有理函数的不定积分

合集下载

有理函数不定积分的几种计算方法

有理函数不定积分的几种计算方法

有理函数不定积分的几种计算方法不定积分是数学中十分重要的一种概念,是在研究函数及其积分时经常用到的。

而有理函数不定积分则是比较难以求解的一类不定积分,仅仅是利用常规算法求解并不能得到解析解,甚至连数值解都不一定能求得,因此对于有理函数不定积分的计算技术就显得十分重要。

在计算有理函数不定积分的时候,主要有三种方法可以进行,它们分别是:(1)利用超求解法:超求解法是一种求解有理函数不定积分的有效办法,他是利用替代变量法将有理函数不定积分转化为定积分,从而利用定积分的方法对有理函数不定积分进行求解。

(2)利用偏微分法:偏微分法也是一种有效的求解有理函数不定积分的方法,他是利用有理函数的特点,将有理函数不定积分转化为求和式,再利用偏微分来求得有理函数不定积分的解。

(3)利用和约的方法:利用和约的方法也是一种有效的求解有理函数不定积分的方法,他是利用有理函数的特点,令有理函数不定积分计算术式可以和约化,最后再利用和约后的形式来求得解析解。

以上就是有理函数不定积分的计算方法的基本介绍,除此之外,还有一些利用特殊方法计算的,比如利用特殊函数表法、特殊函数转换法、变量变换法等,它们也是有效的求解有理函数不定积分的方法。

同样,在求解有理函数不定积分的时候,计算机也可以起到一定的作用,比如利用计算机编程、利用数值积分方法来求解有理函数不定积分,等等。

因此,有理函数不定积分的求解,不仅可以利用上述几种常规方法,也可以利用特殊的方法来求解,比如利用计算机编程、利用特殊函数转换法等,都可以获得结果。

最后,要注意的是,不管是采用何种方法,都是要仔细分析、比较各种方法间的优劣以及各自的缺点,最终从中选择最适合的求解有理函数不定积分的方法,从而达到求解有理函数不定积分的目的。

总的来说,有理函数不定积分的求解是一个非常重要的内容,只有掌握其中的知识,才能够更加快速、准确的求解有理函数不定积分的问题。

有理函数积分法

有理函数积分法

第21讲 理函数的不定积分一、有理函数的不定积分有理函数是指由两个多项式函数的商所表示的函数,其一般形式为mm mn n n xxx x x Q x P x R βββααα++++++==-- 110110)()()(, (1)其中,m 为n 非负整数,n ααα,,,10 与m βββ ,,10都是常数,且00≠α,00≠β. 若n m >,则称它为真分式;若n m ≤,则称它为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分,故设(1)为一有理真分式. 根据代数知识,有理真分式必定可以表示成若干个部分分式之和(称为部分分式分解).因而问题归结为求那些部分分式的不定积分.为此,先把怎样分解部分分式的步骤简述如下(可与例1对照着做): 第一步 对分母()x Q 在实系数内作标准分解: ()()()()()tt t s q p x q x p xa x a x x Q μμλλ++++--=21121121, (2)其中()t iji ,,2,1,1,0 ==μλβ均为自然数,而且.,,2,1,04;2211t j q p m j j si tj ji =-=+∑∑==μλ第二步 根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()ka x -的因式,它所对应的部分分式是 ()();221kka x A a x A ax A -++-+-对每个形如()kq px x ++2的因式,它所对应的部分分式是()().22222211kkk q px xC x B q px xC x B qpx x C x B ++++++++++++把所有部分分式加起来,使之等于()x R .(至此,部分分式中的常数系数i i i C B A ,,尚为待定的.)第三步 确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()x Q ,而其分子亦应与原分子()x P 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例1 对()8425109422345234-+--+-++-=x x x x x x x x x x R 作部分分式分解解 按上述步骤依次执行如下:()=x Q 84252345-+--+x x x x x ()()().12222+-+-=x x x x部分分式分解的待定形式为()().122222210+-++++++-=x x C Bx x A x A x A x R (3)用()x Q 乘上式两边,得一恒等式()()1210942220234+-+≡-++-x x x A x x x x +()()()()()121222221+--++-+-x x x A x x x x A+()()()222+-+x x C Bx (4)然后使等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--+=+----=+++-=++常数项的系数,的系数,的系数,的系数 .1082449483442433123,22102122103210410C A A A x C B A A x C B A A A x C B A A A x B A A 求出它的解:1,1,1,2,1210=-=-===C B A A A ,并代人(3)式,这便完成了)(x R 的部分分式分解:.11)2(12221)(22+---+-++-=x x x x x x x R上述待定系数法有时可用较简便的方法去替代.例如可将x 的某些特定值(如0)(=x Q 的根)代人(4)式,以便得到一组较简单的方程,或直接求得某几个待定系数的值.对于上例,若分别用2=x 和2-=x 代人(4)式,立即求得1120-==A A 和,于是(4)式简化成为)1)(2)(2(161232134+-+-=-+-x x x x A x x x .)2)(2)((2+-++x x C Bx为继续求得C B A ,,1,还可用x 的三个简单值代人上式,如令1,1,0-=x ,相应得到⎪⎩⎪⎨⎧=+-=++=+.83,233,42111C B A C B A C A 由此易得1,1,21=-==C B A .这就同样确定了所有待定系数. 一旦完成了部分分式分解,最后求各个部分分式的不定积分.由以上讨论知道,任何有理真分式的不定积分都将归为求以下两种形式的不定积分:⎰-I ka x dx)()(;()⎰<-+++I I )04()(22q p dx q px x M Lx k.对于()I ,已知()()⎪⎩⎪⎨⎧>+--=+-=--⎰.1,11,1,ln )(1k C a x k k C a x a x dx k k对于()II ,只要作适当换元(令2p x t +=),便化为()⎰⎰++=+++dt rtNLt dx q px xMLx kk222)(⎰⎰+++=,)()(2222kkr t dt N dt r t t L (5)其中.2,422L p M N pq r-=-=.当1=k 时,(5)式右边两个不定积分分别为⎰++=+C r t dt rtt)ln(212222,.a r c t a n 122C rtr rtdt+=+⎰ (6) 当2≥k 时,(5)式右边第一个不定积分为C r t k dt r t tk k++-=+⎰-12222))(1(21)(.对于第二个不定积分,记 ,)(122⎰-+=k k r tdtI 可用分部积分法导出递推公式如下:dt r t t r t rI kk ⎰+-+=)()(1222222⎰+-=-dt r ttrI rkk )(11222212⎰⎪⎪⎭⎫ ⎝⎛+-+=--122212)(1)1(211k k r t td k r I r.)()1(2111122212⎥⎦⎤⎢⎣⎡-+-+=---k k k I r t tk r I r 经整理得到.)1(232))(1(2121222----++-=k k k I k r k r t k r tI (7)重复使用递推公式(7),最终归为计算1I ,这已由(6)式给出. 把所有这些局部结果代回(5)式,并令2p x t +=,就II )的计算.例2 求.)22(1222dx x xx ⎰+-+解:在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为222222)22()12()22()22(1+--++-=+-+x x x x x x x x .)22(12221222+--++-=x x x x x现分别计算部分分式的不定积分如下:.)1arctan(1)1()1(22122C x x x d x x dx +-=+--=+-⎰⎰dx x xx dx x xx ⎰⎰+-+-=+--2222)22(1)22()22(12++-+-=⎰222)22()22(x xx x d []⎰+--221)1()1(x x d.)1(221222⎰+++--=tdtx x由递推公式(7),求得其中⎰⎰+++=+121)1(2)1(2222tdtt t t dt .)1arctan(21)22(2122C x x x x +-++--=于是得到.)1a r c t a n (23)22(23)22(12222C x x x x dx x xx +-++--=+-+⎰二、三角函数有理式的不定积分⎰dx x x R )cos ,(sin 是三角函数有理式的不定积分。

有理函数的不定积分例题(由简单到复杂)

有理函数的不定积分例题(由简单到复杂)

有理函数的积分1、单项式积分:(1)⎰dx 0=C.(2)⎰dx =x+C.(3)⎰dx 2=2x+C. (4)⎰dx 31=3x +C.(5)⎰adx =ax +C. (a 为常数)(6)⎰xdx =22x +C. (7)⎰xdx 2=x 2+C. (8)⎰xdx 32=⎰xdx 231=32x +C. (9)⎰dx x 2=331x +C.(10)⎰dx x 23=x 3+C.(11)⎰dx x 22=⎰2332x =323x +C. (12)⎰dx x n =11++n x n +C. (13)⎰+dx x n n )1(=x n+1+C.(14)⎰dx ax n =11++n ax n +C. (15)⎰-dx nx n 1=x n +C.2、多项式积分(16)⎰+dx x )1(=⎰xdx +⎰dx =22x +x+C.或⎰+dx x )1(=⎰++)1()1(x d x =2)1(2+x +C ’=22x +x+C. (17)⎰-dx x x )23(2=⎰dx x 23-⎰xdx 2=x 3-x 2+C.(18)⎰---dx x x x )23(23=⎰⎰⎰---xdx dx x dx x 2323=44x --x 3-x 2+C. (19)⎰-dx x )1(2020=20212021x -x+C. (20)dx x x x x x )]5()3[(3199931999++--+⎰=dx x x ⎰---)34(3=-x 4-22x -3x+C. 3、整式乘法积分(21)dx x x ⎰-)1(=dx x x ⎰-)(2=33x -22x +C. (22)dx x x ⎰-+)1)(1(=dx x ⎰-)1(2=33x -x+C. (23)⎰+dx x 2)1(=⎰++dx x x )12(2=33x +x 2+x+C. 或⎰+dx x 2)1(=⎰++)1()1(2x d x =3)1(3+x +C ’=33x +x 2+x+C. (24)dx x x ⎰+)3(22=dx x x ⎰+)62(3=24x +3x 2+C. 或dx x x ⎰+)3(22=)3()3(22++⎰x d x =2)3(22+x +C ’=24x +3x 2+C. (25)dx x x ⎰-+)12)(2(=dx x x ⎰-+)232(2=323x +232x -2x+C. 4、整式除法积分 (26)dx x⎰1=ln|x|+C. (27)dx x a ⎰=aln|x|+C.(28)dx ax ⎰1=ax ||ln +C. (29)dx x ⎰+11=)1(11++⎰x d x =ln|x+1|+C. (30)dx x x ⎰+12=)1(112122++⎰x d x =21ln(x 2+1)+C. (31)dx x x ⎰-122=)1(1122--⎰x d x = ln|x 2-1|+C. (32)dx x x ⎰-2212=)21(2112122x d x ---⎰= -ln|1-2x 2|+C. (33)dx x x x ⎰+++2312=dx x x x ⎰+++)2)(1(1=dx x ⎰+21=ln|x+2|+C. (34)dx x ⎰21=x 1-+C. (35)dx x ⎰31=221x-+C. (36)dx x ⎰43=31x-+C. (37)dx x n ⎰1=1)1(1---n x n +C. (n>1) (38)dx x ⎰20202019=20191x -+C. (39)dx x x ⎰++24212=)1()1(1212++⎰x d x =)1(21+-x +C. (40)dx x ⎰+211=arctanx+C. (41)dx x ⎰+3212=dx x ⎰+1321312=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎰x d x 321321612=66arctan x 32+C. (42)dx x x ⎰+14=241121dx x ⎰+=21arctanx 2+C. (43)dx x x ⎰++2212=)1(1)1(12+++⎰x d x =arctan(x+1)+C. (44)dx x ⎰-112= ⎝⎛-⎰dx x 1121-⎪⎭⎫+⎰dx x 11=21[ln(x-1)-ln(x+1)]=21ln 11+-x x +C. (45)dx x⎰-211= ⎝⎛+⎰dx x 1121+⎪⎭⎫-⎰dx x 11=21[ln(1+x)-ln(1-x)]=21ln x x -+11+C.(46)dx x x ⎰-221=dx x x ⎰---2211+dx x ⎰-211=⎰-dx +dx x ⎰-211=-x+21ln x x -+11+C. (47)dx x x ⎰+231=dx x x x ⎰++231-dx xx ⎰+21=⎰xdx -221121dx x ⎰+=-22x +21ln(1+x 2)+C. (48)dx x x x ⎰++231=dx x x x x x ⎰++-+)1()1)(1(2=dx x x x ⎰+-12=dx x x ⎰+-)11( =22x -x+ln|x|+C. (49)dx x x ⎰+220201=dx x x x x x x ⎰+-+-⋯-+-+22201620182018202011)1()( =dx x x x ⎰⎪⎭⎫ ⎝⎛+--⋯--220162018111=x x x x arctan 2017201920172019--⋯--+C =x k x x k k arctan 12201910091122019---∑=-+C. (50)dx x x ⎰--2313=dx x x ⎰-+)2()1(12=dx x C x B x A ⎰⎥⎦⎤⎢⎣⎡-++++2)1(12. 则A(x+1)(x-2)+B(x-2)+C(x+1)2≡1, 当x=2时, C=91; 当x=-1时, B=31-; 又Ax 2+Cx 2≡0, ∴A=-91. 因此得dx x x ⎰--2313=dx x x x ⎰⎥⎦⎤⎢⎣⎡-++-+-)2(91)1(31)1(912 =91-ln|x+1|+)1(31+x +91ln|x-2|+C ’=)1(31+x +91ln 12+-x x +C ’. (题目可能千变万化,但是万变不离其宗,绝大多数都是用这些方法解决的)。

8有理函数

8有理函数

2u + 1 + u2 − 1 − u2 du =∫ 2 (1 + u)(1 + u )
(1 + u)2 − (1 + u 2 ) 1+ u 1 du = ∫ =∫ du − ∫ du 2 2 (1 + u)(1 + u ) 1+ u 1+ u
1 = arctan u + ln(1 + u 2 ) − ln | 1 + u | + C 2 x Q u = tan 2 x x = + ln | sec | − ln | 1 + tan x | + C . 2 2 2
2B A + 2B = 0, 4 2 1 B + 2C = 0, ⇒ A = , B = − , C = , 5 5 5 A + C = 1, 4 2 1 − x+ 1 ∴ = 5 + 5 25. 2 (1 + 2 x )(1 + x ) 1 + 2 x 1+ x
说明 将有理函数化为部分分式之和后,只出 将有理函数化为部分分式之和后, 现三类情况: 现三类情况:
有理函数和可化为有理函数的 不定积分
一、有理函数的不定积分
二、三角函数有理式的不定积分 三、简单无理函数的不定积分
一、有理函数的积分
有理函数的定义: 有理函数的定义: 两个多项式的商表示的函数称之. 两个多项式的商表示的函数称之.
P ( x ) a0 x n + a1 x n−1 + L + an−1 x + an = m m −1 Q( x ) b0 x + b1 x + L + bm −1 x + bm

2.2.1有理函数和可化为有理函数的不定积分

2.2.1有理函数和可化为有理函数的不定积分

(u 1) u2 4
u
2 sec
(2
2sec tan sec 1)2tan
d
2
d cos
2
t tan 2
2
1
t2 1 t2
1 t2
dt
t
2
2
dt 3
2 arctan t C 2 arctan( 1 tan ) C.
3
3
3
32

dx
2 arctan x2 2x 3 C.
1 1
t2 t2
,
2
2
2
dx
d(
2
arctan
t
)
1
2 t
2
dt
代入原积分式,得到
2t 1 t2 2
R(sin x,cos x)dx
R
1
t
2
,
1
t
2
1
t
2
dt
.
例3

sin
1 sin x x(1 cos
x)
dx.


t
tan
x 2
,

1 sin x dx
sin x(1 cos x)
bx
c
a ( x
b )2 2a
4ac b2 4a 2
,
若记
u
x
b 2a
,
k2
4ac b2 4a 2
,

ax2
bx
c
化为
(i) a (u2 k2 ), 或 (ii) a (u2 k2 ), 或 (iii) a (k 2 u2 ).
因此可分别设
(i) u k tan t; (ii) u k sect; (iii) u k sin t.

有理函数的不定积分

有理函数的不定积分

A Mx + N ; ( k ∈N+ , p2 − 4q < 0) (x − a)k (x2 + p x + q)k
注:
1)若Q( x)含有因子( x − a) k , 则分解式中含有: ] [ Ak A1 A2 + +⋯ + ( A1 , A2 ,⋯ , Ak 为常数); k 2 x − a ( x − a) ( x − a)
x x 2sin 2 cos 2
x 2tan 2
1+ sin x x 例 ∫ 5. dx(令t = tan ) sin x(1+ cos x) 2
=∫
1+
2t
2t 1+t 2
1−t 2 ) 1 2( + 1+t 1+t 2
⋅ 2 2 dt 1+t
1 1 = ∫ t + 2 + dt 2 t
1 1 2 = t + 2t + ln t + C 2 2
1 2x x x 1 = tan + tan + ln tan + C 4 2 2 2 2
例6. 求
dx x 1 2 解法1: 解法 ∫ (令t = tan ) = ∫ ⋅ dt 2 2t 1 + t 1+ sin x 2 1+
dx 例4. 求 ∫ 4 x +1 1 (x2 +1) − (x2 −1) 解: 原式 = ∫ dx 4 2 x +1
1+ 1 1− 1 1 1 x2 x2 = ∫ 2 dx − ∫ 2 dx 2 x +1 2 x +1 2 2

有理式的不定积分与有理化方法二

有理式的不定积分与有理化方法二

补例 求 dx . x3 1

1 1 1 x2 3 ( 2 ). x 1 3 x 1 x x 1
x2 1 2x 4 1 2x 1 3 dx x 2 x 1 2 x 2 x 1dx 2 x 2 x 1dx
1 (2 x 1)dx 3 dx 2 2 2 x x 1 2 x x 1
化简并约去两端的公因子 x后为 2 x 2 3x 1 A12 ( x 1) 2 A22 ( x 1),
即 2 x 1 A12 x A12 A22 ,
A12 2, A22 1.

例2 求

1 A Bx C , 2 2 (1 2 x)(1 x ) 1 2 x 1 x
两端去分母,得 或
1 A(1 x 2 ) ( Bx C)(1 2x),
1 ( A 2B) x 2 ( B 2C) x C A.
比较两端的各同次幂的系数及常数项,有
A 2 B 0, 4 2 1 A , B ,C . 解之得 B 2 C 0 , 5 5 5 A C 1. 4 2 1 x 1 5 5 5. (1 2 x)(1 x 2 ) 1 2 x 1 x2
1 d (x ) 1 d ( x 2 x 1) 3 2 1 2 3 2 2 x2 x 1 (x ) 2 4
1 2x 1 2 ln(x x 1) 3 arctan C. 2 3
dx 1 1 1 2x 1 2 x3 1 3 ln(x 1) 6 ln(x x 1) 3 arctan 3 C.
变分子为
B 2

第4节 有理函数的不定积分

第4节 有理函数的不定积分
其中 M i , N i 都是常数( i = 1,2,L , k ) .
Mx + N ; 特殊地: 特殊地:k = 1, 分解后为 2 x + px + q
说明 将有理函数化为部分分式之和后,只出 将有理函数化为部分分式之和后, 现三类情况: 现三类情况:
A Mx + N (1) 多项式; ( 2) 多项式; ; ( 3) ; n 2 n ( x − a) ( x + px + q ) Mx + N dx , 讨论积分∫ 2 n ( x + px + q )
2x3 + 5x 2x2 + 5 解 原式 = ∫ x4 + 5x2 + 4dx + ∫ x4 + 5x2 + 4dx
1 d( x4 + 5x2 + 5) ( x2 +1) + ( x2 + 4) = ∫ 4 dx +∫ 2 2 2 2 x + 5x + 4 ( x +1)( x + 4)
1 1 1 4 2 + 2 )dx = ln x + 5x + 4 + ∫ ( 2 x +1 x + 4 2
1 = ln x4 + 5x2 + 4 + arctanx + 1arctan x + C. 2 2 2
注意 将有理函数分解为部分分式求积分虽可行, 将有理函数分解为部分分式求积分虽可行, 但不一定简便 ,因此要注意根据被积函数的结构 特点,灵活处理,寻求简便的方法求解. 特点,灵活处理,寻求简便的方法求解. 例6 求积分 解
2u+1+ u2 −1− u2 2u du du = 原式 = 2 2 (1+ u)(1+ u ) (1 + u)(1 + u )

有理函数不定积分的几种计算方法

有理函数不定积分的几种计算方法
常数反演法:对于不定积分的常数项,可以通过将其移到积分变量的指数处来计算。
积分变换法:通过将积分变量替换为其他变量来求解不定积分。
这些方法都可以用来求解有理函数的不定积分,具体应用时可以根据题目的具体情况选择合适的方法。
需要注意的是,有理函数不定积分的计算过程中可能会出现分数幂次,此时可以使用分数幂Байду номын сангаас展开法将其展开为无理数幂次的形式,再求解。
此外,在求解有理函数不定积分时也要注意常数的处理,常数可以看作是积分变量的常数项,在求解过程中要注意将其纳入计算。
在计算有理函数不定积分时,还要注意合理使用各种计算方法,灵活运用,使得计算过程更加简单、高效。
有理函数不定积分的几种计算方法
有理函数不定积分是指对有理函数求不定积分的过程。有理函数不定积分的计算方法有几种,包括:
分式分配法:将分式化为同一分母的两个分数,再分别求出两个分数的不定积分,最后相加得到整个分式的不定积分。
分式化简法:将分式化简为求导公式后求不定积分。
递归法:通过递归的方式求出多项式的不定积分。

第4节有理函数的不定积分

第4节有理函数的不定积分

2
2
2
例2
求积分

1 sin4
x
dx.

令utanx, 2
sinx12uu2 ,
dx12u2du,
1 sin4
x
dx
13u28u34u4u6du
1 8[31 u3u 33uu 33]C 2 4 t1 a2 x n 38t3 a2 xn 8 3ta2 xn 2 1 4 ta2 x n 3C .
解法二
令 utaxn ,则sinx
u, 1u2
dx11u2
du,
1 sin4 xdx
1 u
4 11u2du

1u2


1 u2 u4
du
31u3
1C u
1co3xtcoxtC. 3
解法三
1 sin4
dx x

cs4cxdxcs2x ccs2xc dx
令 t pa x b,其中p为m,n的最小公.倍数
例1
求积分
1
dx 3x

2
.
解 令 t3x2, 则 xt32,dx3t2dt,
原式 13t2tdt 3(t211)t1dt 3(t11 1t)dt
31 t 2 tln1t C
2 33 (x2)2 33 x23ln13x2C.
原式 (1u)2u 1 (u2)du 2u( 11u)u(12 1u 2)u2du
(1(1u)u2)(1(1u2u)2)du
1u 1u2
du

1 du 1 u
arctuan 1ln(1u2)ln |1u|C
2
x ln| secx | ln|1taxn|C.

4.4 几种特殊函数的不定积分

4.4 几种特殊函数的不定积分

当 P( x) 的次数小于 Q( x) 时,
称这有理函数为真分式,否则为假分式。 总可以将一个假分式化成一个多项式与一个真分 式之和的形式
例1 将下列真分式分解为部分分式
4.4几种特殊函数的不 定积分

(1) 用拼凑法
x ( x 1) 1 1 1 2 2 2 ( x 1) x( x 1) x( x 1) x( x 1) 1 x ( x 1) 2 ( x 1) x( x 1) 1 1 1 2 x 1 x ( x 1)
4.4几种特殊函数的不 定积分
(2) 用赋值法,设
x3 x3 A B 2 x 5 x 6 ( x 2)( x 3) x 2 x 3
解得
A 5, B 6
6 5 原式 x2 x 3
4.4几种特殊函数的不 定积分
(3) 设
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
.
2 2t 1 t2 dt sin x , cos x , dx 2 2 2 1 t 1 t 1 t
于是
1 1 du 2 dt 2 2 2 2 1 t 1 t 1 t 1 t 4t
sin x 1 sin x dx
x 设 tan t 2
4.4几种特殊函数的不 定积分
1 t2 cos x 1 t2
2t sin x , 2 1 t
x 2arctan t ,
从而
2 dx dt 2 1 t
称为万能代换
例5 求
x 解 设 tan 2 t ,则
1 sin x dx
4.4几种特殊函数的不 定积分 sin x

几种特殊类型函数地积分

几种特殊类型函数地积分

几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。

数学分析8.3有理函数可化为有理函数的不定积分

数学分析8.3有理函数可化为有理函数的不定积分

第八章 不定积分3 有理函数可化为有理函数的不定积分一、有理函数的不定积分有理函数:由两个多项式函数的商所表示的函数,其一般形式为:R(x)=)(Q )P(x x =n1-m 1m 0n1-n 1n 0βx βx βαx αx α+⋯+++⋯++, 其中n,m 为非负整数,α0,α1,…αn 与β0,β1,…βn 都是常数,且α0β0≠0. 若m>n ,则称它为真分式;若m ≤n ,则称它为假分式.注:1、假分式可化为整式与真分式的和;2、真分式可表示为若干个部分分式之和(称为部分分式分解);3、分解部分分式的一般步骤:第一步:对分母Q(x)在实系数内作标准分解:(分解前先化β0=1) Q(x)=(x-a 1)1λ…(x-a s )sλ(x 2+p 1+q 1)1μ…(x 2+p t +q t )tμ,其中λi ,μj (i=1,2,…,s ;j=1,2,…,t)均为自然数,而且∑=s1i iλ+2∑=t1j j μ=m ;p j 2-4q j <0, j=1,2,…,t.第二步:根据分母各因式分别写出与之相应的部分分式。

对于每个形如(x-a)k 的因式,它所对应的部分分式是:a -x A 1+22a)-(x A +…+k k a)-(x A ;对于每个形如(x 2+px+q)k 的因式,它所对应的部分分式是:q px x C x B 211++++2222q)px (x C x B ++++…+k2kk q)px (x C x B +++.第三步:确定待定系数。

将所有部分分式通分相加,所得分式的分母即为原分母Q(x),分子与原分子P(x)恒等。

根据同幂项系数相等,可得一组关于待定系数的线性方程,方程组的解就是需要确定的系数。

例1:对R(x)=8-x 4x 2x 5x x 10-x 9x 4x 2x 2345234+--+++-作部分分式分解.解:Q(x)=x 5+x 4-5x 3-2x 2+4x-8=(x-2)(x+2)2(x 2-x+1), R(x)=2-x A 0+2x A 1++222)(x A ++1x x C Bx 2+-+,两边乘以Q(x)得:2x 4-x 3+4x 2+9x-10 ≡A 0(x+2)2(x 2-x+1)+A 1(x 2-4)(x 2-x+1)+A 2(x-2)(x 2-x+1)+(Bx+C)(x-2)(x+2)2. 根据等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-10.=8C -2A -4A -4A ,9=4C -8B -3A +4A ,4=2C +4B -3A -3A -A ,-1=C +2B +A +A -3A ,2=B +A +A 2102121021010 解得:A 0=1, A 1=2, A 2=-1, B=-1, C=1. ∴对R(x)作部分分式分解的结果为:R(x)=2-x 1+2x 2+-22)(x 1+-1x x 1-x 2+-.注:对以上待定系数法有时可运用简便方法,如将x=2代入恒等式得: 32-8+16+18-10≡A 0·(2+2)2(4-2+1),∴A 0=1,将x=-2代入恒等式得: 32+8+16-18-10≡A 2(-2-2)(4+2+1),∴A 2=-1,于是化简恒等式得: x 4-3x 3+12+16≡A 1(x 2-4)(x 2-x+1)+(Bx+C)(x-2)(x+2)2,分别令x=0,1,-1可得:⎪⎩⎪⎨⎧+ 8.=C +B -3A 2,=3C 3B +A 4,=2C +A 111 解得:A 1=2, B=-1, C=1.小结:求有理真分式的不定积分可归为以下两种形式的不定积分:(1)∫k a)-(x dx =⎪⎩⎪⎨⎧>+=+ 1.k ;C a)-k)(x -(111,k C ;|a -x |ln 1-k (2)∫k 2q)px (x M Lx +++dx=∫k 22)r (t N Lt ++dt=L ∫k 22)r (t t +dt+N ∫k22)r (t dt+,其中 t=x+2p ,r 2=q-4p 2,N=M-4p L.当k=1时,原式=L ∫22r t t +dt+N ∫22rt dt +=2L ln(t 2+r 2)+ r N arctan r t +C. 当k ≥2时,∫k 22)r (t t +dt =1-k 22)r (t )k 1(21+-+C. I k =∫k 22)r (t dt +=2r 1∫k 22222)r (t t -)r (t ++dt=2r 1I k-1-2r 1∫k 222)r (t t +dt=2r 1I k-1+)1k (2r 12-∫td ⎥⎦⎤⎢⎣⎡+1-k 22)r (t 1=2r 1I k-1+)1k (2r 12-⎥⎦⎤⎢⎣⎡-+1-k 1-k 22I )r (t t=1-k 21-k 222I )1k (2r 3-2k )r (t )1k (2r t -++-.重复计算直至归为计算I 1. 最后换元为x ,就得到最终的结果.例2:求∫2222)2x -(x 1x ++dx. 解:2222)2x -(x 1x ++=2222)2x -(x 1)-x 2(2)x 2(x +++-=22x -x 12++222)2x -(x 1-x 2+∫22x -x dx2+=∫11)-(x 1)-d(x 2+dx=arctan(x-1)+C.∫222)2x -(x 1-x 2+dx=∫2222)2x -(x 2)2x -d(x +++∫221)]1)-[(x 1)-d(x +=-222)2x -(x 1++∫22)1t (dt +. ∫22)1t (dt +=1)2(t t 2++21∫1t dt 2+=1)2(t t 2++21arctant+C=2)2x -2(x 1-x 2++21arctan(x-1)+C. ∴原式= arctan(x-1)-222)2x -(x 1++2)2x -2(x 1-x 2++21arctan(x-1)+C=2)2x -2(x 3-x 2++23arctan(x-1)+C.二、三角函数有理式的不定积分:由u(x),v(x)及常数经过有限次四则运算所得到的函数称为关于u(x),v(x)的有理式,并用R(u(x),v(x))表示.∵sinx=2x tan 12x2tan2+=2t12t +, cosx=2x tan 12xtan -122+=22t 1t -1+, (t=tan 2x ); ∴∫R(sinx,cosx)dx=∫R(2t 12t +,22t 1t -1+)d(2arctant)=∫R(2t 12t +,22t 1t -1+)2t12+d(t). 例3:求∫cosx )sinx (1sinx1++dx.解:∫cosx )sinx (1sinx 1++dx=∫22222t 12)t1t -1(1t 12t t 12t 1+⋅+++++dt =21∫(t+2+t 1)dt=4t 2+t+21ln|t|+C=41tan 22x + tan 2x +21ln|tan 2x|+C.例4:求∫xcos b x sin a dx2222+(ab ≠0).解:∫x cos b x sin a dx 2222+=∫2222b x tan a x sec +dx=∫222b x tan a dtanx +=∫222b t a dt+=ab 1∫1b at bat d 2+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ab 1arctan b at +C=ab 1arctan batanx +C.三、某些无理根式的不定积分: 1、∫R(x,nd cx b ax ++)dx 型不定积分(ad-bc ≠0),只需令t=n dcx bax ++,化为有理函数的不定积分. 例5:求∫2x 2x x1-+dx. 解:令t=2x 2x -+,则x=1t 22t 22-+,原式=∫22t 1)t(t 22+-d 1t 22t 22-+=∫2222221)2)(t (2t 2)]2t(2t -1)1)[4t(t t(t -++--dt=-2∫1)1)(t (t 2t 222-+dt=-2∫(1t 12++1t 12-)dt=-2arctant-∫(1t 1--1t 1+)dt=ln 1t 1t -+-2arctant +C =ln12x 2x 12x 2x --++-+-2arctan 2x 2x -++C=ln 2x 2x 2x 2x --+-++-2arctan2x 2x -++C =ln 44x 2x 22-+-2arctan 2x 2x -++C=ln|2x+24x 2-|-2arctan 2x 2x -++C.例6:求∫2xx 2x)(1dx-++.解:∫2x x 2x)(1dx-++=∫)x 1)(x 2(x)(1dx+-+=∫x2x1x)(112-++dx. 令t=x 2x 1-+,则x=1t 1-2t 22+,dx=22221)(t 1)-2t(2t -1)4t(t ++dt=221)(t t 6+dt. 1+x=1+1t 1-2t 22+=1t 3t 22+,2x )(11+=422t 91)(t +.原式=∫224221)(t t6t 91)t(t +⋅+dt=32∫t -2dt=-t 32+C=x 1x 232+--+C.2、∫R(x,c bx ax 2++)dx 型不定积分(a>0时b 2-4ac ≠0, a<0时b 2-4ac>0),由于ax 2+bx+c=a[(x+a 2b )2+22a 4b -4ac ],若记u=x+a 2b , k 2=22a4b -4ac ,则此二次三项式必属于以下三种情形之一:|a|(u 2±k 2),|a|(k 2-u 2). 因此上述无理根式的不定积分可化为以下三种类型之一:∫R(u,22k u ±)du ,∫R(u,22u k -)du.分别令u=ktant, u=ksect, u=ksint ,则都化为三角有理式的不定积分.例7:求I=∫3x 2x x dx 2--.解法一:令u=x-1=2sec θ, t=tan 2θ, 则t=1x 3-x +. I=∫41)-(x x 1)-d(x 2-=∫4u )1(u du 2-+=∫1θsec )1(2sec θdsec θ2-+=∫)1θ(2secθtan tan θanθs+d θ=∫12sec θsec θ+d θ=∫cos θ21+d θ=∫222t 1t -12t 12+++dt=2∫3t 12+dt=32∫13t 12+⎪⎪⎭⎫ ⎝⎛d ⎪⎪⎭⎫ ⎝⎛3t=32arctan ⎪⎪⎭⎫⎝⎛3t +C=32arctan ⎪⎪⎭⎫ ⎝⎛+33x 3-x +C. 解法二:令3x 2x 2--=x-t, 则x=)1t (23t 2-+, dx=22)1t (23-t 2t --dt. I=∫⎪⎪⎭⎫ ⎝⎛--+-+--t )1t (23t )1t (23t )1t (23-t 2t 2222dt=-2∫3t 12+dt=-32arctan ⎪⎪⎭⎫ ⎝⎛3t +C =32arctan ⎪⎪⎭⎫⎝⎛---3x 3x 2x 2+C.注:一般地,二次三项式ax 2+bx+c 中若a>0,则可令c bx ax 2++=a x ±t ;若c>0,也可令c bx ax 2++=xt ±a ,这类变换称为欧拉变换.习题求下列不定积分:(1)∫1-x x 3dx ;(2)∫127x -x 2-x 2+dx ;(3)∫3x 1dx +;(4)∫4x1dx+;(5)∫221)1)(x -(x dx +; (6)∫22)1x 2(2x 2-x ++dx ;(7)∫x cos 35dx -;(8)∫xsin 2dx 2+;(9)∫x tan 1dx+; (10)∫22x x 1x -+dx ;(11)∫xx dx 2+;(12)∫x1x-1x 12+dx. 解:(1)∫1-x x 3dx=∫1-x 11x 3+-dx=∫(x 2+x+1)dx+∫1-x 1dx=3x 3+2x 2+x+ln|x-1|+C.(2)127x -x 2-x 2+=4)-3)(x -(x 2-x ≡3-x A +4-x B ;∴x-2≡A(x-4)+B(x-3).当x=3时,解得A=-1;当x=4时,解得B=2.∴原式=∫4-x 2dx-∫3-x 1dx=2ln|x-4|-ln|x-3|+C=ln 3-x 4)-(x 2+C.(3)3x11+=1)x 1)(x (x 12+-+≡1x A ++1x -x C Bx 2++;∴A(x 2-x+1)+(Bx+C)(x+1)≡1. 当x=-1时,解得A=31;由A+B=0,得B=-31;由A+C=1,得C=32. ∴原式=31∫1x 1+dx-31∫1x -x 2-x 2+dx=31ln|x+1|-61∫1x -x 3-1-2x 2+dx=31ln|x+1|-61∫1x -x 1)x -d(x 22+++21∫1x -x 12+dx=61ln 1x -x 1)+(x 22++21∫4321-x 12+⎪⎭⎫ ⎝⎛dx =61ln 1x -x 1)+(x 22++31∫121-x 3221-x 32d 2+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=61ln 1x -x 1)+(x 22++31arctan 31-x 2+C. (4)∫4x 1dx +=21∫422x 11x -1x +++dx=21∫42x 11x ++dx -21∫42x 11x +-dx=21∫222x 1x x 11++dx-21∫222x 1x x 11+-dx=21∫2x 1x x 1x d 2+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--21∫2x 1x x 1x d 2-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+ =42arctan x 21-x 2-82∫)2x 1(x x 1x d ++⎪⎭⎫ ⎝⎛++82∫)2x 1(x x 1x d -+⎪⎭⎫ ⎝⎛+=42arctan x 21-x 2-82ln 1x 2x 1x 2x 22+-+++C. (5)由221)1)(x -(x 1+≡1-x A +1x C Bx 2+++221)(x EDx ++得:A(x 2+1)2+(Bx+C)(x-1)(x 2+1)+(Dx+E)(x-1)≡1. 当x=1时,解得A=41. ∴41x 4+21x 2+41+Bx 4-Bx 3+Cx 3+Bx 2-Cx 2-Bx+Cx-C+Dx 2-Dx+Ex-E=(41+B)x 4-(B-C)x 3+(21+B-C+D)x 2-(B-C+D-E)x-(C+E-41)≡1. ∴B=-41,C =-41,D=-21,E=-21. 原式=41∫1-x dx -41∫1x 1x 2++dx-21∫221)(x 1x ++dx =41ln|x-1|-81∫1x 1)d(x 22++-41∫1x dx 2+-41∫2221)(x 1)d(x ++-21∫221)(x dx + =81ln 1x 1)(x 22+--41arctanx+)1x (412+-21∫221)(x dx +又∫221)(x dx +=∫221)t (tan dtant +=∫cos 2tdt=21∫(cos2t+1)dt=41∫cos2td2t +21∫dt =41sin2t+21t+C=)1t (tan 2tant 2++21arctanx+C=)1x (2x 2++21arctanx+C.∴原式=81ln 1x 1)(x 22+--41arctanx+)1x (412+-)1x (4x 2+-41arctanx+C=81ln 1x 1)(x 22+--21arctanx+)1x (4x -12++C.(6)∫22)1x 2(2x 2-x ++dx=41∫222)1x 2(2x )1x 2d(2x ++++-25∫22)1x 2(2x dx ++=-)1x 24(2x 12++-5∫22)]11)[(2x 1)d(2x +++=-)1x 24(2x 12++-45[1x 22x 12x 2++++2arctan(2x+1)]+C =-)1x 22(2x 3x 52+++-25arctan(2x+1)+C.(7)∫x cos 35dx -=∫222t 1)t 3(15t 12+--+dt=21∫1t)2(d2t 2+=21arctan2t+C=21arctan(2tan 2x )+C.(8)方法一:∫x sin 2dx 2+=∫22t 1t 22t 12+++dt=∫1t t dt 2++=32∫13132t 3132t d 2+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+ =32arctan ⎪⎭⎫ ⎝⎛+3132t +C=32arctan ⎪⎪⎪⎪⎭⎫ ⎝⎛+3132x 2tan +C. 方法二:∫x sin 2dx 2+=∫x tan x sec 2x dx sec 222+=∫2x tan 3dtanx 2+dt=66∫1x tan 23tanx23d2+=66arctan(tanx 23)+C.(9)∫x tan 1dx +=∫x tanx sec x sec x dx sec 222+=∫1tanx x tan x tan dtanx23+++ =21(∫1tanx dtanx +-∫1x tan tanxdtanx 2++∫1x tan dtanx 2+)=21(ln|tanx+1|-21∫1x tan )1x d(tan 22+++x) =21(ln 1x tan |1tanx |2+++x)+C=21(ln|cosx+sinx|+x)+C. (10)I=∫22xx 1x -+dx=-∫22xx 1x x 1-+-+dx+∫2xx 11)dx (x -++=-∫2x x 1-+dx+∫2xx 11)dx (x -++=-x 2x x 1-+-∫22xx 12x -x 2-+dx+∫2xx 11)dx (x -++=-x 2xx 1-+-I+21∫2xx 1x -+dx+∫2xx 11)dx (x -++=-x 2x x 1-+-I+23∫2xx 132x -++dx. ∴I=-2x x 12x -++43∫2x x 132x -++dx.又∫2x x 132x -++dx=-21∫2x x 1x 21-+-dx+67∫2x x 1dx -+ =-2x x 1-++67∫251-2x 151-2x d ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2x x 1-++67∫arcsin 51-2x +C. ∴原式=-2x x 12x -+-432x x 1-++87∫arcsin 51-2x +C. (11)令t-x=x x 2+,则x=12t t 2+,dx=d 12t t 2+=21)(2t 1)t(t 2++dt. ∫x x dx 2+=∫12t t t 1)(2t 1)t(t 222+-++dt=∫12t 1)d(2t ++=ln|2t+1|+C=ln|2x x 2++2x+1|+C. (12) ∫x 1x -1x 12+dx=-∫1x11-x 1+d x 1=-∫1t 1-t +dt=-∫1t 1-t 2-dt=-∫1t tdt 2-+∫1t dt 2- =-1t 2-+ln|t+1t 2-|+C=-x x 12-+ln x x 112-++C.。

有理函数和可化为有理函数的不定积分

有理函数和可化为有理函数的不定积分

1 x( x 1)2
x ( x 1) x( x 1)2
1 ( x 1)2
1 x( x 1)
1 ( x 1)2

x ( x 1) x( x 1)
1 ( x 1)2

1 x1

1 x
2019年12月17日6时7分
上一页 下一页 主 页 返回 退出
2019年12月17日6时7分
上一页 下一页 主 页 返回 退出
8
比较同次项系数, 得到线性方程组

A0 A1 B 3 A0 A1 A2
2
2B

C

1
A0 3A1 3A2 4B 2C 4
4A1 3A2 8B 4C 9
4A0 4A1 2A2 8C 10
9
例2 将下列分式分解为部分分式: 解
去分母得 令 x = 0,得 A = 1; 令 x = 1,得 C = 1; 比较两端 x2 的系数,得 A + B = 0,从而 B = 1 .
2019年12月17日6时7分
上一页 下一页 主 页 返回 退出
10
所以
此题也可如下进行(拼凑): 根据分母的形式,将分子凑为
第一步:对分母 Q ( x ) 在实数系内作标准分解:
Q( x) ( x a1 )1 ( x as )s ( x2 p1 x q1 )1
( x2 pt x qt )t
其中 i , j , (i 1, 2, , s; j 1, 2, , t)
5
例如,若 Q(x) 分解因式为
Q( x) ( x a)( x b)3( x2 px q)2 ;

3-3有理式的不定积分与有理化方法

3-3有理式的不定积分与有理化方法


ห้องสมุดไป่ตู้
4 2 1 − x+ 1 = 5 + 5 25. (1 + 2 x)(1 + x 2 ) 1 + 2 x 1+ x
dx 2 d(1+ 2x) 1 d(1+ x ) 1 = ∫ + − 2 5 1+ 2x 5 1+ x2 5 1+ x

2

2 = ln 1+ 2x 5
1 1 2 − ln (1+ x )+ arctan x + C 5 5
变分子为
B 2
(2x + p)+ C − B2p
再分项积分
2C 2x + Bx + C B B dx 3. dx = ∫ 2 2 2 x + px + q x + px + q Bp 2C C− 2x + p + −p B 2x + p B B 2 dx dx + dx = ∫ 2 = ∫ 2 x + px + q 2 x2 + px + q x2 + px + q



而最后一个积分可以用上上一节例6中的递推公式.
1 x 2n −1 + I 递推公式 In+1 = 2 2 2 n 2 n 2n a (x + a ) 2n a 1 x 说明: 说明 已知 I1 = arctan + C 利用递推公式可求得 In . a a 例如, 1 x 3 I3 = 2 2 2 2 + 2 I2 4a (x + a ) 4a 1 x 3 1 x 1 = 2 2 2 2 + 2 ( 2 2 2 + 2 I1 ) 4a (x + a ) 4a 2a x + a 2a 1 x 3 x 3 x = 2 2 2 2 + 4 2 2 + 5 arctan + C a 4a (x + a ) 8a x + a 8a

有理函数的不定积分

有理函数的不定积分

有理函数的不定积分有理函数的不定积分是指函数在变量x上的不定积分。

它关注的是变量x的积分,并不关注变量x的形式。

这种方式的不定积分可以帮助研究者更好地研究函数的特性,以及对不定函数的运算。

一、什么是有理函数的不定积分有理函数的不定积分是指以变量x作为函数的不定积分的形式,即函数f(x)可以表达为以下表达式:∫f(x)dx 。

它指的是x的积分,而不是f(x)本身。

它可以帮助我们分析函数特性,例如曲线的行为,最小和最大特性,以及它在某些范围内的增长和减少。

二、有理函数的不定积分的本质有理函数的不定积分可以用来就指定函数中变量x在指定范围内变化所产生的影响进行研究,它可以让我们理解不定函数的变化规律,以及不定函数的实际运算。

例如,以x为变量的一元函数的不定积分可以用来求得函数在指定范围内的变化。

三、计算有理函数的不定积分计算有理函数的不定积分的方式有以下几种:(1)积分表法将函数的不定积分使用积分表进行计算,积分表是专门为计算不定积分而提供的工具。

(2)函数展开法将函数展开为多项式,然后使用常见解法计算不定积分。

(3)图形法将函数画成图像,按照图像的形状和变化规律结合数值积分公式对函数的不定积分进行计算。

(4)数学软件计算利用计算机软件,输入函数表达式,利用计算机软件计算出函数的不定积分。

四、有理函数的不定积分的应用有理函数的不定积分可以用来分析函数的特性和变化规律,弥补函数的表示欠缺。

它可以用于多变量函数的导数计算,函数最大最小值求解,空间定位,参数估计,统计建模,地震位移分析以及动力学、物理和化学中的数值计算。

总之,有理函数的不定积分是一个重要的数学工具,它可以帮助我们分析函数的特点,以及函数本质变化的规律,并且可以在多个领域中有效地应用,为这些领域的研究提供便利。

有理函数不定积分的几种计算方法

有理函数不定积分的几种计算方法

有理函数不定积分的几种计算方法一、直接法:直接法是指将有理函数展开为多项式的形式,然后利用多项式的不定积分公式逐项求积分。

例如,对于有理函数f(x)=P(x)/Q(x),其中P(x)和Q(x)都是多项式函数,我们可以将f(x)展开为:f(x)=C1⋅x^n+C2⋅x^(n-1)+...+Cn⋅x+Cn+1然后根据多项式的不定积分公式∫x^n dx=x^(n+1)/(n+1),依次对每一项求积分,最后将所有的积分结果相加即可得到原函数的不定积分。

二、部分分式分解法:部分分式分解法适用于当有理函数的分母为两个或多个不可约因式的乘积时。

其基本思想是将有理函数的分母进行因式分解,然后将其分解为若干个分式的和,其中每个分式的分母为一个不可约因式的乘幂。

例如,对于有理函数f(x)=P(x)/Q(x),其中Q(x)=(x-a)^m1*(x-b)^m2*...*(x-z)^mk,a、b、..、z为不同的数,m1、m2、..、mk为正整数,我们可以将f(x)进行部分分式分解,得到:f(x)=A1/(x-a) +A2/(x-a)^2 + ... + B1/(x-b) + B2/(x-b)^2 + ... + Z1/(x-z) +Z2/(x-z)^2 + ...然后对每个不同的分式进行不定积分,最后将所有的积分结果相加即可得到原函数的不定积分。

三、倒代换法:倒代换法适用于当有理函数中含有不可分化的函数、有理函数表达式以及乘法、开方等特殊形式时。

其基本思想是将原有理函数中的自变量用一个新的变量代替,使得代换后的函数能够用常见的函数的积分公式来求积分。

例如,对于有理函数f(x)=(x^2-1)/x,我们可以进行倒代换x=1/t,那么原函数可以表示为:f(t)=(-1-t^2)/(t^3),然后对代换后的函数求积分,再将积分结果转换回原来的自变量即可得到原函数的不定积分。

四、待定系数法:待定系数法适用于当有理函数中含有一些特殊形式的函数时,如指数函数、三角函数等。

第四节有理函数的不定积分

第四节有理函数的不定积分

则 x 2arctan u ,
(万能代换公式)
sin
x
1
2u u2
,
cos
x
1 1
u2 u2
,
dx
1
2 u2
du
R(sin x,cos x)dx
R( 1
2u u
2
,
1 1
u2 u2
)
1
2 u
2
du.
化为了 u 的有理函数的积分.
例1
求积分
5
-
1 3cosx
dx.
例2
求积分
3sinx
2、-1,1 2
,
1 2
;3、 2u 1 u2
2du , 1 u2

4、 ax b ,t 2 b ,2t dt ; 5、初等函数 . aa
二、1、1 ln ( x 2)4 C ; 2 ( x 1)( x 3)3
2、1 ln
x4
1 arctan x C ;
4 (1 x)2 (1 x 2 ) 2

原式
1 (2x 2) 3 2 x2 2x 3
dx
1
2
d( x2 2x 3) x2 2x 3 3
d( x 1) ( x 1)2 ( 2)2
1 ln x2 2x 3 3 arctan x 1 C .
2
2
2
例7 求积分

原式
( x2 2x 2) (2x 2)
例4 求积分
1 a2 cos2 x b2 sin 2 x dx
(a 0,b 0).
例5 求积分
(a
sin
x
1 b
cos
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 2 3 2
例5. 求
( x 2 x 2) (2 x 2) d x 解: 原式 2 2 ( x 2 x 2)
dx d( x 2 x 2) 2 2 2 ( x 1) 1 ( x 2 x 2)
2
2
1 C arctan(x 1) 2 x 2x 2
2
2
例11. 求 解: 为去掉被积函数分母中的根式, 取根指数 2, 3 的最小公倍数 6, 令 x t , 则有 5 1 2 6 t d t 原式 3 2 6 ( t t 1 ) dt 1 t t t
6
6
2 1t 3 1 ln 1 t t t 3 2
2
例3. 求 解: 原式
x 2x 3 2 d( x 1) 1 d( x 2 x 3) 3 2 2 x 2x 3 ( x 1) 2 ( 2 ) 2 3 x 1 1 2 arctan C ln x 2 x 3 2 2 2
1 ( 2 x 2) 3 2
例2. 求 解: 已知 1 1 4 2x 1 2 2 (1 2 x)(1 x ) 5 1 2 x 1 x 1 x 2
2 d(1 2 x) 1 d(1 x ) 1 dx 原式 2 2 5 5 1 2x 5 1 x 1 x 2 1 1 2 ln 1 2 x ln (1 x ) arctan x C 5 5 5
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
A(1 x 2 ) ( Bx C )(1 2 x) 2 (1 2 x)(1 x ) 2 1 A(1 x ) ( Bx C)(1 2x), 1 4 1 取x 得A , 取x 0得1 A C, C , 5 5 2 2 取x 1得1 2 A 3( B C), B
(2) 用赋值法 x3 A B x3 2 x 5 x 6 ( x 2)( x 3) x 2 x 3
A( x 3) B( x 2) ( x 2)( x 3)
x 3 A( x 3) B( x 2)
取x 2得A -5, 取x 3得B 6 5 6 故 原式 x2 x 3
2
1
2t 1t
2
dt
1t
2
1 1 t 2 dt 2 t
1 1 2 t 2t ln 2 2
t C
1 2x x x 1 tan tan ln tan C 4 2 2 2 2
例8. 求
1 d tan x 解: 原式 2 2 2 2 2 2 b a tan x b a tan x ( a ) 1 a arctan( tan x ) C ab b
dx 例6. 求 4 x 1
1 解: 原式 2
注意本题技巧 按常规方法较繁
2 2
( x 1) ( x 1) dx 4 x 1 1 1 1 1 1 1 x2 x2 2 dx 2 dx 2 x 12 2 x 12
1 1 2 2 ( x 1 )2 2 x 1 1 2 x x 1 1 1 x x ln arctan C 1 x x 2 2 2 2 22 2
cos x
2
1
dx
说明: 通常求含 sin x , cos x 及 sin x cos x 的有理式的积分时, 用代换 t tan x 往往更方便.
2
2
1 d x ( a b 0 ) 例9. 求 2 (a sin x b cos x) 解: dx 原式 2 2 (a tan x b) cos x 令 t tan x 1 dt C 2 a ( a t b) ( a t b) cos x C a(a sin x b cos x)
2. 简单无理函数的积分 被积函数为简单根式的有理式 , 可通过根 根式代换化为有理函数的积分. 例如:
n n ax b 令 t R ( x , ax b ) d x ,
n m R ( x , ax b , ax b ) d x ,
a x b R ( x , n c x d ) dx ,
第四节 有理函数的不定积分
直接积分法; 换元积分法; 分部积分法 本节内容: 一、有理函数的积分
二、可化为有理函数的积分举例
一、 有理函数的积分 有理函数: n n1 a0 x a1x an P( x) R( x) Q( x) m n 时, 为假分式; m n时, 为真分式 有理函数
3
cos x dx sin x cos x d x d x 3 2. 原式 3 sin x cos x sin x sin x cos x 1 1 d sin x d tan x C 3 ln tan x 2 2 tan x sin x sin x
有理函数
分解
万能代换 根式代换
三角函数有理式
三角代换
多项式及部分分式之和
简单无理函数
2. 特殊类型的积分按上述方法虽然可以积出, 但不一定简便, 要注意综合使用基本积分法, 简便计算.
思考与练习 如何求下列积分更简便?
3 3 1 dx 1 1 x a 解: 1. 原式 3 ln 3 3 C 3 2 3 2 3 ( a ) ( x ) 6a a x
2x 1 1 4 原式 = 2 5 1 2 x 1 x
5
四种典型部分分式的积分:
1.
2.
3. 4.
A A ln x a C d x xa A A 1 n (n 1) ( x a ) C d x ( x a) n 1 n Mx N 因为分母的导数为2x+p x 2 p x q dx 变分子为 Mp M N 2 Mx N 2 (2 x p) ( x 2 p x q) n dx 再分项积分
cos x
2x 2 cos 2 sin 2 2 x sin 2 cos x 2 x 2 2x 1 tan 2 2x 1 tan 2
1 t 2 1 t
2
2 d t dx 2 1 t
1 sin x d x sin x(1 cos x)

1t
2 2 1 t 2 2t 1 t (1 )
除法
多项式 + 真分式
分解
其中部分分式的形式为 若干部分分式之和 A MxN 2 ( k N , p 4 q 0 ) ; k 2 k ( x a) ( x p x q)
例1. 将下列真分式分解为部分分式 :
解:(1) 用拼凑法 1 1 1 x ( x 1 ) 2 x ( x 1) 2 2 ( x 1) x( x 1) x( x 1) 1 x ( x 1 ) 2 x( x 1) ( x 1) 1 1 1 2 x 1 x ( x 1)
2 2
C
1 1 x dx . 例12. 求 x x 1 x ,则 解: 令 t x
2
2t 原式 (t 1) t 2 d t 2 (t 1) 2 t 1 t 2 2 dt 2 t ln C t 1 t 1
内容小结 1. 可积函数的特殊类型
1 d( x x ) 2 1 (x x) 2
x
d( x 1 ) x来自x二 、可化为有理函数的积分举例
1. 三角函数有理式的积分 设 表示三角函数有理式, 则
R(sin x , cos x) dx
令t

x tan 2 万能代换
t 的有理函数的积分
1 sin x dx . 例7. 求 sin x(1 cos x) x 解: 令 t tan , 则 2 x x cos x 2 tan 2 sin 2 2t 2 2 sin x 2 2 2x 2x x sin 2 cos 2 1 tan 2 1 t
a x b 令t n c xd
令 t p a x b , p 为m , n 的最小公倍数 .
dx . 例10. 求 3 1 x 2 3 解: 令 u x 2 , 则
( u 1 ) 1 3 u 原式 du 3 du 1 u 1 u 1 3 ( u 1 ) du 1 u 1 u 2 u ln 1 u C 3 2
2
dx
说明: 将有理函数分解为部分分式进行积 分虽可行, 但不一定简便, 因此要注意根据被 积函数的结构寻求简便的方法.
例4. 求
2x 5 2 x 5x d x d x 解: I 4 4 2 2 x 5x 4 x 5x 4
2 2 1 d( x 5 x 5) ( x 1) ( x 4) 4 d x 2 x 5 x 2 4 ( x 2 1)( x 2 4) 1 1 x 4 2 ln x 5 x 4 arctan arctan x C 2 2 2
相关文档
最新文档