第五章 并发性:互斥和同步

合集下载

智慧树 计算机操作系统 网课章节测试答案

智慧树 计算机操作系统 网课章节测试答案

计算机操作系统在线学堂•得分:8••评语:••名称计算机操作系统•成绩类型百分制•截止时间2022-07-22 23:59•题目数5•总分数10说明第二次见面课课后测验提示:选择题选项顺序为随机排列•第1部分•总题数:51【单选题】 (2分)关于同步和互斥关系,以下叙述错误的是:A.并发进程推进过程中由于共享互斥资源可能形成互斥关系B.互斥表现的是一种竞争关系,互斥进程不能同时使用互斥资源C.并发进程推进过程中围绕共享资源可能形成合作关系D.同步表现的是进程之间的合作关系,同步进程可以同时使用临界资源2【单选题】 (2分)关于临界区和临界资源的说法,错误的是A.并发进程体中关于同一临界资源的临界区称为相关临界区B.临界区指的是进程体中使用临界资源的代码段C.一个进程体中只能有一块临界区D.临界资源指的是并发进程并发推进过程中需要共享但是不能同时共享的资源3【多选题】 (2分)PV操作可用来实现A.并发进程间的互斥B.进程间少量信息的传递C.并发进程间的同步D.进程间大量信息的传递4【判断题】 (2分)为了让用户进程互斥地进入临界区,可以把整个临界区实现成不可中断的过程,即让用户具有屏蔽所有中断的能力。

每当用户程序进入临界区的时候,屏蔽所有中断。

当出了临界区的时候,再开放所有中断A.对B.错5【判断题】 (2分)互斥是指不但不能同时用,谁先用谁后用也有严格约束A.错B.对总分8第1部分12345Copyright © 2003-现在Zhihuishu. All rights reserved.沪ICP备10007183号-5沪公网备31010402003974号电子营业执照计算机操作系统在线学堂•得分:10••评语:••名称计算机操作系统•成绩类型百分制•截止时间2022-07-22 23:59•题目数5•总分数10说明第一次见面课课后测验提示:选择题选项顺序为随机排列•第1部分•总题数:51【单选题】 (2分)以下关于进程的表述错误的是A.进程具有独立性,进程是分配资源和参与CPU调度的独立单位B.进程具有动态性,操作系统为了描述和管理程序动态的执行过程才引入了“进程”C.进程是一个程序的一次动态执行过程,进程由要执行的代码和要处理的数据组成D.进程具有并发性和异步性,每个进程的推进速度都是不可预知的2【单选题】 (2分)下列哪一种进程状态转换是不可能的A.阻塞态→运行态B.就绪态→运行态C.运行态→就绪态D.运行态→阻塞态3【判断题】 (2分)进程是按异步方式运行的,即,它的推进速度是不可预知的A.对B.错4【判断题】 (2分)一个进程由程序代码、数据集和进程控制块TCB组成。

操作系统 概念,问答

操作系统 概念,问答

第一章操作系统概述1操作系统:是管理系统资源,控制程序执行,改善人机界面,提供各种服务,并合理组织计算机工作流程和为用户方便而有效地使用计算机提供良好运行环境的最基本的系统软件。

2操作系统功能:a处理器管理b存储管理c设备管理d文件管理e网络与通信管理f用户接口3操作系统的主要特性:并发性,共享性,异步性并发性:两个或两个以上的活动或时间在同一时间间隔内发生,其实质是对有限的物理资源强行复用,供多用户共享以提高效率并行性:两个或两个以上的活动或事件在同一时刻发生并发性和并行性的关系:并行活动一定是并发的,反之并发活动未必是并行的,并行性是并发性的特例,而并发性是并行性的扩展4多道程序设计基本思想多道程序设计是指允许多个作业同时进入计算机系统的主存并启动交替计算的方法,也就是说,主存中多个相互独立的程序处于开始和结束之间,从宏观上看是并行的,多道程序设计都处于运行过程中,但尚未运行结束;从微观上看是串行的,各道程序轮流占用cpu交替地执行,引入多道程序设计技术,可以提高cpu的利用率,充分发挥计算机硬部件的并行性5内核及其属性内核是一组程序模块,作为可信软件来提供支持进程并发执行的基本功能和基本操作,通常驻留在内核空间,运行于核心态,具有访问硬件设备和所有主存空间的权限,是仅有的能够执行特权指令的程序内核的功能:资源抽象,资源分配,资源共享内核的属性:a内核是由中断驱动的b内核是不可抢占的c内核部分程序在屏蔽中断状态下执行d内核可使用特权指令6API,库函数和系统调用第二章处理器管理1特权指令和非特权指令,访管指令,原语特权指令:指仅供内核程序使用的指令,如启动设备,设置时钟,控制中断屏蔽位,清空主存,建立存储键,加载psw等敏感性操作内核能够执行全部指令,应用程序只能使用非特权指令访管指令包括操作码和访管参数两部分,前者表示此指令时访管指令,后者则表示具体的访管要求原语是在管态下执行,完成系统特定功能的过程,其特点是执行过程中不允许被中断。

互斥与同步

互斥与同步

互斥与同步互斥与同步是计算机科学中两个重要的概念,它们是多线程编程中必须掌握的知识点。

本文将介绍互斥与同步的概念、原理、实现方式以及应用场景。

一、互斥1.1 概念互斥是指在多线程并发执行时,对于共享资源的访问需要保证线程之间的排他性,即在任意时刻只有一个线程能够访问共享资源。

1.2 原理互斥的实现基于锁机制,即在访问共享资源前获取锁,在使用完毕后释放锁。

这样可以保证在任意时刻只有一个线程能够获得锁,从而避免了多个线程同时访问共享资源造成的数据竞争问题。

1.3 实现方式常见的实现方式包括:(1)临界区:将对共享资源的访问限制在一个代码块内,在进入临界区前获取锁,在离开临界区后释放锁。

(2)信号量:通过计数器来控制同时进入临界区的线程数量,当计数器为0时表示当前没有进入临界区的线程,当计数器大于0时表示当前有进入临界区的线程。

(3)互斥量:是一种特殊的信号量,只能被一个线程获取,其他线程需要等待该线程释放互斥量后才能获取。

1.4 应用场景互斥常用于对共享资源的访问控制,例如多个线程同时访问同一个文件、数据库或网络连接等。

二、同步2.1 概念同步是指在多线程并发执行时,保证线程之间的协调和顺序性,使得程序按照预期的顺序执行。

2.2 原理同步的实现基于信号机制,即在某个条件满足时通知其他线程进行操作。

例如,在生产者-消费者模型中,当生产者生产了数据后需要通知消费者进行消费。

2.3 实现方式常见的实现方式包括:(1)条件变量:通过等待和唤醒操作来实现对某个条件的等待和通知。

(2)事件对象:是一种特殊的条件变量,可以通过事件对象来设置和清除事件状态,并在事件状态发生改变时通知其他线程进行操作。

(3)屏障:是一种同步原语,在多个线程到达屏障点时会被阻塞,直到所有线程都到达后才会继续执行。

2.4 应用场景同步常用于对线程之间的协调和顺序性控制,例如在多个线程之间进行任务分配、消息传递等。

三、互斥与同步的关系互斥和同步是两个相互依存的概念。

操作系统 题库 判断题

操作系统 题库 判断题

第一章计算机系统概论1.操作系统类似于计算机硬件和人类用户之间的接口。

答案:T。

2.处理器的一个主要功能是与内存交换数据。

答案:T。

3.一般用户对系统程序无障碍,对应用程序有障碍。

答案:F4.数据寄存器一般是通用的,但可能局限于像浮点数运算这样的特定任务。

T5.程序状态字(PSW)通常包含条件码等状态信息。

条件码是由程序员为操作结果设置的位。

答案:F6.一个单一的指令需要的处理称为执行周期。

答案:F(称为指令周期)7.取到的指令通常被存放在指令寄存器中(IR)。

答案:T8.中断是系统模块暂停处理器正常处理过程所采用的一种机制。

答案:T9.为适应中断产生的情况,必须在指令周期中增加一个额外的读取阶段。

F10.在处理器控制控制例行的中断处理器之前,需要储存的最少信息有程序状态字和当前指令地址。

答案:F11.多中断的一个处理方法是在处理一个中断时禁止再发生中断。

答案:T12.多道程序设计允许处理器使用长时间等待的中断处理的空闲时间。

答案:T13.在两级存取优先级中,命中率定义为对较慢存储器的访问次数与对所有存储器访问次数的比值。

答案:F14.高速缓冲存储器的开发利用了局部性原理,即在处理器与主存储器之间提供一个容量小而快速的存储器。

T15.在高速缓冲存储器的设计中,块大小与高速缓冲存储器和主存储器间的数据交换单位有关。

答案:T16.可编程I/O的一个主要问题是,处理器必须等到I/O模块准备完毕,并且在等待的过程中必须反复不停的检查I/O模块的状态。

答案:T第二章操作系统概述1.操作系统是控制应用程序执行的程序,并充当应用程序和计算机硬件之间的接口。

(对)2.在多用户系统中,操作系统管理那些用作重要目的的资源。

(对)3.操作系统通常在它的专用O/S处理器上并行应用程序。

(错)4.操作系统演化的动力之一就是基本硬件技术的进步。

(对)5. 早期的计算机中没有操作系统,用户直接与硬件打交道。

(对)6 在一个批处理系统,“control is passed to a job”意味着处理器正在取指令和执行用户程序。

详解进程同步与互斥机制

详解进程同步与互斥机制

详解进程同步与互斥机制⽬录⼀、什么是进程同步⼆、什么是进程互斥三、常见的进程同步与互斥机制⼀、什么是进程同步在多道批处理系统中,多个进程是可以并发执⾏的,但由于系统的资源有限,进程的执⾏不是⼀贯到底的,⽽是⾛⾛停停,以不可预知的速度向前推进,这就是进程的异步性。

那么,进程的异步性会带来什么问题呢?举个例⼦,如果有 A、B 两个进程分别负责读和写数据的操作,这两个线程是相互合作、相互依赖的。

那么写数据应该发⽣在读数据之前。

⽽实际上,由于异步性的存在,可能会发⽣先读后写的情况,⽽此时由于缓冲区还没有被写⼊数据,读进程 A 没有数据可读,因此读进程 A 被阻塞。

进程同步(synchronization)就是⽤来解决这个问题的。

从上⾯的例⼦我们能看出,⼀个进程的执⾏可能影响到另⼀个进程的执⾏,所谓进程同步就是指协调这些完成某个共同任务的并发线程,在某些位置上指定线程的先后执⾏次序、传递信号或消息。

再举个⽣活中的进程同步的例⼦,你想要喝热⽔,于是你打了⼀壶⽔开始烧,在这壶⽔烧开之前,你只能⼀直等着,⽔烧开之后⽔壶⾃然会发⽣响声提醒你来喝⽔,于是你就可以喝⽔了。

就是说⽔烧开这个事情必须发⽣在你喝⽔之前。

注意不要把进程同步和进程调度搞混了:进程调度是为了最⼤程度的利⽤ CPU 资源,选⽤合适的算法调度就绪队列中的进程。

进程同步是为了协调⼀些进程以完成某个任务,⽐如读和写,你肯定先写后读,不能先读后写吧,这就是进程同步做的事情了,指定这些进程的先后执⾏次序使得某个任务能够顺利完成。

⼆、什么是进程互斥同样的,也是因为进程的并发性,并发执⾏的线程不可避免地需要共享⼀些系统资源,⽐如内存、打印机、摄像头等。

举个例⼦:我们去学校打印店打印论⽂,你按下了 WPS 的 “打印” 选项,于是打印机开始⼯作。

你的论⽂打印到⼀半时,另⼀位同学按下了 Word 的 “打印” 按钮,开始打印他⾃⼰的论⽂。

想象⼀下如果两个进程可以随意的、并发的共享打印机资源,会发⽣什么情况?显然,两个进程并发运⾏,导致打印机设备交替的收到 WPS 和 Word 两个进程发来的打印请求,结果两篇论⽂的内容混杂在⼀起了。

同步与互斥实现方法

同步与互斥实现方法

同步与互斥实现方法一、同步与互斥的概念同步是指多个线程或进程之间按照一定的顺序执行,以达到其中一种约定或要求。

在同步的过程中,程序等待其他线程或进程完成一些操作后再继续执行。

互斥是指多个线程或进程之间访问共享资源时,要互相排斥,避免冲突和竞争。

互斥的目的是保证多个线程或进程对共享资源的操作是互斥的,即同一时刻只有一个线程或进程可以访问共享资源。

二、实现同步的方法1. 互斥锁(Mutex)互斥锁是一种最常用的同步机制,通过对一些代码块或函数的访问加上互斥锁的操作,可以保证只有一个线程能够执行该代码块或函数。

当一些线程获得互斥锁时,其他线程在获得该锁之前会被阻塞。

2. 信号量(Semaphore)信号量是一种更为复杂的同步机制,用于实现一些资源的访问控制。

一个信号量有一个整型值和两个原子操作:P和V。

P操作(也称为wait或down)会使信号量的值减1,如果值小于0,当前线程或进程就会被阻塞。

V操作(也称为signal或up)会使信号量的值加1,如果值小于等于0,就会唤醒等待的线程或进程。

信号量可以用于解决生产者-消费者问题、读者-写者问题等并发编程中的资源竞争问题。

3. 条件变量(Condition Variable)条件变量是一种同步机制,用于在多个线程或进程之间同步共享资源的状态。

条件变量对应一个条件,并提供了等待和通知的机制。

等待操作可以使一个线程或进程等待一些条件成立,直到其他线程或进程通知条件变量,使得等待的线程或进程被唤醒。

通知操作可以使等待中的线程或进程被唤醒,继续执行。

条件变量常和互斥锁一起使用,互斥锁用于保护共享资源,条件变量用于同步共享资源的状态。

三、实现互斥的方法1. Peterson算法Peterson算法是一种经典的软件方法,用于解决两个进程之间的互斥访问问题。

该算法使用了两个布尔型变量flag和turn,通过交替使用这两个变量,实现了两个进程之间的互斥。

2. 印章(Semaphores)信号量也可以用于实现互斥操作。

操作系统 题库 判断题

操作系统 题库 判断题

第一章计算机系统概论1.操作系统类似于计算机硬件和人类用户之间的接口。

答案:T。

2.处理器的一个主要功能是与内存交换数据。

答案:T。

3.一般用户对系统程序无障碍,对应用程序有障碍。

答案:F4.数据寄存器一般是通用的,但可能局限于像浮点数运算这样的特定任务。

T5.程序状态字(PSW)通常包含条件码等状态信息。

条件码是由程序员为操作结果设置的位。

答案:F6.一个单一的指令需要的处理称为执行周期。

答案:F(称为指令周期)7.取到的指令通常被存放在指令寄存器中(IR)。

答案:T8.中断是系统模块暂停处理器正常处理过程所采用的一种机制。

答案:T9.为适应中断产生的情况,必须在指令周期中增加一个额外的读取阶段。

F10.在处理器控制控制例行的中断处理器之前,需要储存的最少信息有程序状态字和当前指令地址。

答案:F11.多中断的一个处理方法是在处理一个中断时禁止再发生中断。

答案:T12.多道程序设计允许处理器使用长时间等待的中断处理的空闲时间。

答案:T13.在两级存取优先级中,命中率定义为对较慢存储器的访问次数与对所有存储器访问次数的比值。

答案:F14.高速缓冲存储器的开发利用了局部性原理,即在处理器与主存储器之间提供一个容量小而快速的存储器。

T15.在高速缓冲存储器的设计中,块大小与高速缓冲存储器和主存储器间的数据交换单位有关。

答案:T16.可编程I/O的一个主要问题是,处理器必须等到I/O模块准备完毕,并且在等待的过程中必须反复不停的检查I/O模块的状态。

答案:T第二章操作系统概述1.操作系统是控制应用程序执行的程序,并充当应用程序和计算机硬件之间的接口。

(对)2.在多用户系统中,操作系统管理那些用作重要目的的资源。

(对)3.操作系统通常在它的专用O/S处理器上并行应用程序。

(错)4.操作系统演化的动力之一就是基本硬件技术的进步。

(对)5. 早期的计算机中没有操作系统,用户直接与硬件打交道。

(对)6 在一个批处理系统,“control is passed to a job”意味着处理器正在取指令和执行用户程序。

中山大学《操作系统原理》

中山大学《操作系统原理》

中山大学信息科学与技术学院计算机科学系 中山大学信息科学与技术学院计算机科学系课程教学大纲《操作系统原理》课程教学大纲课程名称:操作系统原理类别:专业必修课授课对象:本科生总学时:72学时适用专业:计算机科学与技术/信息安全开课学期:第五学期编写人员:丘静玉审核人员:印鉴编写日期:2006年4月一、教学目的操作系统是配置在计算机硬件上的第一层软件,其他所有的系统软件和应用软件都必须依赖于操作系统的支持。

《操作系统原理》是计算机学科各相关专业的重要的必修课程之一,它在计算机知识结构中有着极其重要的地位和作用,可为学生较全面地建立起关于计算机系统的概念。

学生通过学习本课程应该达到以下目标:1.掌握操作系统的基本概念、原理、技术和方法,深入了解操作系统在计算机系统中的地位及作用,以及它与硬件和其它软件之间的关系,进而了解操作系统控制整个计算机系统执行的全过程,具有操作系统的整体概念。

2.能用程序设计语言编写、调试和运行操作系统的主要算法和功能模块。

3.了解一个以上主流操作系统的实现技术,熟练掌握应用。

4.获取知识的同时,掌握学科的基本规律及研究方法,初步培养自我拓展知识和运用知识的能力。

总之,本课程要求学生全面地了解和掌握操作系统的目标、作用和模型,从资源管理的角度领会操作系统的功能和实现过程,使学生系统科学地受到分析问题和解决问题的训练,提高运用理论知识解决实际问题的能力,鼓励并初步培养学生的研究精神和能力。

二、教材选择1. 教学内容概述《操作系统原理》讲述操作系统的基本概念、原理和方法,其课程内容应包含《中国计算机科学与技术学科课程2002》(简称CCC2002)里列举的知识体系:CS-OS1至8。

从资源管理的角度来说,课程内容主要围绕操作系统的几个基本功能展开:(1) 操作系统概述:介绍操作系统的基本概念、目标、功能、发展历史和类型、操作系统的主要成就以及现代操作系统的特点等。

(2) 处理器管理:在进程概念的基础上讨论进程描述、进程控制、进程同步和互斥、死锁、饿死、线程、处理器调度等问题。

线程与并发控制:处理多线程的同步和互斥

线程与并发控制:处理多线程的同步和互斥

线程与并发控制:处理多线程的同步和互斥线程和并发控制是计算机科学领域中非常重要的概念,特别是在多核处理器和分布式系统中。

线程是程序执行的基本单位,而并发控制则是指有效地管理多个线程之间的同步和互斥,以保证数据的一致性和程序的正确执行。

在多线程编程中,线程之间的并发控制是一个关键问题。

当多个线程同时访问共享资源时,如果没有适当的同步和互斥机制,就会出现数据竞争和不一致的问题。

因此,了解如何处理线程的同步和互斥是非常重要的。

同步指的是多个线程之间按照一定的顺序执行,以保证数据的一致性。

常见的同步机制包括互斥锁、条件变量、信号量等。

互斥锁是最基本的同步机制,它可以确保同时只有一个线程能访问共享资源,从而避免数据竞争。

条件变量可以在多个线程之间传递信号,以协调它们的执行流程。

信号量可以用来控制并发访问资源的数量,避免资源的过度竞争。

除了同步机制外,还有一些高级的并发控制技术,如读写锁、原子操作、事务内存等。

读写锁可以提高多线程读取共享资源的效率,因为读取操作不涉及数据一致性问题,可以同时进行。

原子操作可以确保某些操作的原子性,即要么全部执行成功,要么全部不执行。

事务内存是一种基于硬件的并发控制技术,可以提供更高的性能和可靠性。

在处理多线程的同步和互斥时,需要遵循一些基本原则。

首先,避免死锁,即当多个线程互相等待对方释放资源时,就会陷入死锁状态。

其次,避免资源泄漏,即确保每个线程在完成任务后释放所有的资源。

最后,避免竞争条件,即多个线程对共享资源的访问顺序可能影响程序的正确执行,需要避免这种情况的发生。

为了提高多线程程序的性能和可靠性,在设计和实现上需要注意一些细节。

首先,尽量减少共享资源的数量,因为共享资源越多,就越容易引发数据竞争和并发控制问题。

其次,合理设计线程的通信和同步机制,避免不必要的等待和阻塞。

最后,尽量避免线程间频繁地切换和竞争,提高程序的并发执行效率。

总的来说,线程和并发控制是计算机科学中非常重要的概念,能够有效地提高程序的性能和可靠性。

操作系统第五章的中英文对照

操作系统第五章的中英文对照

第五章08软一裴晓禹并发性:互斥和同步Concurrency: Mutual Exclusion and Synchronization1并发性的概述:1:操作系统设计中的核心问题是关于进程和线程的管理:The central themes of operating system design are all concerned with themanagement of processes and threads:1:多道程序设计技术。

Multiprogramming2:多处理技术。

Multiprocessing3:分布式处理技术。

Distributed processing2:操作系统的基础是并发性。

Fundamental to operating system design is concurrency3:支持并发进程的基本需求是加强互斥的能力。

The Basic requirement for support of concurrency is the ability to enforce mutual exclusion2:并发出现在以下三种不同的上下文中:1:多个应用程序2:结构化应用程序3:操作系统结构3:并发性原理1:交替。

2:重叠。

3:多道程序设计系统的一个基本特性:进程的相对执行速度不可预测。

4:并发性带来的困难1:全局资源的共享充满了危险。

2:粗奥做系统很难对分配资源进行最优化的管理。

3:定位程序设计错误时非常困难的。

5:一个简单的例子:另一个简单的例子:6:竞争条件:1:定义:竞争条件发生在当多个进程或者线程在读写数据时,其最终的结果依赖于多个进程指令的执行顺序。

2:紊乱状况的解决方案:控制资源共享的通道。

7:进程的交互:进程之间相互之间知道对方是否存在的程度的三种情况: 1:进程之间相互不知道对方。

2:进程简介知道对方。

3:进程直接知道对方。

竞争合作合作8:进程中资源的争用——互斥1:临界区:critical sections部分程序进入共享区域1:一次只允许有一个程序在临界区中。

操作系统精髓与设计原理-第5章 并发性_互斥和同步

操作系统精髓与设计原理-第5章 并发性_互斥和同步

第五章并发性:互斥和同步复习题:5.1列出与并发相关的四种设计问题答:进程间的交互,共享资源之间的竞争,多个进程的同步问题,对进程的处理器时间分配问题5.2列出并发的三种上下文答:多个应用程序,结构化应用程序,操作系统结构5.3执行并发进程的最基本要求是什么?答:加强互斥的能力5.4列出进程间的三种互相知道的程度,并简单地给出各自的定义。

答:进程间互相不知道对方:这是一些独立的进程,他们不会一起工作。

进程间间接知道对方:这些进程并不需要知道对方的进程ID号,但他们共享访问某些对象,如一个I/O缓冲区。

进程间直接知道对方:这些进程可以通过进程ID号互相通信,用于合作完成某些活动。

5.5竞争进程和合作进程进程间有什么区别。

答:竞争进程需要同时访问相同的资源,像磁盘,文件或打印机。

合作进程要么共享访问一个共有的资源,像一个内存访问区,要么就与其他进程相互通信,在一些应用程序或活动上进行合作。

5.6列出与竞争进程相关的三种控制问题,并简单地给出各自的定义。

答:互斥:竞争进程仅可以访问一个临界资源(一次仅有一个进程可以访问临界资源),并发机制必须满足一次只有一个进程可以访问临界资源这个规则。

死锁:如果竞争进程需要唯一的访问多于一个资源,并且当一个进程控制着一个进程,且在等待另一个进程,死锁可能发生。

饥饿:一组进程的一个可能会无限期地拒绝进入到一个需要资源,因为其他成员组成垄断这个资源。

5.7列出对互斥的要求。

答:1.必须强制实施互斥:在具有关于相同资源或共享对象的临界区的所有进程中,一次只允许一个进程进入临界区。

2.一个在临界区停止的进程必须不干涉其他进程。

3.绝不允许出现一个需要访问临界区的进程被无限延迟的情况,即不会饿死或饥饿。

4.当没有进程在临界区中时,任何需要进入临界区的进程必须能够立即进入。

5.对相关进程的速度和处理器的数目没有任何要求和限制。

6.一个进程驻留在临界区中的时间是有限的。

5.8在信号量上可以执行什么操作。

并发性:互斥和同步

并发性:互斥和同步

此两种进程必须遵循一定的规则
利用信号量实现进程同步-2
• 为了实现进程同步,需采用同步信号量。 • 设置一个同步信号量full,它代表的资源是缓冲器满,它 的初值为0。这个资源是Print进程所拥有,Print进程可以 申请该资源,对它施加P操作,如条件满足Print进程可从 Buffer中取数。而Print进程的合作进程Compute对full信号 量施加V操作,即它可释放该资源。当Compute进程将数 据存入Buffer后,即可释放该资源供Print进程再使用。 • 设置另一个同步信号量empty,它代表的资源是缓冲器空, 它的初值为1 。缓冲器空这个资源是进程Compute所拥有, 它可以申请该资源,对它施加Print操作。而它的合作进程 Print对empty信号量施加V操作。
5.5 读者/写者问题
• 一个数据集(如文件)如果被几个并行进程所共享,有些 一个数据集(如文件)如果被几个并行进程所共享, 进程只要求读数据集内容,它称读者, 进程只要求读数据集内容,它称读者,而另一些进程则要 求修改数据集内容,它称写者, 求修改数据集内容,它称写者,几个读者可以同时读些数 据集,而不需要互斥,但一个写者不能和其它进程( 据集,而不需要互斥,但一个写者不能和其它进程(不管 是写者或读者)同时访问些数据集,它们之间必须互斥。 是写者或读者)同时访问些数据集,它们之间必须互斥。 • 设置互斥信号量 信号量wmutex 表示写者间、读者和写者间互 表示写者间、 设置互斥信号量 读者和写者主要程序如下 程序如下: 斥,读者和写者主要程序如下: reader: writer: 第一个读者到时P( P(wmutex) 第一个读者到时 (wmutex) ) ( ) Read Text Write Text 最后一个读者离开时 一个读者离开时V( V(wmutex) 最后一个读者离开时 (wmutex) ) (

第3章进程并发控制作业题参考答案

第3章进程并发控制作业题参考答案

第3章进程并发控制作业题参考答案作业题题1进程间的互斥与同步表示了各进程间的______。

A.竞争与协作B. 相互独立与相互制约C .临界区调度原则 D. 动态性与并发性题2 若执行信号量S操作的进程数为3,信号量S初值为2,当前值为-1,表示有____个等待相关临界资源的进程。

A 0B 1C 2D 3题 3 由于并发进程执行的随机性,一个进程对另一个进程的影响是不可预测的,甚至造成结果的不正确,_________。

A.造成不正确的因素与时间有关B. 造成不正确的因素只与进程占用的处理机有关C.造成不正确的因素与执行速度无关D. 造成不正确的因素只与外界的影响有关题4 下列机构中不能用于进程间数据通信的是____________。

A.消息B.共享存储区C. 信号量D.管道题5 下面有关管程的说法,不正确的是________A.管程是种进程同步机制B. 管程是一种编程语言成分C. 管程是一种系统调用D.管程比信号量更容易保证并行编程的正确性题6 什么是临界资源和临界区?一个进程进人临界区的调度原则是什么?题7 进程之间存在哪几种制约关系?各是什么原因引起的?下列活动分别属于哪种制约关系?(1)图书馆借书。

属于互斥关系。

(2)两队举行篮球赛。

既有互斥关系,又有同步关系。

(3)流水生产线。

属于同步关系。

(4)乐队演奏。

属于同步关系。

(5)购买火车票。

属于互斥关系。

题8 在生产者消费者问题中,如果将两个P操作即生产者程序流程中的P(buffers)和P(mutex)互换位置.结果会如何? 形成死锁。

题9 试用P、V操作描述下列理发师和顾客之间的同步问题。

某个理发师当没有顾客时,去睡觉;当有顾客来理发,若理发师正在睡觉时,这个顾客会叫醒他,理发师给该顾客理发,理发期间若还有顾客到达则等待理发师依次理发,直到没有顾客到来,理发师又去睡觉。

wakeup,wait,mutex:semaphore;wakeup:=0;wait:=0;mutex:=1;cobegin顾客进程:{p(mutex);rc=rc+1;if(rc==1) v(wakeup);else p(wait);v(mutex);理发;}理发师进程:{P(wakeup);While(rc!=0){理发;p(mutex);rc=rc-1;if(rc!=0)v(wait);v(mutex);}}coend自测题一、选择题1.并发性是指若干事件在______发生。

操作系统第五版所有课后复习题中文答案

操作系统第五版所有课后复习题中文答案

第1章计算机系统概述1.1 列出并简要地定义计算机的四个主要组成部分。

主存储器,存储数据和程序;算术逻辑单元,能处理二进制数据;控制单元,解读存储器中的指令并且使他们得到执行;输入/输出设备,由控制单元管理。

1.2 定义处理器寄存器的两种主要类别。

用户可见寄存器:优先使用这些寄存器,可以使机器语言或者汇编语言的程序员减少对主存储器的访问次数。

对高级语言而言,由优化编译器负责决定把哪些变量应该分配给主存储器。

一些高级语言,如C语言,允许程序言建议编译器把哪些变量保存在寄存器中。

控制和状态寄存器:用以控制处理器的操作,且主要被具有特权的操作系统例程使用,以控制程序的执行。

1.3 一般而言,一条机器指令能指定的四种不同操作是什么?处理器-寄存器:数据可以从处理器传送到存储器,或者从存储器传送到处理器。

处理器-I/O:通过处理器和I/O模块间的数据传送,数据可以输出到外部设备,或者从外部设备输入数据。

数据处理:处理器可以执行很多关于数据的算术操作或逻辑操作。

控制:某些指令可以改变执行顺序。

1.4 什么是中断?中断:其他模块(I/O,存储器)中断处理器正常处理过程的机制。

1.5 多中断的处理方式是什么?处理多中断有两种方法。

第一种方法是当正在处理一个中断时,禁止再发生中断。

第二种方法是定义中断优先级,允许高优先级的中断打断低优先级的中断处理器的运行。

1.6 内存层次的各个元素间的特征是什么?存储器的三个重要特性是:价格,容量和访问时间。

1.7 什么是高速缓冲存储器?高速缓冲存储器是比主存小而快的存储器,用以协调主存跟处理器,作为最近储存地址的缓冲区。

1.8 列出并简要地定义I/O操作的三种技术。

可编程I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令(用以执行这个指令);在进一步的动作之前,处理器处于繁忙的等待中,直到该操作已经完成。

中断驱动I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令,并继续执行后续指令,直到后者完成,它将被I/O模块中断。

操作系统的并发控制

操作系统的并发控制

操作系统的并发控制操作系统是计算机系统中管理和控制计算机硬件与软件资源的核心程序。

在多任务操作系统中,多个进程同时运行,需要操作系统提供并发控制机制来确保进程间的正常协调和资源的合理分配。

本文将介绍操作系统的并发控制的概念、分类以及常见的并发控制机制。

一、概述并发是指多个进程同时执行的状态,是多任务操作系统中的基本特性。

并发控制是指对并发操作进行管理和协调的一种机制,目的是保证资源的正确使用和进程的正常运行。

二、分类根据并发控制机制的不同,可以将并发控制分为两大类,即互斥操作和同步操作。

1. 互斥操作互斥操作是指对能被多个进程访问的共享资源进行互斥访问,以防止并发操作导致数据不一致或冲突。

常见的互斥操作机制有互斥锁、信号量和读写锁等。

- 互斥锁:通过设置一个标志位来控制共享资源的访问,一次只允许一个进程对资源进行操作,其他进程需要等待当前进程释放锁才能继续执行。

- 信号量:通过一个计数器来控制对共享资源的访问,根据计数器的值来判断资源是否可用,通过对计数器的增减来实现进程间的同步和互斥。

- 读写锁:在读操作和写操作之间进行协调,允许多个进程同时进行读操作,但是只允许一个进程进行写操作。

2. 同步操作同步操作是指对进程的执行进行协调与同步,保证进程按照一定的顺序执行。

常见的同步操作机制有信号量、条件变量和屏障等。

- 条件变量:用于在进程间传递信息和进行同步操作,进程可以等待某个特定条件满足后再继续执行。

- 屏障:用于同步多个并发进程的执行,在所有进程到达屏障之前进行等待,待所有进程都到达后才能一起继续执行。

三、实现方式实现并发控制可以采用硬件支持和软件支持的方式。

1. 硬件支持硬件支持是指通过硬件设备来实现并发控制。

常见的硬件支持有自旋锁和多处理器系统。

- 自旋锁:使用忙等待的方式,即进程一直占用处理器不进行调度,直到获取到锁才能继续执行。

适用于锁竞争较小的情况。

- 多处理器系统:在多处理器系统中,每个处理器都可以独立执行不同的任务,从而提高系统的并发性能。

(完整版)操作系统知识点

(完整版)操作系统知识点

第一章操作系统引论操作系统功能:1.资源管理:协调、管理计算机的软、硬件资源,提高其利用率。

2.用户角度:为用户供应使用计算机的环境和效劳。

操作系统特色: 1.并发性:指两个或多个事件在同一时间间隔内发生。

2.共享性:资源可供内存中多个并发执行的进度(线程 )共同使用3.虚假性:是指经过某种技术把一个物理实体变为假设干个逻辑上的对应物在操作系统中,虚假的实现主若是经过分时使用的方法。

4.异步性:进度是以人们不能预知的速度向前推进,此即进度的异步性客户 / 效劳器模式的优点:1.提高了系统的灵便性和可扩大性2.提高了 OS的可靠性3.可运行于分布式系统中微内核的根本功能:进度管理、进度间通信、储藏器管理、初级I/O功能。

第二章进度程序和进度差异:程序是静止的,进度是动向的,进度包括程序和程序办理的对象程序次序执行:次序性,封闭性,可再现性程序并发执行:中断性,无封闭性,可再现性进度: 1.进度是可并发执行的程序的一次执行过程;2.是系统进行资源分配和调换的一个独立的根本单位和实体;3.是一个动向的看法。

进度的特色: 1.动向性:进度是程序的一次执行过程拥有生命期;它能够由系统创立并独立地执行,直至完成而被撤消2.并发性;3.独立性;4.异步性;进度的根本状态:1.执行状态;2.就绪状态;3.拥塞状态;进度控制块 PCB:记录和描述进度的动向特色,描述进度的执行情况和状态变化。

是进度存在的唯一表记。

进度运行状态: 1.系统态〔核心态,管态〕拥有较高的接见权,可接见核心模块。

2.用户态〔目态〕限制接见权进度间的拘束关系:1.互斥关系进度之间由于竞争使用共享资源而产生的相互拘束的关系。

这种因共享资源而产生的限制关系称为进度的互斥。

—间接相互制约关系2.同步关系并发履行进度之间经过在执行时序上的某种限制而到达相互合作的这种拘束关系称为进度的同步—直接相互限制关系临界资源:凡是以互斥方式使用的共享资源都称为临界资源。

第五章互斥与同步-PPT课件

第五章互斥与同步-PPT课件
二元信号量的取值仅为“0”或“1”,主要用作互斥 变量; 一般信号量初值为物理资源的总数,用于进程间的 同步问题。
5.4 信号量
3.整型信号量 整型信号量是通过定义一个整型变量,如s ,和 两个标准的原子操作wait(s)和 signal(s)来 对s进行减1和增1操作,以实现对临界资源的 访问控制。这两个原子操作习惯上分别被称为 P操作和V操作。 两种实现方式:忙等待与阻塞等待。
Pi:
while(true) {… while(flag[j]);/*执行空语句等待*/ flag[i]=true; 执行csi /* 进程Pi的临界区*/ flag[i]=false;/*释放临界资源*/ …}
5.3 互斥
(2)用一个turn来指示哪个进程应该进入临界 区,turn=i表示pi可以进入临界区。
(2)硬件指令的方法
TS(Test-and Set)指令 bool founction TS (bool flag) { TS =flag; flag=true;/*关闭临界区*/ }
2.互斥的硬件解决方法
例:用TS硬件指令方法实现互斥



while(true) {while(TS(lock)); 执行csi lock=false; ……}
Pi: While(true) {… while(turn!=i); /*执行空语句等待*/ 执行csi; /*临界区*/ turn=j; /* (j!=i) 释放临界资源*/ … } 强制在两个进程之间轮换,不能满足空闲让进的原则!
(3)Dekker的软件解决方法(一种正确的方法) 初始化:flag[0]=flag[1]=false;turn可以为0或1; Pi: while(true) {flag[i]=true;/*标识想进入临界区的进程*/ while(flag[j]) {if(turn==j) { flag[i]=false; while(turn==j); flag[i]=true; }} 执行csi /*执行临界区代码*/ turn=j;flag[i]=false; …… }

同步和互斥的概念

同步和互斥的概念

同步和互斥的概念
同步和互斥是并发编程中的两个重要概念。

同步:同步是指在多个线程或进程之间协调其执行顺序的过程。

当多个线程或进程需要共享资源或相互依赖时,需要进行同步操作,以确保它们按照预定的顺序执行,避免出现竞态条件(Race Condition)或其他并发问题。

常见的同步机制有互斥量、信号量、条件变量等。

互斥:互斥是指一次只允许一个线程或进程访问共享资源的机制。

当某个线程或进程获得了对共享资源的访问权限时,其他线程或进程必须等待其释放资源后才能访问。

互斥机制通过加锁和解锁来控制资源的访问。

常见的互斥机制有互斥量(Mutex)和临界区(Critical Section)。

在并发编程中,同步和互斥通常是配合使用的。

通过同步机制确保线程或进程的执行顺序,避免数据竞争和并发问题的发生;而互斥机制则用于保护共享资源,确保同时只有一个线程或进程能够访问共享资源,避免多个线程或进程同时修改资源导致的数据一致性问题。

进程间的互斥和同步问题(一)

进程间的互斥和同步问题(一)

进程间的互斥和同步问题(一)进程间的互斥和同步问题在多进程编程中,进程间的互斥和同步问题是一个重要的概念。

下面列举了相关的问题,并对其进行解释说明。

1. 互斥问题•定义:互斥指的是多个进程或线程对同一共享资源的访问是否有序的问题。

•问题描述:当多个进程同时竞争一个共享资源时,可能会出现资源竞争和数据不一致的情况。

•解决方案:使用互斥锁(Mutex)来实现对共享资源的互斥访问,保证每一次只有一个进程或线程能够访问该资源。

2. 同步问题•定义:同步指的是多个进程或线程之间如何进行有序的合作和协调。

•问题描述:当多个进程之间存在依赖关系,需要按照特定的顺序执行时,可能会出现数据不一致或死锁的情况。

•解决方案:使用同步机制(如信号量、条件变量等)来实现进程间的同步,保证各个进程按照特定的顺序执行。

3. 死锁问题•定义:死锁是指在多进程或多线程系统中,彼此因争夺资源而陷入无限等待的状态。

•问题描述:当多个进程互相持有对方所需的资源并等待对方释放资源时,可能会导致死锁的发生。

•解决方案:通过合理的资源分配和调度策略,避免进程之间出现相互依赖的情况,从而避免死锁的发生。

4. 临界区问题•定义:临界区是指在多进程或多线程环境中访问共享资源的一段代码区域。

•问题描述:当多个进程同时访问临界区时,可能会出现数据不一致或竞态条件的问题。

•解决方案:使用互斥锁或其他同步机制来保护临界区的访问,只有获得锁的进程才能够执行临界区的代码,其他进程必须等待。

5. 进程间通信问题•定义:进程间通信(IPC,Inter-Process Communication)指的是实现不同进程之间的信息交换和数据传输。

•问题描述:当多个进程之间需要共享数据或进行协作时,需要有效的通信机制来实现数据的传递。

•解决方案:使用各种IPC机制(如管道、消息队列、共享内存等)来实现进程间的通信,保证数据的正确传输和共享。

综上所述,进程间的互斥和同步问题是多进程编程中不可忽视的重要问题,通过合理的设计和使用适当的同步机制,可以有效解决这些问题,提高程序的并发性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阻塞在信 号量lock

对于同步,“一类资源”配一信号量s,初
始值为可用资源数量

如:s表示缓冲区的空闲状态;

问题描述

有一组生产者生产数据,放在缓冲区(同步)

设一信号量empty, 初始值为缓冲区大小

有一组消费者取数据,每次取一项(同步)

设一信号量full,初始值为0

任何时候只有一个主体可以访问缓冲区(互斥)

消费者 consumer: while (true) { semWait(full); semWait(s); w = b[out]; semSignal(s); semSignal(empty); out++; /* consume item w */ }
e=e-1 s=s-1 n=n+1
n=n-1 e=e+1

并发是指两个或多个事件在同一时间间隔内发生。在多道 程序环境下, 并发性是指在一段时间内宏观上有多个程序 在同时运行,但在单处理机系统中,每一时刻却仅能有一
道程序执行,故微观上这些程序只能是分时地交替执行。

并行是指两个或者多个事件在同一时刻发生。
多处理机系统中,可以并发执行的程序便可被分配到多个

传递消息时,进程间未共享资源,则不需互斥,
但可能会死锁或饥饿,通信成为临界资源

必须强制实施互斥:一次只允许一个进程进入临界区 一个在非临界区停止的进程不能干涉其他进程 有限等待:决不允许出现需要访问临界区的进程被无限
延迟的情况,即不会死锁或饥饿

有空让进: 临界区空闲时,请求进程可进 对相关进程的执行速度和处理器的数目没有任何要求和 限制 一个进程驻留在临界区中的时间必须是有限的
处理机上,实现并行执行。

并发的相关问题

进程间的通信
资源共享与竞争
多个进程活动的同步

分配给进程的处理器时间

并发出现的环境

多应用程序:共享处理器时间
结构化应用程序:设计成一组并发进程
操作系统结构:上一点用于操作系统

临界资源:一次仅允许一个进程使用的共享资源; 如:打印机、变量、数组


方法

软件方法:由并发执行的进程担负这个责任
机器指令:减少开销,但不通用
在操作系统或程序设计语言中提供支持

中断禁用

单处理器中并发进程不能重叠只能交替 一个进程一直运行到调用系统服务或被中断 保证互斥只需保证一个进程不被中断

缺点

长时间关中断效率明显降低
不能用于多处理器结构中
实现互斥和同步

竞争关系

进程间相互不知对方存在 竞争:CPU、设备、内存等 影响:进程的结果与其他进程无关;会影响状态; 可能引发的问题:互斥

死锁 饥饿

互斥产生的额外控制问题

死锁

进程之间互有对方必需的资源而不释放 例:R1 P2,R2 P1

饥饿

两个进程轮流访问临界资源,其他进程被无限地拒 绝访问资源,处于饥饿状态

用于同步:s>=0

s>=0, 可用资源的个数
s<0, |s|个进程等待资源

信号量的三个操作

2、semWait(s) 进程请求分配一个资源,操作使信号 量减1,若为负,进程阻塞,否则继续执行

3、semSignal(s)进程释放一个资源,操作使信号量加 1,若小于或等于0,则阻塞的进程被解除阻塞
也称P(s)操作,wait(s) 也称V(s)操作,signal(s)

信号量的三个操作

1、一个信号量s可以初始化成非负数

用于互斥:s=1, 取值 -(n-1)~1;

s=1时,有一个临界资源可用,一个进程可进入临界区 s=0时,临界资源已分配, 正有进程在临界区内 s<0时,|s|个进程等待进入临界区

专用机器指令

用于保证访问的原子性 1、比较和交换指令(compare and swap)、2、Exchange指令

机器指令方法的特点

适用于在单处理器或共享内存的多处理器上的任何数目的进程 非常简单且易于证明
可用于支持多个临界区,可以用自己的变量定义

缺点

忙等待:进程等待进入临界区,仍会继续消耗CPU 时间 可能饥饿:当需要选择等待进程进入时,某些可能被无限拒绝 可能死锁:低优先级的进程占有高优先级的进程所需资源

读者优先(重点掌握)

读者优先: 只要有读者,写者就得等待 写进程访问共享数据区,其他写进程和读进程就都
不能访问它

没有读进程在读,第一个试图读的进程需要等待, 至少已经有一个读进程在读时,其他读进程无需等 待

写者优先(不作详解 )

只要有写者声明要写,不再允许新读者进入,只待 旧读者读完即可。

两人拣围棋问题:P1拣白子,P2 拣黑子(先),
两人交替进行,一次进允许一人拣
解:w: 可拣白子,w=0;b:可拣黑子,b=1

桌上一空盘,可向其中放一水果。爸爸可放一苹果或一桔
子,儿子只吃桔子,女儿只吃苹果。如何实现爸爸、儿子、 女儿三个进程的同步。 解:设信号量S:表示盘子,S=1;So:桔子数,So=0; Sa:苹果数,Sa=0
OS难对资源进行最优化分配-----死锁
难以定位程序设计错误

一个简单例子
void echo() ---多道程序设计系统中的共享函数
{
chin = getchar(); 全局共享变量
chout = chin;
putchar(chout);
}
P1 ——chin=getchar() 中断 P2——chin= getchar()

临界区:进程访问临界资源的那段程序代码;
互斥:当一个进程在临界区访问临界资源时,其他进程不能进
入临界区。 同步:合作的并发进程需要按先后次序执行

死锁:多个进程等待其他进程的资源,形成循环等待链;
饥饿:一个进程呈可执行状态,被调度器忽视而不能调度执行。

并发的困难

共享全局资源,引发数据安全问题

1972年图灵奖,“ 结构化程序设计之父”

不要求忙等的同步互斥工具
一个信号量表示一个资源或一个同步条件
当资源不可用时,进程将等待,直到释放资源
的另一个进程发来信号时才唤醒 由若干个机器指令构
成的完成某种特定功 能的一段程序,具有 不可分割性

两个原语访问

semWait(s) semSignal(s)
ห้องสมุดไป่ตู้

共享合作关系

进程间接知道彼此的存在 进程间通过共享某些资源(如:变量、文件)进行 合作,但不确切知道对方

多个进程可以同时读一个数据项,但是必须互斥写 操作

多个进程读写共享数据时,必须保持数据一致性

通信合作关系

进程直接知道对方的存在
进程间通过发送消息和接受消息来进行通信,
实现同步和协调各种活动;
需要一个特殊变量(整数型):称为信号量

荷兰 计算机科学家

1 提出“goto有害论”; 2 提出信号量和PV原语(1965); 3 解决了“哲学家聚餐”问题; 4 最短路径算法(SPF)和银行家算法的创造者;


5 第一个Algol 60编译器的设计者和实现者;
6 THE操作系统的设计者和开发者;

P1优先级低,进入临界区中断;P2优先级高,抢占CPU,需要访问同一临界资
源,等待;P1 无法再次得到CPU ,资源无法释放,进入死锁。

解决并发进程问题基本原理:

两个或多个进程可以通过简单的信号进行合作,
一个进程可以被迫在某一位置停止,直到它接到
一个特定的信号

复杂的合作需求都可以通过适当的信号结构完成

设一信号量s,初始值为1

缓冲区满,生产者不能再加数据;缓冲区空,消费 者不能再取数据

生产者 producer:

while (true) {
/* 生产数据*/
b[in] = v;
in++; }
消费者 consumer: while (true) { while (in <= out) /*do nothing */; w = b[out]; out++; /* consume item w */ }

例:
n=5, 共享变量;
①②③:输出6,n=0 ②③①:输出5,n=1
②①③:输出5,n=0
×

OS必须能够跟踪不同的进程,依靠PCB OS必须为每个活跃的进程分配和释放各种资源

处理器时间
存储器
文件 I/O设备

OS必须保护每个进程的数据和物理资源 进程的功能和输出结果必须与执行速度无关

putchar(chout);


解决办法:控制访问该变量的代码

规定一次仅允许一个进程进入echo,并只在
echo运行结束后,才对另一个进程可用

如何实施?

竞争条件:发生在多个进程或者线程读写数据时, 最终结果依赖于多个进程的指令执行顺序
P1: …… ① L1: n++ ……. Go to L1; P2: …… ② L2: printf(n); ③ n=0; ……. Go to L2;
相关文档
最新文档