最新人教版九年级数学上册《随机事件与概率》教学设计(精品教案)
秋九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学
25.1 随机事件与概率随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=m n,明确概率的取值X 围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=m n.难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题.活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值X 围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是?(1)运动员射击一次中靶心与不中靶心;(2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五X 卡片中任抽1X 结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3.活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13. 活动6 课堂小结与作业布置课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=m n. 2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同.作业布置教材第134页~135页 习题第3~6题.。
人教版九年级数学上册《25.1.1随机事件》教学设计(精品课教案)
人教版九年级数学上册《25.1.1随机事件》教学设计【教学目标】1.理解“事件A发生的概率是(在一次试验中有n种等可能的结果,其中事件A 含m种)”,并能求出简单问题的概率;掌握古典概率求法。
2.经历知识的探索,通过思考、探究等活动,发展学生实践能力和合作意识。
3.让学生在已有数学经验的基础上,提高学生学习数学的乐趣,培养学生用数学知识解决实际问题的兴趣。
【教学重难点】教学重点:概率得概念及求概率的公式。
教学难点:利用公式求一些简单的随机事件的概率。
【学情分析】所教初三学生,整体来说学生在课堂上能够积极发言,积极思考,思维活跃,数学能力较强。
大部分学生学习积极性较高,积极参与整个的学习过程,但是仍有部分学生数学基础不好,数学学习习惯较差,数学能力差,有时候难以完成学习目标。
多数学生对数学有很大的积极性,喜欢思考数学问题,数学思维能力较强,仍有一小部分学生由于数学基础不好,不擅于参与课堂,数学能力较差一些。
【教学策略】【教学过程】一、创设情景,复习回顾通过播放视频,引导学生思考:在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?学生观看视频思考问题。
二、目标引领,互助探究1.理解“事件A发生的概率是(在一次试验中有n种等可能的结果,其中事件A 含m种)”,并能求出简单问题的概率。
(1)掌握古典概率求法;培养学生用数学知识解决实际问题的兴趣.理解“事件A发生的概率是(在一次试验中有n种等可能的结果,其中事件A含m种)”,并能求出简单问题的概率。
(2)掌握古典概率求法。
(3)培养学生用数学知识解决实际问题的兴趣。
2.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别。
在看不到球的条件下,随机从袋子中摸出1个球。
(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?三、巩固练习,能力提升1.下列事件是必然事件、不可能事件还是随机事件?2.如果袋子中有5个黑球和x个白球,从袋子中随机摸出一个球,“摸出白球”与“摸出黑球”的可能性相同,则x=3.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()事件。
人教版九年级数学上册25.1.1随机事件与概率(第2课时)一等奖优秀教学设计
人教版义务教育课程教科书九年级上册25.1.1.2随机事件教学设计一、教材分析:(一)教材地位与作用前面所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件。
它既是概率论的基础,又是生活中存在的大量现象的一个反映.因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础.(二)重点、难点分析重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
突破重难点的方法:结合丰富的生活情境,让学生交流、讨论事件发生的不确定性,感悟可能性的大小。
二、目标和目标解析:(一)目标(1)了解必然发生的事件、不可能发生的事件、随机事件的特点。
(2)经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(3)学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。
(二)、目标解析达成目标(1)的标志是:学生经历观察、实践、讨论、体会必然发生的事件、不可能发生的事件、随机事件的特点。
达成目标(2)(3)的标志是:学生能够结合生活实际及相关数学知识对随机事件及其可能性大小进行辨析,充分感受数学的价值。
三、教法、学法教师通过一系列活动和具体例子,让学生通过观察,动手操作,积极思考,充分讨论和交流。
逐步加深对随机事件及其特点的理解和把握。
充分调动、激发学生学习思维的积极性,充分体现学生是学习的主体和教师是学生学习的组织者、参与者和促进者。
在合理选择教法的同时,注重对学生学法的指导。
本节课主要指导学生以下两种学法:1、自主探究:一次函数图像的特征和性质等知识是通过学生的观察、自学、归纳等活动得出的,使学生亲历了知识的形成过程,从而变被动接受为主动探究。
2、合作学习:教学中采用小组合作交流,在相互协作的学习活动中获得最大的成功,促使学生学习方式的改变。
四、教学准备:多媒体课件、导学案、扑克牌、装有各种小球的纸盒。
人教版九年级上册25.1随机事件与概率25.1.1随机事件教学设计
人教版九年级上册25.1随机事件与概率25.1.1随机事件教学设计一、教学目标1.理解随机事件的概念,掌握样本空间、随机事件、必然事件和不可能事件的概念;2.能够运用频率和概率的概念描述随机事件的发生概率;3.能够根据实际问题,利用随机事件的概念和性质来求解问题。
二、教学重难点1.随机事件的概念和性质;2.概率的定义和计算方法;3.随机事件与生活实际问题的联系。
三、教学内容1. 随机事件的概念和性质(1)随机事件的概念;(2)样本空间、随机事件、必然事件和不可能事件的概念;(3)随机事件的性质。
2. 概率的定义和计算方法(1)频率的概念;(2)概率的定义;(3)概率计算的方法;(4)概率的性质。
3. 随机事件与生活实际问题的联系(1)生活中的随机事件;(2)利用随机事件的概念和性质解决实际问题。
四、教学过程1. 导入新知教师通过一个简单的生活场景引入概率的概念,如:学生们玩扑克牌的场景,通过发牌的过程让学生们感受到某种事件的发生概率是随机的,引导学生们思考什么是随机事件。
2. 分享学习成果学生们利用现实生活中的随机事件,如翻硬币、掷骰子、抽签等等,制作实验记录表格,并且在班内分享与讨论各自的发现。
3. 知识巩固教师讲解随机事件的概念和性质,包括样本空间、随机事件、必然事件和不可能事件等,引导学生们理解和记忆这些名词的定义和概念。
4. 练习掌握(1)概率计算方法的小组练习:分成小组,在教师的引导下,利用班级人数为样本空间,作某种人数限制的随机事件,计算这种随机事件发生的概率。
(2)根据实际生活问题解决问题:小组讨论,列出生活中出现的随机事件,并在课堂上给出解决这类问题的相关方法。
五、教学评价1. 师评在学生活动中注意观察各学生的参与度和表现情况,引导学生在小组活动和课堂讨论中发表自己的看法和意见。
2. 自评每个学生在课堂上完成练习,交换作业、互相检查,并在自己的笔记上记录知识点。
六、教学反思本单元主要通过生活场景和实际问题案例贯穿整个教学过程,从而让学生们理解随机事件的概念和性质。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
数学人教版九年级上册25.1 随机事件与概率教学设计
25.1《随机事件与概率》第1课时随机事件教学设计旧街中学胡美英一、知识与技能:1.了解必然事件﹑不可能事件﹑随机事件的特点。
2.理解体会随机事件发生的可能性是有大小的,初步接触概率思想。
二、过程与方法:1.学生经过体验,操作,观察,总结的过程,发展学生从复杂的表象中提炼出本质特征并加以概括的能力。
2.能根据事件分类特点作出判断,提高学生判断分析事物的能力。
三、情感态度与价值观:1.学生通过亲身体验,亲自演示,感受数学就在身边,使学生乐于亲近数学,享受数学,喜欢数学。
2.教学重难点重点:了解必然事件﹑不可能事件﹑随机事件的特点,并能对具体事件作出准确判断。
难点:理解体会随机事件发生的可能性是有大小的,能做出初步判断。
3.教学方法讲解法,启发法,合作探究法,训练法。
四、教学准备课件,教案,骰子五、教学过程●创设情境明确目标“向上抛出的篮球一定会掉下来”,“明天的太阳会从东方升起”,这都是必然会发生的事件;“抛掷一枚骰子,出现数字6朝上”,“明天会下雨”,“ 打开电视正在播广告”这些事件我们事先都无法预测它们会不会发生,难怪人们总会发出“世事难料,天有不测风云.”的感叹,那么这些事件的发生有无规律可循呢?可能性到底有多大呢?小明从盒中任意摸出一球,一定能摸到红球吗?小麦从盒中摸出的球一定是白球吗?小米从盒中摸出的球一定是红球吗?三人每次都能摸到红球吗?●自主学习指向目标自学导读:自主学习课本第125页至第127页的内容,同时结合课本内容,思考下列问题:(1)在一定条件下,有些事件必然会发生,叫____________ (2)在一定条件下, 有些事件必然不会发生,叫____________ (3)确定事件包括__________和___________ (4)在一定条件下,可能发生也可能不发生的事件,称为____________●合作探究达成目标探究点一:事件定义及分类 1.阅读教材第127至128页,回答问题1、问题2中的每一个问题,然后填写下表:【反思小结】判断事件是什么事件,主要看其发生的可能性:一定会发生的事件是必然事件;一定不会发生的事件是不可能事件;也可能发生也可能不发生的事件是随机事件。
人教版数学九年级上册25.1《随机事件》教学设计
人教版数学九年级上册25.1《随机事件》教学设计一. 教材分析人教版数学九年级上册第25.1节《随机事件》是概率统计部分的内容,主要介绍了随机事件的定义及其相关概念。
本节内容是在学生已经学习了概率的基础知识之后进行讲解的,为后续更深入的概率统计学习打下基础。
教材通过具体的例子让学生理解随机事件的含义,并学会用概率来描述随机事件发生的可能性。
二. 学情分析九年级的学生已经具备了一定的数学基础,对概率的概念有一定的了解。
但是,对于随机事件的定义和判断,以及如何用概率来描述随机事件的发生可能性,可能还存在一定的困难。
因此,在教学过程中,需要通过具体的例子和实践活动,帮助学生理解和掌握相关概念。
三. 教学目标1.了解随机事件的定义及其相关概念。
2.学会用概率来描述随机事件发生的可能性。
3.能够运用所学的知识解决一些实际问题。
四. 教学重难点1.随机事件的定义及其与必然事件、不可能事件的区别。
2.如何用概率来描述随机事件发生的可能性。
五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生思考和探索。
2.使用信息技术辅助教学,展示相关的概率统计图表,帮助学生直观地理解概念。
3.学生进行小组讨论和实践操作,增强学生的动手能力和团队协作能力。
六. 教学准备1.准备相关的教学材料和案例,如概率统计图表、实际问题等。
2.准备教学课件,使用多媒体展示相关内容。
3.学生进行小组划分,准备实践操作的材料。
七. 教学过程1.导入(5分钟)通过展示一个抛硬币的动画,引导学生思考硬币落地正面朝上的可能性是多少。
让学生意识到随机事件的存在,并激发学生的学习兴趣。
2.呈现(10分钟)介绍随机事件的定义及其相关概念,如必然事件、不可能事件。
通过具体的例子,让学生理解随机事件的含义。
3.操练(10分钟)让学生进行小组讨论,思考并列举出一些生活中的随机事件,并尝试用概率来描述它们发生的可能性。
教师巡回指导,给予学生一定的帮助。
人教版九年级数学《随机事件与概率》教学设计方案
姓名
工作单位
年级学科
九年级数学
教材版本
人教版
1、教学内容分析
本节课是在学生已经学习了随机事件的概率以及定性判断随机事件发生的可能性大小的基础上,给出了从定量的角度去刻画随机事件发生可能性大小的概念-----概率。从此,对于不确定现象的研究,学生将从定性表示提升到定量刻画,逐步培养随机观念。
问题2掷一枚骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?
2.探索求概率的方法
问题3以上试验有哪些共同特点?
问题4在上面的抽签试验中,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?
师生归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n
二、教学目标
1.目标
(1)了解概率的意义,渗透随机观念。(2)计算一些简单随机事件的概率。
2 .重点概率的意义,判断试验条件的意识
三、学习者特征分析
学生已经理解了随机事件发生的可能性有大有小,概率的意义具有一定的抽象性,学生需要一个较长时间的认识过程,对于抽签和掷骰子等试验,计算相关事件的概率对学生来说是比较容易接受的,但学生容易忽略对概率方法适用范围的判断。
学生思考,讨论
探索,归纳求概率的方法
抛掷一枚质地均匀的骰子向上一面的点数有几种可能的结果?它们的可能性性相等吗?
多媒体演示操作过程,学生讨论结果
巩固概率的意义,进一步理解指定事件发生所包含的试验结果。
五、教学过程
1.了解概率的意义
问题1分别从写有数字1,2,3,4,5的五个纸团中随机抽取哪一个,这个纸团里的数字有几种可能?每个数字被抽到的可能性大小是多少?
2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率
25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大抽取的可能性大小相等,所以我们可以用15小.出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().m=p An事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1;6(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1;2(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1.3出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=2.3巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=37;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=57;(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.3解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P (中奖号码数字相同)=110. 7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
人教版数学九年级上册:25.1随机事件与概率(教案)
4.培养学生在小组合作中交流、探讨概率问题,发展团队协作能力和沟通能力;
5.培养学生通过概率的学习,体会数学在生活中的广泛应用,增强数学学科的兴趣和信心。
三、教学难点与重点
1.教学重点
-随机事件的定义及其分类:重点理解确定性事件、随机事件、必然事件、不可能事件的区别与联系,通过实例进行解释。
-概率的定义及其性质:掌握概率的数值范围(0≤P(A)≤1),理解概率是反映事件发生可能性大小的量,强调概率的计算方法。
-古典概率的计算:重点掌握等可能性原则下的概率计算方法,例如抛硬币、掷骰子等。
-概率在实际问题中的应用:结合实际情境,如彩票、游戏等,学会运用概率知识进行分析和计算。
举例:讲解随机事件时,可通过抛硬币实验,让学生理解硬币正面朝上和反面朝上是随机事件,而硬币落地时必然是正面或反面朝上是必然事件。
其次,注重启发式教学。在讲解过程中,要善于提出问题,引导学生主动思考。比如在讲解互斥事件与对立事件时,可以让学生自己尝试找出它们之间的区别和联系,从而加深理解。
再次,加强小组合作。在小组讨论和实验操作中,鼓励学生互相交流、共同探讨,发挥团队协作的力量。这样既能培养学生的沟通能力,也能帮助他们从不同角度理解和解决问题。
人教版数学九年级上册:25.1随机事件与概率(教案)
一、教学内容
人教版数学九年级上册:25.1随机事件与概率
1.随机事件的定义与分类:确定性事件、随机事件、必然事件、不可能事件;
2.概率的定义:反映随机事件发生可能性大小的数值,记为P(A);
3.概率的性质与计算方法:概率的取值范围、互斥事件与对立事件的概率计算;
(二)新课讲授(用时10分钟)
人教版数学九年级上册25.1随机事件与概率优秀教学案例
二机事件的定义,能够辨别生活中的随机事件,并运用概率知识进行分析和解决。
2.掌握概率的基本计算方法,包括必然事件的概率、不可能事件的概率以及随机事件的概率的求法。
2.问题情境设计:设计具有启发性和引导性的问题,引导学生主动探究随机事件与概率的关系,激发学生的学习欲望。
3.情境互动:教师与学生互动,引导学生积极参与情境创设,提出问题、解决问题,培养学生的自主学习能力和创新思维。
(二)问题导向
1.自主探究:学生自主阅读教材,理解随机事件的定义,掌握概率的基本计算方法。
4.练习巩固,提高应用能力:学生进行习题练习,运用所学的概率知识解决实际问题,巩固所学知识,提高知识应用能力。
5.总结与反思:学生总结本节课的学习内容,反思自己的学习过程,提出问题和建议。
五、教学评价
1.知识与技能:通过课堂提问、作业批改等方式,评价学生对随机事件和概率知识的掌握程度。
2.过程与方法:通过小组合作、讨论交流等教学方法,评价学生的合作意识和解决问题的能力。
3.学会运用概率知识解决实际问题,提高学生的知识应用能力。
(二)过程与方法
1.通过生活实例和问题情境,引导学生感受随机事件的存在,激发学生的学习兴趣和探究欲望。
2.利用小组合作、讨论交流等教学方法,培养学生的合作意识和解决问题的能力。
3.引导学生参与教学活动,鼓励他们提出问题、解决问题,培养学生的自主学习能力和创新思维。
3.交流展示:各小组进行交流展示,分享自己的探究成果,互相评价和学习。
(四)反思与评价
1.自我反思:学生总结本节课的学习内容,反思自己的学习过程,提出问题和建议。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
25.1 随机事件与概率(1) 教案 2022-2023学年人教版数学九年级上册
25.1 随机事件与概率(1)教案1. 教学目标在本课中,学生将会: - 了解随机事件的概念以及相关术语; - 学习如何计算随机事件的概率; - 掌握概率的性质和计算方法; - 运用概率的知识解决实际问题。
2. 教学重点•随机事件的概念和基本术语;•概率的计算方法。
3. 教学难点•概率的性质和计算方法。
4. 教学准备•教师:课件、教案、习题、实物或图片;•学生:笔记本、铅笔。
5. 教学过程5.1 导入新知识•引入课题:“同学们,我们今天要学习的是随机事件和概率。
你们知道什么是随机事件吗?请举一个例子。
”•学生回答。
•教师补充:“随机事件是指在一定条件下可能发生的事件,其结果不能预测。
比如掷一枚硬币,硬币正面朝上和反面朝上都有可能出现,这就是一个随机事件。
”5.2 学习随机事件的概念和术语•教师讲解:“在概率中,随机事件可以用事件的集合来表示。
比如掷一枚硬币,事件A可以表示为得到正面朝上,事件B可以表示为得到反面朝上。
事件的集合用大写字母表示,事件中的元素用小写字母表示。
”•教师示范:“设S为掷一枚硬币的样本空间,S={正面朝上,反面朝上},事件A={正面朝上},事件B={反面朝上}。
”•学生进行思考:如果掷两枚硬币,样本空间和事件集合应该如何表示?•学生回答。
•教师纠正和解释。
5.3 计算随机事件的概率•教师讲解概率的计算方法:“在概率中,事件发生的概率可以通过事件发生的可能性和样本空间进行计算。
概率的计算公式为:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
”•教师示范:“比如掷一枚硬币,事件A={正面朝上},样本空间S={正面朝上,反面朝上},所以事件A发生的概率为P(A) = 1 / 2 = 0.5。
”•学生进行思考:如果掷两枚硬币,事件A发生的概率应该如何计算?•学生回答。
•教师纠正和解释。
5.4 学习概率的性质和计算方法•教师讲解概率的性质和计算方法:“概率具有以下性质:–P(A) >= 0,即概率必须大于等于0;–P(S) = 1,即样本空间中的所有元素的概率之和等于1;–如果事件A和事件B互斥(即事件A和事件B不可能同时发生),则P(A∪B) = P(A) + P(B)。
人教版九年级数学上册25.1.1 随机事件与概率(第1课时)一等奖优秀教学设计
人教版义务教育课程教科书九年级上册
25.1.1 随机事件与概率(1)教学设计
一、教材分析
1、教材地位和作用
从《数学新课程标准》看,本章属于“统计与概率”领域,一方面,概率与统计相对独立,另一方面概率又以统计为依托.本节课所学内容——随机事件是概率论的基础,又是生活中存在的大量现象的一个反映。
因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础。
本节课掌握得如何,直接关系“概率”整个知识体系的坚实性;同时本节课充分体现新课标精神,是培养学生实践能力、自主探索、合作交流的很好的教学载体。
2、目标和目标解析:
(一)目标
(1)了解必然发生的事件、不可能发生的事件、随机事件的概念。
(2)会区分必然事件、不可能事件和随机事件;
(3) 经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(二)目标解析
达成目标的标志是:让学生通过生活情景问题对各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断
3、教学重、难点
教学重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
随机事件的特点
教学难点:难点:必然事件、不可能事件、随机事件的区别, 对生活中的随机事件作出准确判断
突破难点的方法:根据课堂学习的内容特点,本节课主要采用以下教学方法:
通过活动和实例,让学生讨论总结概括出定义,为了检验学生是否理解它的特点,通过一定的例题加以巩固,逐步加深对随机事件及其特点的理解和把握。
二、教学准备:多媒体课件、导学案。
三、教学过程。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
新人教版九年级上《25.1随机事件与概率》教案
人教版义务教育教材◎数学九年级上册25.1 随机事件与概率教学目标1. 了解必然发生的事件、不可能发生的事件、随机事件的特点和概率的意义,通过学习,渗透随机的概念.2. 在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3. 学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.5. 能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点1. 在具体情境中了解概率和概率的意义,知道随机事件的特点.2. 会用列举法求概率.教学难点1. 判断现实生活中哪些事件是随机事件.2. 应用概率解答实际问题.课时安排3课时.1教师备课系统──多媒体教案2教案A第1课时教学内容25.1.1 随机事件.教学目标1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.3.能根据随机事件的特点,辨别哪些事件是随机事件.4.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点随机事件的特点.教学难点判断现实生活中哪些事件是随机事件.教学过程一、导入新课摸球游戏:三个不透明的袋子中分别装有10个白色的乒乓球、5个白色的乒乓球和5个黄色的乒乓球、10个黄色的乒乓球.(挑选3名同学来参加).游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回.然后搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序.次数最多的为第一名.其次为第二名、第三名.学生积极参加游戏,通过操作、观察、归纳,猜测出在第1个袋子中摸出黄色球是不可能的;在第2个袋子中能否摸出黄色球是不确定的;在第3个袋子中摸出黄色球是必然的.通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件.这样不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.二、新课教学问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思人教版义务教育教材◎数学九年级上册考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1 ,事先无法确定.问题2 小伟掷一枚质地均匀的骸子,骸子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骸子,在骸子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?通过简单的推理或试验.可以发现:(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4.也可能不是4,事先无法确定.在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”.问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”.这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.问题3袋子中装有4个黑球、2个白球.这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.3教师备课系统──多媒体教案4 比较表中记录的数字的大小,结果与你事先的判断一致吗?在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.思考:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?活动:(1)请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.教师引导学生充分交流,热烈讨论.随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.(2)李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.教师引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.并有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.三、巩固练习1.做一做.在一次国际乒乓球单打比赛中,我国运动员张怡宁、王楠经过奋力拼搏,一路过关斩将,会师最后决赛,那么,在比赛开始前,你能确定该项比赛的(1)冠军属于中国吗?必然事件(2)冠军属于外国选手吗?不可能事件(3)冠军属于王楠吗?随机事件2.教材第128页练习.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)通常加热到100℃时,水沸腾;(2)篮球队员在罚线上投篮一次,未投中;(3)掷一枚骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)经过有交通信号灯的路口,遇到红灯;(6)射击运动员射击一次,命中靶心.在学生了解和接受了“必然事件”、“不可能事件”、“随机事件”的概念后,结合自己的生活常识与经验,完成题组练习.本题考察学生对必然发生事件、不可能发生事件和随机事件的理解与判断.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题25.1 第1题.人教版义务教育教材◎数学九年级上册5第2课时教学内容25.1.2 概率(1).教学目标1.了解概率的意义,通过学习,渗透随机概念.2.在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.发展学生合作交流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.教学重点在具体情境中了解概率和概率的意义.教学难点概率的意义,判断实验条件的意识.教学过程一、导入新课在同样条件下,某一随机事件可能发生也可能不发生.那么,它发生的可能性究竟有多大?能否用数值刻画可能性的大小呢?下面我们讨论这个问题.二、新课教学1.在问题1中,从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团的数字有几种可能?每个数字被抽到的可能性大小是多少?教师引导学生思考、回答.因为纸团看上去完全一样,又是随机抽取,所以每个数字抽到的可能性大小相等,我们用51表示每一个数字被抽到的可能性大小. 2.在问题2中,掷一枚骸子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?有6种可能,即1,2,3,4,5,6.因为骰子的形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等,我们用61表示每一种点数出现的可能性大小. 归纳:数值51和61刻画了试验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).3.以上的两个实验有什么共同特点?教师备课系统──多媒体教案6教师引导学生思考、交流、讨论.由问题1和问题2,可以发现以上试验有两个共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.4.在上面的抽签实验中,“抽到偶数”和“抽到奇数”这两个事件的概率是多少? 教师指导学生思考、讨论,得出结论:“抽到偶数”这个事件包含抽到 2,4这两种可能结果,在全部5中可能的结果中所占的比为52.于是这个事件的概率:P (抽到偶数)=52.同理可得:P (抽到偶数)=53. 5.归纳总结.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P (A )=n m . 在P (A )=n m 中,由m 和n 的含义,可知0≤m ≤n ,进而有0≤nm ≤1,因此 0≤P (A )≤1.特别地,当A 为必然事件时,P (A )=1;当A 为不可能事件时,P (A )=0.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0(如下图).6.实例探究.例1 掷一枚质地均匀的股子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.本例是求简单随机事件概率的练习,教师可让学生以小组为单位讨论,引导学生注意本题的实验是否满足条件.解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P (点数为2)=61. (2)点数为奇数有3种可能,即点数为1,3,5,因此 P (点数为奇数)=63=21.人教版义务教育教材◎数学九年级上册7(3)点数大于2且小于5有2种可能,即点数为3,4,因此 P (点数大于2且小于5)=62=31. 三、巩固练习教材第133页练习第2题.四、课堂小结简述本节学习内容,深化学生的理解.五、布置作业习题25.1 第3题.第3课时教学内容25.1.2 概率(2).教学目标1.运用实例进一步理解通过逻辑分析用列举法求概率的方法,并进一步体会它在生活中的应用.2. 通过对概率的学习,体会数学与人类生活的密切 联系,激发学生学习数学的热情.教学重点会用列举法求概率.教学难点应用概率解答实际问题.教学过程一、导入新课我们上节课学习了概率的概念和意义,知道了求概率的方法.今天我们运用实例进一步理解概率的意义和求概率的方法,并体会它在生活中的应用.二、新课教学例2 下图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:教师备课系统──多媒体教案8(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.教师引导学生回顾求概率的方法,仔细审题,然后分析、解答.问题中可能出现的结果有7种,即指针可能指向7个扇形中的任何一个.因为这7个扇形大小相同,转动的转盘又是自由停止,所以指针指向每个扇形的可能性相等.解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1,红2,红3,因此P (A )=73. (2)指针指向红色或黄色(记为事件B )的结果有5种,即红1,红2,红3,黄1,黄2,因此P (B )=75. (1)指针不指向红色(记为事件C )的结果有4种,即绿1,绿2,黄1,黄2,因此P (C )=74. 把例2中的(1)(3)两问及答案联系起来,你有什么发现?(1)(3)两个答案加起来刚好等于1,“指向红色”和“不指向红色”两个事件包含了所有可能的实验结果,相互又不含有公共的实验结果,所以,它们的概率和为1,这两个事件称为对立事件.例3 右图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A 区域(画线部分),A 区域外的部分记为B 区域.数字3表示在A 区域有3颗地雷.下一步应该点击A 区域还是B 区域?分析:下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.解题过程参见教材第133页.三、巩固练习教材第133页练习第3题.四、归纳总结通过本节的学习,你有哪些收获?通过回顾反思,让学生对所学知识能力有进一步的认识和提高,通过学生归纳或教师释疑,让学生加强理解,强化知识.人教版义务教育教材◎数学九年级上册五、布置作业习题25.1 第2、4、5题.9教师备课系统──多媒体教案10教案B第1课时教学内容25.1.1 随机事件.教学目标1.理解必然事件、不可能事件、随机事件的概念.2.会根据经验判断一个简单事件是属于必然事件、不可能事件、还是随机事件.3.经历体验、操作、观察、归纳、总结的过程,发展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力.4.从事件的实际情形出发,会分析事件发生的可能性.能根据随机事件的特点,辨别哪些事件是随机事件,并在解决实际问题的过程中体会与他人的合作.5.感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验.教学重点随机事件概念的形成.教学难点判断现实生活中哪些事件是随机事件.教学过程一、导入新课“天有不测风云”这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.二、新课教学1.观察实例哪些是必然发生的,哪些是不可能发生的.(1)木柴燃烧,产生热量.(2)明天,地球还会转动.(3)煮熟的鸭子,飞了.(4)在0℃下,雪会融化.从日常生活的经验和常识入手,调动学生的积极性,让学生在感性上接受“必然事件”、“不可能事件”的概念.2.探索分析,解决问题.问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团,请人教版义务教育教材◎数学九年级上册思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1 ,事先无法确定.问题2 小伟掷一枚质地均匀的骸子,骸子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骸子,在骸子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?通过简单的推理或试验.可以发现:(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次N子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4.也可能不是4,事先无法确定.3.归纳总结,得出概念.在一定条件下,有些事件必然会发生,这样的事件称为必然事件.相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,可能发生也可能不发生的事件,称为随机事件.这两次试验较简单,学生不假思索即可回答,但我们要的并不只是学生的答案,更注重的是学生是否经历了猜测、检验等过程.因此,在这个环节,一定要留给学生猜测、检验的时间,让学生经历这一数学活动过程,同时也为后面的学习做好铺垫.三、巩固练习教材第128页练习.本题考察学生对必然发生事件、不可能发生事件和随机事件的理解与判断.学生可独立完成,然后小组内订正.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题25.1 第1题.11教师备课系统──多媒体教案12第2课时教学内容25.1.2 概率(1).教学目标1.了解概率的意义,通过学习,渗透随机概念.2.在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.发展学生合作交流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.教学重点在具体情境中了解概率和概率的意义.教学难点概率的意义,判断实验条件的意识.教学过程一、导入新课复习上节课学习的内容,导入新课的教学.1.什么是随机事件?2.在同样条件下,某一随机事件可能发生也可能不发生.那么,它发生的可能性究竟有多大?能否用数值刻画可能性的大小呢?二、新课教学1.概率.(1)在问题1中,从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团的数字有几种可能?每个数字被抽到的可能性大小是多少?(2)在问题2中,掷一枚骸子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?教师引导学生思考、回答,小组内讨论,必要时教师可进行指导.归纳总结:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).2.概率的计算.(1)问题1和问题2中的两个实验有什么共同特点?(2)在上面的抽签实验中,“抽到偶数”和“抽到奇数”这两个事件的概率是多少?教师指导学生思考、讨论,得出结论:(1)每一次试验中,可能出现的结果只有有限个;每一次试验中,各种结果出现人教版义务教育教材◎数学九年级上册13的可能性相等.(2)“抽到偶数”这个事件包含抽到 2,4这两种可能结果,在全部5中可能的结果中所占的比为52.于是这个事件的概率:P (抽到偶数)=52.同理可得:P (抽到偶数)=53. 3.归纳总结.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P (A )=n m . 在P (A )=n m 中,由m 和n 的含义,可知0≤m ≤n ,进而有0≤nm ≤1,因此 0≤P (A )≤1.特别地,当A 为必然事件时,P (A )=1;当A 为不可能事件时,P (A )=0.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.三、巩固练习教材第133页练习第2题.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题25.1 第3题.第3课时教学内容25.1.2 概率(2).教学目标1.运用实例进一步理解通过逻辑分析用列举法求概率的方法,并进一步体会它在生活中的应用.2.通过对概率的学习,体会数学与人类生活的密切 联系,激发学生学习数学的热教师备课系统──多媒体教案14情.教学重点会用列举法求概率.教学难点应用概率解答实际问题.教学过程一、导入新课1.什么是概率?2.怎样求概率?二、新课教学例1 掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.本例是求简单随机事件概率的练习,教师可让学生以小组为单位讨论,引导学生注意本题的实验是否满足条件.例2 下图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、 绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.教师引导学生回忆计算概率的方法,学生回顾并仔细审题分析例2,先独立完成后集体交流,推荐代表板演.通过例2,让学生明白几何图形中也有关于概率的问题,并让学生独立完成此题的解答,让学生获得成功的体验.师:你能举出这种转盘在生活中的应用吗?你能由此设计一些胜负公平的游戏吗? 生:思考、讨论,举应用实例.例3 教师引导学生观看计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.人教版义务教育教材◎数学九年级上册小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?师:你能应用所学概率知识使你赢得机会更大吗?学生说一说自己是怎样玩这个游戏的,作简单经验介绍,通过学生感兴趣的电脑游戏应用概率知识,调动学生积极性,体会生活中处处离不开数学.师:(点拨)第二步应该怎样走取决于踩在哪一部分遇到地雷的概率小,只要分别计算在两区域的任一方格内踩中地雷的概率并加以比较就可以了.生:分组合作探究,讨论第二步怎样走的方案,各小组展示讨论结果及理论依据.师:(点拨)你会玩“扫雷”游戏了吗?怎样玩赢的机会更大?生:根据讨论结果总结归纳.三、巩固练习教材第133页练习第3题.四、归纳总结通过本节的学习,你有哪些收获?五、布置作业习题25.1 第4、5题.15。
九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教
第一课时随机事件的概率一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;a ”;(4)“若a为实数,则0(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5X标签中任取一X,得到4号签”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示 5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。
人教版初中数学课标版九年级上册第二十五章25.1 随机事件与概率教学设计
《随机事件》教学设计教材分析:本节内容实在学习概率之前做的知识铺垫,重点强调随机事件。
在实验中创设情境,让学生正确认识必然事件、不可能事件、随机事件。
通过试验结果认识随机事件发生的可能性是有大小规律的,通过改变实验条件,强调在一定条件下的随机事件,及改变规则体验试验的公平性。
为进一步学习概率奠定基础。
学情分析:进入初三的学生,其逻辑思维能力,综合分析能力已经有了一定的根基,对于文字的驾驭也有良好的基础,语言表达较清晰,通过丰富课堂教学手段,在活动中体验事件发生的结果,他们能够快乐接受,准确记忆,这将为进一步学习事件发生的概率做好知识储备。
教学目标:知识与技能:通过分析正确认识必然事件、不可能事件、随机事件,并理解随机事件的概念。
过程与方法:能根据随机事件的特点辨别哪些事件是随机事件。
情感与态度:感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验。
在体验中去感受数学,喜欢数学。
教学重点:掌握随机事件的特点,会判断现实生活中的随机事件。
教学难点:判断现实生活中哪些事件是随机事件;探究随机事件可能性的变化规律。
教学方法:采用情景导学——合作探究——随机进入的教学策略学法指导:采用小组合作,展示交流,教师点评的方法。
教学准备:课件、纸盒、小球、骰子教学过程:嘿嘿,这次非让你死不可!老臣自有妙计!大臣是如何让自己免于死刑,获得释放的呢?小伟掷一枚质地均匀的骰(tou)子,骰子的六个面上分别刻有1 到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?1.探究2.思考(1)某人的体温是100 ℃;(2)地球上抛向空中的球会下落;(3)太阳从西边下山;(4)经过城市中某一有交通信号灯的路口,遇到红灯;(5)今天出门捡到100元钱;(6)掷一枚骰子,向上的一面是6点;(7)人离开水可以正常生活100天;(8)篮球队员在罚线上投篮一次,未投中.必然会发生的事件有_______________;不可能发生的事件有_______________;可能发生也可能不发生的事件有______________.灯片 4学生概括总结概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1 随机事件与概率
25.1.1 随机事件
教学目标
1.理解随机事件、必然事件和不可能事件的概念.
2.理解随机事件发生的可能性大小,分析随机事件与其他事件之间的关系.
3.由简单的试验或推理,对事件发生的可能性进行判断,从而培养学生逻辑推理能力.
教学重点
随机事件的特征.
教学难点
判断现实生活中哪些事件是随机事件.
教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景明确目标
“向上抛出的篮球一定会掉下来”,“明天的太阳会从东方升起”,这都是必然会发生的事件;“抛掷一枚骰子,出现数字
6朝上”,“明天会下雨”,“打开电视正在播广告”这些事件我们事先都无法预测它们会不会发生,难怪人们总会发出“世事难料,天有不测风云”的感叹,那么这些事件的发生有无规律可循呢?可能性到底有多大呢?
二、自主学习指向目标
活动:1.自读教材第127页.
2.学习至此:请完成学生用书“课前预习”部分.
三、合作探究达成目标
探究点一事件定义及分类
活动一:出示教材第127页问题1、问题2中的每一个问题,师生共同分析每个事件发生的可能性.
【展示点评】判断事件是什么事件,主要看其发生的可能性:一定会发生的事件是必然事件;一定不会发生的事件是不可能事件;有可能发生也有可能不发生的事件是随机事件.
【小组讨论】如何理解以上三个概念中“在一定条件下”
【反思小结】“在一定条件下”是指试验在相同的条件下进行.
【针对训练】见学生用书“当堂练习”知识点一
探究点二随机事件发生的可能性的大小
2.出示教材第128页问题3,思考下列问题:
(1)请和他人合作完成问题3的实验,填写教材中的表25-1,比较表中记录的数字的大小,结果与你原先的判断一样吗?
(2)问题3中的“摸出白球”与“摸出黑球”是什么事件?它们发生的可能性相同吗?你认为哪个事件发生的可能性较大?
【展示点评】由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.
【小组讨论】随机事件发生的可能性一样吗?
【反思小结】一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.
【针对训练】见学生用书“当堂练习”知识点二
四、总结梳理内化目标
1.本节课一个重要数学思想是分类思想,例如事件可以分成:________、________、________.
2.在随机事件中,发生的可能性是有大小的.
五、达标检测反思目标
1.早晨的太阳从东方升起是__必然__事件;掷一枚均匀的正方体骰子,点数为6是__随机__事件;今天是星期四,明天是星期日是__不可能__事件.
2.在一个装有8个红球,2个白球的袋子里,摸到__红球(答案不唯一)__是可能发生的;摸到__红球或白球__是必然的;摸到__黄球(答案不唯一)__是不可能发生的.
3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶6次,若他们各射击一次,有一人中靶,则( D )
A.中靶的人一定是甲,不中靶的人一定是乙B.中靶的人一定是乙,不中靶的人一定是甲
C.甲中靶的可能性要小于乙中靶的可能性D.甲中靶的可能性要大于乙中靶的可能性
六、布置作业巩固目标
1.上交作业:教材第134页习题25.1第1题.
2.课后作业:见学生用书的“课后作业”部分.
教学反思。