北师大版九年级数学上册 第5章 投影与视图 单元测试题(解析版)
北师大版九年级上册数学第五章 投影与视图 含答案
北师大版九年级上册数学第五章投影与视图含答案一、单选题(共15题,共计45分)1、由5个大小相同的正方体组成的几何体如图所示,其主视图是()A. B. C.D.2、如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A. B. C. D.3、如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A. B. C. D.4、下列四个几何体的俯视图中与众不同的是()A. B. C. D.5、如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长6、如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A. B. C. D.7、如图所示,该几何体的左视图是()A. B. C. D.8、如图所示的几何体是由4个相同的小正方体组成.其主视图为()A. B. C. D.9、用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同10、如图所示的是一个蒙古包所抽象出来的几何体,以下对这个几何体的三视图描述正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三个视图都相同11、如图是由长方体和圆柱组成的几何体,它的俯视图是()A. B. C. D.12、如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.13、由5个完全相同的正方体组成的立体图形如图所示,从正面看这个立体图形得到的平面图形是( )A. B. C. D.14、如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.从前面看到的形状图的面积为5B.从左面看到的形状图的面积为3 C.从上面看到的形状图的面积为3 D.三种视图的面积都是4 15、如图,是由三个相同的小正方体组成的几何体,它的俯视图是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,电灯在横杆的正上方,在灯光下的影子为,,,,点到的距离为,则与间的距离是________ .17、如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为________ 秒.18、三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是________.19、由个相同的正方体组成一个立体图形,如图的图形分别是从正面和上面看它得到的平面图形,设能取到的最大值a,则多项式的值是________.20、将一个三角形放在太阳光下,它所形成的投影是________ .21、我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面________ ,这种投影称为正投影.22、太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是________.(说出一种形状即可)23、为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.24、如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________ (多填或错填得0分,少填酌情给分).25、如图所示,身高1.6m的小华站在距路灯杆5m的C点处,测得他在灯光下的影长CD为3.2m,则路灯AB的高度为________m.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.28、如图,铜亭广场装有智能路灯,路灯设备由灯柱AC与支架BD共同组成(点C处装有安全监控,点D处装有照明灯),灯柱AC为6米,支架BD为2米,支点B到A的距离为4米,AC与地面垂直,∠CBD=60°.某一时刻,太阳光与地面的夹角为45°,求此刻路灯设备在地面上的影长为多少?29、如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,请你画出它的主视图和左视图.30、如图①所示的组合几何体,它的下面是一个长方体,上面是一个圆柱.(1)图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、“左”或“俯”);(2)根据两个视图中的尺寸,计算这个组合几何体的体积.(结果保留π)参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、B5、B6、A7、D8、D9、A10、A11、A12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、30、。
2022学年北师大版九年级数学上册第五章《投影与视图》单元试题附答案解析
2022学年九年级数学上册第五章《投影与视图》单元试题(满分:120分)一、单选题1.一个画家有14个边长为1米的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()平方米.A.19B.21C.33D.362.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长3.如图是一根电线杆在一天中不同时刻的影长图,试按其 天中发生的先后顺序排列,正确的是()A.①①①①B.①①①①C.①①①①D.①①①①4.三根等高的木杆竖直立在平地上,其俯视图如图所示,在某一时刻三根木杆在太阳光下的影子合理的是()A.B.C.D.5.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子6.几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.97.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定8.下列立体图形中,主视图是圆的是()A.B.C.D.9.图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中①ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个10.如图所示是两根标杆在地面上的影子,根据这些投影,在灯光下形成的影子是()A.①和①B.①和①C.①和①D.①和①11.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.12.如图,是一个正六棱柱的主视图和左视图,则图中x的值为()A.2B.3CD二、填空题13.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)14.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.15.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是______________.16.一个几何体的三视图如图所示,则该几何体的表面积为____________.17.在同车道行驶的机动车,后车应当与前车保持一定的安全距离.如图,在一个路口,一辆长为10m 的大巴车遇红灯后停在距交通信号灯20m 处,小林驾驶一辆小轿车,距大车尾xm ,若大巴车车顶高于小林的水平视线0.8m ,红灯下沿高于小林的水平视线3.2m ,若小林能看到整个红灯,则x 的最小值为_____.18.如图,在A 时测得一棵大树的影长为4米,B 时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是______.19.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.20.一块直角三角形板ABC ,90ACB ∠=︒,12cm BC =,8cm AC ,测得BC 边的中心投影11B C 长为24cm ,则11A B 长为__cm .三、解答题21.(1)如图1,若将一个小立方块①移走,则变化后的几何体与变化前的几何体从______看到的形状图没有发生改变;(填“正面”、“上面”或“左面”)(2)如图2,请画出由6个小立方块搭成的几何体从上面看到的形状图;(3)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图3所示,小正方形中的数字表示该位置上的小立方块的个数,请画出从左面看到的形状图.22.一个几何体的三种视图如图所示.(1)这个几何体的名称是__________.(2)求这个几何体的体积.(结果保留 )23.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2m.(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度.24.如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在太阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长25.如图,身高为1.6m的小王晚上沿箭头的方向散步至一路灯下,她想通过自己的影子来估计路灯的高度,具体做法如下:先从路灯底部向东走20步到M处,发现自己影子端点恰好在点P处,继续沿刚才自己的影子走5步到P处,此时影子的端点在Q处.(1)找出路灯的位置;(2)估计路灯的高度,并求影长PQ.26.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.27.小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他向前再步行12m 到达Q 时,发现他的影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6m ,两个路灯的高度都是9.6m ,且m AP BQ x ==.(1)求:两个路灯之间的距离;(2)小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》检测卷(有答案解析)
一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.如图所示几何体的俯视图是()A.B.C.D.3.观察如图所示的几何体,从左面看到的图形是()A.B.C.D.4.如图所示,该几何体的俯视图是()A.B.C.D.5.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.6.如图是某零件的模型,则它的左视图为()A.B.C.D.7.如图,长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于( )A.324cm12cm D.3 6cm B.38cm C.38.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.9.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.10.如图是一个底面为正方形的几何体的实物图,则其俯视图为()A.B.C.D.11.如图是一个由多个相同小正方体堆积而成的几何体从上面看到的形状图,图中所示数字为该位置小正方体的个数,则这个几何体从正面看到的形状图是( )A.B.C.D.12.某立体图形如图,其主视图是()A.B.C.D.二、填空题13.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为___米.14.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为___________.15.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)18.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最多是________个,最少是________个.主视图俯视图19.一个几何体的三视图如图所示,则该几何体的表面积为_____.(π取3)20.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是_____.三、解答题21.工厂生产某种零件,其示意图如下(单位:mm).(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图;(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.【答案】(1)见解析;(2)72mm2【分析】(1)根据左视图是从左面看得到的图形,俯视图是从上面看得到的图形进行画图,要本着长对正,高平齐,宽相等规则,和三视图的位置来画即可;(2)根据观察到的各面的面积进而求得表面积即可.【详解】(1)根据长对正,高平齐,宽相等,和三视图的位置来画,如图所示:(2)[5×2+2×(3﹣2)+5×3+3×3]×2,=(10+2+15+9)×2,=36×2,=72(mm2).故需要涂漆的面积是72mm2.【点睛】本题考查了几何体三视图的画法以及表面积的求法,注意观察角度是解题的关键.22.由十个小立方体搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图和左视图.【答案】见解析【分析】运用空间想象能力根据俯视图画出主视图和左视图.【详解】解:根据题意,这个几何体的主视图和左视图如下图所示:【点睛】本题考查三视图,解题的关键是运用空间想象能力画三视图.23.如图是由10个同样大小的小正方体搭成的几何体.(1)请分别画出它的主视图和俯视图;(2)这个几何体的表面积是________.【答案】(1)见解析;(2)38.【分析】(1)观察可以发现:主视图有3列,每列小正方形数目分别为3,I,2;俯视图有3列,每列小正方形数目分别为3,2,1;(2)分别从各个方向确定可以看到的正方形面数,相加后乘1个面的面积即可.【详解】解:(1)如图所示:(2)(1×1)×(6+6+7+7+6+6)=1×38=38该几何体的表面积是38.故答案为38.【点睛】本题主要考查了几何体的三视图画法以及几何体的表面积,根据立体图形可知主视图、左视图、俯视图确定出有几列且每一列上的有几个正方形成为解答本题的关键.24.如图,是由7个大小相同的小立方块搭成的一个几何体.(1)请在指定位置画出该几何体从左面、上面看到的形状图;(2)小颖从该几何体中移去一个小立方块,变成由6个大小相同的小立方块搭成的一个几何体.发现所得新几何体与原几何体相比,从左面、上面看到的形状图仍然保持不变,请画出新几何体从正面看到的形状图.【答案】(1)见解析;(2)见解析.【分析】(1)分别画出立体图形的三视图即可;(2)从几何体中移走一个小立方块,所得新几何体与原几何体相比,从左面、上面看到的形状图保持不变,可得移走的一个小立方块是从正面看第二层第二列的一个,最后再画出主视图即可.【详解】解:(1)如图所示:(2)如图所示:【点睛】本题主要考查了三视图的画法,掌握三视图的定义和较好的空间想象能力成为解答本题关键.25.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图的长为15cm,宽为4cm;从左面看到的形状图的宽为3cm,从上面看到的形状图的最长边长为5cm,求这个几何体的所有棱长的和为多少?它的侧面积为多少?它的体积为多少?【答案】(1)直三棱柱;(2)所有棱长的和69cm,侧面积180cm2,体积90cm3【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)这个几何体的所有棱长的和为2个3cm、2个4cm、2个5cm,3个15cm的和;三个长为15cm,宽分别为3cm、4cm、5cm的长方形的面积即是几何体的侧面积;先求出俯视图的面积,再乘高15cm,即为体积.【详解】解:(1)直三棱柱;(2)这个几何体所有棱长的和:153345269cm⨯+++⨯=.它的侧面积:(3+4+5)15⨯=180cm2;它的体积:12×3×4×15=90cm3故这个几何体的所有棱长的和为69cm,它的侧面积为180cm2,它的体积为90cm3.【点睛】此题考查从三视图判断几何体,掌握棱柱的侧面都是长方形,上下底面是几边形就是几棱柱是解决问题的关键.26.一个几何体由一些大小相同的小立方块组成,从正面和从上面看到的几何体的形状图如图所示.(1)若组成这个几何体的小立方块的个数为n,请你写出n的所有可能值(2)请你画出从左面看到的几何体所有可能的形状图【答案】(1)n=8,9,10,11;(2)见解析【分析】(1)分析题意可知几何体最底一层有5个正方体,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,分别求和即可得到答案;(2)根据形状图的定义画出图形即可.【详解】解:(1)∵俯视图有5个正方形,∴几何体的最底层有5个正方体,由主视图可知,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,∴组成该几何体的小正方体的个数为:①5+2+1=8;②5+3+1=9;③5+3+2=5+4+1=10;④5+4+2=11∴n=8,9,10,11.(2)从左面看到的形状图有以下5种情形:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图是一个“L”形的组合图形.故选:A.【点睛】此题考查几何体的三视图,掌握几何体三视图观察的方位及图形形状是解题的关键.2.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.3.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.C解析:C【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.5.B解析:B【分析】分别画出四个选项中简单组合体的三视图即可.【详解】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选B.【点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图和主视图的画法.6.D解析:D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.8.A解析:A根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.9.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.10.D解析:D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.【点睛】本题考查三视图的知识,俯视图是从物体的上面看得到的视图.11.C解析:C【解析】【分析】根据俯视图可判断主视图有3列,根据数字可判断每列最多的小正方体的个数,即可得答案.【详解】由俯视图中的数字可得:主视图有3列,从左到右的最大数字分别是:3,3,2.【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方体数目为俯视图中该列小正方体数字中的最大数字.12.B解析:B【解析】【分析】找到从正面看所得到的图形即可.【详解】从物体正面看,左边1个正方形,中间2个正方形,右边2个正方形.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.二、填空题13.12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可【详解】设旗杆高度为x米根据题意得:解得:x=12故答案为:12【点睛】考核知识点:相似三角形的应用理解相似三角形性质是关键解析:12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【详解】设旗杆高度为x米,根据题意得:1.5 162 x=解得:x=12,故答案为:12.【点睛】考核知识点: 相似三角形的应用.理解相似三角形性质是关键.14.cm2【解析】根据三视图得到圆锥的底面圆的直径为6cm即底面圆的半径为3cm圆锥的高为4cm所以圆锥的母线长==5所以这个圆锥的侧面积=π×3×5=15π(cm2)故答案为15πcm2解析:15πcm2【解析】根据三视图得到圆锥的底面圆的直径为6cm,即底面圆的半径为3cm,圆锥的高为4cm,所以圆锥的母线长,所以这个圆锥的侧面积=π×3×5=15π(cm2).故答案为15πcm2.15.俯视图【解析】解:根据几何体的摆放位置可知主视图正确;左视图正确;俯视图缺少两条看不到的虚线故不符合规定的是俯视图故答案为俯视图解析:俯视图【解析】解:根据几何体的摆放位置可知,主视图正确;左视图正确;俯视图缺少两条看不到的虚线.故不符合规定的是俯视图.故答案为俯视图.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形;故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.18.11【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】由主视图和俯视图可知:几何体的第一层最多有(个)第二层最多有(个)第解析:11【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】由主视图和俯视图可知:几何体的第一层最多有1337++=(个)第二层最多有1337++=(个)第三层最多有1113++=(个)故正方体的个数最多有77317++=(个)几何体的第一层最少有1337++=(个),第二层最少有1113++=(个)第三层最少有1个,故正方体的个数最少有73111++=(个)故答案为:17;11.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.13【分析】首先根据三视图判断几何体的形状然后计算其表面积即可【详解】观察该几何体的三视图发现其为半个圆柱半圆柱的直径为2高为2故其表面积为:故答案为:13【点睛】本题考查了由三视图判断几何体的知识 解析:13【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【详解】观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为2, 故其表面积为:211222234334132πππ⨯+⨯+⨯⨯=+=⨯+=. 故答案为:13.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大. 20.185πcm2【分析】由三视图得圆锥的地面直径为10cm 圆锥的高为12cm 在轴截面中根据勾股定理求出圆锥母线长进而求出圆锥侧面积;根据三视图确定圆锥底面直径为10cm 高为12cm 求出圆柱侧面积;相加解析:185π cm 2【分析】由三视图得圆锥的地面直径为10cm ,圆锥的高为12cm ,在轴截面中根据勾股定理求出圆锥母线长,进而求出圆锥侧面积;根据三视图确定圆锥底面直径为10cm ,高为12cm ,求出圆柱侧面积;相加即可求出几何体侧面积.【详解】解:由三视图可知,圆锥的底面直径为10cm ,高为12cm ,圆柱地面直径为10cm ,高为12cm .则OA=5cm ,在Rt △POA 中,2213PA OA OP cm =+= ,圆的周长为10πcm , ∴几何体的侧面积为110131012=65120=1852πππππ⨯⨯+⨯+ cm 2.故答案为:185π cm 2【点睛】本题考查了三视图,圆锥的侧面积,圆柱的侧面积等知识点,解题的关键是根据三视图确定圆锥,圆锥的相关数据,牢记圆锥,圆锥的侧面积公式.三、解答题21.无22.无23.无24.无25.无26.无。
第5章 投影与视图 九年级上册数学北师大版单元质检卷(B卷)及答案
(10)投影与视图—九年级上册数学北师大版(2012)单元质检卷(B卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )A. B.C. D.2.下列常见的几何体中,主视图和左视图不同的是( )A. B.C. D.3.如图所示的几何体为圆台,其主视图正确的是( )A. B. C. D.4.如图的立体图形由相同大小的正方体积木堆叠而成.判断拿走图中的哪一个积木后,此图形主视图的形状会改变( )A.甲B.乙C.丙D.丁5.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长,窗户下檐到地面的距离,,那么窗户的高AB为( )A. B. C. D.6.如图是由七个相同的小正方体拼成的立体图形,下面有关它的三视图的结论中,正确的是( )A.左视图是轴对称图形B.主视图是中心对称图形C.俯视图是中心对称图形但不是轴对称图形D.俯视图既是中心对称图形又是轴对称图形7.如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A. B. C. D.8.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是( )A. B. C. D.9.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边10.手影游戏利用的物理原理是:光是沿直线传播的.图中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁1米,爸爸拿着的光与小明的距离为2米.在小明不动的情况下,要使小狗手影的高度增加一倍,则光与小明的距离应( )A.减少米B.增加米C.减少米D.增加米二、填空题(每小题4分,共20分)11.一个人在灯光下向远离光的方向行走的过程中人的影长越来越____________(填“长”或“短”).12.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻,测得OA是268米,则金字塔的高度BO是__________米.13.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为___________.14.一个几何体由若干个大小相同的小立方块搭成,如图分别是它的主视图和俯视图.若该几何体用小立方块的个数为n,则n的最大值和最小值之和为_________.15.在“测量物体的高度”活动中,小丽在同一时刻阳光下,测得一根长为1米的竹竿的影长为0.8米:测量树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图),落在地面上的影长为4.8米,一级台阶高为0.25米,落在第一级台阶上的影子长为0.2米,则树高度为____________米.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在一直线上有几根竹竿.它们在同一灯光下的影子如图所示(图中的粗线段).(1)根据灯光下的影子确定光的位置;(2)画出竹竿AB的影子(用线段表示);(3)画出影子为CD的竹竿(用线段表示).17.(8分)把边长为1厘米的10个相同正方体如图摆放.(1)画出该几何体的主视图、左视图、俯视图;(2)该几何体的表面积为_____;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.18.(10分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是_________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.19.(10分)用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a,b,c各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当,时,画出这个几何体的左视图.20.(12分)每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量北京站钟楼的高度,同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼底部点B的位置,被遮挡部分的水平距离为的长度.通过对示意图的分析讨论,制定了多种测量方案,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼顶端A的影子D到点C的距离,以及同一时刻直杆的高度与影长.设的长为x米,的长为y米.测量数据(精确到0.1米)如表所示:的长(1)由第一次测量数据列出关于x,y的方程是______,由第二次测量数据列出关于x,y的方程是______;(2)该小组通过解上述方程组成的方程组,已经求得,则钟楼的高度约为______米. 21.(12分)在一节数学课上,小红画出了某四棱柱的三视图如图所示,其中主视图和左视图为矩形,俯视图为等腰梯形,已知该四棱柱的侧面积为.(1)三视图中,有一图未画完,请在图中补全;(2)根据图中给出的数据,俯视图中的长度为________;(3)左视图中矩形的面积为________;(4)这个四棱柱的体积为________.答案以及解析1.答案:B解析:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B.2.答案:B解析:A、圆台的主视图和左视图都是梯形,本选项不符合题意;B、圆柱的主视图是长方形,左视图是圆,本选项符合题意;C、圆锥的主视图与左视图相同,都是等腰三角形,本选项不符合题意;D、球的主视图和左视图相同,都是圆,本选项不符合题意.故选:B.3.答案:C解析:根据题意得:其主视图正确的是故选:C.4.答案:B解析:拿走图中的“乙”一个积木后,此图形主视图的形状会改变,第二列小正方形的个数由原来的两个变成一个.故选:B.5.答案:A解析:,,,即.又,,,,.故选A.6.答案:A解析:画出三视图后,发现左视图是轴对称图形,主视图不是中心对称图形,俯视图是轴对称图形但不是中心对称图形.故选A.7.答案:B解析:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低高低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长短长.根据影子变化的特点,按时间顺序给这五张照片排序是.故选:B.8.答案:B解析:该几何体的主视图是:故选:B.9.答案:D解析:由题意可得,甲说他看到的是“6,丁说他看到的是“9”,说明两人坐对面,乙和丙坐对面,又乙说他看到的是“”,乙在甲右边,则丙在丁右边.故选D.10.答案:A解析:如图,点O为光,表示小明的手,表示小狗手影,则,过点O作,延长交于F,则,,,则,米,米,则米,,设,,在小明不动的情况下,要使小狗手影的高度增加一倍,如图,即,,米,,,则,米,光与小明的距离变化为:米,故选:A.11.答案:长解析:一个人在灯光下离开的过程中人的影长越来越长.故答案为:长.12.答案:134解析:设金字塔的高度BO为x米,则,解得,米.13.答案:9解析:由左视图和俯视图可知,小正方体的最少个数为(个),故答案为:9.14.答案:22解析:根据主视图、俯视图,可以得出小立方块最少时(图中只画了其中一种情况)、最多时,在俯视图的相应位置上所摆放的个数如下:所以最少需要小立方块9个,最多需要13个,因此.故答案为22.15.答案:解析:根据同一时刻物高与影长成正比例,如图所示:则其中为树高,为树影在第一级台阶上的影长,为树影在地上部分的长,的长为台阶高,并且由光沿直线传播的性质可知即为树影在地上的全长,延长交于G,则,,,又,,,,,即树高为米,故答案为:.16.答案:(1)见解析(2)见解析(3)见解析解析:(1)如图,点P即为光所在的位置.(2)BE即为竹竿AB的影子.(3)CF是影子为CD的竹竿.17.答案:(1)见解析(2)38(3)3解析:(1)如图:(2)该几何体的表面积,故答案为:38;(3)再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,可使第一列的高度均为3,故可添加3个小正方体,故答案为:3.18.答案:(1)平行(2)7米解析:(1)平行(2)如图,过点E作于点M,过点G作于点N.则米,米,米,米,(米).由平行投影的性质可知,即,米,即电线杆的高度为7米.19.答案:(1)3,1,1(2)9,11(3)见解析解析:(1),,.(2)这个几何体最少由(个)小立方块搭成,最多由(个)小立方块搭成.(3)左视图如图所示.20.答案:(1);(2)43解析:(1)由同一时刻测量,可得,第一次测量:,化简得,,第二次测量:,化简得,,故答案为:;;(2)对于,代入,得,,解得:,钟楼米,故答案为:43.21.答案:(1)见解析(2)(3)8(4)解析:(1)所在的面在前,所在的面在后,主视图中应补充两条虚线,补充完整如图所示:(2)俯视图为等腰梯形,,该四棱柱的侧面积为,,,故答案为:;(3)如图,作于E,于F,,俯视图为等腰梯形,,,,,,,,四边形是矩形,,,,,,,,左视图中矩形的面积为:,故答案为:8;(4)由题意得:这个四棱柱的体积为,故答案为:32.。
最新北师大版九年级数学上册第五章检测卷含答案解析及单元知识点总结和思维导图
投影与视图测试题(时间: 90分钟,满分:100分)一、选择题(每题2分,共24分)1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )A.B.C.D.2.下列命题正确的是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形3.一天下午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100m的B.甲照片是参加100m的C.乙照片是参加400m的D.无法判断甲、乙两张照片4.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(3)(4)(1)5.在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A.B.C.D.6.在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午 B.中午 C.下午 D.无法确定7.下列说法正确的是( )A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的8.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A. B.C.D.9.如图,用一个平面去截长方体,则截面形状为( )A.B.C.D.10.一个几何体是由一些大小相同的小正方体摆放成的,其俯视图与主视图如图所示,则组成这个几何体的小正方体最多有( )A.4 B.5 C.6 D.711.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为( )A.36cm2B.33cm2C.30cm2D.27cm212.关于盲区的说法正确的有( )(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比较矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大.A.1个B.2个C.3个D.4个二、填空题(每题2分,共12分)13.我们把大型会场、体育看台、电影院建为阶梯形状,是为了__________.14.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影__________.15.如图是两棵小树在同一时刻的影子,请问它们的影子是在__________光线下形成的(填“灯光”或“太阳”).16.如图,是一个几何体的三视图,那么这个几何体是__________.三、解答题(共52分)17.一个物体的正视图、俯视图如图所示,请你画出该物体的左视图并说出该物体形状的名称.18.画出下面实物的三视图:19.如图所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.20.如图(1)、(2)分别是两棵树及其在太阳光或路灯下影子的情形(1)哪个图反映了阳光下的情形,哪个图反映了路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.21.某公司的外墙壁贴的是反光玻璃,晚上两根木棒的影子如图(短木棒的影子是玻璃反光形成的),请确定图中路灯灯泡所在的位置.22.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.23.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.24.小明同学向利用影长测量学校旗杆的高度,在某一时刻,旗杆的投影一部分在地面上,另一部分在某座建筑物的墙上,测得其长度分别为9.6米和2米(如图),在同一时刻测得1米长的标杆影长为1.2米,求出学校旗杆的高度.25.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).参考答案一、选择题(每题3分,共36分)1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )A.B.C.D.【考点】平行投影.【分析】可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,所以矩形木板在地面上形成的投影不可能是梯形.【解答】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.【点评】本题考查投影与视图的有关知识,灵活运用平行投影的性质是解题关键.2.下列命题正确的是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【考点】命题与定理.【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.3.一天下午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100m的B.甲照片是参加100m的C.乙照片是参加400m的D.无法判断甲、乙两张照片【考点】平行投影.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:根据平行投影的规律:从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长;则乙照片是参加100m的,甲照片是参加400m的.故选A.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.4.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(3)(4)(1)【考点】平行投影.【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长可得.【解答】解:根据平行投影的规律知:顺序为(4)(3)(1)(2).故选B.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.5.在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A.B.C.D.【考点】由三视图判断几何体.【分析】首先根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,再从实线和虚线想象几何体看得见部分和看不见部分的轮廓线,即可得到结果.【解答】解:由主视图和左视图可知该几何体的正面与左侧面都是矩形,所以A错误;再由主视图中矩形的内部有两条虚线,可知B错误;根据俯视图,可知该几何体的上面不是梯形,而是一个任意的四边形,所以D错误.故选C.【点评】本题考查了由三视图想象几何体,一般地,由三视图判断几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午 B.中午 C.下午 D.无法确定【考点】平行投影.【分析】根据不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.【解答】解:小颖在向正北方向走路时,发现自己的身影向左偏,即影子在西方;故小颖当时所处的时间是上午.故选A.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.下列说法正确的是( )A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【考点】平行投影.【分析】根据平行投影的规律作答.【解答】解:A、物体在阳光下的投影不只与物体的高度有关,还与时刻有关,错误;B、小明的个子比小亮高,在不同的时间,小明的影子可能比小亮的影子短,错误;C、不同时刻物体在太阳光下的影子的大小在变,方向也在改变,正确;D、不同时刻物体在太阳光下的影子的大小在变,方向也在改变,错误.故选C.【点评】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.8.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A. B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从左面看所得到的图形即可.【解答】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9.如图,用一个平面去截长方体,则截面形状为( )A.B.C.D.【考点】截一个几何体.【专题】几何图形问题;操作型.【分析】根据长方体的形状及截面与底面平行判断即可.【解答】解:横截长方体,截面平行于两底,那么截面应该是个长方形.故选B.【点评】本题考查了长方体的截面.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.10.一个几何体是由一些大小相同的小正方体摆放成的,其俯视图与主视图如图所示,则组成这个几何体的小正方体最多有( )A.4 B.5 C.6 D.7【考点】由三视图判断几何体.【专题】压轴题.【分析】根据三视图的知识,主视图是由4个小正方形组成,而俯视图是由3个小正方形组成,故这个几何体的底层最多有3个小正方体,第2层最多有3个小正方体.【解答】解:综合俯视图和主视图,这个几何体的底层最多有2+1=3个小正方体,第二层最多有2+1=3个小正方体,因此组成这个几何体的小正方体最多有3+3=6个,故选C.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.11.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为( )A.36cm2B.33cm2C.30cm2D.27cm2【考点】几何体的表面积.【专题】应用题;压轴题.【分析】几何体的表面积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有6个;左视图中正方形有6个;俯视图中正方形有6个.则这个几何体中正方形的个数是:2×(6+6+6)=36个.则几何体的表面积为36cm2.故选:A.【点评】本题考查的是几何体的表面积,这个几何体的表面积为露在外边的面积和底面之和.12.关于盲区的说法正确的有( )(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比较矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大.A.1个B.2个C.3个D.4个【考点】视点、视角和盲区.【分析】根据视点,视角和盲区的定义进行选择.【解答】解:根据视点,视角和盲区的定义,我们可以判断出(1)(3)(4)是正确的,而(2)中,要注意的是仰视时越向前视野越小盲区越大,俯视时视线越向前视野越大,盲区越小.故选C.【点评】本题主要考查对视点,视角和盲区的定义的理解.二、填空题(每题3分,共12分)13.我们把大型会场、体育看台、电影院建为阶梯形状,是为了减小盲区.【考点】视点、视角和盲区.【分析】根据盲区定义,盲区是指看不见的区域,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.【解答】解:把大型会场、体育看台、电影院建为阶梯形状,是为了使后面的观众有更大的视野,从而减小盲区.【点评】本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.14.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影长.【考点】中心投影.【分析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.【解答】解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短15.如图是两棵小树在同一时刻的影子,请问它们的影子是在灯光光线下形成的(填“灯光”或“太阳”).【考点】中心投影.【分析】可由树的顶点和影子的顶点的连线会相交还是平行,从而确定是中心投影还是平行投影,再由“太阳”和“灯光”的特点确定.【解答】解:树的顶点和影子的顶点的连线会相交于一点,所以是中心投影,即它们的影子是在灯光光线下形成的.故填:灯光.【点评】本题综合考查了平行投影和中心投影的特点和规律.可运用投影的知识或直接联系生活实际解答.16.如图,是一个几何体的三视图,那么这个几何体是空心的圆柱.【考点】由三视图判断几何体.【分析】两个视图是矩形,一个视图是个圆环,那么符合这样条件的几何体是空心圆柱.【解答】解:如图,该几何体的三视图中两个视图是矩形,一个视图是个圆环,故该几何体为空心圆柱.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力.三、解答题(共52分)17.一个物体的正视图、俯视图如图所示,请你画出该物体的左视图并说出该物体形状的名称.【考点】作图-三视图.【专题】作图题.【分析】由该物体的正视图、俯视图可得,此物体为圆柱,则左视图为长方形.【解答】解:左视图如图:该物体形状是:圆柱.【点评】此题学生应该对圆柱的三视图熟练掌握.18.画出下面实物的三视图:【考点】作图-三视图.【专题】作图题.【分析】认真观察实物,可得主视图是长方形上面一小正方形,左视图为正方形上面一小正方形,俯视图为长方形中间一个圆.【解答】解:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来.19.如图所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.【考点】视点、视角和盲区.【专题】作图题.【分析】本题可根据盲区的定义,作出盲区,只要老鼠在猫的盲区内,老鼠就是安全的.【解答】解:如图,红色的部分就是安全区域.【点评】本题主要考查了视点,视角和盲区在实际中的应用.20.如图(1)、(2)分别是两棵树及其在太阳光或路灯下影子的情形(1)哪个图反映了阳光下的情形,哪个图反映了路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.【考点】平行投影;中心投影.【专题】常规题型.【分析】(1)和(2):物体在太阳光的照射下形成的影子是平行投影,物体在灯光的照射下形成的影子是中心投影.然后根据平行投影和中心投影的特点及区别,即可判断和说明;(3)图1作平行线得到小丽的影长,图2先找到灯泡的位置再画小丽的影长.【解答】解:(1)第一幅图是太阳光形成的,第二幅图是路灯灯光形成的;(2)太阳光是平行光线,物高与影长成正比;(3)所画图形如下所示:【点评】本题考查平行投影和中心投影的知识,解答关键是熟练掌握这两个基础概念.21.某公司的外墙壁贴的是反光玻璃,晚上两根木棒的影子如图(短木棒的影子是玻璃反光形成的),请确定图中路灯灯泡所在的位置.【考点】中心投影.【分析】利用中心投影的图形的性质连接对应点得出灯泡位置即可.【解答】解:如图,点O就是灯泡所在的位置.【点评】本题考查中心投影,掌握中心投影的性质是解决问题的关键.22.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.23.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【解答】解:延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(米),EF=4cos30°=2(米),在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2(米),CE:DE=1:2,∴DE=4(米),∴BD=BF+EF+ED=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(6+)(米).答:树的高度为:(6+)(米).【点评】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.24.小明同学向利用影长测量学校旗杆的高度,在某一时刻,旗杆的投影一部分在地面上,另一部分在某座建筑物的墙上,测得其长度分别为9.6米和2米(如图),在同一时刻测得1米长的标杆影长为1.2米,求出学校旗杆的高度.【考点】相似三角形的应用.【专题】应用题.【分析】此题是实际应用问题,解题的关键是将实际问题转化为数学问题解答;根据在同一时刻物高与影长成正比例.利用相似三角形的对应边成比例解答即可;【解答】解:如图:过点B作AB∥DE,∴AB=DE=9.6米,AD=BE=2米,CD为旗杆高,∵在同一时刻物高与影长成正比例,∴CA:AB=1:1.2,∴AC=8米,∴CD=AB+AD=8+2=10米,∴学校旗杆的高度为10米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.25.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).【考点】相似三角形的应用.【专题】应用题.【分析】根据AB⊥BH,CD⊥BH,FG⊥BH,可得:△ABE∽△CDE,则有=和=,而=,即=,从而求出BD的长,再代入前面任意一个等式中,即可求出AB.【解答】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB=5.95m≈6.0m.答:路灯杆AB的高度约为6.0m.(注:不取近似数的,与答一起合计扣1分)【点评】解这道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形中,利用相似比列出方程即可求出.第五章投影与视图※三视图包括:主视图、俯视图和左视图。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)
一、选择题1.由10个完全相同的小正方体搭成的物体如图所示.如果再添加若干个相同的小正方体之后,所得到的新物体从正面看和从左面看都跟原来的相同,那么这样的小正方体最多还可以添加()个.A.3 B.4 C.5 D.62.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.3.用棱长为1的小立方体摆成如图所示的几何体,从左面看这个几何体得到的平面图形的面积是()A.3 B.4 C.5 D.64.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时5.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.6.将如图的R t ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆7.如图所示,该几何体的俯视图为()A.B.C.D.8.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.129.如图,长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于( )A.324cm12cm D.38cm C.36cm B.310.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形B.矩形C.线段D.梯形11.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.12.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()A.B.C.D.二、填空题13.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有_____个.14.某几何体是由若干个小正方体组成的,它无论从正面看还是从左面看得到的视图都是如图的样子,堆成该几何体的正方体数最少与最多的块数分别是、n,则m n+=______.15.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积_____.16.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是_____.(说出一种形状即可)17.一个几何体的三视图如图所示,则这个几何体是_____.18.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_____.19.一个几何体的三视图如图所示,则该几何体的体积为________.20.如图所示,AOC ∠和BOD ∠都是直角,若35DOC ∠=︒,则AOB ∠的补角的度数为__________.FJ1. 如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的图形的面积为12,则这个长方体的体积等于__________.FJ2. 若一个角的余角的度数为25︒,则它的补角的度数为__________.三、解答题21.用若干个大小相同的小立方块搭建一个几何体,从正面和上面观察这个几何体得到下面两幅形状图.(从正面看) (从上面看)(1)请画出一种从左面看这个几何体得到的形状图;(2)搭建这个几何体最少要用a =________个小立方块,最多用b =________个小立方块;(3)在(2)的条件下,若有理数x ,y 满足||x a =,||y b =,且0x y +<,求xy 的值.【答案】(1)见解析;(2)10,14;(3)140xy =或-140 【分析】(1)根据三视图中的主视图和俯视图即可画出左视图;(2)由主视图和俯视图即可判断原来图形的形状,即可判断最多和最少需要多少个小正方块;(3)根据(2)可知10a =,14b =代入分情况求解即可; 【详解】解:(1)(2)最少需要:2+1+1+2+3+1=10 最多需要:2×3+2+3×2=14, ∴ a=10,b=14(3)∵||x a =,10a =, ∴10x =±. ∵||y b =,14b = ∴14=±y . ∵0x y +<,∴10x =-,14y =-或10x =,14y =-, ∴140xy =或-140. 【点睛】本题主要考查了三视图的知识,掌握三视图的画法是解题的关键;22.如图,是由10个同样大小的小正方体搭成的物体.(1)请在网格中分别画出从正面、上面观察该几何体得到的平面图形并涂上阴影....; (2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面和上面观察得到的平面图形不变,你认为最多还可以添加_________个小正方体. 【答案】(1)见解析;(2)3【分析】(1)根据三视图的画法画出从正面看、从上面看所得到的图形;(2)在俯视图的各个位置上摆放的最多数量即可.【详解】解:(1)从正面、上面观察该几何体所得到的图形如图所示:(2)根据主视图和俯视图的关系,可得最多可以添加3个,故答案为:3.【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”.23.作图题:从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.【答案】见解析.【分析】直接利用画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等,进而得出答案.【详解】【点睛】此题主要考查了作三视图,正确把握观察角度进而得出三视图的形状是解题关键.24.作图题(1)如图所示的几何体是由5个相同的正方体搭成的,请画出它的三视图.(涂阴影)(2)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(涂阴影)【答案】(1)见解析;(2)见解析.【分析】(1)根据三视图的定义画图即可;(2)根三视图的定义再结合题意画图即可.【详解】解:(1)该立体图形的三视图如图:(2)该几何体的主视图和左视图如图:【点睛】本题考查了根据立体图形画三视图,较好的空间想象能力是解答本题的关键.25.一个几何体由一些大小相同的小立方块组成,从正面和从上面看到的几何体的形状图如图所示.(1)若组成这个几何体的小立方块的个数为n,请你写出n的所有可能值(2)请你画出从左面看到的几何体所有可能的形状图【答案】(1)n=8,9,10,11;(2)见解析【分析】(1)分析题意可知几何体最底一层有5个正方体,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,分别求和即可得到答案;(2)根据形状图的定义画出图形即可.【详解】解:(1)∵俯视图有5个正方形,∴几何体的最底层有5个正方体,由主视图可知,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,∴组成该几何体的小正方体的个数为:①5+2+1=8;②5+3+1=9;③5+3+2=5+4+1=10;④5+4+2=11∴n=8,9,10,11.(2)从左面看到的形状图有以下5种情形:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.26.由几个小立方体搭成的几何体从上面看到的图形如图所示,小正方体中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和左面看到的图形.【答案】见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,4,3,左视图有3列,每列小正方形数目分别为3,4,3,据此可画出图形.【详解】从正面看从左面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】为保持这个几何体的从左面看和从正面看到的形状图不变,可在最底层第二列第三行加1个,第三列第二行加2个,第三列第三行加1个,即可得最多可以再添加4个小正方体.【详解】解:保持从上面看到的图形和从左面看到的图形不变,最多可以再添加4个小正方体;故选:B.【点睛】本题主要考查了由三视图判断几何体,根据主视图和左视图解答是解题的关键.2.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.3.B解析:B【分析】先画出几何体的左视图,再确定小正方形的个数即可解答.【详解】解:几何体的左视图为:面积为:4×1=4故选:B【点睛】考查简单几何体的三视图的画法,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.4.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.5.A解析:A【分析】根据主视图是从物体正面看所得到的图形即可解答.【详解】解:根据主视图的概念可知,主视图是从前向后观察物体所得到的图形,上半部分是一个长方形且中间有一条竖实线,下半部分是一个长方形.∴从物体的正面看得到的视图是选项A.故选:A.【点睛】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.6.B解析:B【分析】首先得到旋转后得到的几何体,找到从正面看所得到的图形即可.【详解】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,而圆锥的正投影(主视图)是等腰三角形,故选:B.【点睛】本题考查了平行投影,解题的关键是掌握正投影的概念.7.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,故选:C.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.8.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.9.D解析:D【解析】【分析】根据长方体的体积公式可得.【详解】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故选:D.【点睛】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.10.D解析:D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.11.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.12.D解析:D【解析】【分析】先细心观察原立体图形中圆柱和长方体的位置关系,找到从左面看所得到的图形即可.【详解】圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:故答案选:D.【点睛】本题考查的是简单组合体的三视图,解题时注意:左视图是从物体的左面看得到的视图.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.二、填空题13.6【分析】根据三视图可知:组成几何体的正方体的分布情况进而求出答案【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个故答案是:6【点睛】本题主要考查几何体解析:6【分析】根据三视图可知:组成几何体的正方体的分布情况,进而求出答案.【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个.故答案是:6.【点睛】本题主要考查几何体的三视图,根据三视图想象出几何体的样子,是解题的关键. 14.【分析】根据题意画出最少和最多的两种情况得出m和n计算即可【详解】由题意可画如图:m=5n=9∴m+n=14故答案为:14【点睛】本题考查三视图根据主视图和左视图得出画出俯视图中最多和最少的情况是解解析:【分析】根据题意画出最少和最多的两种情况,得出m和n,计算即可.【详解】由题意可画如图:m=5 n=9∴m+n=14.故答案为:14.【点睛】本题考查三视图,根据主视图和左视图得出画出俯视图中最多和最少的情况是解题关键.15.5【分析】先得出从上面看所得到的图形再求出俯视图的面积即可【详解】从上面看易得第一行有1个正方形第二行有3个正方形第三行有1个正方形共5个正方形s所以面积为5故答案为5【点睛】本题考查了三视图的知识解析:5【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【详解】从上面看易得第一行有1个正方形,第二行有3个正方形,第三行有1个正方形,共5个正方形,s所以面积为5.故答案为5.【点睛】本题考查了三视图的知识,熟知俯视图是从物体的上面看得到的视图是解决问题的关键. 16.矩形或正方形或平行四边形【解析】解:矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形故答案为:矩形或正方形或平行四边形解析:矩形或正方形或平行四边形【解析】解:矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形.故答案为:矩形或正方形或平行四边形.17.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.18.5【解析】试题分析:根据所给的图形可得几何体的底层应该有3+1=4个小正方体第二层应该有1个小正方体因此小正方体的个数有5个解:根据三视图的知识几何体的底面有4个小正方体该几何体有两层第二层有1个小解析:5【解析】试题分析:根据所给的图形可得,几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此小正方体的个数有5个.解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.19.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视 解析:π【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.20.35°24115°【分析】根据角的数量关系求得∠AOD 的度数然后求解∠AOB 的度数然后根据补角的概念进行计算即可;FJ1由主视图的面积=长×高长方体的体积=主视图的面积×宽得出结论;FJ2根据一个角解析:35° 24 115°【分析】根据角的数量关系求得∠AOD 的度数,然后求解∠AOB 的度数,然后根据补角的概念进行计算即可;FJ1.由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论;FJ2.根据一个角的补角比这个角的余角大90°得出补角为90°+25°,求出即可.【详解】解:由题意可得:AOC ∠=BOD ∠=90°,35DOC ∠=︒∴903555AOD AOC COD ∠=∠-∠=-=∴=5590145AOB AOD BOD ∠∠+∠=+=∴AOB ∠的补角的度数为180°-145°=35°FJ1.依题意,得长方体的体积=12×2=24.FJ2.∵一个角的余角的度数是25°,∴这个角的补角的度数是90°+25°=115°,故答案为:35°;24;115°.【点睛】本题考查了角的数量关系计算,立体图形的视图与其体积的关系,补角和余角,能知道一个角的补角比这个角的余角大90°是解此题的关键.三、解答题21.无22.无23.无24.无25.无26.无。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
北师大版九年级数学上册 第5章 投影与视图单元练习(含答案)
第5章投影与视图一.选择题1.下列所述几何体中,主视图、左视图和俯视图都是正方形的几何体是()A.圆柱B.圆锥C.正方体D.长方体2.如图是某几何体放置在水平面上,则其主视图正确的是()A.B.C.D.3.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.4.图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=()A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x5.如图是一个三视图,则此三视图所对应的直观图是()A.B.C.D.6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.7.当某一几何体在投影面P前的摆放位置确定以后,改变它与投影面P的距离,其正投影的形状()A.不发生变化B.变大C.变小D.无法确定8.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.9.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(4)(3)(1)10.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③二.填空题11.一个几何体由若干大小相同的小立方块搭成的,如图分别是从它的左面,上面看到的平面图形,则组成这个几何体的小立方块最多有个.12.如图,是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出其主视图:.13.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为m.三.解答题14.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.15.小明和小红并排站立在阳光下,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此时小红的影长是多少米?16.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.17.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.18.如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.19.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,求出x的最小值.20.小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)参考答案一.选择题1.C.2.A.3.D.4.C.5.B.6.C.7.A.8.C.9.C.10.C.二.填空题11.5.12.13.12.三.解答题14.解:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即=,∴AB=8(m).答:旗杆AB的高为8m.15.解:设小红的影长是x米,根据题意得=,解得x=1.92.答:小红的影长是1.92米.16.(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.17.解:(1)线段CP为王琳在路灯B下的影长;(2)由题意得Rt△CEP∽Rt△CBD,∴,∴,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC,∴,∴,解得:AC=12米.答:路灯A的高度为12米.18.解:(1)如图所示:此光源下形成的投影是:中心投影,故答案为:中心;(2)如图所示,线段FI为立柱EF在此光源下所形成的影子.19.解:如图,由题可得CD∥AB,∴△OCD∽△OAB,∴=,即=,解得x=10,∴x的最小值为10.20.解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°==,∴AM=25,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.。
第5章 投影与视图 北师大版数学九年级上册单元闯关双测卷(测基础)及答案
第五章 投影与视图(测基础)——2023-2024学年北师大版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列光线所形成的投影是平行投影的是( )A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2.如图所示的几何体的主视图是( )A. B. C. D.3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.B.C. D.4.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是( )A. B. C. D.5.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A. B. C. D.6.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )A. B.C. D.7.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1 m的竹竿的影长是0.8 m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,她先测得留在墙壁上的影高为1.2 m,又测得落在地面的影长为2.6m,请你帮她算一下,树高是( )A.3.25 mB.4.25 mC.4.45 mD.4.75 m8.如图所示的几何体,它的左视图是( )A. B. C. D.9.图所示的是测量旗杆的高度的方法,已知AB是标杆,线段BC表示AB在太阳光下的影子,DE为旗杆,线段BD表示DE在太阳光下的影子,下列选项叙述错误的是( )A.太阳光线是平行光线B.C.只需量出AB和BD的长,就可以计算出旗杆的高D.量出AB、BC、DB的长,可以计算出旗杆的高.10.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题(每小题4分,共20分)11.图所示的几何体中,主视图的轮廓是三角形的是_____________.12.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长3米,它的影长FD是6米,同一时刻测得OA 是286米,则金字塔的高度OB是_______米.13.如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为____________.14.如图,一块直角三角尺,,测得边的中心投影的长为24 cm,则的长为___________cm.15.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在指定的位置画出如图所示物体的三视图.17.(8分)如图,AB和DE是直立在地面上的两根立柱,某一时刻AB在阳光下的投影.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.18.(10分)如图①,一个工件是由大长方体上面中间部位挖去一个小长方体后形成的,主视图是凹字形的轴对称图形.(1)请在图②中合适的位置补画该工件的俯视图;(2)若该工件表面需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆的面积. 19.(10分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图所示,此时测得地面上的影长为8米,坡面上的影长为4米已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,请计算出树的高度.20.(12分)由几个相同的棱长为1的小正方体搭成的几何体的俯视图如图(1)所示,格中的数字表示该位置的小正方体的个数.(1)请在图(2)中分别画出这个几何体的主视图和左视图;(2)根据三视图,求这个组合几何体的表面积.(包括底面积)(3)若用上述小正方体搭成的几何体的俯视图不变,各位置的小正方体个数可以改变(总数目不变),要使搭成的组合几何体的表面积最大(包括底面积),应该怎么搭,请仿照图(1),将数字填写在图(3)的正方形中.21.(12分)学习投影后,小红、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m的小红()的影子的长是3,而小颖()刚好在路灯灯泡的正下方H点,并测得.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度;(3)如果小红沿线段向小颖()走去,当小红走到中点处时,求其影子的长;当小红继续走剩下路程的到处时,求其影子的长;当小红继续走剩下路程的到处,…,按此规律继续走下去,当小红走剩下路程的到处时,其影子的长为__________m(直接用n的代数式表示).答案以及解析1.答案:A解析:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.答案:B解析:从正面看,是一个矩形,矩形的中间有一条纵向的实线.故选B.3.答案:D解析:A.影子的方向不相同,故本选项错误;B.影子的方向不相同,故本选项错误;C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;故选D.4.答案:B解析:该几何体的主视图是:故选:B.5.答案:A解析:光线由上向下照射此正六棱柱时的正投影是从上向下看该几何体得到的平面图形,应为.6.答案:C解析:卯的俯视图是,故选C.7.答案:C解析:如图,设是在地面上的影子,树高为,∵一根长为1 m的竹竿的影长是0.8 m,,,即.∴树在地面上的实际影长是0.96+2.6=3.56(m).根据竹竿的高与其影子的比值和树高与其影子的比值相同,得,解得.∴树高是4.45 m.8.答案:C解析:该几何体的左视图如选项C所示,故选C.9.答案:C解析:由太阳光线是平行光线,可得,又,,,,即已知AB、BC、DB的长,可以计算出旗杆的高,故A,B,D中叙述正确,不符合题意;C中,只量出AB和BD的长,不知道BC的长,不能求出旗杆的高,故C中叙述错误,符合题意.故选C.10.答案:D解析:由题意可得,甲说他看到的是“6,丁说他看到的是“9”,说明两人坐对面,乙和丙坐对面,又乙说他看到的是“”,乙在甲右边,则丙在丁右边.故选D.11.答案:②③解析:①的主视图的轮廓是矩形;②的主视图的轮廓是三角形,③的主视图的轮廓是等腰三角形,故答案是②③.12.答案:143解析:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,解得:,经检验,是原方程的解,.故答案为:143.13.答案:解析:根据题意,作,树高为CD,且,,,,,即,解得.故答案为: 4 .14.答案:解析:,.,,.15.答案:7解析:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是5个或6个或7个.故答案为:7.16.答案:解析:该物体的三视图如图所示17.解析:(1)连接AC,过点D作,交直线BC于点F,线段EF即为DE的投影.(2),.,.,(m).18.答案:(1)俯视图如图所示.(2).答:需涂油漆的面积为.19.答案:如图,延长AC交直线BD于点F,过点C作于点E.在中,米,,则米,所以米.根据同一时刻物高与影长对应成比例,得,则米,所以米.又,所以米,所以树的高度为米.20.答案:(1)这个几何体的主视图和左视图如图所示:(2)由俯视图知,上表面共有3个小正方形,下表面共有3个小正方形;由左视图知,左表面共有4个小正方形,右表面共有4个小正方形;由主视图知,前表面共有5个小正方形,后表面共有5个小正方形.每个小正方形的面积为1,故这个组合几何体的表面积为.(3)(答案不唯一)要使表面积最大,则需满足两个小正方体重合的面最少,此时俯视图如下:21.解析:(1)如图所示.(2),.,.(3)同(2)得,.设长为,则,解得,即.同理,,解得.,解得.。
北师大版九年级数学上册第五章投影与视图单元练习卷含答案
三.解答题(共 5 小题) 19.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数
目的范围.
【解答】解:根据题意,构成几何体所需正方体最多情况如图(
1)所示,构成几何体所
需正方体最少情况如图( 2)所示:
所以最多需要 11 个,最少需要 9 个小正方体. 20.如图,是某几何体从三个方向分别看到的图形.
22.如图是由 5 个边长为 1 的正方体叠放而成的一个几何体,请画出这个几何体的三视 图.(用铅笔描黑)
23.某校墙边有甲、乙两根木杆,已知乙木杆的高度为
1.5 m.
( 1)某一时刻甲木杆在阳光下的影子如图所示,画出此时乙木杆的影子
DF.
( 2)△ ABC∽△ DEF,如果测得甲、乙木杆的影子长分别为 1.6 m和 1m,那么甲木杆的高
D.以上都可能
二.填空题(共 11 小题)
8.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下
4 种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?
(填序号).
9.水平放置的长方体的底面是长和宽分别是
4 和 6 的长方形, 它的左视图的面积是 12,则
这个长方体的体积等于
.
10.如图是由 6 个棱长均为 1 的正方体组成的几何体,它的左视图的面积为
.
11 .如图的几何体由若干个棱长为
积
.
1 的正方体堆放而成,则这个几何体的俯视图面
12.如图是由若干个棱长为
的是
cm2 .
1cm 的小正方体堆砌而成的几何体,那么其三视图中面积最小
13.观察下面的几何体,从上面看到的是
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试卷(有答案解析)
一、选择题1.如图所示的立体图形,其俯视图正确的是()A.B.C.D.2.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几-=()何体的小正方体最少有a个,最多有b个,b aA.3 B.4 C.5 D.63.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11 B.10 C.9 D.84.观察如图所示的几何体,从左面看到的图形是()A.B.C.D.5.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A.B.C.D.6.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.127.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.8.如图所示,该立体图形的俯视图是()A.B.C.D.9.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.10.若几何体的三视图如图所示,则该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱11.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.14.如图,一个 5 ⨯ 5 ⨯ 5 的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则凿掉部分的体积为_____.15.如图是两棵小树在同一时刻的影子,那么图①是________投影,图②是________投影.16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为___________.17.小刚身高1.72m,他站立在阳光下的影子长为0.86m,紧接着他把手臂竖直举起,影子长为1.15m,那么小刚举起的手臂超出头顶是_________m.18.某长方体从左面看和从上面看得到的图形如图所示,则此长方体的表面积为________.19.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.画出该几何体的主视图、左视图、俯视图.【答案】见解析【分析】观察图形可知,从正面看到的图形是3列,分别有1,1,2个正方形;从左面看到的图形是2列,分别有2,1个正方形;从上面看到的图形是2行,分别有3,2个正方形;据此即可画图.【详解】解:如图所示:.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.22.“如图是由10个同样大小的小正方体搭成的几何体,(1)请分别画出它的主视图和左视图.(2)如果在这个几何体的表面喷上黄色的漆(底面不涂色),有_________个小正方体只有两面黄色,有_________个小正方体只有三面黄色,(3)在俯视图和左视图不变的情况下,你认为最多还可以添加_________个小正方体.【答案】(1)见解析;(2)2,3;(3)4【分析】(1)主视图从左至右每列个数分别为3、1、2,左视图左至右每列个数分别为3、2、1.(2)注意题干中的底面不涂色,涂2面的在第一层后面最左面的2个,涂3面的在中间层的后面的左面和第一层的最中间以及第一层的最后最右面,一共3个.(3)要使俯视图和左视图不变,可以在第二列,第二层和第三层的3个空缺处添加,第三层第三列的最上面也可添加.【详解】(1)(2)设由下到上分别是第一层到第三层,由左到右分别是第一列到第三列,有前到后分别是第一行到第三行.有2个面是黄色的应为第一层第一列第三行和第一层第二列第三行的2个小正方体.有3个面是黄色的应为第二层第一列第三行、第一层第二列第二行和第一层第三列第三行的3个小正方体.故答案为2,3.(3)要使俯视图和左视图不变,可添加至第二层第二列第二行、第二层第二列第三行、第三层第二列第三行、第三层第三列第三行.所以可添加4个小正方体.故答案为4.【点睛】本题主要考查作三视图.利用空间想象能力,并把几何体按空间排序来解决问题.23.如图是由5个棱长为1的小正方体组成的简单几何体,作出三视图.【答案】见解析【分析】从正面看得到从左往右3列正方形的个数依次为1,2,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,由此画出图形即可.【详解】【点睛】本题考查几何体的三视图画法,仔细观察三视图的特点是解题的关键.24.如图,三棱柱的上下底面均为周长为12cm 的等边三角形,现要从中截取一个上下底面均为等边三角形且底面周长为3cm 的小三棱柱.(1)请写出截面的形状______;(2)若小三棱柱的高为6cm ,则截去小三棱柱后,剩下的几何体的棱长总和是多少?【答案】(1)长方形;(2)46【分析】(1)依据大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱,即可得到截面的形状;(2)依据△ADE 是周长为3的等边三角形,△ABC 是周长为10的等边三角形,即可得到四边形DECB 的周长,再计算棱长总和.【详解】解:(1)由题意可知,截面是长方形,故填:长方形;(2)1cm DE =,3cm BD CE ==,4cm BC =()1334246222446+++⨯+⨯=+=(cm ).【点睛】本题主要考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.25.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF =4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a ﹣2b 、高为b ,则这个纸盒的容积为b(a ﹣2b)2,故答案为:b(a ﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.2.C解析:C【分析】由主视图、俯视图可知,俯视图最多可能为2×3的长方形,再在俯视图上各个位置,摆放小立方体,即可得到a和b的值.【详解】由主视图、左视图可知,俯视图最多可能为2×3的长方形,在相应位置摆放小立方体,直至最少,如图所示:a ,∴5在相应位置摆放小立方体,直至最多,如图所示:b=,∴10b a-=-=.∴1055故选:C.【点睛】本题考查了简单几何体的三视图的意义和画法,主视图反映的是几何体长与高的关系、左视图反映宽与高的关系,画三视图时还要注意“长对正、宽相等、高平齐”.3.A解析:A【分析】首先从正视图易得这个几何体共有3层,由俯视图可得第一层正方体的个数;然后再根据主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】从正面看这个几何体共有3层,由俯视图可得第一层正方体的个数是6个;由主视图可得第二层最多有正方体2个,最少有1个,第三层最多的正方体的个数是2个,最少有1个,∴这个几何体中小立方块的个数最多有:6+2+2=10个,最少有:6+1+1=8个,故选:A.【点睛】本题主要考查的是三视图判断几何体,熟练掌握几何体的三视图画法是解题的关键.4.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.6.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.7.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.8.C解析:C【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【详解】从上面看是一个正方形,正方形的左下角是一个小正方形,故C正确;故选:C【点睛】考核知识点:三视图.理解视图的定义是关键.9.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.10.D解析:D【解析】【分析】根据两个视图是长方形得出该几何体是柱体,再根据俯视图是三角形,得出几何体是三棱柱.【详解】主视图和左视图是长方形,几何体是柱体,俯视图的大致轮廓是三角形,∴该几何体是三棱柱;所以D选项是正确的.【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.11.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.14.49【分析】分别计算前后上下左右方向凿掉的体积然后求和即可【详解】前后方向凿掉部分的体积为5525上下方向又凿掉了522214左右方向又凿掉了5210凿掉部分的总体积为2514解析:49【分析】分别计算前后、上下、左右方向凿掉的体积,然后求和即可.【详解】前后方向凿掉部分的体积为 5 ⨯ 5 = 25 ,上下方向又凿掉了 5 ⨯ 2 + 2 ⨯ 2 = 14 ,左右方向又凿掉了5 ⨯ 2 = 10 ,∴凿掉部分的总体积为 25 + 14 + 10 = 49【点睛】本题考查不规则图形的几何体的体积,关键是找到凿掉小正方形的个数.15.平行中心【解析】【分析】两物体若是平行投影则等比例放大或缩小中心投影则不同【详解】图①是平行投影图②是中心投影故答案为:平行中心【点睛】本题考查了平行投影和中心投影的知识关键是掌握平行投影和中心投影解析:平行中心【解析】【分析】两物体若是平行投影,则等比例放大或缩小,中心投影则不同.【详解】图①是平行投影,图②是中心投影.故答案为:平行、中心.【点睛】本题考查了平行投影和中心投影的知识,关键是掌握平行投影和中心投影的特点与不同.16.cm2【解析】根据三视图得到圆锥的底面圆的直径为6cm即底面圆的半径为3cm圆锥的高为4cm所以圆锥的母线长==5所以这个圆锥的侧面积=π×3×5=15π(cm2)故答案为15πcm2解析:15πcm2【解析】根据三视图得到圆锥的底面圆的直径为6cm,即底面圆的半径为3cm,圆锥的高为4cm,所以圆锥的母线长,所以这个圆锥的侧面积=π×3×5=15π(cm2).故答案为15πcm2.17.58【解析】设小刚举起的手臂超出头顶xm因为阳光下的身高与影子的长是成比例的所以172:086=(172+x):115解得x=058故答案为058解析:58【解析】设小刚举起的手臂超出头顶xm,因为阳光下的身高与影子的长是成比例的,所以1.72:0.86=(1.72+x):1.15,解得x=0.58,故答案为0.58.18.38【解析】解:由图知:长方体的长为4宽为3高为1故长方体的表面积=2×4×3+2×3×1+2×4×1=38故答案为38解析:38【解析】解:由图知:长方体的长为4,宽为3,高为1.故长方体的表面积=2×4×3+2×3×1+2×4×1=38.故答案为38.19.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形;故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。
(常考题)北师大版初中数学九年级数学上册第五单元《投影与视图》测试题(包含答案解析)
一、选择题1.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时2.如图所示的立体图形,其俯视图正确的是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.5.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等6.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.7.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.8.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.9.物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.10.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为______cm.14.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.15.一个几何体是由一些完全相同的小立方块搭成的,从三个不同的方向看到的情形如图所示,则搭成这个几何体共需这样的小方块______个.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)18.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).19.一个几何体的三视图如图所示,则该几何体的体积为________.20.将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是____.(只需写一个条件)三、解答题21.画出下面立体图形的三视图.【答案】详见解析【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,分别画出即可.【详解】解:如图所示:【点睛】本题考查了简单组合体的三视图,几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形,考查了学生的空间想象能力.22.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题的关键.23.从正面、左面、上面三个方向看该立体图形,请在下面网格中分别画出看到的平面图形.【答案】见解析【分析】从正面看:共有4列,从左往右分别有1,3,1,1个小正方形;从左面看:共有3列,从左往右分别有3,1,1个小正方形;从上面看:共分4列,从左往右分别有1,3,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】考查了作图-三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.24.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,请回答以下问题:(1)该几何体至少是用________个小立方块搭成的,最多是用________个小立方块搭成的;(2)请你画出使用小立方块最少时从左面看到的该几何体的形状图,要求画出所有符合要求的形状图.【答案】(1)6,8;(2)见解析【分析】(1)根据主视图可得,俯视图中第一列中至少一处有2层,俯视图中第一列中最多3处有2层,由此即可判断.(2)根据形状图的定义分三种情形画出图形即可.【详解】解:(1)根据主视图可得,俯视图中第一列中至少一处有2层;所以该几何体至少是用6个小立方块搭成的,根据主视图可得,俯视图中第一列中最多3处有2层;所以该几何体最多是用8个小立方块搭成的,故答案为6,8.(2)所有符合要求的形状图如图所示:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a﹣2b、高为b,则这个纸盒的容积为b(a﹣2b)2,故答案为:b(a﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.2.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.5.D解析:D【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.8.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.9.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.10.C解析:C【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.4πcm【分析】根据主视图是等腰三角形利用等腰三角形的性质勾股定理求得底边的长这就是圆锥底面圆的直径计算周长即可【详解】如图根据主视图的意义得三角形是等腰三角形∴三角形ABC是直角三角形BC==2∴解析:4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC是直角三角形,BC=()2222642AB AC -=-=2,∴底面圆的周长为:2πr=4πcm .故答案为:4πcm .【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键. 14.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr 2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.15.5【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】解:综合主视图俯视图左视图底层有4个正方体第二层有1个正方体所以搭成这 解析:5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故答案为:5.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.18.可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似【详解】解:∵中心投影是由点光源发出的光线形成的投影∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形解析:可能【分析】根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.【详解】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.【点睛】本题考查了相似三角形的应用及中心投影的知识,解题的关键是了解中心投影是由点光源发出的光线形成的投影.19.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视解析:【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.20.平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻平行物体的投影仍旧平行即可得到正确的答案【详解】矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形;故答案 解析:平行四边形(答案不唯一)【分析】根据平行投影下平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得到正确的答案.【详解】矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形; 故答案为:平行四边形.【点睛】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.三、解答题21.无22.无23.无24.无25.无26.无。
北师大新版九年级上册《第5章投影与视图》单元测试卷(4)及答案解析
北师大新版九年级上册《第5章投影与视图》单元测试卷一、选择题:(每小题3分,共30分)1.小明从正面观察如图所示的物体,看到的是( )A.B.C.D.2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A.B.C.D.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( )A.汽车开的很快B.盲区减小C.盲区增大D.无法确定5.由下列光线形成的投影不是中心投影的是( )A.手电筒B.探照灯C.太阳D.电灯6.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形8.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.以上都有可能D.以上都不可能9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米二.填空题:(每小题3分,共18分)11.我们常说的三种视图分别是指__________、__________、__________.12.请写出三种视图都相同的两种几何体是__________.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称__________.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有__________个碟子.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米.则电线杆AB长=__________米.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是__________cm2.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.四、解答题(19题12分,20题12分,21题13分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(13分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?北师大新版九年级上册《第5章投影与视图》单元测试卷一、选择题:(每小题3分,共30分)1.小明从正面观察如图所示的物体,看到的是( )A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选C.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m【考点】相似三角形的应用.【专题】计算题.【分析】设旗杆高为xm,则利用在同一时刻物高与影长的比相等得到=,然后根据比例性质求x即可.【解答】解:设旗杆高为xm,根据题意得=,解得x=20,即旗杆高为20.故选C.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A.B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( )A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【考点】视点、视角和盲区.【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.5.由下列光线形成的投影不是中心投影的是( )A.手电筒B.探照灯C.太阳D.电灯【考点】中心投影.【分析】利用中心投影和平行投影的定义判断即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C 选项得到的投影为平行投影.故选C.【点评】本题考查了中心投影的定义,解题的关键是理解中心投影的形成光源是灯光.6.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【考点】平行投影.【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.8.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.以上都有可能D.以上都不可能【考点】平行投影.【分析】根据圆形的物体与太阳光线的位置关系进行判断.【解答】解:圆形的物体在太阳光的投影下可能为圆形,也可能为椭圆形.故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.【考点】几何体的展开图.【分析】本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【解答】解:根据题意及图示只有A经过折叠后符合.故选:A.【点评】本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用.【专题】压轴题;转化思想.【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC■BC,AB■BC,■GC■AB,■■GCD■■ABD(两个角对应相等的两个三角形相似),■,设BC=x,则,同理,得,■,■x=3,■,■AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.二.填空题:(每小题3分,共18分)11.我们常说的三种视图分别是指主视图、俯视图、左视图.【考点】平行投影.【分析】根据三视图的定义求解.【解答】解:我们常说的三种视图分别是指主视图、俯视图、左视图.故答案为主视图、俯视图、左视图.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.记住三视图的定义.12.请写出三种视图都相同的两种几何体是球,正方体(答案不唯一).【考点】由三视图判断几何体.【专题】开放型.【分析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为球,正方体(答案不唯一).【点评】考查由三视图判断几何体;常见的三视图相同的几何体如球,正方体等应熟记.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.【考点】由三视图判断几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥.【解答】解:根据三视图可以得出立体图形是圆锥,故答案为:圆锥.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12个碟子.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5则这个桌子上共有12个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米.则电线杆AB长=4.5米.【考点】相似三角形的应用.【分析】根据题意求出■ECD■■EBA,利用相似三角形的对应边成比例即可解答.【解答】解:■CD■AB,■■ECD■■EAB,■ED:EB=CD:AB,■2:6=1.5:AB,■AB=4.5米.答:电线杆AB长为4.5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是36cm2.【考点】几何体的表面积.【专题】计算题.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积为6×(1×1),从正面看面积为6×2×(1×1),从两个侧后面看面积为2×6×(1×1),底面看到的面积为6×(1×1),故这个几何体的表面积为36cm2.故答案为36cm2.【点评】几何体的表面积是所有围成几何体的表面面积之和.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.【考点】作图-三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,1,左视图有2列,每列小正方形数目分别为2,3,2.俯视图有3列,每一列的正方形个数为3,3,3据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、解答题(19题12分,20题12分,21题13分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)【考点】相似三角形的应用.【专题】阅读型.【分析】如图容易知道CD■BD,AB■BE,即■CDE=■ABE=90°.由光的反射原理可知■CED=■AEB,这样可以得到■CED■■AEB,然后利用对应边成比例就可以求出AB.【解答】解:由题意知■CDE=■ABE=90°,又由光的反射原理可知■CED=■AEB,■■CED■■AEB■■.■AB≈5.2米.答:树高是5.2米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF■AC,交直线BC于点F,线段EF即为DE的投影.(2)■AC■DF,■■ACB=■DFE.■■ABC=■DEF=90°■■ABC■■DEF.■,■■DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.(13分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】解直角三角形的应用;平行投影.【专题】应用题;压轴题.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt■DCE,其中有CE=30米,■DCE=30°,解三角形可得DE的高度,再由DB=BE+ED可计算出新建楼房的最高高度.【解答】解:过点C作CE■BD于E.■AB=40米,■CE=40米,■阳光入射角为30°,■■DCE=30°,在Rt■DCE中tan■DCE=.■,■DE=40×=米,■AC=BE=1米,■DB=BE+ED=1+=米.答:新建楼房最高为米.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.需注意通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形.。
北师大版九年级数学(上)第5章 投影与视图常考题及答案解析
《第5章投影与视图》常考题1.如图是某兴趣社制作的模型,则它的俯视图是( )A.B.C.D.2.在小明住的小区有一条笔直的路,路中间有一盏路灯,一天晚上,他行走在这条路上,如图,当他从A点走到B点的过程,他在灯光照射下的影长l与所走路程s的变化关系图象大致是( )A. B. C. D.3.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )A. B. C. D.4.如图所示的几何体,其俯视图是( )A.B.C.D.5.下列光线所形成是平行投影的是( )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线6.下列几何体中,从正面观察所看到的形状为三角形的是( )A. B. C. D.7.下列结论中正确的是( )①在阳光照射下,同一时刻的物体,影子的方向是相同的.②物体在任何光线照射下影子的方向都是相同的.③固定的物体在路灯照射下,影子的方向与路灯的位置有关.④固定的物体在光线照射下,影子的长短仅与物体的长短有关.A. ①③B. ①③④C. ①④D. ②④8.已知某物体的三视图如图所示,那么与它对应的物体是( )A. B. C. D.9.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A. B.C. D.10.下列立体图形中,它的三视图都相同的是( )A. B. C. D.11.从正面和上面看一个几何体的平面图形,如图所示.若这个几何体最多由n个小正方体组成,最少由m个小正方体组成,则m+n=______.12.一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为______.13.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是.14.将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为______ .15.如图所示,水平放置的长方体的底面是长为4cm、宽为2cm的长方形,它的主视图的面积为16cm2,则长方体的体积等于______cm3.16.请写出一个三视图都相同的几何体:______.17.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多离开树干______米才可以不被阳光晒到?18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为______ .19.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为______m.20.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是2×2的正方形.若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则最多可以拿掉小方块的个数为______ .21.如图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图.22.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.23.(1)如图是一个组合几何体的两种视图,请写出这个组合几何体是由哪两种几何体组成的;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的体积.(结果保留π)24.如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:mm).(1)直接写出上下两个长方体的长、宽、高分别是多少;(2)求这个立体图形的体积.25.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14,单位:cm)26.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.27.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子的主视图.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.28.如图,从上往下看A、B、C、D、E、F六个物体,能得到a、b、c、d、e、f六个图形,请把上下两行中对应的图形与物体连接起来.29.如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.30.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?答案和解析1.【答案】B【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.根据俯视图即从物体的上面观察得得到的视图,进而得出答案.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.2.【答案】C【解析】解:当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长.故选:C.根据中心投影的特点,当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长,即随S的逐渐增大,l先由大变小,再由小变大,从而可对四个选项进行判断.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了函数图象.3.【答案】A【解析】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.由已知条件可知,左视图有2列,每列小正方形数目分别为3,2.据此可作出判断.本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.【答案】A【解析】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.【答案】A【解析】解:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选:A.判断投影是平行投影的方法是看光线是否是平行的,如果光线是平行的,所得到的投影就是平行投影.本题考查平行投影的概念,属于基础题,注意基本概念的掌握是关键.6.【答案】A【解析】解:A.从正面看是一个等腰三角形,故本选项符合题意;B.从正面看是一个矩形,矩形的中间有一条纵向的实线,故本选项不符合题意;C.从正面看是一个圆,故本选项不符合题意;D.从正面看是一个矩形,故本选项不符合题意;故选:A.利用从正面看到的图叫做主视图判断即可.此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.7.【答案】A【解析】解:①由于太阳光线是平行光线,所以物体在阳光照射下,影子的方向是相同的,故正确;②物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故错误.所以正确的有①③.故选:A.利用平行投影和中心投影的特点和规律分别分析可判断正误.本题考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.8.【答案】C【解析】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影的特点,利用两小树的影子的方向相反可对选项A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对选项C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.10.【答案】A【解析】解:球的三视图都是大小相同的圆,因此选项A符合题意;圆锥的主视图、左视图都是等腰三角形,俯视图是圆,因此选项B不符合题意;三棱柱主视图、左视图是长方形,俯视图为三角形,因此选项C不符合题意;圆柱的主视图、左视图是长方形,俯视图为圆,因此选项D不符合题意;故选:A.根据球体、圆锥体、圆柱体、三棱柱的三视图进行判断即可.本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.11.【答案】16【解析】解:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,n=4+3+2=9,m=4+2+1=7,所以m+n=9+7=16.故答案为:16.主视图、俯视图是分别从物体正面、上面看所得到的图形.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.12.【答案】7【解析】解:由俯视图易得最底层有4个正方体,由主视图第二层最少有2个正方体,由主视图第三层最少有1个正方体,那么最少有4+2+1=7个立方体.故答案为:7.易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最少个数.13.【答案】从不同的方向观察同一物体时,看到的图形不一样【解析】解:根据从不同的方向观察物体,得到图形可能不同,所以“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.根据从不同的方向看物体得到图形可能不同,可得答案.本题考查了从不同的方向看物体.14.【答案】4【解析】解:从上面看,底层是两个小正方形,上层是两个小正方形,所以该几何体的俯视图的面积为4.故答案为:4.据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.15.【答案】32【解析】解:依题意,得长方体的体积=16×2=32cm3.故答案为:32.由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.16.【答案】球(或正方体)【解析】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.17.【答案】8【解析】解:设小明这个时刻在水平地面上形成的影长为x米,根据题意得x1.5=107.5,解得x=2,小明这个时刻在水平地面上形成的影长为2米,因为10−2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为8.=设小明这个时刻在水平地面上形成的影长为x米,利用同一时刻物体的高度与影长成正比得到x1.510,解得x=2,然后计算两影长的差即可.7.5本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.18.【答案】66【解析】解:如图所示:AB=3√2,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.故答案为:66.根据三视图图形得出AC=BC=3,EC=4,即可求出这个长方体的表面积.此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.19.【答案】12【解析】【分析】本题只要是把平行投影的问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.利用平行投影的性质,相似三角形的对应边成比例解答.【解答】解:设旗杆的高度为xm,根据题意,得:x9=0.80.6,解得:x=12,即旗杆的高度为12m,故答案为:12.20.【答案】5【解析】解:根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,所以最多能拿掉小立方块的个数为8−(2+1)=5(个).故答案为:5.拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,即可知最多可以拿掉小立方块的个数.本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.21.【答案】解:从正面看从左往右2列正方形的个数依次为3,1;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右2列正方形的个数依次为2,1;【解析】画出从正面,左面,上面看,得到的图形即可.考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.【答案】解:这样的几何体不只有一种,它最多需要2×5=10个小立方体,它最少需要2×3+ 2=8个小立方体.小立方体最多时的左视图有2列,从左往右依次为2,2个正方形;小立方体最少时的左视图有2种情况:①有2列,从左往右依次为1,2个正方形;②有2列,从左往右依次为2,2个正方形;如图所示:【解析】利用左视图以及主视图可以得出这个几何体最多的块数、以及最少的块数.再画出这两种情况下的从左面看到的形状图.本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)这个组合几何体是由圆柱和长方体组成的;)2×6=80+24π(cm3).(2)体积=8×5×2+π(42【解析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出几何体的体积即可.此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.24.【答案】解:(1)根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm;(2)立体图形的体积是:4×4×2+6×8×2=128(mm3).【解析】(1)根据三视图得到两个长方体的长,宽,高即可;(2)根据(1)中各部分的尺寸计算体积即可.此题主要考查了由三视图判断几何体以及求几何体的体积,根据图形看出长方体的长,宽,高是解题的关键.25.【答案】解:3.14×(20÷2)2×32+30×25×40=3.14×100×32+30000=10048+30000=40048(cm3).故该几何体的体积是40048cm3.【解析】该几何体一个圆柱叠放在一个长方体上面,因此体积是一个圆柱体和一个长方体体积的和.本题考查了由三视图判断几何体的知识,解题的关键是判断该几何体的形状.26.【答案】解:由题意得:(1)2+1.5(x−1)=1.5x+0.5(2)由三视图可知共有12个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)【解析】由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为2+ 1.5(x−1).考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.27.【答案】解:(1)如图,连接MA、NB并延长,它们的交点即为路灯O的位置,再连接OC、OD,并延长交地面于点P、Q,连接PQ,则PQ为CD的影子,所以点O和PQ为所作;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,∵AB//MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF−1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.【解析】(1)连接MA、NB并延长,它们的交点即为路灯O的位置,然后再连接OC、OD,并延长交地面于点P、Q点,连接PQ,则PQ为CD的影子;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,证明△OAB∽△OMN,利用相似比等于对应高的比,计算出OF即可得到路灯O与地面的距离.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影,中心投影的光线特点是从一点出发的投射线.也考查了相似三角形的判定与性质.28.【答案】解:连线如下:【解析】俯视图是从物体上面所看到的图形,可根据各立体图形的特点进行判断.本题考查了三视图的知识,俯视图是从物体的上面看所得到的视图.29.【答案】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.【解析】(1)主视图有3列,每列小正方形数目分别为2,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为2,2,1;(2)几何体的表面积就是利用主视图、左视图、俯视图所看到的面的个数乘以2再乘以每个小正方形的面积即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.30.【答案】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴MAMO =ACOP,即MA20+MA =1.59,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.【解析】根据AC//BD//OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.此题考查了中心投影,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.。
(北师大版)北京市九年级数学上册第五单元《投影与视图》检测(包含答案解析)
一、选择题1.下面的三视图所对应的物体是().A. B. C.D.2.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11 B.10 C.9 D.83.如图所示几何体的俯视图是()A.B.C.D.4.如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是( )A .主视图相同B .左视图相同C .俯视图相同D .三种视图都不相同 5.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A .仅主视图不同B .仅俯视图不同C .仅左视图不同D .主视图、左视图和俯视图都相同 6.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π7.小明在太阳光下观察矩形木板的影子,不可能是( )A .平行四边形B .矩形C .线段D .梯形8.下列说法正确的是( )A .三角形的正投影一定是三角形B .长方体的正投影一定是长方形C .球的正投影一定是圆D .圆锥的正投影一定是三角形9.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是( )A .B .C .D . 10.如图所示的几何体,它的左视图为( ).A.B.C.D.11.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()A.B.C.D.12.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.二、填空题13.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.14.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.15.已知10个棱长为m的小正方体组成如图所示的几何体,则这个几何体的表面积是_________.16.某一时刻,长为1m的标杆影长为0.8m,此时身高为1.75m的小明影长为____m.17.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____18.某几何体的三视图如图所示,则这个几何体的名称是_________.19.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD 为2.5m,则路灯的高度AB为_____米.cm.20.如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为2三、解答题21.(1)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图1所示,其中小正方形中的数字表示在该位置的小立方块的个数,请在方格纸画出从正面和从左面看到的这个几何体的形状图.(2)如图2,已知四点A、B、C、D,根据下列语句,画出图形.①连接AD;②画直线AB、CD交于点E;③连接DB,并延长线段DB到点F,使DB=BF;④图中以D为顶点的角中,小于平角的角共有个.【答案】(1)见解析;(2)①见解析;②见解析;③见解析;④5【分析】(1)由已知条件可知,主视图有3列,每列小正方形数目分别为3,3,1;左视图有3列,每列小正方形数目分别为3,3,2.据此可画出图形.(2)①用线段连接AD即可;②根据直线的定义画图即可;③用线段连接DB,再延长即可;④根据角的定义解答即可.【详解】解:(1)如图所示:(2)①如图所示;②如图所示;③如图所示;④图中以D为顶点的角中,小于平角的角共有5个.故答案为5.【点睛】本题考查几何体的三视图画法,以及作图-复杂作图,熟练掌握三视图的定义、直线、射线、线段的定义是解答本题的关键.22.一个几何体是由几个相同的正方体小块搭成,从上面观察这个几何体,看到的形状如图所示,其中数字表示在该位置的小立方块的个数,分别画出从正面、左面看到的形状图.【答案】见解析.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为3、2,左视图有3列,每列小正方形数目分别为2、2、3,然后画出图形即可.【详解】解:如图所示:.【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,确定主视图和左视图的列数和每列每列小正方形数个数是解答本题的关键.23.如图,AB和DE是直立在地面上的两根立柱.AB=6m,某时刻AB在阳光下的投影为BC.(1)请在图中画出此时DE在阳光下的投影;(2)如果测得BC=4m,DE在阳光下的投影长为6m,请计算DE的长.【答案】(1)答案见解析;(2)9m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】(1)如图所示,DE在阳光下的投影为EF;(2)∵AB∥DE,AC∥DF,∴△ABC∽△DEF,∴AB BCDE EF=,即646 DE=,∴DE=9.答:DE的长为9m.【点睛】此题主要考查了应用设计与作图,正确掌握平行投影的性质是解题关键.24.下图是一个长方体的三视图(单位:cm),其中俯视图为正方形,求这个长方体的表面积.66cm【答案】()2【分析】根据三视图图形得出AC=BC=3,EC=4,然后求出这个长方体的表面积.【详解】解:如图所示:AB=32,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,66cm.故这个长方体的表面积为:48+9+9=()2【点睛】此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.25.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方体的个数.(1)请在方格纸中分别画出从正面、从左面看到的这个几何体的形状图;(2)若每个小立方体的边长为1cm,根据从三个方向看到的形状图,直接写出这个几何体的表面积为______2cm.【答案】(1)见解析;(2)24【分析】(1)由已知条件可知,从正面看有2列,每列小正方数形数目分别为2,3,从左面看有2列,每列小正方形数目分别为3,1.据此可画出图形.(2)首先确定该几何体的六个面上裸露的正方形的个数,然后确定面积即可.【详解】解:(1)如图所示.(2)该几何体的表面积为2×(3+4+5)=24;故答案为:24.【点睛】本题考查从不同方向看几何体,重点考查学生的空间想象能力,要弄清楚每个方向有几列,每列有多少个正方体.26.如图,若干个完全相同的小正方体堆成一个几何体.(1)从左面、上面观察该几何体,分别在所给的网格图中画出你所看到的形状图;(2)若现在你手头还有一些相同的小正方体,如果保持从左面、上面观察该几何体得到的形状图不变,那么堆成这样的几何体最多需要个立方块.【答案】(1)见解析;(2)2.【分析】(1)根据三视图的定义画出图形即可;(2)保持从左面、上面观察该几何体得到的形状图不变,可在后面一排第二层空缺的部分添加两个小正方体.【详解】解:(1)如图所示:(2)保持从左面、上面观察该几何体得到的形状图不变,则可以在后面一排第二层空缺的部分添加两个小正方体,即堆成这样的几何体最多需要2个立方块.【点睛】本题考查三视图,解题的关键是熟练掌握三视图的画法,属于中考常考题型.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A.【点睛】此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.2.A解析:A【分析】首先从正视图易得这个几何体共有3层,由俯视图可得第一层正方体的个数;然后再根据主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】从正面看这个几何体共有3层,由俯视图可得第一层正方体的个数是6个;由主视图可得第二层最多有正方体2个,最少有1个,第三层最多的正方体的个数是2个,最少有1个,∴这个几何体中小立方块的个数最多有:6+2+2=10个,最少有:6+1+1=8个,故选:A.【点睛】本题主要考查的是三视图判断几何体,熟练掌握几何体的三视图画法是解题的关键.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.B解析:B【分析】根据三视图解答即可.【详解】解:图1的三视图为:图2的三视图为:故选:B.【点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.5.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D .【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.6.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.7.D解析:D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.8.C解析:C【解析】【分析】根据正投影是垂直照射物体时所看到的平面图形,特别要注意这与物体的摆放有直接的关系,由此分析各选项即可得解.【详解】A. 三角形的正投影不一定是三角形,错误B. 长方体的正投影不一定是长方形,错误C. 球的正投影一定是圆,正确D. 圆锥的正投影不一定是三角形,错误故选C.【点睛】此题主要考察了正投影的概念:光线垂直照射物体所看到的平面图形叫做正投影;一个物体的正投影与物体的摆放有直接的关系.9.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:该几何体的主视图是故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.D解析:D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点睛】本题考查简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.11.D解析:D【解析】【分析】先细心观察原立体图形中圆柱和长方体的位置关系,找到从左面看所得到的图形即可.【详解】圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:故答案选:D.【点睛】本题考查的是简单组合体的三视图,解题时注意:左视图是从物体的左面看得到的视图.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.12.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.二、填空题13.710【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】解:综合主视图和俯视图这个几何体的底层有5个小正方体第二层最少有2个最多有5个因解析:7, 10.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,至多需要小正方体木块的个数为:5+5=10个,故答案为:7,10.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.15.36m2【分析】前后两面小正方形的个数为:2×(1+2+3);上下两面小正方形的个数为:2×(1+2+3);左右两面正方形的个数为:2×(1+2+3)【详解】如图所示:一共有10个小正方体构成表面共解析:36m2【分析】前后两面小正方形的个数为:2×(1+2+3);上下两面小正方形的个数为:2×(1+2+3);左右两面正方形的个数为:2×(1+2+3)【详解】如图所示:一共有10个小正方体构成表面共有2×(1+2+3)+2×(1+2+3)+2×(1+2+3)=36个正方形,因为小正方体的棱长为m,所以每个小正方形的面积为:m2.所以这个几何体的表面积36m2故答案为:36 m2.【点睛】本题主要考查组合体的表面积,解决这类题的关键是明确该几何体是由哪些特殊的几何体构成的,它们的内在联系是什么:几何体的表面积是所有围成几何体的表面面积之和.16.【分析】设小明影子长为根据同一时刻物高与影子长度对应成比例列出关于的方程即可求出答案【详解】设小明影子长为长为的标杆影长为小明身高为解之得:故答案为【点睛】本题主要考查了平行投影明确同一时刻的物高与解析:75【分析】设小明影子长为xm,根据同一时刻物高与影子长度对应成比例,列出关于x的方程,即可求出答案.【详解】设小明影子长为xm,长为1m的标杆影长为0.8m,小明身高为1.75m,∴1 1.750.8x=解之得:75x=故答案为7 5【点睛】本题主要考查了平行投影,明确同一时刻的物高与影子长度对应成比例是解题关键. 17.5【分析】根据题意求出△ECD∽△EAB利用相似三角形的对应边成比例即可解答【详解】∵CD∥AB∴△ECD∽△EAB∴ED:EB=CD:AB∴2:6=15:AB∴AB=45米答:电线杆AB长为45米解析:5【分析】根据题意求出△ECD∽△EAB,利用相似三角形的对应边成比例即可解答.【详解】∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故答案为4.5.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.18.圆柱【解析】试题解析:圆柱【解析】试题根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.点睛:主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.19.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.20.36【分析】正六角螺母侧面为6个相同的长方形求出每个长方形的面积即可得出它的侧面积【详解】2×3=6cm26×6=36cm2故答案为:36【点睛】本题主要考查正六棱柱的三视图将三视图上边的长度转化为解析:36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.三、解答题21.无22.无23.无24.无25.无26.无。
北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案
北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列是平行投影的是()A.B.C.D.2.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短3.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m4.如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()A .B .C .D .5.如图,是一个由铁铸灌成的几何体的三视图,根据图中所标数据,铸灌这个几何体需要的铁的体积为( )A .12πB .18πC .24πD .78π6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .483B .96C .144D .963二、填空题7.如图是三角尺在灯泡O 的照射下在墙上形成的影子,现测得30cm 20cm OA AA '==,,这个三角尺的面积与它在墙上形成的影子的面积的比是 .8.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长32米,它的影长FD 是3米,同一时测得OA 是274米,则金字塔的高度BO 是米.9.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (增大、变小)10.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD = .11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算该几何体的底面周长为cm .12.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.三、解答题13.在学习完投影的知识后,小张同学立刻进行了实践,他利用所学知识测量操场旗杆的高度.(1)如图,请你根据小张(AB)在阳光下的投影(BE),画出此时旗杆(CD)在阳光下的投影.(2)已知小张的身高为1.76m,在同一时刻测得小张和旗杆的投影长分别为0.44m和5.5m,求旗杆的高度.14.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为.(2)请你在图中画出小亮站立AB处的影子.15.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的表面展开图;(3)根据图中的数据,求这个几何体的侧面积.16.如图,是用几个相同的正方体搭出的几何体,请解答下列问题:(1)分别在方格纸中画出从正面、左面、上面看这个几何体时看到的图形;(2)若每个小正方体的棱长为2,要给这个几何体地面以上的部分涂上颜色,求涂色部分的面积;(3)小亮说可以在这个几何体上再摆放上几个相同的小正方体,使新几何体和原几何体分别从上面和从左面看到的形状相同,你觉得他说的对吗?如果你认为小亮说法正确请在下面的方格纸中画出两种添加小正方体后,从正面看到的新几何体的形状图;你认为可以有___________种添加小正方体的方式;满足小亮说法的添加小正方体个数最少可以摆___________个,最多可以摆___________个.如果你认为小亮说法不正确,请说明理由.参考答案题号 1 2 3 4 5 6答案 B B A A B D1.【答案】B【分析】本题考查了平行投影的知识,定义:在一束平行光线照射下形成的投影叫做平行投影.特征:平行投影的投影线是平行的.牢记平行投影的定义是解题的关键.【详解】如图所示,连接影子的顶端和物体的顶端得到投影线,若投影线平行则为平行投影.通过作图可知A、C、D中影子的顶端和物体的顶端连线不平行,只有选项B中影子的顶端和物体的顶端连线平行.故选B.2.【答案】B【分析】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.根据中心投影的特征可得小亮在地上的影子先变短后变长.【详解】解:在小亮从A处径直走到路灯下时,他在地上的影子逐渐变短;当他走到路灯下,再走到B处时,他在地上的影子逐渐变长∴小亮在地上的影子先变短后边长故选:B.3.【答案】A 【详解】∵BE∵AD ∵∵BCE∵∵ACD ∵CB CEAC CD=,即CB CE AB BC DE EC =++ ∵BC=1,DE=1.8,EC=1.2 ∵1 1.21 1.8 1.2AB =++ ∵1.2AB=1.8 ∵AB=1.5m . 故选A . 4.【答案】A【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选:A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.【答案】B【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案. 【详解】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2 则大圆面积为:224ππ⨯=,小圆面积为:21ππ⨯= 故这个几何体的体积为:64624618πππππ⨯-⨯=-=. 故选:B .【点睛】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键. 6.【答案】D【分析】根据题意,正六边形的边长为AG BG 、,过点G 作GE AB ⊥,则GE 垂直平分AB ,根据正六边形的性质求得AG ,进而求得正六棱柱的侧面积.【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ⊥∵GE 垂直平分AB由正六边形的性质可知11203032AGB A B AE AB ∠=︒∠=∠=︒==,, ∵ 323,cos30AE AG ===︒正六棱柱的侧面积66238963AG AD =⨯=⨯=故选:D .【点睛】本题考查了三视图,正多边形与圆,解直角三角形,掌握以上知识是解题的关键. 7.【答案】9:25【分析】本题考查了相似三角形的应用.先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形面积的比等于相似比的平方解答即可. 【详解】解:∵30cm 20cm OA AA '==, ∵50cm OA '= ∵:30:503:5OA OA '== ∵三角尺与影子是相似三角形∵三角尺的周长与它在墙上形成的影子的面积的比是9:25 故答案为:9:25. 8.【答案】137【分析】本题考查平行投影,根据同一时刻,物高与影长对应成比例,列出比例式进行求解即可. 【详解】解:由题意,得:EF OBFD OA= 即:323274OB =∵137OB =; 故答案为:137. 9.【答案】变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小. 故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.10.【答案】64 15m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG//AF//CD∵∵EAF∵∵ECD,∵ABG∵∵ACD∵AE:EC=AF:CD,AB:AC=BG:CD设BC=x m,CD=y m,则CE=(x+2.6)m,AC=(x+1)m∵1.6 1.62.6x y=+1 1.61x y=+解得:x=53,y=6415∵CD=64 15m.∵灯泡与地面的距离为64 15m故答案为:64 15m.11.【答案】4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形∵三角形ABC是直角三角形()2222642AB AC--∵底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.12.【答案】4【详解】解:由于是粘上的,故每一层交错拿走对角线位置的两个正方体,可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.故答案为:413.【答案】(1)见解析(2)旗杆的高度为22m.【分析】本题考查作图-应用与设计作图,设计平行投影,解题的关键是读懂题意,掌握平行投影的特征.(1)连接AE,过C作CF AE∥交BD于F,线段DF即为所求;(2)根据平行投影特征得:1.760.44 5.5CD=,即可解得答案.【详解】(1)解:连接AE,过C作CF AE∥交BD于F,如图:线段DF即为所求;(2)解:根据题意得:1.760.44 5.5CD=解得22CD=∴旗杆的高度为22m.14.【答案】(1)变短;(2)见详解.【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段P A,并延长交底面于点E,得到线段BE即可.【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FDBE>FD∵小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短故答案为:变短;(2)如图所示,连结P A,并延长交底面于E,则线段BD为求作小亮的影长.【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.15.【答案】(1)三棱柱(2)见详解(3)272cm【分析】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图.(1)根据三视图,即可解决问题;(2)画出正三棱柱的表面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可.【详解】(1)解:根据三视图可知这个几何体的名称是三棱柱.(2)这个几何体的表面展开图如下:(答案不唯一)(3)这个几何体的侧面积是2⨯⨯=.83372cm16.【答案】(1)见解析(2)108(3)小亮说法正确,图见解析,5,1,3【分析】(1)观察图形可得:从正面看到从左往右依次有小正方形的数量为2、1、3;从左面看到有小正方形的数量为3、1;从上面看到从左往右依次有小正方形的数量为2,2,1,即可求解;(2)先找出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可;(3)根据从上面和从左面看到的形状相同,添加一个小正方体,可在俯视图中添加,再验证从上面和从左面看到的形状,即可求解.【详解】(1)解∵如图(2)解∵ 2222⨯⨯+⨯⨯+⨯+⨯=6224225222108(3)解∵ 小亮说法正确有5种添加小正方体的方式,如下图其中添加小正方体个数最少可以摆1个,最多可以摆3个.故答案为∵ 5,1,3【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学上册第5章投影与视图单元测试题一.选择题(共10小题)1.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定2.如图是由几个小正方体组成的一个几何体,这个几何体从正面看到的平面图形是()A.B.C.D.3.小明在太阳光下观察矩形窗框的影子,不可能是()A.平行四边形B.长方形C.线段D.梯形4.一个长方形的正投影不可能是()A.正方形B.矩形C.线段D.点5.下面几个几何体,从正面看到的形状是圆的是()A.B.C.D.6.下列说法错误的是()A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B.对角线互相垂直的四边形是菱形C.方程x2=x的根是x1=0,x2=1D.对角线相等的平行四边形是矩形7.下列哪种影子不是中心投影()A.皮影戏中的影子B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子D.太阳光下林荫道上的树影8.电影院呈阶梯或下坡形状的主要原因是()A.为了美观B.盲区不变C.增大盲区D.减小盲区9.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如图所示,那么组合体中正方体的个数至少有几个?至多有几个?()A.5,6B.6,7C.7,8D.8,1010.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.60二.填空题(共8小题)11.从正面、左面、上面看一个几何体,三个面看到的图形大小、形状完全相同的是(写出一个这样的几何体即可).12.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达秒.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是.14.如图,电线杆的顶上有一盏高为6m的路灯,电线杆底部为A,身高1.5m的男孩站在与点A相距6m的点B处,若男孩以6m为半径绕电线杆走一圈,则他在路灯下的影子,BC扫过的面积为m2.15.用小立方体搭成一个立体图形,从上面看到的形状是,从正面看到的形状是,搭这个立体图形需要块小立方体.16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=米.(结果保留根号)17.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有.18.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.三.解答题(共7小题)19.画出如图图形的三视图.20.由5个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.21.如图,水平放置的长方体的底面是边长为2cm和4cm的矩形,它的左视图的面积为6cm2,则长方体的体积是多少?22.如图所示,太阳光线AB和A′B′是平行的,甲、乙两人垂直站在地面上,在阳光照射下的影子一样长,那么甲、乙一样高吗?说明理由.23.如图,小欣站在灯光下,投在地面上的身影AB=2.4m,蹲下来,则身影AC=1.05m,已知小欣的身高AD=1.6m,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH.24.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,求出x的最小值.25.一个几何体由大小相同的小立方体搭成,从三个方向看到的几何体的形状图如图所示.(1)求A,B,C,D这4个方格位置上的小立方体的个数;(2)这个几何体是由多少块小立方体组成的?参考答案与试题解析一.选择题(共10小题)1.解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.2.解:从正面看第一层是两个小正方形,第二层在左边位置一个小正方形,故C符合题意,故选:C.3.解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故D不可能,即不会是梯形.故选:D.4.解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是点,故选:D.5.解:从正面看到的形状是圆的是球,故选:B.6.解:A、高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,故错误,符合题意;C、方程x2=x的根是x1=0,x2=1,正确,不符合题意;D、对角线相等的平行四边形是矩形,正确,不符合题意;故选:B.7.解:∵皮影戏中的影子,晚上在房间内墙上的手影,舞厅中霓红灯形成的影子,它们的光源都是灯光,故它们都是中心投影,故选项A、B、C不符合题意,太阳光下林荫道上的树影的光源是太阳光,这是平行投影,故选项D符合题意,故选:D.8.解:电影院呈阶梯或下坡形状的主要原因是减小盲区,故选:D.9.解:由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数和最少个数,加上第一层的正方体的个数即为所求答案.第一层有1+2+3=6个正方体,第二层最少有2个正方体,所以这个几何体最少有8个正方体组成;第一层有1+2+3=6个正方体,第二层最多有4个正方体,所以这个几何体最多有10个正方体组成.故选:D.10.解:如图,补全几何体左角,根据左视图与俯视图标记几何体的尺寸.这个物体的体积:8×2×4﹣×4×1×2=64﹣4=60,故选:D.二.填空题(共8小题)11.解:球从正面看是圆形、从左面看是圆形、从上面看圆,符合题意,故答案为:球12.解:根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.13.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故答案为:圆锥.14.解:如图所示,∵AE∥BD,∴△CBD∽△CAE,∴=,即,解得CB=2,∴AC=8,∴男孩以6m为半径绕电线杆走一圈,他在路灯下的影子BC扫过的面积为π×82﹣π×62=28πm2.故答案为:28π.15.解:最下面一层有4块,上面一层最少有2块,最多有4块,故搭这个立体图形需要6或7或8块小立方体.故答案为:6或7或8.16.解:设冬天太阳最低时,甲楼最高处A点的影子落在乙楼的E处,那么图中ED的长度就是甲楼的影子在乙楼上的高度,设FE⊥AB于点F,那么在△AEF中,∠AFE=90°,EF=20米.∵物高与影长的比是1:,∴=,则AF=EF=10,故DE=FB=18﹣10.故答案为(18﹣10)17.解:由俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,那么搭成这个几何体的小正方体最多为4+2=6个.故答案为:618.解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:4×6×2=48.故答案为:48.三.解答题(共7小题)19.解:如图所示:20.解:如图所示:21.解:根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.22.解:一样高.理由如下:如图,分别过点A,A′作AC⊥BB′,交直线BB′于点C,A′C′⊥BB′,交BB′点C′,则∠ACB=∠A′C′B′=90°,BC=B′C′.又∵AB∥A′B′,∴∠ABC=∠A′B′C′,在△ABC和△A′B′C′中,∵∠ACB=∠A′C′B′,BC=B′C′,∠ABC=∠A′B′C′,∴△ABC≌△A′B′C′(ASA),∴AC=A′C′,即甲、乙两人一样高.23.解:因为AD∥PH,∴△ADB∽△HPB;△AMC∽△HPC(M是AD的中点),∴AB:HB=AD:PH,AC:AM=HC:PH,即2.4:(2.4+AH)=1.6:PH,1.05:0.8=(1.05+HA):PH,解得:PH=7.2m.即路灯的高度为7.2米.24.解:如图,由题可得CD∥AB,∴△OCD∽△OAB,∴=,即=,解得x=10,∴x的最小值为10.25.解:(1)由三视图可得:从正面看有3列,每列小正方数形数目分别为1,2,2,从左面看有2列,每列小正方形数目分别为2,2.从上面看有3列,每列小正方形数目分别为1,2,2.所以A小立方体的个数是2,B小立方体的个数是2,C小立方体的个数是2,D小立方体的个数是2,(2)这个几何体是由1+2+3=6块小立方体组成的。