初中生必须掌握的五种经典几何模型

合集下载

初中数学——最全:初中数学几何模型

初中数学——最全:初中数学几何模型

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

初中几何46种模型大全

初中几何46种模型大全

初中几何46种模型大全初中几何46种模型大全正文:几何是初中数学的重要分支,其中涉及到的模型数量和种类非常丰富。

下面,我们将介绍初中几何中的46种模型,包括它们的定义、性质、应用等。

1. 等腰三角形模型定义:一个等腰三角形的两条边长度相等,且它们的腰角度数相等。

性质:1. 等腰三角形的两条底边长度相等;2. 等腰三角形的两条顶角角度数相等;3. 等腰三角形的顶角和等于180度-底边长度的夹角。

应用:等腰三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。

2. 直角三角形模型定义:一个直角三角形的两条直角边长度相等,且它们的斜角角度数相等。

性质:1. 直角三角形的两条直角边长度相等;2. 直角三角形的斜角角度数相等;3. 直角三角形的斜边长度等于两条直角边长度的乘积。

应用:直角三角形模型可以用来解决直角三角形相关问题,如勾股定理等。

3. 等边三角形模型定义:一个等边三角形的三条边长度相等。

性质:1. 等边三角形的三条边长度相等;2. 等边三角形的任意两边长度都大于第三边;3. 等边三角形的任意角度数都小于180度。

应用:等边三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。

4. 正方形模型定义:一个正方形的四条边长度相等。

性质:1. 正方形的四条边长度相等;2. 正方形的任意一个角都是90度;3. 正方形的任意两个角都是直角。

应用:正方形模型可以用来解决正方形相关问题,如面积、周长等。

5. 长方形模型定义:一个长方形的两条边长度相等,且它们的长度之和等于宽度。

性质:1. 长方形的两条边长度相等;2. 长方形的长、宽相等;3. 长方形的任意一个角都是直角。

应用:长方形模型可以用来解决长方形相关问题,如面积、周长等。

6. 菱形模型定义:一个菱形的四条边长度相等且互相平分,对角线互相垂直且相等。

性质:1. 菱形的四条边长度相等且互相平分;2. 菱形的对角线互相垂直且相等;3. 菱形的任意一个角都是45度。

初中数学九大几何模型

初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等 (1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OB C DE图 1OABCD E图 2OABCDE图 1OACDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COBCDEOB CDEOA CD③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初一数学几何模型

初一数学几何模型

初一数学几何模型
初一数学几何模型可以包括以下几个方面:
1. 平面几何模型:如平面上的点、线、角的模型;
2. 空间几何模型:如三维空间中的点、线、面、体的模型;
3. 图形的模型:如正方形、矩形、三角形、圆等图形的模型;
4. 图形的变换模型:如平移、旋转、镜像、放缩等图形的变换模型;
5. 相似与全等模型:如相似图形和全等图形的模型;
6. 坐标系与直角坐标系模型:如在平面上建立坐标系,进行坐标计算的模型;
7. 三角形的模型:如直角三角形、等腰三角形、等边三角形等模型;
8. 圆的模型:如圆的构造、圆的性质等模型;
9. 三视图模型:如立体图形的正视图、侧视图、俯视图等模型。

以上是初一数学几何模型的一些例子,通过这些模型可以帮助学生更好地理解和应用几何知识。

初中几何五大模型,学会轻松搞定初中几何,考试不再愁

初中几何五大模型,学会轻松搞定初中几何,考试不再愁

初中几何五大模型,学会轻松搞定初中几何,考试不再愁初二的同学(即将初二的同学)注意了:到了初二,几何学可以说是初二数学中最重要的一大板块了。

对于整个的初中数学,甚至中考数学而言,也是至关重要的一部分!因此学好几何,就显得尤为重要了!在之前,我们就曾经分享过一篇关于几何辅助线的文章:今天,我们接着为大家分享几何中常见常考的五大模型。

希望对您的日常学习已经各种考试有所帮助!一:共角定理(鸟头定理)即在两个三角形中,它们有一个角相等(或互补),则他们就是共角三角形。

它们的面积之比,就是对应角(相等角或互补角)两夹边的乘积之比。

(这一定理不建议记,符合这种定理的直接应用,不符合的,还不如直接推导的思路)1.等底等高的两个三角形面积相等:2.两个三角形(底)高相等,面积之比等于高(底)之比:3.在一组平行线之间的等积变形,如图:AB平行于CD,则S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。

三:梯形蝴蝶定理1.S2=S4(因为S△ABC=S△DBC,所以S△ABC-S△OBC=S△DBC-S△OBC),S1:S3=a:b2.S1:S3:S2 :S4=a:b:ab:ab3.梯形S的对应数为(a b)在任意四边形中,同样也有蝴蝶定理,如下图:1.S1:S2=S4:S3或者S1×S3=S4×S2;2.AO:OC=(S1 S2):(S4 S3)四:相似三角形定理1.相似三角形:形状相同,大小不相等的两个三角形相似2.寻找相似模型的大前提是平行线:平行于三角形一边的直线和其它两边或两边延长线相交,所构成的三角形与原三角形相似。

3.相似三角形性质:①相似三角形的一切对应线段(对应高,对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。

相似模型大致分为金字塔模型,沙漏模型这两大类,注意这两大类都含有 BC平行DE这样一组平行线!第四定理练习:在等腰直角三角形ABC中,D是BC上的一点,BD:BC=2:5,而四边形ADEF是正方形,如果S△ABC=98,求S正方形ADEF?五:燕尾定理性质:1.S△ABG:S△ACG=S△BGE:S△CGE=BE=CE2.S△BGA:S△BGC=S△GAF:S△GCF=AF:CF3.S△AGC:S△BGC=S△AGD:S△BGD=AD:BD(这就是燕尾模型)。

初中数学必背几何模型

初中数学必背几何模型

一、中点模型1.倍长中线条件:AD 为△ABC 的中线辅助线:延长AD 到点E ,使得AD =DE结论:△ADC ≌△EDB ,AC ∥BE2.连中点构造中位线条件:点D 、E 为AB 、AC 的中点辅助线:连接DE 结论:12DE BC DE BC =,∥3.倍长一边构造中位线条件:点D 为AB 的中点辅助线:延长AC 到点E ,使得AC =CE ,连接BE 结论:12DC BE DC BE =,∥4.构造三线合一条件:AB =AC辅助线:取BC 的中点D ,连接AD结论:AD ⊥BC ,∠BAD =∠CADB5.构造斜边中线条件:∠ABC =90°辅助线:取AC 的中点D ,连接BD 结论:12BD AC AD CD ===二、角平分线模型6.往角两边作垂线条件:AD 平分∠BAC辅助线:过点D 作AB 、AC 的垂线,垂足分别为E 、F结论:△ADE ≌△ADF7.在角的两边截取等长线段条件:AD 平分∠BAC辅助线:在AB 、AC 上取点E 、F ,满足AE =AF ,连接DE 、DF 结论:△ADE ≌△ADF8.过角平分线上一点作垂线条件:AD 平分∠BAC辅助线:过点D 作EF ⊥AD ,交AB 、AC 于点E 、FD CBB CCC结论:△ADE ≌△ADF三、双角平分线模型9.内内模型条件:BD 、CD 平分∠ABC 、∠ACB 结论:1902D A ∠=︒+∠10.内外模型条件:BD 、CD 平分∠ABC 、∠ACE 结论:12D A ∠=∠11.外外模型条件:BD 、CD 平分∠CBE 、∠BCF 结论:1902D A ∠=︒-∠四、平行线模型12.猪蹄模型CA BCC ED条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠B +∠D =∠BED13.铅笔头模型条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠B +∠D +∠BED =360°14.鸟头模型条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠D +∠BED =∠B15.平行线+角平分线模型条件:AB ∥CD ,CE 平分∠ACD结论:AC =AE五、等积模型16.等底等高条件:AD ∥BCFAFBC结论:ABC DBC S S =,ADB ADC S S =17.等高模型条件:B 、C 、D 共线结论:::ABD ADC S S BD CD =18.等底模型条件:AE 、DE 为△ABC 、△DBC 边BC 上的高结论:::ABC DBC S S AE DE =六、对称半角模型19.对称半角模型-含45°角的三角形条件:∠BAC =45°,AD ⊥BC辅助线:作点D 关于AB 的对称点E ,关于AC 的对称点F , 连接AE 、AF 、BE 、CF 、EF结论:△AEF 是等腰直角三角形20.对称半角模型-含30°角的三角形B CB C DED条件:∠BAC =30°,AD ⊥BC辅助线:作点D 关于AB 的对称点E ,关于AC 的对称点F , 连接AE 、AF 、BE 、CF 、EF结论:△AEF 是等边三角形七、旋转半角模型21.旋转半角模型-等腰直角三角形条件:AB =AC ,∠BAC =90°,∠MAN =45°辅助线:将△ABM 绕点A 逆时针旋转90°,得到△ACM ' 结论:ANM ANM '≌,222BM CN MN +=22.旋转半角模型-等边三角形条件:△ABC 是等边三角形,BD =CD ,∠BDC =120°, ∠MDN =60°辅助线:将△BDM 绕点D 顺时针旋转120°,得到△DCM ' 结论:NDM NDM '≌,BM CN MN +=23.旋转半角模型-正方形条件:正方形ABCD ,∠MAN =45°,FEAM'M CAB辅助线:将△ABM 绕点A 逆时针旋转90°,得到△ADM ' 结论:NAM NAM '≌,BM DN MN +=八、自旋转模型24.自旋转模型-等边三角形条件:△ABC 是等边三角形,点P 为其内任意一点辅助线:将△BAP 绕点B 顺时针旋转60°,得到△BCP ' 结论:△BPP '是等边三角形25.自旋转模型-等腰直角三角形条件:△ABC 中,∠BAC =90°,AB =AC ,点P 为△ABC 内任 意一点辅助线:将△BAP 绕点A 逆时针旋转90°,得到△ACP ' 结论:△APP '是等腰直角三角形26.自旋转模型-等腰三角形条件:△ABC 中,AB =AC ,点P 为△ABC 内任意一点,∠BAC =α 辅助线:将△BAP 绕点A 逆时针旋转α,得到△ACP ' 结论:△APP '是等腰三角形M'DNCBAB九、手拉手模型29.手拉手模型-等边三角形条件:△ABC和△CDE都是等边三角形结论:△ACE≌△BCD27.手拉手模型-等腰直角三角形条件:△ABC和△CDE都是等腰直角三角形结论:△ACE≌△BCD,AE⊥BDEE28.手拉手模型-等腰三角形条件:△ABC 和△CDE 都是等腰三角形,CA =CB , CD =CE ,且∠ACB =∠DCE结论:△ACE ≌△BCD30.手拉手模型-正方形条件:四边形ABCD 和AEFH 都是正方形结论:△ABE ≌△ADH ,BE ⊥DH十、最短路程模型31.直线同侧两线段之和最小(将军饮马)条件:点A 、B 在直线l 同侧,点P 为l 上一点辅助线:作点A 关于直线l 的对称点A ',连接A 'B 结论:点P 为A 'B 和l 交点时,AP +BP 最小C32.直线异侧两线段之差最小条件:点A 、B 在直线l 异侧,点P 为l 上一点辅助线:作线段AB 的垂直平分线m结论:点P 为m 和l 交点时,|AP -BP |最小33.直线同侧两线段之差最小条件:点A 、B 在直线l 同侧,点P 为l 上一点辅助线:作线段AB 的垂直平分线m结论:点P 为m 和l 交点时,|AP -BP |最小34.过桥模型(将军饮马)条件:A 、B 为定点,l 1∥l 2,MN 为定长线段且MN ⊥l 1 辅助线:将点A 向上平移MN 的长度得到A ',连接A 'B 结论:点N 为A 'B 与l 1交点时,AM +MN +BN 最小35.四边形周长最小(将军饮马)条件:A 、B 为定点,M 、N 为角两边上的动点辅助线:作点A 、B 关于角两边的对称点A '、B ',连接 lAlAll 1l 2A'B'结论:M、N为A'B'与角两边交点时,四边形ABMN的周长最小B'36.三角形周长最小(将军饮马)条件:A为定点,B、C为角两边上的动点辅助线:作点A关于角两边的对称点A'、A",连接A'A"结论:B、C为A'A"与角两边交点时,△ABC的周长最小37.旋转类最短路程模型条件:线段OA=a,OB=b(a>b),OB绕点O在平面内旋转结论:点B与点N重合时,AB最小;点B与点M重合时,AB最大十一、基本相似模型38.A字型条件:BC∥DE结论:△ABC∽△ADE条件:∠ABC =∠ADE结论:△ABC ∽△ADE39.8字型条件:AB ∥CD结论:△AOB ∽△DOC条件:∠BAO =∠DCO结论:△AOB ∽△COD40.母子型条件:△ABC 中,∠ACB =90°,CD ⊥AB结论:△ABC ∽△ACD ∽△CBD41.一线三等角模型条件:∠B =∠D =∠ACE结论:△ABC ∽△CDECBCC A42.手拉手相似模型条件:△ABC ∽△ADE结论:△ACE ∽△ABD十二、对角互补模型43.对角互补模型-90°全等型条件:∠AOB =∠DCE =90°,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,OD +OEOC ,212OECD S OC 四边形CB ACE AB D CDD44.对角互补模型-120°全等型条件:∠AOB =120°,∠DCE =60°,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,OD +OE =OC ,24OECD S =四边形45.对角互补模型-任意角全等型条件:∠AOB =2α,∠DCE =180°-2α,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,2cos OD OE OC α+=⋅, 2sin cos OEC OCD S S OC αα+=⋅46.邻边相等的对角互补模型条件:四边形ABCD 中,AB =AD ,∠ABC +∠ADC =180°D BAN E OB辅助线:延长CD 到E ,使得DE =BC ,连接AE结论:△ABC ≌△ADE ,CA 平分∠BCD十三、隐圆模型47.动点定长模型条件:AB =AC =AP ,点P 为动点结论:点B 、C 、P 三点共圆,点A 为圆心,AB 为半径48.直角圆周角模型条件:点C 为动点,∠ACB =90°结论:点A 、B 、C 三点共圆,线段AB 的中点为圆心,线段 AB 为直径49.定弦定长模型条件:点P 为动点,固定线段AB 所对的动角∠APB 为定值 结论:点A 、B 、P 三点共圆,线段AB 和BP 的中垂线的交点 为圆心BA50.四点共圆模型①条件:点A 、C 为动点,∠BAD +∠BCD =180°结论:点A 、B 、C 、D 四点共圆,线段AB 和BC 的中垂线的 交点为圆心当∠BAD =∠BCD =90°,BD 为直径51.四点共圆模型②条件:线段AB 为固定长度,点D 为动点,∠C =∠D结论:点A 、B 、C 、D 四点共圆,线段AB 和BC 的中垂线的 交点为圆心CCA当∠C=∠D=90°,AB为直径。

有哪些初中几何的常见模型

有哪些初中几何的常见模型

有哪些初中几何的常见模型
1,倍长中线模型
2,截长补短模型
3,一线三垂直模型
4,将军饮马模型
常见的还有手拉手模型、半角模型、奔驰模型、十字架模型、胡不归模型等等
想学好几何模型,不仅要知道为什么,还要知道为什么。

只有明确了原理,很多模型才能举一反三,一些新问题才能指明解决问题的方向。

比如一般的马饮模型的原理就是轴对称和三角形的两边之和大于第三边。

掌握原理后,你就可以轻松掌握一般马饮水的几个变形问题了。

此外,胡不归模型也是一般饮马的变形。

把握两种模式的区别和联系,可以快速学习胡不归模式。

郭老师,初中数学老师,从教15年。

开放式公益教学课程:郭数学公益课系列。

教初中数学各年级各章节考点和解题方法。

欢迎关注郭数学,免费学习。

初中数学八大基本图形几何模型及练习

初中数学八大基本图形几何模型及练习

初中数学八大基本图形几何模型及练习几何中的模型如同代数中的公式,是同学们快速解题的关键,如果平时多总结一些几何模型,对于几何的学习是非常有帮助的,一些学霸做题非常快,一部分原因就是如此。

今天来列举8个常考的几何模型,看到最后有惊喜!
一、相似三角形基本模型
相似三角形是几何证明中重要的应用之一,利用三角形相似可证明角相等、线段成比例(或等积式)以及求线段的长,所以能在复杂的图形中找到相似三角形的基本模型至关重要圆中得角相等的方法有很多,所以相似三角形常与圆相结合。

二、共顶点模型
又叫做手拉手模型,全等'、相似中最常见的一个类型。

三、半角模型
四、对角互补模型
邻边相等、对角互补是典型的旋转模型。

五、一线三等角模型
六、弦图模型
七、中点模型
倍长中线、中位线等都是很好的解题思路。

八、四点共圆模型
转发赠送此电子版。

初中几何46种模型大全

初中几何46种模型大全

初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。

在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。

本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。

正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。

正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。

正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。

2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。

长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。

长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。

3. 平行线模型平行线模型是相互平行的直线。

平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。

平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。

4. 菱形模型菱形模型是具有四个相等的直角边的矩形。

菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。

菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。

5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。

等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。

等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。

6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。

初中所有几何模型

初中所有几何模型

初中所有几何模型
初中几何中常见的模型包括但不限于以下几种:
1. 手拉手模型:这种模型通常涉及到两个三角形,其中一个三角形的顶点与另一个三角形的对应顶点相连。

根据角度和边的关系,可以证明这两个三角形是相似的或全等的。

2. 倍长中线模型:如果一个中线长度超过另一边的一半,则可以通过倍长中线来构造新的三角形,从而利用中线性质进行证明。

3. 平行线模型:通过平行线的性质,可以证明一些角的关系,或者利用平行线的传递性来证明一些线段的比例关系。

4. 角平分线模型:利用角平分线的性质,可以证明一些角或者线段的比例关系。

5. 直角三角形模型:通过直角三角形的性质,可以证明一些角或者线段的关系。

6. 对角线模型:利用对角线的性质,可以证明一些线段的比例关系,或者通过构造新的三角形来证明一些结论。

7. 旋转模型:通过旋转图形,可以证明一些结论或者找到一些新的等量关系。

8. 相似三角形模型:通过相似三角形的性质,可以证明一些角或者线段的比例关系。

9. 特殊四边形模型:对于一些特殊的四边形,如平行四边形、矩形、菱形等,可以利用它们的性质来证明一些结论。

以上是一些常见的初中几何模型,它们都是基于几何的基本性质和定理构建的。

掌握这些模型可以帮助学生在解决几何问题时更加高效和准确。

(完整版)初中数学九大几何模型

(完整版)初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初中必备的几何模型与解题通法

初中必备的几何模型与解题通法

初中必备的几何模型与解题通法初中的几何学是数学中的一大分支,包括了平面几何和立体几何两个部分。

在学习初中几何学的过程中,掌握几何模型和解题通法是非常重要的。

本文介绍一些初中必备的几何模型和解题通法,帮助初中生更好地掌握几何学。

一、平面几何模型1. 直线段模型:直线段是平面几何中最基本的图形,通常用线段表示。

在解题中,可以利用线段的长度、垂直、平行等性质来推导出答案。

2. 角度模型:角度是指由两条线段或射线共同起点所夹的空间部分。

在解题中,可以利用角度的大小、补角、余角等性质来推导出答案。

3. 三角形模型:三角形是平面几何中最基本的图形之一,由三条线段所组成。

在解题中,可以利用三角形的角度、边长、面积等性质来推导出答案。

4. 四边形模型:四边形是由四条线段所组成的图形,包括了矩形、正方形、平行四边形等。

在解题中,可以利用四边形的对角线、内角和、面积等性质来推导出答案。

5. 圆模型:圆是由一条射线不断绕着一个固定点旋转所形成的图形。

在解题中,可以利用圆的直径、半径、弧度等性质来推导出答案。

二、立体几何模型1. 立方体模型:立方体是由六个正方形所组成的图形,具有六个平面、十二个棱、八个顶点。

在解题中,可以利用立方体的体积、表面积等性质来推导出答案。

2. 圆柱体模型:圆柱体是由一个圆与一个长方形所组成的图形,具有两个平面、两个底面、一个侧面。

在解题中,可以利用圆柱体的体积、表面积等性质来推导出答案。

3. 圆锥体模型:圆锥体是由一个圆锥面与一个圆所组成的图形,具有一个平面、一个底面、一个侧面。

在解题中,可以利用圆锥体的体积、表面积等性质来推导出答案。

4. 球体模型:球体是由一个固定点到平面上所有点的距离相等所形成的图形,具有一个球心、一个半径。

在解题中,可以利用球体的体积、表面积等性质来推导出答案。

三、解题通法1. 分析问题:在解几何题时,首先要明确问题的目标和限制条件,然后根据几何模型的性质进行分析。

2. 画图辅助:画图是解决几何问题的重要手段,可以帮助我们更好地理解问题,从而找到解题的方法。

初中数学几何模型归纳

初中数学几何模型归纳

初中数学几何模型归纳1. 直线模型:直线是最基本的几何图形,可以用直线方程y = kx + b 来表示。

其中,k 是斜率,b 是截距。

2. 点模型:点是几何图形中的基本元素,可以用坐标(x, y) 来表示。

3. 线段模型:线段是由两个端点确定的有限长度的直线部分。

线段可以用起点和终点的坐标来表示。

4. 射线模型:射线是由一个端点和一个方向确定的无限延伸的直线部分。

射线可以用起点和方向向量来表示。

5. 角模型:角是由两条射线的公共端点和这两条射线之间的夹角组成的。

角可以用顶点、始边和终边来表示。

6. 三角形模型:三角形是由三条边和三个内角组成的多边形。

三角形可以用三边的长度和三个内角的大小来表示。

7. 四边形模型:四边形是由四条边和四个内角组成的多边形。

四边形可以用四边的长度和四个内角的大小来表示。

8. 圆模型:圆是由一个圆心和一个半径确定的平面上的所有点到圆心的距离都等于半径的图形。

圆可以用圆心和半径来表示。

9. 椭圆模型:椭圆是由两个焦点和一个长轴、短轴确定的平面上的所有点到两个焦点的距离之和等于常数的图形。

椭圆可以用两个焦点和长轴、短轴的长度来表示。

10. 双曲线模型:双曲线是由两个焦点和一个实轴、虚轴确定的平面上的所有点到两个焦点的距离之差等于常数的图形。

双曲线可以用两个焦点和实轴、虚轴的长度来表示。

11. 正多边形模型:正多边形是由相等的边和相等的内角组成的多边形。

正多边形可以用边数和内角度数来表示。

12. 梯形模型:梯形是由一对平行边和一对非平行边组成的四边形。

梯形可以用两对边的长度和夹角来表示。

13. 矩形模型:矩形是由四个直角和两对相等的边组成的四边形。

矩形可以用两对边的长度和夹角来表示。

14. 正方形模型:正方形是特殊的矩形,它的四个边都相等且四个角都是直角。

正方形可以用边长来表示。

15. 三角形面积模型:三角形的面积可以通过底边长度和高来计算,公式为S = (底边长度×高) / 2。

初中几何46种模型大全

初中几何46种模型大全

初中几何46种模型大全篇一:在初中几何学习中,学生需要掌握各种几何模型的性质和应用。

下面是46种常见的初中几何模型的介绍和拓展。

1. 点:几何学中最基本的对象,没有大小和形状。

2. 线段:由两个点确定的一段连续直线。

3. 直线:无限延伸的、由无数个点组成的连续直线。

4. 射线:起点固定,无限延伸的直线段。

5. 平行线:在同一平面上,永不相交的两条直线。

6. 垂直线:两条直线相交时,相互间的角度为90度。

7. 角:由两条线段或射线共享一个端点所夹成的图形。

8. 直角:角度为90度的角。

9. 锐角:角度小于90度的角。

10. 钝角:角度大于90度但小于180度的角。

11. 三角形:由三条线段连接的图形。

12. 等腰三角形:两边相等的三角形。

13. 等边三角形:三边相等的三角形。

14. 直角三角形:一条边与另外两条边成90度角的三角形。

15. 斜边:直角三角形的最长边。

16. 等腰梯形:有两对平行边,且一对边相等的梯形。

17. 长方形:有四个直角的四边形。

18. 正方形:四边相等且有四个直角的四边形。

19. 平行四边形:有两对平行边的四边形。

20. 五边形:有五条边的多边形。

21. 六边形:有六条边的多边形。

22. 正多边形:所有边相等且所有角相等的多边形。

23. 圆:平面上所有到圆心距离相等的点的集合。

24. 弧:圆上的一段连续曲线。

25. 弦:圆上连接两个非相邻点的线段。

26. 切线:与圆只有一个交点的直线。

27. 弓形:圆上的一段弧和与之相连的两条半径所围成的图形。

28. 圆心角:以圆心为顶点的角。

29. 多边形:有多个边和角的图形。

30. 正多边形:所有边相等且所有角相等的多边形。

31. 直角梯形:有一对直角且有两对平行边的梯形。

32. 正弦:在直角三角形中,对于一个角,其对边与斜边的比值。

33. 余弦:在直角三角形中,对于一个角,其邻边与斜边的比值。

34. 正切:在直角三角形中,对于一个角,其对边与邻边的比值。

初中生必须掌握的五种经典几何模型

初中生必须掌握的五种经典几何模型

初中生必须掌握的五种经典几何模型(一)手拉手模型模型教学产生于教育理论发展的新时代,在新课标的背景下慢慢成熟起来,模型可以让孩子更快的代入到几何之中,形成自己的兴趣。

也是近来来学习初中几何中不可或缺的一部分。

下面我先给大家介绍第一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。

例1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC (2)AE=DC(3)AE与DC的夹角为60 (4)△AGB≌△DFB(5)△EGB≌△CFB (6)BH平分∠AHC(7)GF∥AC解析:(1)∵△ABD和△BCE是等边三角形,∴AB=DB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,即∠DBC=∠ABE,在△ABE和△DBC中,易证明△ABE≌△DBC(SAS)(2) ∵△ABE≌△DBC(SAS)∴AE=CD;(3) ∵△ABE≌△DBC,∴∠AEB=∠DCB.又∵∠HFE=∠BFC(对顶角相等)△HFE和△BFC中,∠EHF=180-∠AEB-∠HFE;∠CBF=180-∠DCB -∠BFC,∴∠EHF=∠CBF=60∴AE与DC的夹角为60。

(4)AB=BD,BG=BF, ∠ABG=∠DBF=60∴△AGB≌△DFB(5)EB=EC,BG=BF, ∠EBG=∠CBF=60∴△EGB≌△CFB(6)过B作BM垂直AE于M,BN垂直CD于N。

证明△ABM ≌△DBM,则BM=BN∴BH平分∠AHC(7)∵△AGB≌△DFB∴BG=BF, 又∠GBF=60,∴GBF为等边三角形∴∠GFB=EBC=60, ∴GF∥AC。

初中几何八大经典模型大盘点

初中几何八大经典模型大盘点

初中几何八大经典模型大盘点
1.初中几何八大经典模型(一)中点模型
2.初中几何八大经典模型(二)角分线模型
3.初中几何八大经典模型(三)相似基本模型
4.初中几何八大经典模型(四)一线三等角模型
5.初中几何八大经典模型(五)三垂直模型
6.初中几何八大经典模型(六)手拉手模型
7.初中几何八大经典模型(七)旋转模型
8.初中几何八大经典模型(八)“将军饮马”模型
由于内容比较多,一次无法完全发完,我从每个章节选取3个图片给大家做一个简单的分享,需要打印完整版内容看到最后提示吧!。

初中数学十大模型

初中数学十大模型

初中数学中考总复习几何十大模型1、模型一:“12345”模型
2、模型二:“半角”模型
对称半角模型
旋转半角模型
3、模型三:“角平分线”模型
角平分线定理角平分线+垂线=等腰三角

角分线+平行线=等腰三角必呈现
角平分线+垂线=等腰三角形
4、模型四:“手拉手”模型
条件:1、两个等腰三角形;2、顶角相等;3、顶点重合。

结论:1、手相等;2、三角形全等;3、手的夹角相等;
4、顶点连手的交点得平分。

5、模型五:“将军饮马”模型
6、模型六:“中点”模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1.直接连接中点;
2.连对角线取中点再相连
7、模型七:“邻边相等的对角互补”模型
【模型1】
【条件】如图,四边形ABCD中,AB=AD,∠BAD+∠BCD=∠ABC+∠ADC=180°【结论】AC平分∠BCD
【模型2】
【条件】如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°
【结论】①∠ACB=∠ACD=45°②BC+CD=V2AC
8、模型八:“一线三角”模型
【条件】∠EDF=∠B=∠C,且DE=DF
【结论】△BDE=△CFD
9、模型九:“弦图”模型
【条件】正方形内或外互相垂直的四条线段
【结论】新构成了同心的正方形
10、模型十:费马点。

初中数学几何模型大汇总

初中数学几何模型大汇总

初中数学几何模型大汇总几何模型是数学中的重要内容之一,对于初中数学学习来说,掌握并熟练运用各种几何模型是非常重要的。

下面是几何模型的大汇总,供初中学生学习参考。

一、平面图形的模型:1.直角三角形模型:直角三角形由两个直角边和一个斜边构成,可以利用直角三角形模型解决与直角三角形有关的问题。

2.等腰三角形模型:等腰三角形的底边两侧边相等,可以利用等腰三角形模型解决与等腰三角形有关的问题。

3.等边三角形模型:等边三角形的三边相等,可以利用等边三角形模型解决与等边三角形有关的问题。

4.平行四边形模型:平行四边形的对边平行且相等,可以利用平行四边形模型解决与平行四边形有关的问题。

5.矩形模型:矩形的四个角都是直角,可以利用矩形模型解决与矩形有关的问题。

6.正方形模型:正方形的四个边相等且都是直角,可以利用正方形模型解决与正方形有关的问题。

7.菱形模型:菱形的两对对边相等,可以利用菱形模型解决与菱形有关的问题。

8.圆形模型:圆形由中心点和半径构成,可以利用圆形模型解决与圆有关的问题。

二、立体图形的模型:1.正方体模型:正方体的六个面都是正方形,可以利用正方体模型解决与正方体有关的问题。

2.长方体模型:长方体的六个面有两个相等的长方形,可以利用长方体模型解决与长方体有关的问题。

3.球体模型:球体是由无数个半径相等的圆构成,可以利用球体模型解决与球体有关的问题。

4.圆柱模型:圆柱的底面是圆,可以利用圆柱模型解决与圆柱有关的问题。

5.圆锥模型:圆锥的底面是圆,可以利用圆锥模型解决与圆锥有关的问题。

6.圆台模型:圆台的底面是圆,可以利用圆台模型解决与圆台有关的问题。

7.正棱柱模型:正棱柱的底面是正多边形,可以利用正棱柱模型解决与正棱柱有关的问题。

8.正棱锥模型:正棱锥的底面是正多边形,可以利用正棱锥模型解决与正棱锥有关的问题。

9.正多面体模型:正多面体的面都是相等的正多边形,可以利用正多面体模型解决与正多面体有关的问题。

初中数学几何模型大汇总3篇

初中数学几何模型大汇总3篇

初中数学几何模型大汇总第一篇:平面几何模型平面几何是数学中的一部分,研究图形的形状、大小、位置等问题。

以下是几种常见的平面几何模型:1. 等腰三角形模型:等腰三角形有两边相等,可用来研究角度和边长的关系。

2. 矩形模型:矩形有角度、边长等多个参数,可用来研究面积、周长以及对角线长度等问题。

3. 正方形模型:正方形是一种特殊的矩形,四边相等且四个角度相等,可用来研究面积、周长、对角线、内切正圆、外接圆等问题。

4. 圆形模型:圆形是平面几何中非常重要的一种形状,其属性有直径、半径、周长等常见参数,比如用圆作为基础模型制作软木板,可用来研究圆的各种性质。

5. 梯形模型:梯形有上下两个底和两条不等斜边,可用来研究面积、高度、周长等问题。

以上平面几何模型只是其中的几种,在实际应用中,根据需要还可制作多种其他模型,对于学习几何学的同学尤其重要。

第二篇:立体几何模型立体几何是一种研究空间内物体形状、大小、位置等问题的数学分支,以下是几种常见的立体几何模型:1. 立方体模型:立方体是一种六个矩形面完全相等的立体,可用来研究长方体的表面积、体积等问题。

2. 圆锥模型:圆锥是一种由一个圆锥面和一个圆锥顶端点相连的立体,可用来研究圆锥的面积、高度等问题。

3. 圆柱模型:圆柱是由两个共面平行圆面和一个连接两个圆面的矩形侧面组成的立体,可用来研究圆柱的面积、体积等问题;4. 球体模型:球体是一种几何体,由空间中所有距离一个固定点的点所组成,可用来研究球的体积、表面积等问题。

5. 锥体模型:锥体是由一个尖端和一个底面组成的几何体,可用来研究锥的体积等问题。

以上是立体几何中常见的几种模型,其它形状的几何体也可以通过结合上述模型进行制作。

第三篇:线性几何模型线性几何是一种研究空间中直线、曲线等形状的数学学科,以下是常见的线性几何模型:1. 直角坐标系模型:直角坐标系可以看作是空间中的一个网格,可用来研究线性方程、直线、曲线等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中生必须掌握的五种经典几何模型(一)手拉手模型
模型教学产生于教育理论发展的新时代,在新课标的背景下慢慢成熟起来,模型可以让孩子更快的代入到几何之中,形成自己的兴趣。

也是近来来学习初中几何中不可或缺的一部分。

下面我先给大家介绍第一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。

例1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1)△ABE≌△DBC (2)AE=DC
(3)AE与DC的夹角为60 (4)△AGB≌△DFB
(5)△EGB≌△CFB (6)BH平分∠AHC
(7)GF∥AC
解析:(1)∵△ABD和△BCE是等边三角形,
∴AB=DB,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠ABC=∠CBE+∠ABC,
即∠DBC=∠ABE,
在△ABE和△DBC中,
易证明△ABE≌△DBC(SAS)
(2) ∵△ABE≌△DBC(SAS)∴AE=CD;
(3) ∵△ABE≌△DBC,∴∠AEB=∠DCB.
又∵∠HFE=∠BFC(对顶角相等)
△HFE和△BFC中,
∠EHF=180-∠AEB-∠HFE;
∠CBF=180-∠DCB -∠BFC,
∴∠EHF=∠CBF=60∴AE与DC的夹角为60。

(4)AB=BD,BG=BF, ∠ABG=∠DBF=60
∴△AGB≌△DFB
(5)EB=EC,BG=BF, ∠EBG=∠CBF=60
∴△EGB≌△CFB
(6)过B作BM垂直AE于M,BN垂直CD于N。

证明△ABM ≌△DBM,则BM=BN
∴BH平分∠AHC
(7)∵△AGB≌△DFB∴BG=BF, 又∠GBF=60,∴GBF为等边三角形
∴∠GFB=EBC=60, ∴GF∥AC。

相关文档
最新文档