用.解决问题:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.情感态度:在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.3、教学重、难点重点:解分式方程的基本思路和解法.难点:理解解分式方程时可能无解的原因.二、学情分析学生在已经学习了一元一次方程、二元一次方程组的基础上,明确了解整式方程的方法步骤后来学习分式方程.初二学生已经具有了一定的类比、分析、归纳能力,但是思维的严谨性仍相对薄弱,虽然他们喜爱学习活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,但仍需老师引导其由感性认识到理性认识.同时学生已经学习了分式的意义,这对理解分式方程可能无解这一教学难点有很大帮助.三、教学策略本节课是在七年级学过的整式方程一元一次方程基础上,介绍分式方程及其解法,我采用“以旧推新”探究式教学方法,真正体现以学生为主体,倡导“双自主学习”理念,启发引导学生发现解决问题的方法,注重知识的形成过程.教学中采用互动式学习模式,用问题做载体,通过小组合作、讨论、交流、归纳、辨析、反思、评价、质疑等活动实现互动,创设和谐民主的课堂氛围.四、教学过程设计(设计为5个环节)(一)、时间安排1、创设情境导入新课—————————7分钟2、归纳定义寻求解法—————————10分钟3、探究分析解决难点—————————15分钟4、巩固练习拓展提高—————————10分钟5、总结反思布置作业—————————3分钟(二)、板书设计:(三)、自我评价:本节教材通过章前引言中的行程问题入手,学生依据相等关系得到分式方程,教师引导学生把分式方程转化为整式方程求解,并引导学生必须进行检验,教学中突出引导学生进行比较探究,并进行充分的讨论,统一认识.用分式的基本性质和意义理解可能产生增根的原因.学生在数学活动中通过积极参与,有效参与来感悟知识的形成过程,从而保证知识与能力,过程与方法,情感、态度与价值观三个目标全面落实.。

人教版八年级数学第十六章分式知识点总结

人教版八年级数学第十六章分式知识点总结

第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。

二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。

例2.下列分式,当x 取何值时有意义。

(1)2132x x ++; (2)2323x x +-。

例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

当x_________时,分式2361x x -+的值为负数。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。

约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。

最简分式:分子与分母没有____________的分式,叫做最简分式。

(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。

第18讲分式的运算(教案)

第18讲分式的运算(教案)
2.在小组讨论和实验操作环节,要关注每个学生的参与情况,尽量让每个学生都能充分参与到课堂活动中来。
3.针对学生的疑问,要及时解答,加强课后辅导,帮助学生巩固所学知识。
4.在后续的教学中,可以结合更多实际案例,让学生在实际问题中感受分式运算的价值,提高他们的学习兴趣。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式运算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
重点1:(2x/(x+1)) * (3(x+1)/(2x)) = (2x * 3(x+1)) / ((x+1) * (2x))
(2)分式除法法则:学生需要掌握分式除法的运算规律,即除以一个分式等于乘以这个分式的倒数,举例:
重点2:(2x/(x+1)) ÷ (3(x+1)/(2x)) = (2x/(x+1)) * (2x/3(x+1))
(5)简化分式:学生需要掌握简化分式的方法,能够将分式简化到最简形式,举例:
重点5:(4x^2/(x+1))^2 ÷ (9(x+1)^2/(4x^2)) = 16x^4/(9(x+1)^2) * (4x^2/1) = 64x^6/(9(x+1)^2)
2.教学难点
(1)分式乘除法运算中,学生在进行交叉相乘时容易出错,不知道何时约分,举例:
3.重点难点解析:在讲授过程中,我会特别强调分式乘法、除法和乘方的运算规则这两个重点。对于难点部分,比如约分和分式简化,我会通过举例和步骤分解来帮助大家理解。

最新八年级数学下册 分式全章难题、易错题 人教新课标版

最新八年级数学下册 分式全章难题、易错题 人教新课标版

1 / 1最新八年级数学下册 分式全章难题、易错题 人教新课标版1. 从质量为m kg 的一捆钢筋中截取一段长为5米的钢筋,称出这段钢筋的质量为n kg ,则这捆钢筋的总长度为______米2. 若33x-值为整数,则x 的整数值有___个,分别是______ 3. 下列各式中,与分式aa b--的值相等的是 ( )a .-a b A -- ..a B a b + a ..C b a - ..aD b a-- 4. 若把分式22x x y+中的x ,y 的值都扩大2倍,则原分式的值 () A.不变 B.扩大2倍 C.扩大4倍 D.扩大8倍5. 已知a=2b,求2222a ab b a b -++的值6. 若m 等于它的倒数,则分式22m 6m 9m-3m 2 m 2m-+÷--的值为 ( )A.-2B.4C.-2或4D.14-7. 化简:23a 1111a a a -+⎛⎫⎛⎫⋅= ⎪ ⎪+-⎝⎭⎝⎭ 22222a b ab b a a ab a ⎛⎫-+÷+= ⎪-⎝⎭8. 若x=2005 , y=2006 ,则()2244x y x y x y ++⋅-=_____9. 已知:x=b a a b - ,y=b a a b+ ,则22x y -=_____10. 已知22a -=,)1b =,()31c -=-,则a 、b 、c 的大小关系是_____11. 已知123m-⎛⎫= ⎪⎝⎭,153n= ,求29m n -的值12. 关于x 的方程()231a x -=的解为负数,则a 的取值范围是_____ 13 如果分式方程14x-33m x+=-无解,那么m 的值为_____ 14. 某地要筑一水坝,需要在规定日期内完成,如果由甲队去做,恰好如期完成;如果由乙队去做,则需超过规定日期三天.现由甲、乙两队合作2天后,余下的工程由乙队独做,恰好在规定日期完成,求规定的日期x (有两种不同的方法做)15. 若分式11x x -+的值为0,则x 的值为_____ 16. 若1233215,7x y z x y z ++=++=,则111x y z++=_____17. 已知实数x 满足24410x x -+=,则代数式122x x+的值为_____18. 计算:44xy xy x y x y x y x y ⎛⎫⎛⎫-+⋅+- ⎪ ⎪-+⎝⎭⎝⎭19. 甲乙两位采购员同去一家饲料公司购买两次饲料,第一次饲料的价格为a 元/千克,第二次饲料的价格为b 元/千克,且a ≠b.两位采购员的购货方式不同,其中甲每次购买1000千克的饲料,而乙每次用800元钱购买饲料. (1)甲、乙所购买的饲料的平均单价分别是多少? (2)谁的购货方式更合算?请说明理由.。

八年级数学人教版下册16.3_分式方程及答案

八年级数学人教版下册16.3_分式方程及答案

分式方程测试题一、填空题1. 若11x -与11x +互为相反数,则可得方程___________,解得x =_________. 2..当m 取 时,方程323-=--x m x x 会产生增根. 3..已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为 . 4.若关于x 的分式方程311x a x x--=-无解,则a = . 5.把含盐16%的盐水40千克,配成含盐20%的盐水,需要加入盐的质量为_____千克. 6.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .7..甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.8..轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是_________千米/时.二、选择题9.一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是 ( ) (A )a +b (B )b a 11+ (C )b a +1 (D )ba ab + 10.下列说法中错误的是( )(A )分式方程的解等于0,就说明这个分式方程无(B )解分式方程的基本思路是把分式方程转化为整式方程(C )检验是解分式方程必不可少的步骤(D )能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.11..工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个A 1 B 2 C3 D4 12.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .9 B.8 C .6 D .513.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为A .18%)201(400160=++x xB .18%)201(160400160=+-+x x C.18%20160400160=-+x x D.18%)201(160400400=+-+x x 14.一个两位数的十位数字是4,如果把十位数字与个位数字对调,那么所得的新数与原数的比为47,则原来的两位数为()(A)42(B)47(C)24(D)48三、解答题15. .解方程:(1)6122xx x+=-+(2)163104245--+=--xxxx16.某市为缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,须将原定的工作效率提高12%,问原计划完成这项工程用多少个月?17. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?18.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?19.如图,小明家、王老师家、学校在同一条路上.小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小明的父母战斗在抗洪抢险第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟.问王老师的步行速度及骑自行车的速度各是多少?20.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?21.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.参考答案:一、1、0111x 1=-=+x , 0. 2、m=3. 3、m >-6且 m ≠-4. 4、1. 5、2. 6、x x 9020120=+ 7、15个和10个 8、45 二、9.D 10.A 11.C 12.A 13.B 14.A三、15、(1) x=1 (2) x=2是增根,原方程无解。

八年级数学下册《分式》教案、教学设计

八年级数学下册《分式》教案、教学设计
八年级数学下册《分式》教案、教学设计
一、教学目标
(一)知识与技能
1.了解分式的定义,理解分式表示的几何意义。
2.学会分式的化简,掌握分式的基本性质,如约分、通分等。
3.能够进行分式的加减乘除运算,掌握运算规律,提高运算速度和准确性。
4.能够将实际问题转化为分式问题,运用分式解决实际问题。
(二)过程与方法
4.教师将根据作业完成情况进行评价,关注学生的知识掌握、能力提升和情感态度等方面。
2.自主探究,合作交流:
(1)引导学生自主探究分式的定义,通过实际例子让学生体会分式的几何意义。
(2)组织学生进行小组讨论,发现分式的基本性质和运算规律,提高学生的合作能力。
3.精讲精练,突破难点:
(1)针对分式的化简和运算规律,教师进行详细讲解,通过典型例题让学生掌握解题方法。
(2)设计不同难度的练习题,让学生在练习中巩固知识,逐步突破难点。
在教学过程中,教师应关注学生的参与度,调动学生的积极性,鼓励学生主动探究、合作交流。同时,注重分层教学,针对不同学生的需求设计教学内容,使每个学生都能在课堂上得到有效的提升。通过本节课的学习,使学生掌握分式知识,提高数学素养,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对分式的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.在解决实际问题时,难以将问题转化为分式问题,缺乏运用分式解决实际问题的能力。
针对以上情况,教师应关注学生的认知发展水平,适时给予引导和启发,帮助学生搭建起分式知识的框架。在教学过程中,注重培养学生的抽象思维能力和问题解决能力,使学生在掌握分式知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点

人教版八年级下册数学分式方程应用题及答案

人教版八年级下册数学分式方程应用题及答案

1、甲、乙两人打算整理一批新到的试验器材,甲单独整理须要40分完工;若甲、乙共同整理20分钟后,乙须要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积一样的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。

进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发觉,同样的酸奶,这里要比供销大厦每瓶廉价0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x 元,则xx 9.07002000202000+=+ 解,得x =50 经检验:x =50是原方程的解。

人教八年级下册数学分式教案

人教八年级下册数学分式教案

分式教案第一课时从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:,,, .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为____小时,逆流航行60千米所用时间小时,所以=___ .3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1)(2)(3)[分析] 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?(1)(2)(3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是__ 千米/时,轮船的逆流速度是__千米/时.(3)x与y的差于4的商是.2.当x取何值时,分式____无意义?3. 当x为何值时,分式_____ 的值为0?八、答案:六、1.整式:9x+4, , 分式:, ,2.(1)x≠-2 (2)x≠(3)x≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, , ; 整式:8x, a+b, ;分式:,2.X = 3. x=-1课后反思:第二课时分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分 式◆课前热身 1.若分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x>1 C . x=1 D .x<12.化简22a a a+的结果是样3.分式111(1)a a a +++的计算结果是( ) A .11a + B .1a a + C .1aD .1a a+ 4.计算22()ab a b-的结果是( )A .aB .bC .1D .-b 【参考答案】1. A 2.2a +3.C 解析:本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.aa a a a a a a a 1)1(1)1(1)1(1=++=++++=原式.故选C.4.B 解析:本题考查积的乘方运算与分式的化简,()22222ab a b b a ba b-==,故选B . ◆考点聚焦分式 分式的有关概念 有理式 最简分式 分式 最简公分母 分式的基本性质 分式的运算 知识点:分式,分式的基本性质,最简分式,分式的运算,零指数,负整数,整数,整数指数幂的运算大纲要求:了解分式的概念,会确定使分式有意义的分式中字母的取值范围。

掌握分式的基本性质,会约分,通分。

会进行简单的分式的加减乘除乘方的运算。

掌握指数指数幂的运算。

考查重点与常见题型:1.考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是( )A.-40 =1B.(-2)-1= 12C.(-3m-n )2=9m-nD.(a+b)-1=a -1+b-12.考查分式的化简求值。

在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。

注意解答有关习题时,要按照试题的要求,先化简后求值,化简要认真仔细,如:化简并求值:x (x-y)2 . x 3-y 3x 2+xy+y 2 +(2x+2x-y –2),其中x=cos30°,y=sin90°◆备考兵法1.弄清分式有意义,无意义和值为零的条件分式有意义的条件是分母不为零;无意义的条件是分母为零;值为零的条件是分子为零且分母不为零,弄懂这几个条件是做分式题很重要的一点. 2.分式基本性质的灵活应用利用分式的基本性质熟练进行约分和通分,这是分式运算的基础,利用分式的基本性质时,要注意分子、分母同乘以和除以不为零的整式. 3.会进行分式的四则运算分式的四则运算主要出现在化简中,与通分、约分、分式的基本性质联合,要保证最后结果为最简分式. ◆考点链接1. 分式:整式A 除以整式B ,可以表示成 AB的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 AB 无意义;若 ,则 AB=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 . 3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分. 5.分式的运算⑴ 加减法法则:① 同分母的分式相加减: . ② 异分母的分式相加减: . ⑵ 乘法法则: .乘方法则: . ⑶ 除法法则: . ◆典例精析【例1】(湖北宜昌)当x = 时,分式23x -没有意义.【解析】要使分式没有意义,只需分母为零.30x -= ∴3x =【答案】3【例2】(吉林省)化简2244xy yx x --+的结果是( )A .2xx + B .2x x - C .2y x +D .2yx - 【解析】根据分式的基本性质易发现D 成立. 【答案】D【点评】分式的基本性质是一切分式运算的基础,分子与分母只能同乘以(或除以)同一个不等于零的整式,而不能同时加上(或减去)同一个整式.【例3】(内蒙古包头)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x -C .82x -+ D .82x + 【解析】本题考查整式的因式分解及分式的加减乘除混和运算,要注意运算顺序。

先乘除后加减,有括号先算括号里的或按照乘法的分配律去括号。

22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭=()()()22222222x x x x x x x x x +----⨯-⨯+-=()()2222x x x x x -+-+ =()()()2222822x x x x x +--=++,故选D 。

【答案】D【例4】(重庆市江津区)先化简,再求值4421642++-÷-x xx x ,其中 x = 3 . 解:原式=44(4)(4)24x xx x x -⋅++-+=244x x x +++=24x x ++ 当3x =时,原式=57【点评】分式的化简要保证最后结果为最简分式. ◆迎考精炼 一、选择题1.(湖南常德)要使分式11x +有意义,则x 应满足的条件是( ) A .1x ≠B .1x ≠-C .0x ≠D .1x >2.(广东肇庆)若分式33x x -+的值为零,则x 的值是( ) A .3 B .3- C .3± D .03.(山东淄博)化简222a b a ab-+的结果为( )A .b a -B .a b a -C .a b a+ D .b -4.(山东临沂)化简22422b a a b b a+--的结果是( ) A .2a b --B .2b a -C .2a b -D .2b a +5.(湖北荆门)计算22()ab a b-的结果是( )A .aB .bC .1D .-b6.(山东烟台)学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的7.(山东临沂)化简22422b a a b b a+--的结果是( ) A .2a b -- B .2b a -C .2a b -D .2b a +二、填空题1.(广东清远)当x = 时,分式12x -无意义. 2.(山东枣庄)a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).3.(浙江温州)某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).4.(成都)化简:22221369x y x y x y x xy y+--÷--+=_______ 5.(山东烟台)设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 6.(天津)若分式22221x x x x --++的值为0,则x 的值等于 .三、解答题1.(湖北襄樊)计算:2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭2.(河南)先化简211()1122xx x x -÷-+-,1-中选取一个你认为合适..的数作为x 的值代入求值.3.(湖北仙桃)先化简,再求值:22424412x x xx x x x -+÷--++-,其中x =2-2.【参考答案】 一、选择题1. B2. A3.B4. A5.B 解析:本题考查积的乘方运算与分式的化简,()22222ab a b b a ba b-==,故选B . 6.C 7.A 二、填空题 1.2 2.= 3.a 40 4.yx y -25. 6.2 三、解答题 1.解:原式=()()()282222a a a a a a a ⎡⎤+-⎢⎥-+--⎣⎦=()()()228222a a a a a a a +-+-- ()()()22222a a a a a a -=+-- 12a =+ 2.原式=22-1+1-1+1x x x x x ⋅()()()()=4x. 当x=3.原式()()()2221222x x x xx x x +-+=-+-- 12212x xx x x +=---=-当2x ====。

相关文档
最新文档