人教版七年级数学上册练习题 有理数的乘方
人教版七年级上册第一章有理数加减乘除乘方混合运算练习(1)
![人教版七年级上册第一章有理数加减乘除乘方混合运算练习(1)](https://img.taocdn.com/s3/m/cf4c990d27284b73f24250d3.png)
第一章有理数加减乘除乘方混合运算练习(1)一、解答题1.计算:.2.计算:(-+)÷(-).3.231131123346⎛⎫⎛⎫⎛⎫-÷-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4.计算:(1)5-(-2)+(-3)-(+4);(2)(-)×(-24);(3)(-3)÷××(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.5.计算:(﹣3)2﹣()2×+6÷|﹣|3.6.计算:24÷(﹣2)3﹣3.7.计算:(﹣1)3+|12-|﹣(32-)0×(23-).8.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12 (2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].9.计算:﹣16÷(﹣2)3﹣|﹣116|×(﹣8)+[1﹣(﹣3)2].10.计算:(﹣32)2÷(﹣12)2÷(113)2﹣(﹣4)2﹣42.(1)()2718732-+--; (2)()2411236⎡⎤--⨯--⎣⎦.12.计算:(1)﹣5﹣16×(﹣12)3; (2)﹣22+|5﹣8|+24÷(﹣3)×13;13.(1)()()()()2316-+--+-- (2) ()()()233131682234⎡⎤⨯-+--⨯-⨯÷-⎢⎥⎣⎦14.计算:(1)-18×; (2)(-1)3-÷3×[2-(-3)2].15.计算:(1)﹣14﹣(﹣512)×411+(﹣2)3÷|﹣32+1|; (2)﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3) 16.计算:(1)(﹣16+34﹣512)×36; (2)﹣0.52+14﹣|﹣22﹣4|﹣(﹣112)3×1627.17.计算:(1)4+(﹣2)2×2﹣(﹣36)÷4 (2)﹣72+2×(﹣3)2+(﹣6)÷(﹣13)218.计算:(1)10﹣(﹣5)+(﹣9)+6 (2)(﹣2)3÷49+6×(1﹣13)+|﹣2| 19.计算: (1)(﹣16+34﹣512)×(﹣12);(2)﹣|﹣5|×(﹣12)﹣4÷(﹣12)2. 20.计算:(1)12+(﹣7)﹣(﹣15)(2)4+(﹣2)3×5﹣(﹣0.28)÷4.21.计算:(1)(﹣34+16﹣38)×(﹣24); (2)﹣14+2×(﹣3)2﹣5÷12×2(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣ ×[4﹣(﹣3)2].23.我们定义一种新运算:a *b =a 2﹣b +ab .例如:1*3=12﹣3+1×3=1. (1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值. 24.计算:(1)3﹣6×(2)﹣13﹣(1﹣)÷3×[3﹣(﹣3)2]. 25.计算: 135202463⎛⎫-++-+ ⎪⎝⎭. 26.计算:−23−17×[2−(−3)2] 27.计算:3-2×(-5)2 28.21131146824⎛⎫⎛⎫---+-÷- ⎪ ⎪⎝⎭⎝⎭ 29.计算: (1) (-58-16+712)×24+5; (2)-32-(1-12)÷3×|3-(-3)2|.30.计算:(1)(2119418--)×36(2)(﹣1)4﹣36÷(﹣6)+3×(﹣13) 31.-12 012-(1-0.5)×12+( -12+23-14)×24.32.-15-(-8)+(-11)-12. 33.|-5|-(-2)×12+(-6). 34.100÷(﹣2)2﹣(﹣2)÷(﹣12). 35.(1)计算1114125522-+---();(2)计算()()321123211⎛⎫-+⨯-⨯-÷-.36.12﹣(﹣18)+(﹣7)﹣15;37.100÷(﹣2)2﹣(﹣2)÷(﹣2) 38.﹣2﹣1+(﹣16)﹣(﹣13); 39.计算: 15218263⎛⎫-⨯-+⎪⎝⎭. 40.计算: ()15324368⎛⎫-+-⨯- ⎪⎝⎭. 41.计算:(1)()225339⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦;(2)()()2361110.5235⎡⎤---⨯⨯+-⎣⎦ 42.计算:-22÷(-14)×(34-58)-19×(-3)3; 43.计算:(-1)3-14×[2-(-3) 2] .44.计算:(−1)2013×| −3 |−(−2)3+4÷(−23)245.计算:(1) ()374--+-- (2) ()2116532⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭46.()8182188233÷+⎪⎭⎫⎝⎛⨯-⨯-47.计算:﹣(π﹣2016)02|+2sin60°.48.计算:()12013201746-⎛⎫--⨯-+ ⎪⎝⎭49.计算:(-3)4÷(1.5)2﹣6×(-)+|﹣32﹣9|50.﹣22÷(﹣1)2﹣×[4﹣(﹣5)2] 51.()()[]()[]628543-⨯--⨯--⨯- 52.()()2395.02921-⨯+⎪⎭⎫ ⎝⎛-÷- 53.计算题:(1)()()()4593-÷-⨯- ;(2)()43312424-⨯+-÷- . 54.计算①②55.计算(每小题5分,共10分)(1) -︱-2︱(2) —1×—(0.5—1) ×3÷(—32—1)56.计算:(1) ;(2)()×(-24)57.计算:(1)(-71)+(+64);(2)(-16)-(-7);(3);(4)58.计算:(1) 16÷(﹣2)3﹣()×(﹣4)(2)59.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5. 60.耐心算一算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)(2)﹣23﹣(1﹣0.5)×13×[2﹣(﹣3)2] (3)﹣3.5÷78×(﹣87)×|﹣364|(4)(23﹣112﹣415)×(﹣60)61.(1)﹣3+4﹣5;(3)16÷(﹣2)3﹣(﹣18)×(﹣4)62.计算:﹣32+2×(-2)3﹣(﹣+). 63.计算(1)()()()125884----++. (2)()512.54168⎛⎫-÷⨯-÷- ⎪⎝⎭. (3)()125366312⎛⎫-+⨯-⎪⎝⎭. (4)()()241110.543--+⨯÷-. 64.计算: (1)()()()77713176888⎛⎫⨯-+-⨯--⨯- ⎪⎝⎭. (2)()223321125⎡⎤⎛⎫--⨯---+⨯ ⎪⎢⎥⎝⎭⎣⎦.65.计算:(1)34177536411411⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭; (2)()3421415231211⎛⎫⎡⎤---⨯+-÷-+ ⎪⎣⎦⎝⎭; (3)()2461131311124842834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭66.计算(1)(﹣8)+10+2+(﹣1); (2)|152-|×(1132-)×0.6÷(﹣1.75); (3)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]; (4)﹣32×(﹣13)2+(313468++)×(﹣24). 67.计算下列各题:(1)(+16)-(-34)+(-11); (2)()948149-÷⨯ ;(3)(1316412-+-)×(-48);(4)()245150.813⎛⎫-÷-⨯-+- ⎪⎝⎭.68.计算:69.计算题: (1)﹣5﹣65;(2)(﹣0.02)×(﹣20)×(﹣5)÷29; (3)4+(﹣2)2×2﹣(﹣36)÷4; (4)﹣2﹣|﹣3|+(﹣2)2. 70.计算: (1)11313252442⎛⎫⎛⎫⎛⎫⎛⎫---++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)()()94811649-÷⨯÷-. (3)()271112669126⎛⎫--+⨯-⎪⎝⎭. (4)()()()3200821223|23|----⨯-+--. 71.计算:(1)12﹣(﹣18)+(﹣12)﹣15;(2)(﹣38+712)×(﹣24) (3)(﹣34)×113÷(﹣112);(4)(﹣2)3×(﹣12)﹣(﹣3) 72.计算:(1)(﹣3)2﹣9÷(﹣3)×(﹣13) (2)﹣14+(0.5﹣1)×[﹣2﹣(﹣2)3]. 73.计算:(﹣2)4÷(﹣223)2+512×(﹣16)﹣0.25. 74.计算: (1) ()()2414 4.53⎛⎫-÷-⨯- ⎪⎝⎭; (2) 5191631442⎛⎫⎛⎫+-÷-⎪ ⎪⎝⎭⎝⎭;(3) ()32114321133⎛⎫⎛⎫-+⨯-⨯-÷- ⎪ ⎪⎝⎭⎝⎭; (4) ()2215130.34130.343737-⨯-⨯+⨯--⨯ (用简便方法计其) 75.计算:(23﹣16+34)×(﹣24)76.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣314)+2.75﹣712;(3)(1572612+-)×(﹣36);(4)﹣14﹣(512)×411+(﹣2)3+|32-1|77.计算: 10.53 2.757.54⎛⎫---+- ⎪⎝⎭.78.计算: ()121223--+-+-; 79.计算:(1)(+ 3.4)+(-549)-(-435)-(+259);(2)-4+(-335)×53-(- 24)÷4; (3)(-134+2712-159)÷(-136);(4)-12018-(1-0.5)×13×[2-(-3)3].80.计算下列各题(1)(-25)-9-(-6)+(-3);(2)-22-24×(-+);(3)(-3)3+[10-(-5)2×2]÷(-2)2. 81.计算题(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9) (2)3×(﹣4)+(﹣28)÷7. (3)﹣14﹣(﹣2)3×(﹣135)+|0.8﹣1|. (4)(﹣25)÷54×45÷(﹣16) 82.计算:(1)3﹣6﹣(﹣7)+(﹣14);(2)﹣(﹣1)﹣|0.5﹣1|×13. 231(2)﹣22+3×(﹣1)3﹣(﹣4)×5. 84.计算:(1)(-612)×413-8÷|-4+2|; (2)(-2)4÷(-223)2+512×(-16)-0.25.85.计算:(1)-28-(-19)+(-24); (2)()157122612⎛⎫-+-⨯- ⎪⎝⎭; (3)()()24112376⎡⎤--⨯--÷-⎣⎦.86.(95-)×2353113824⎡⎤⎛⎫⎛⎫⎛⎫-+-÷--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.87.计算:(1)3×(﹣4)+18÷(﹣6) (2)(﹣2)2×5+(﹣3)3÷4. 88.计算:①8+(-10)+(-2)-(-5) ②()1002-1-5-4-3-4⨯⨯89.计算:(本题10分)(1) ()1218-- (2) ()241110.5233⎡⎤⨯⨯--⎣⎦--(-)90.计算 (1)()317542⎛⎫---+- ⎪⎝⎭; (2)111369618⎛⎫-++⨯- ⎪⎝⎭() (3)1122311+--⨯-()() (4)0-23÷(-4)3-1891.计算:(1)()()12187--+- (2)31112424⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)213132123482834⎛⎫⎛⎫-÷--+-⨯ ⎪ ⎪⎝⎭⎝⎭92.计算 (1)()1731160312415⎛⎫-+-⨯-⎪⎝⎭ (2)()()432411221382⎛⎫⎛⎫⎡⎤-÷-+-÷---- ⎪ ⎪⎣⎦⎝⎭⎝⎭.93.计算题 (1) 8+(﹣14)﹣5﹣(﹣0.25) (2) ()12724834⎛⎫--+⨯- ⎪⎝⎭(3) ﹣14﹣16×[2﹣(﹣3)2] (4)、()22015211222721343⎛⎫⎛⎫-⨯--÷⨯--- ⎪ ⎪⎝⎭⎝⎭94.计算:(1)(+23)+(—17)+(+6)+(—22) (2)—12017—(1—0.5)×13(3)—3×(—13)2 (4)(—32)÷(—2)3×33495.计算:(1) (+12)+(-23)-(-32); (2)()()232524-⨯--÷ 96.计算: (1)()()33517.521.753488⎛⎫+-++--- ⎪⎝⎭(2)352178248208⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭(3)()()()2322183263⎛⎫-+-⨯-+-÷- ⎪⎝⎭97.331530.75524828⎛⎫⎛⎫-++-+-+-⎪ ⎪⎝⎭⎝⎭.98.计算题(1)12﹣(﹣16)+(﹣4)﹣5(2)(﹣10)+8×(﹣2)﹣(﹣4)×(﹣3)(3)-- [22﹣()]×12(4)()99.(1)计算:11112462⎛⎫+-⨯⎪⎝⎭(2)25×34-(-25)×12+25×(14-)(3)()32-+()3-×[()24-+2]-()23-÷()2-. 100.计算与化简:(1)-10-(-16)+(-24);(2)5÷(-35)×53(3)4×(-725)+(-2)2×5-4÷(-512);约214道小题参考答案1.【解析】分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.详解:原式===.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.17【解析】分析:将除法变为乘法,再根据乘法分配律计算即可求解. 详解:原式点睛:考查有理数的混合运算,掌握运算法则是解题的关键.3.-4【解析】分析:根据有理数的混合运算的顺序进行运算即可. 详解:原式1131121292746⎛⎫=÷-⨯-⨯ ⎪⎝⎭ ()127929=⨯-- 37=-4.=-点睛:考查有理数的混合运算,掌握有理数的混合运算的顺序是解题的关键.4.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=5+2﹣3﹣4=5﹣3+2﹣4=2﹣2=0;(2)原式=×24+×24﹣×24=18+15﹣18=15;(3)原式=(﹣3)×××(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.5.28【解析】【分析】按运算顺序先分别进行平方运算、立方运算,然后再进行乘除法运算,最后进行加减法运算即可得.【详解】原式=9﹣===.【点睛】本题考查了有理数的混合运算,掌握运算法则,确定好运算顺序是解题的关键. 6.-6【解析】试题分析:根据有理数的混合运算,先算乘方,再算乘除,最后算加减,依次计算即可.试题解析:24÷(﹣2)3﹣3=24÷(﹣8)﹣3=﹣3﹣3=﹣67.1 6【解析】试题分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.试题解析:解:原式=﹣1+12﹣1×(﹣23)=﹣1+12+23=16.点睛:本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(1)-24(2)-(3)(4)32【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:原式(2)原式(3)原式(4)原式=32.9.152- 【解析】试题分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 试题解析:原式()()()1111688192851622=-÷--⨯-+-=+-=-. 点睛:先乘方,再乘除,最后加减.有括号先算括号里面的.10.-16【解析】试题分析:根据有理数的混合运算的运算顺序,求出算式的值即可. 试题解析:原式91161616,449=÷⨯-- 91641616,49=⨯⨯-- 161616,=--16.=-11.(1)-30;(2)16【解析】试题分析:(1)直接计算.(2)按照有理数混合运算法则计算.试题解析:(1)原式=27+(-18)+(-7)+(-32)= -30.(2)原式=()11296--⨯- =()1176--⨯- =716-+=16. 12.(1)﹣3;(2)﹣113; 【解析】试题分析:(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:(1)原式=﹣5﹣16×(﹣18)=﹣5+2=﹣3; (2)原式=﹣4+3﹣83=﹣113; 13.(1)0;(2)-7【解析】试题分析:(1)根据有理数加减法法则计算即可;(2)根据有理数混合运算法则计算即可.试题解析:解:(1)原式=-5-1+6=0;(2)原式=()1356416274⎡⎤⨯-++⨯÷-⎢⎥⎣⎦=[]()3564427⨯-++÷-=()36327⨯÷-=-714.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.15.(1)0;(2)-32【解析】试题分析:(1)根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:(1)原式=﹣1+112×411﹣8÷|﹣9+1|=﹣1+2﹣8÷8=1﹣8÷8=0.(2)原式=﹣10+2﹣24=﹣34+2=﹣32.16.(1)6;(2)﹣6.【解析】试题分析:(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.试题解析:解:(1)原式=﹣6+27﹣15=6;(2)原式=﹣14+14﹣8+278×1627=-8+2=﹣6.17.(1)21;(2)﹣85.【解析】试题分析:(1)根据有理数混合运算顺序和运算法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.试题解析:解:(1)原式=4+4×2+9=4+8+9=21;(2)原式=﹣49+2×9+(﹣6)×9=﹣49+18﹣54=﹣85.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.18.(1)12 (2)-12【解析】试题分析:(1)原式利用减法法则变形,计算即可;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可.试题解析:解:(1)原式=10+5﹣9+6=12;(2)原式=9286243-⨯+⨯+=﹣18+4+2=﹣12.19.(1)﹣2;(2)﹣11.【解析】试题分析:(1)用乘法分配率计算即可;(2)根据有理数混合运算法则计算即可.试题解析:解:(1)原式=(﹣16)×(﹣12)+34×(﹣12)+(﹣512)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.20.(1)20;(2)﹣35.3.【解析】试题分析:根据有理数的混合运算的顺序进行运算即可.试题解析:(1)原式1271527720=-+=-=;(2)原式=4+(-40)-(-0.07) =-35.9321.(1)23 (2)-3【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:(1)原式()()()313242424184923468=-⨯-+⨯--⨯-=-+=; (2)原式11820 3.=-+-=-22.(1)-3;(2)0;【解析】试题分析:按照有理数的运算顺序进行运算即可. 试题解析:点睛:有乘方先算乘方,再算乘除,最后算加减.23.(1)1;(2)1.【解析】试题分析:(1)根据新运算的定义式a *b =a 2-b +ab ,代入数据即可算出结论;(2)根据(1)可知2*(-3)=1,再根据新运算的定义式a *b =a 2-b +ab ,代入数据即可算出结论.试题解析:解:(1)2*(﹣3)=22﹣(﹣3)+2×(﹣3)=4+3﹣6=1;(2)(﹣2)*[2*(﹣3)]=(﹣2)*1=(﹣2)2﹣1+(﹣2)×1=4﹣1﹣2=1.点睛:本题考查了有理数的混合运算,读懂题意并理解新运算的定义式a *b =a 2-b +ab 是解题的关键.24.(1)2(2)0【解析】试题分析:(1)根据有理数的混合运算的顺序和法则,依次计算即可;(2)先算括号里面的,再根据顺序,先算乘方,再算乘除,最后算加减,注意解题时符号的变化.试题解析:(1)3﹣6×=3﹣3+2=2;(2)﹣13﹣(1﹣)÷3×[3﹣(﹣3)2]=﹣1﹣ [3﹣9] =﹣1﹣×(﹣6)=﹣1+1=0.25.112【解析】试题分析:去掉括号后,通分化为同分母分数,再相加减. 试题解析:原式6910812121212=-+-+ 610981617112121212121212=--++=-+=. 26.-7.【解析】试题分析:按照有理数的混合运算顺序进行运算即可. 试题解析:原式()()()118298781817.77=---=--⨯-=---=-+=- 27.-47【解析】试题分析:先计算乘方,然后计算乘法,最后进行减法计算即可. 试题解析:原式=3-2×25=3-50=-47.28.-12【解析】试题分析:按照有理数的运算顺序进行运算即可. 试题解析:原式()113124,468⎛⎫=---+-⨯- ⎪⎝⎭ ()()()1131242424,468⎡⎤=---⨯-+⨯--⨯-⎢⎥⎣⎦()1649,=---+111,=--12.=-29.(1)0;(2)-10【解析】试题分析:按照有理数的运算顺序进行运算即可.试题解析:(1) 5172458612⎛⎫--+⨯+ ⎪⎝⎭=()154145550--++=-+=, (2) ()221313332⎛⎫---÷⨯-- ⎪⎝⎭=1196911023=--⨯⨯=--=-. 30.(1)-3;(2)6【解析】试题分析:(1)根据乘法分配律可以解答本题;(2)根据幂的乘方、有理数的乘除法和加减法可以解答本题.试题解析:解:(1)原式=2113636369418⨯-⨯-⨯=8﹣9﹣2=﹣3; (2)原式=1+6+(﹣1)=6.31.-314【解析】试题分析:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.试题解析:原式=−1−12×12−12×24+23×24−14×24=−1−14−12+16−6=−1914+16=−314. 32.-30【解析】试题分析:先写成省略加号的形式,再根据有理数的加减运算法则进行计算即可得解.试题解析:原式=-15+8-11-12=-7-11-12=-18-12=-30.33.0【解析】试题分析:(1)先算绝对值,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.试题解析:原式=5-(-1)+(-6)=5+1-6=0.34.21【解析】试题分析:按有理数和混合运算的顺序,先乘方,后乘除,最后算加减即可. 试题解析:原式=100÷4﹣(﹣2)×(﹣2)=25﹣4=21.35.(1)-2;(2)-14.【解析】试题分析:(1)根据有理数的混合运算顺序,求出每个算式的值是多少即可.(2)根据有理数的混合运算顺序,先乘方后乘除最后加减即可.试题解析:(1)原式=−2+152−152=−2; (2)原式=−8+3×4×(−23)÷43=−8+12×(−23)÷43=−8−8÷43=−8−6=−14. 36.8【解析】试题分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.试题解析:原式=12+18−7−15=30−22=8.37.21【解析】试题分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 试题解析:原式=100÷4﹣(﹣2)÷(﹣2)=25﹣1=24.38.﹣6【解析】试题分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.试题解析:原式=﹣2﹣1﹣16+13=﹣6.39.– 6.【解析】试题分析:本题我们利用乘法分配律来进行简便计算,从而得出答案.试题解析:原式=()()()152181818915126263-⨯--⨯+-⨯=-++-=-. 40.-3【解析】试题分析:利用分配律进行计算即可.试题解析:原式=()()()153242424368⎛⎫-⨯-+⨯--⨯- ⎪⎝⎭ = 8 – 20 + 9 = - 3 . 41.(1)-11(2)0.25.【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析: ()1原式()2525999=6+5=11.3939⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-=⨯-+⨯---- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()2原式()211511251.2544⎛⎫=--⨯⨯-=-+= ⎪⎝⎭ 42.5【解析】试题分析:利用有理数混合运算法则计算.试题解析:原式=﹣4×(﹣4)×18﹣19×(﹣27)=2+3 =5.43.3 4 .【解析】试题分析:先计算乘方,然后计算括号里的,再计算乘法,最后进行减法运算即可.试题解析:原式=-1-14×(2-9)=-1+74=34.44.14【解析】试题分析:原式利用有理数的乘方及绝对值的意义计算,即可得到结果.试题解析:原式=−1×3 −(−8)+4÷49=−3+8+4×94=−3+8+9=1445.(1)6;(2)22.【解析】试题分析:(1)先去括号,化简绝对值,然后再进行有理数的加减法计算,(2)先进行有理数的乘除法计算,再进行有理数的加法计算.试题解析:(1)原式=3+7-4=6,(2)原式=2+20=22.46.-147.3【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.【解答】解:原式+2×2=3.48.13.【解析】试题分析:原式利用乘方的意义,绝对值的代数意义,算术平方根、零指数幂、负整数指数幂法则计算即可得到结果.试题解析:原式=2+9-1×4+6 =13视频49.55【解析】试题分析:先算乘方,再算乘除法和去绝对值称号,最后算加法.试题解析:原式=81÷2.25+1+18=36+1+18=55.50.3【解析】试题分析:先算乘方,再算括号里面的减法,再算乘除法,最后算加法.试题解析:原式==-4+7=3.51.2852.6.5【解析】试题分析:分别计算有理数的乘方、算术平方根和负整数指数幂,然后再进行加减运算即可.试题解析:原式=9-2+2=9.53.(1)-15;(2)2【解析】试题分析:(1)有理数的乘除运算.(2)有理数的混合运算.试题解析: (1)原式=-5×3=-15;(2)原式=-8×14+64÷16=-2+4=254.①; ②【解析】试题分析:(1)先算乘除,然后算加减;(2)先算乘方,再算乘除,最后算加减.试题解析:①原式=−×−8÷2=−2−4=−6,②原式=16÷−×−=−−=.55.(1)-4 (2)【解析】试题分析:(1)原式利用减法法则变形,相加即可得到结果;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.试题解析:解:(1)原式=(2)原式56.(1);(2)4【解析】试题分析:根据有理数加减乘除的运算方法,求出每个算式的值各是多少即可.试题解析:(1)原式===;(2)原式==2+20+(-18)=4 57.(1)-7;(2)-9;(3)-42;(4)-10【解析】试题分析:根据有理数加减乘除的运算方法,求出每个算式的值各是多少即可.试题解析:(1)(-71)+(+64)=-(71-64)=-7(2)(-16)-(-7)=-16+7=-9(3)==-42(4)==-1058.(1)﹣2;(2).【解析】根据有理数的混合运算的法则分别进行运算,求出每个算式的值各是多少即可.解:(1)16÷(﹣2)3﹣()×(﹣4)=16÷(﹣8)﹣=﹣2﹣=﹣2(2)﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1+÷×[﹣2+9]=﹣1+×7 =.59.(1);(2).【解析】分析:(1)、利用乘法分配律的逆运算进行简便计算;(2)、根据有理数的混合运算的法则进行计算即可得出答案.详解:解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13. 点睛:本题主要考查的是有理数的混合运算,属于基础题型.理解混合运算的计算法则和顺序是解题的关键.60.(1)1;(2)﹣416;(3)314;(4)﹣19. 【解析】试题分析:按照有理数的混合运算的顺序进行运算即可.试题解析:(1)原式34111918191=---+=-+=;(2)原式()11741878.2366=--⨯⨯-=-+=- (3)原式788332776414=⨯⨯⨯=; (4)原式4051619=-++=-.61.(1)﹣4(2)﹣8(3)-212【解析】试题分析:(1)根据有理数加减法法则按顺序进行计算即可;(2)先进行乘除法运算,再进行加法运算即可;(3)先进行乘方运算,再进行乘除法运算,最后进行减法运算即可.试题解析:(1)﹣3+4﹣5=﹣8+4=﹣4;(2)3×(﹣2)+(﹣14)÷|+7|=﹣6+(﹣2)=﹣8;(3)16÷(﹣2)3﹣(﹣18)×(﹣4)=16÷(﹣8)﹣(﹣18)×(﹣4)=﹣2﹣12=-212. 62.﹣24. 【解析】根据幂的乘方、有理数的乘法和加减法可以解答即可.解:﹣32+2×(﹣2)3﹣(﹣) =﹣9+2×(﹣8)﹣(﹣1)=﹣9+(﹣16)+1=﹣24.63.(1)-91(2)14-(3)3(4)3332- 【解析】试题分析:(1)根据有理数的加减混合运算顺序依次计算即可;(2)根据有理数的乘除运算法则依次计算即可;(2)利用分配律计算即可;(4)根据有理数的混合运算顺序依次计算即可.试题解析:(1)()()()125884----++125884=-+-+()()128854=--++1009=-+91=-.(2)()512.54168⎛⎫-÷⨯-÷- ⎪⎝⎭ 516112584⎛⎫⎛⎫=-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ 14=-. (3)()125366312⎛⎫-+⨯- ⎪⎝⎭ ()()()12536 3.6366312=⨯--⨯-+⨯- 62415=-+-3=.(4)()()241110.543--+⨯÷- 31112316=--⨯⨯ 1132=-- 3332=-. 64.(1)354.(2)535- 【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:()1 ()()()77713176,888⎛⎫⨯-+-⨯--⨯- ⎪⎝⎭ 77713176,888=-⨯+⨯+⨯ ()713176,8=-++ 710,8=⨯ 35.4= ()()223232112,5⎡⎤⎛⎫--⨯---+⨯ ⎪⎢⎥⎝⎭⎣⎦ 69211,5⎡⎤⎛⎫=--⨯--+⎪⎢⎥⎝⎭⎣⎦ 69211,5⎛⎫=--⨯+- ⎪⎝⎭ 492,5=--⨯ 89,5=-- 535=-. 65.(1)31211;(2)0;(3)3 【解析】试题分析:(1) 先运用加法交换律计算, 再依据加法法则即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(3) 进行有理数加、减、乘、除、乘方的混合运算时,关键是确定正确的运算顺序,在运算中还要特别注意符号和括号,避免出错.试题解析:(1) 34177536411411⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ =31477356441111⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =11+3111 =31211(2)-14-(-512)×411+(-2)3÷[-32+1] =-1+2+(-8)÷(-8)=-1+2+1=2;(3) ()2461131311124842834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =116×16×1−(118×48+43×48−114×48) =1−(66+64−132)=1−(−2)=366.(1)3;(2)1135;(3)-968;(4)-32. 【解析】试题分析:(1)根据有理数加法法则计算即可;(2)先算绝对值与括号,再将除法转化为乘法,然后计算乘法即可;(3)先算乘方与括号,再算乘法,最后算加减;(4)先算乘方,再算乘法,最后算加减.试题解析:(1)(﹣8)+10+2+(﹣1)=3;(2)|﹣512|×(1132-)×0.6÷(﹣1.75)=112×(﹣16)×35×(﹣47) =1135; (3)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=﹣1000+[16﹣(1﹣9)×2]=﹣1000+[16+16]=﹣1000+32=﹣968;(4)﹣32×(﹣13)2+(313468++)×(﹣24) =﹣9×19+(﹣18﹣4﹣9) =﹣1﹣31=﹣32.67.(1)39 (2)-16 (3)-24 (4)415 【解析】试题分析:对于这组有理数的混合运算题,首先要确定好每个小题的运算顺序,再按顺序依照每种运算的法则进行计算,计算时,要特别注意每一步运算结果的符号,不要和前面的运算符号混淆了.试题解析:(1)原式=16+3411-=5011-=39.(2)原式=448199-⨯⨯ =16-.(3)原式=()()()1314848486412-⨯-+⨯--⨯- =8364-+=24-.(4)原式=15112535⎛⎫-⨯⨯-+ ⎪⎝⎭=13+1515=415. 68.-2【解析】试题分析:根据有理数的运算法则依次运算即可.试题解析:原式=()71122932673⨯⨯⨯⨯÷- =-2. 69.(1)-70;(2)-9;(3)21;(4)-1.【解析】试题分析:(1)根据减法法则计算可得;(2)根据乘除混合运算顺序和运算法则计算可得;(3)先计算乘方,再计算乘除,最后计算加减可得;(4)先计算乘方和绝对值,再计算加减可得.试题解析:(1)原式=﹣(5+65)=﹣70;(2)原式=0.4×(﹣5)×92=﹣9; (3)原式=4+4×2﹣(﹣9)=4+8+9=21;(4)原式=﹣2﹣3+4=﹣1.70.(1)0.(2)1.(3)25.(4)38.【解析】试题分析:(1)根据加法交换律和结合律简便计算即可求解;(2)按照从左到右的顺序依次把除法转化为乘法运算,然后根据有理数的乘法运算法则进行计算即可得解;(3)先算乘方,再利用乘法分配律算乘法,最后算减法;(4)先算乘方、绝对值,再算乘法,最后算加减.试题解析:(1)原式11311116602442=-++-=-=; (2)原式4418119916⎛⎫=-⨯⨯⨯-= ⎪⎝⎭; (3)原式126362536=-⨯=; (4)原式=38. 71.(1)3;(2)﹣5;(3)23;(4)7【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:(1)12﹣(﹣18)+(﹣12)﹣15=12+18﹣12﹣15=30﹣27=3.(2)()()()3737242424914 5.812812⎛⎫-+⨯-=-⨯-+⨯-=-=- ⎪⎝⎭(3)311342211.4324333⎛⎫⎛⎫⎛⎫⎛⎫-⨯÷-=-⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)()()3112383437.22⎛⎫⎛⎫-⨯---=-⨯-+=+= ⎪ ⎪⎝⎭⎝⎭72.(1)8;(2)-4.【解析】试题分析:按照有理数混合运算顺序进行运算即可.试题解析:(1)原式1199918.33⎛⎫⎛⎫=-⨯-⨯-=-= ⎪ ⎪⎝⎭⎝⎭(2)原式=-473.1312【解析】试题分析:根据有理数混合运算的法则:先乘方,后乘除,有括号的先计算括号进行计算即可.试题解析:(﹣2)4÷(﹣223)2+512×(﹣16)﹣0.25 =16×964+112×(﹣16)﹣14=94﹣14﹣1112=2﹣1112=1312. 74.⑴32-;(2)-22;(3)-28;(4)-13.34. 【解析】试题分析:(1)先把除法运算转化为乘法运算,再根据有理数的乘法法则计算即可;(2)利用分配律计算即可;(3)根据有理数的混合运算顺序依次计算即可;(4)逆用乘法的分配律计算即可.试题解析:⑴原式=14193142-⨯⨯=32-; (2)原式=()519426314⎛⎫+-⨯-⎪⎝⎭ =()()()5194242426314⨯-+⨯--⨯- =-35-14+27=-22;(3) 原式=23162434⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭= -16-12= -28; (4)原式=()2125130.343377⎛⎫⎛⎫-⨯+-⨯+⎪ ⎪⎝⎭⎝⎭= -13.34. 75.﹣30. 【解析】试题分析:直接通分计算或者利用乘法分配律计算.试题解析:解:法一:原式=(1624﹣424+1824)×(﹣24) =3024×(﹣24) =﹣30; 法二:原式=23×(﹣24)﹣16×(﹣24)+34×(﹣24) =﹣16+4﹣18=﹣30.76.(1)﹣9;(2)﹣2;(3)﹣27;(4)﹣3.【解析】试题分析:(1)利用加法结合律计算.(2)先化成分数,再利用加法结合律计算.(3)利用乘法分配律计算.(4)先算乘方,再算乘除,最后算加减.试题解析:解:(1)原式=(﹣3)+(﹣4)+(﹣11)+9=[(﹣3)+(﹣4)+(﹣11)]+9=﹣18+9=﹣9;(2)原式=﹣12+314+234+(﹣712)=[﹣12+(﹣712)]+(314+234)=﹣8+6=﹣2;(3)原式=12×(﹣36)+56×(﹣36)﹣712×(﹣36)=﹣18﹣30+21=﹣27;(4)原式=﹣1﹣112×411+(﹣8)+8=﹣1﹣2+[(﹣8)+8]=﹣3.77.-2【解析】试题分析:把分数化成小数,直接计算.试题解析:原式=-0.5+(3.25+2.75)-7.5=6-8=-2.点睛:熟练掌握常用分数和小数的互化: 10.52=, 10.254=, 10.25=,10.1258=, 10.110=,20.45=,30.65=,340.3750.885==,.78.176-【解析】试题分析:利用绝对值直接计算.试题解析:原式=-1+16+2 =176-.79.(1)原式=0;(2)原式=-4;(3)原式=26;(4)原式=-356.【解析】试题分析:(1)利用加法结合律即可求解;(2)先计算乘除运算,再计算加减即可得到结果.(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后计算减法即可得到结果.试题解析:(1)原式=(+ 3.4)+(-549)+(+435)+(-259)=[(+325)+(+435)]+[(-549)+(-259)]=(+8)+(-8)=0;(2)原式=-4+(-185)×53-(-6)=-4+(-6)+(+ 6)=-4;(3)原式=(-74+3112-149)×(-36)=(-74)×(-36)+3112×(-36)-149×(-36)=(+63)+(-93)-(-56)=63-93+56=26;(4)原式=-1-12×13×(2+27)=-1-16×29=-1-296=-356.80.(1)-31;(2)5;(3)-37【解析】(1)原式=-25-9+6-3=-25-9-3+6=-37+6=-31(2)原式=-4-24×+24×-24×=-4-2+20-9=-15+20=5(3)原式=-27+(10-50)÷4 =-27-10=-3781.(1)-144;(2)-16;(3)-12;(4)1.【解析】试题分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式从左到右依次计算即可得到结果.试题解析:解:(1)原式=-49-91+5-9=-144;(2)原式=-12-4=-16;(3)原式=8180.25--⨯+=6410.25--+=-13.6;(4)原式=25×45×45×116=1.82.(1)-10;(2)56.【解析】试题分析:按照有理数的运算顺序进行运算即可.试题解析: ()1原式3671410.=-+-=-()2原式111511.2366=-⨯=-= 83.(1)-18.5;(2)13【解析】试题分析:根据有理数的运算顺序进行运算即可.可以结合运算律简化运算. 试题解析:(1)原式2132130.2522 3.518.5334=--+-=-+=-; (2)原式432013=--+=. 84. (1) -6; (2)1312. 【解析】试题分析:(1)先进行绝对值的运算,然后进行乘除法运算,最后进行减法运算即可;(2)先进行乘方运算,然后进行乘除法运算,再按运算顺序进行运算即可.试题解析:(1)原式=13482=24213-⨯-÷--=-6; (2)原式=641119*********==2=912441241212÷-----. 85.(1)-33;(2)3;(3) -76 【解析】试题分析:(1)原式利用减法法则变形,计算即可得出答案;(2)根据乘法分配律可以解答本题;(34)根据幂的乘方、有理数的乘除法和减法可以解答本题.试题解析:(1)原式=-28+19-24=-33;(2)原式=()()()1571212122612⎛⎫-⨯-+-⨯--⨯ ⎪⎝⎭=3; (3)原式=()11717676⎛⎫--⨯-⨯-=- ⎪⎝⎭. 86.-4. 【解析】试题分析:先进行乘方运算,再进行括号内的运算,然后按运算顺序进行计算即可. 试题解析:(-95)×(-53)2+(-38)÷[(-12)3-14]=-95×259-38÷(-18-14)=-5-38÷(-38)=-5+1=-4.87.(1)-15;(2)53 4.【解析】试题分析:(1)先分别计算乘法、除法,然后再进行加法计算即可;(2)先分别计算平方与立方运算,然后再进行乘除法运算,最后进行加减法运算即可.试题解析:(1)3×(-4)+18÷(-16)=-12+(-3)=-15;(2)(-2)2×5+(-3)3÷4=4×5+(-27)÷4=20+(-274)=534.88.①1;②−9【解析】试题解析:①.首先去括号,遵循去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,然后再化简计算结果.②先计算−1100=-1,|−5|=5,4×(−3)=-12,42=16,然后再化简计算结果.试题解析:①8+(−10)+(−2)−(−5)=8−10−2+5=1.②−1100×|−5|−4×(−3)−42=−1×5−(−12)−16=−5+12−16=−9.点睛:本题考查有理数运算,去括号是易错点,要遵循去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.89.(1)30;(2)4 3【解析】试题分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.试题解析:(1)原式=12+18=30;(2)原式=−1−12×13×(−7)=−1+76=16.90.(1)74(2)-4(3)22(4)0【解析】试题分析:(1)把式子写成代数和的形式后,利用有理数的加法和和减法法则计算即可;(2)利用分配律计算即可;(3)先计算乘法,再算加减即可;(4)根据有理数的混合运算法则依次计算即可.试题解析:(1)原式=()31775424-++-=-; (2)原式=1113636364629618-⨯-+⨯-+⨯-=--=-4; (3)原式=112233112233+---=-+=22;(4)原式=0-8÷(-64)-18=18-18=0. 91.(1)23(2)12-(3)52-(4)10 【解析】试题分析:(1)把式子写成代数和的形式后,利用有理数的加法和和减法法则计算即可;(2)利用有理数的除法法则把除法转化为乘法,利用有理数的乘法法则计算即可;(3)根据有理数的混合运算法则依次计算即可;(4)根据有理数的混合运算法则依次计算即可. 试题解析:(1)原式=12+18-7=23;(2)原式=334429⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =12-; (3)原式=16÷(-8)-12 =-2-12=52-; (4)原式=()1171542484848834⎛⎫-⨯--⨯+⨯-⨯ ⎪⎝⎭=8-(66+112-180)=8-(-2)=10.92.(1)14;(2)8.【解析】试题分析:(1) 观察算式形式不难看出,在该算式中各分数的分母均是60的约数. 因此,可以利用乘法分配律对该算式进行变形,然后利用相应的运算法则进行运算.(2) 先完成算式中的乘方运算,再将算式中的除法运算转化为乘法运算,然后利用有理数的相关运算法则进行运算.试题解析: (1) ()1731160312415⎛⎫-+-⨯- ⎪⎝⎭=()()()()1731160606060312415⨯--⨯-+⨯--⨯- =()()()()20354544---+---=20354544-+-+=14(2) ()()432411221382⎛⎫⎛⎫⎡⎤-÷-+-÷---- ⎪ ⎪⎣⎦⎝⎭⎝⎭ =()()1116819816⎛⎫-÷-+-÷-- ⎪⎝⎭=()111616888⎛⎫⎛⎫-⨯-+-⨯-- ⎪ ⎪⎝⎭⎝⎭=2-2+8=893.(1)3;(2)-23 ;(3) 16;(4)-3. 【解析】试题分析:根据有理数混合运算法则计算即可.试题解:解:(1)原式=8-0.25-5+0.25=3;(2)原式=127242424834⨯+⨯-⨯=3+16-42=-23; (3)原式=()11296--⨯- =716-+=16; (4)原式=1444271399⨯-⨯⨯+ =416133-+=-3 94.(1)-10;(2)—76;(3)—13;(4)15. 【解析】试题分析:按照有理数的混合运算顺序进行运算即可.(1)原式()()()()()()2361722293910.⎡⎤⎡⎤=++++-+-=++-=-⎣⎦⎣⎦(2)原式111711.2366=--⨯=--=- (3)原式 211133.393⎛⎫=-⨯-=-⨯=- ⎪⎝⎭(4)原式()()()()3151515322328415.444=-÷-⨯=-÷-⨯=⨯= 95.(1)21(2)22【解析】试题分析:(1)利用减法法则变形,计算即可得到结果;(2)(2)先算乘方、再算乘除,最后算减法即可.试题解析:(1)原式=12-23+32=21;(2)原式=4×5+8÷4=20+2=22.96.(1)-1.5(2)455-(3)-46 【解析】试题分析:本题考查了有理数的混合运算,(1)运用加法的交换律和结合律,把相反数的结合,凑整的结合即可;()2把除法转化为乘法,再根据乘法的分配律求解;(3)先算乘方,后算乘除,最后算加减,算乘方时注意区分好底数.(1)原式=()()3351 1.757.523488⎡⎤⎛⎫+-+-++ ⎪⎢⎥⎣⎦⎝⎭…………………………2分 =0-7.5+6 …………………………………………………………4分=-1.5.………………………………………………………………5分(2)解:原式=3582182184787207-⨯+⨯+⨯……………………………………2分 =110315-++………………………………………………………4分 =455-.……………………………………………………………5分 (3)解:原式=()()()1649869-+-⨯-+-÷…………………………………2分 =647254-+-……………………………………………………4分=-46.97.12【解析】试题分析:按照有理数的运算顺序进行运算即可,可以结合加法结合律. 试题解析:原式33315352,48428⎛⎫=-+++--++ ⎪⎝⎭ 33351325,44882⎛⎫=-+++++-- ⎪⎝⎭ 11,2=- 1.2= 98.(1)19;(2)-38;(3)-41;(4)-18.【解析】试题分析:(1)先去括号,再把正数与负数分别相加,然后进行减法运算;(2)混合运算,先算乘法再算加减法;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)由于除以一个数等于乘以这个数的倒数,所以本题利用乘法的分配律进行简便计算.试题解析:(1)原式=12+16-4-5 =28-9 =19;(2)原式=-10+(-16)-12=-10-16-12=-38;(3)原式=-4×-[4-(1-)]×12 =-3-(4-)×12=-3-4×12+×12=-3-48+10=-41;(4)原式=(-+-+)×60=-×60+×60-×60+×60=-45+50-35+12=-18.99.(1)-1;(2)25;(3)-57.5【解析】【试题分析】(1)利用分配律直接展开,即(14+16-12)×12=14×12+16×12-1 2×12=3+2-6=-1;(2)逆向运用分配律,即25×34―(―25)×12+25×(―14)=25×(34+12―14)=25×1=25;(3)先计算乘方,再计算中括号,(―2)3+(―3) ×[(―4)2+2]―(―3)2÷(―2)=―8+(―3) ×(16+2)―9÷(―2)=―8+(―54)+4.5=―57.5.【试题解析】⑴(14+16-12)×12=14×12+16×12-12×12=3+2-6=-1⑵ 25×34―(―25)×12+25×(―14)=25×(34+12―14)=25×1=25⑶(―2)3+(―3) ×[(―4)2+2]―(―3)2÷(―2)=―8+(―3) ×(16+2)―9÷(―2)=―8+(―54)+4.5=―57.5【方法点睛】本题目是一道有理数的计算题,涉及到分配律的灵活运用,乘方的计算,难度中等.100.(1)﹣18;(2)﹣1259(3)0【解析】试题分析:根据有理数的四则运算法则计算即可.试题解析:解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=55533-⨯⨯=﹣1259.。
人教版七年级上册数学 有理数的乘方 同步测试卷
![人教版七年级上册数学 有理数的乘方 同步测试卷](https://img.taocdn.com/s3/m/3d9ba892dc3383c4bb4cf7ec4afe04a1b171b067.png)
有理数的乘方同步测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列数据中,是准确数的是( )A. 上海科技馆的建筑面积约98000平方米B. “小巨人”姚明身高2.26米C. 我国的“神舟十三号”飞船有3个舱D. 截至2022年年底中国国内生产总值(GDP)为1210207亿元2. 下列各数是用科学记数法表示的是( )A. 0.1×105B. 10.3×106C. 12×108 D. −7.13×1063. 计算[−5−(−11)]÷(32×4)的结果为( )A. 16B. 1C. −83D. −12834. 某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中126000000用科学记数法可表示为( )A. 12.6×107B. 1.26×108C. 1.26×109D. 0.126×10105. 下列四个数中,是负数的是( )A. −(−5)3B. (−2)2C. |−3|3D. −426. 下列各数: ①−12; ②−(−1)2; ③−13; ④−(−1)4中结果等于−1的是( )A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ② ③ ④7. 计算2×(−1)3+4的结果为( )A. 5B. 2C. −1D. −38. 近似数1.50所表示的准确数n的范围是( )A. 1.45≤n<1.55B. 1.45<n<1.55C. 1.495≤n<1.505D. 1.495<n<1.505二.填空题(本大题共8小题,共24分)9. 规定“∗”表示一种运算,且a∗b=3a−2ab,则3∗2=.10. 由四舍五入得到的近似数93.60万精确到位.11. 一种电子计算机每秒可做4×107次计算,也就是说它每秒可做万次计算.12. 太阳半径大约是696000千米,用科学记数法表示为千米,精确到万位的近似数为千米.13. 已知|x|=3,y2=16,xy<0,则x−y的值为.14. 试用“+”“−”号将+3,−8,−10,+12四个数连接起来,使其运算结果最小,这个最小值是.15. 琪琪领取了一笔1500元的稿费,按规定,超过800元的部分,要按20%的税率缴纳个人所得税.琪琪缴纳个人所得税后可领取元.16. 定义新运算:对于任意实数a,b,都有a⊕b=a(a−b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,则3⊕(−2)=;[(−2)⊕3]−[2⊕(−1)]的值为.三.计算题(本大题共1小题,共8分)17. 计算下列各题:(1)(79−56+718)×2×32−74÷(−1.75);(2)23−18−(−13)+(−38);(3)−13×23−0.34×27+13×(−13)−57×0.34.四.解答题(本大题共8小题,共64分。
人教版数学七年级上第一章《有理数》1.5有理数的乘方同步练习题(含解析答案)
![人教版数学七年级上第一章《有理数》1.5有理数的乘方同步练习题(含解析答案)](https://img.taocdn.com/s3/m/a5ec678d360cba1aa811daf0.png)
人教版七年级数学(上)第一章《有理数》1.5有理数的乘方同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.计算(-1)5×23÷(-3)2÷的结果是 ( )。
A. -26B. -24C. 10D. 122.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸变成2根,第二次捏合,再拉伸变成4根,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第n次捏合后可拉出细面条的数量是()。
A. 2nB. 2nC. 2n-1D. 2+n3.下列说法错误的是 ( )。
A. 近似数16.8与16.80表示的意义不同B. 近似数0.290 0是精确到0.0001的近似数C. 3.850×104是精确到十位的近似数D. 49 564精确到万位是4.9×1044.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是( )。
A. 2B. 4C. 8D. 65.已知是由四舍五入得到的近似数,则的可能取值范围是()。
A. B.C. D.6.下列计算正确的是()。
A. B. C. D.7.近似数1.30是由数a四舍五入得到的,那么数a的取值范围是()。
A. 1.25≤a<1.35B. 1.25<a<1.35C. 1.295<a<1.305D. 1.295≤a<1.3058.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()。
A. 1个B. 2个C. 3个D. 0个9.如果一个近似数是1.60,则它的精确值x的取值范围是()。
A. 1.594<x<1.605B. 1.595≤x<1.605C. 1.595<x≤1.604D. 1.601<x<1.60510.如图是一个计算程序,若输入a的值为-1,则输出的结果应为()。
七年级数学上册有理数的乘方练习题
![七年级数学上册有理数的乘方练习题](https://img.taocdn.com/s3/m/96d87f67777f5acfa1c7aa00b52acfc789eb9fa9.png)
七年级数学上册有理数的乘方练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.根据有理数乘方的意义,算式3333355555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可表示为__________.2.已知a ,b (b +3)2=0,则(a +b )2022的值为 _____.3.()()()333-⋅-⋅-用幂的形式可表示为____.4.现定义一种新运算(),a b ,若c a b =,则(),a b c =,例如:∵4381=,∵()3,814=.依据上述运算规则,计算()115,125,416⎛⎫+ ⎪⎝⎭的结果是______. 5.在2,﹣3,4,﹣5这四个数中,任取两个数相乘,所得的积最大是______.6.按一定规律排列的单项式:2a -,34a ,49a -,516a ,625a -,…,第n 个单项式是__________.二、单选题7.等号左右两边一定相等的一组是( )A .()a b a b -+=-+B .3a a a a =++C .()222a b a b -+=--D .()a b a b --=-- 8.如图,点A 、B 表示的实数互为相反数,则点B 表示的实数是( )A .2B .-2C .12 D .12- 9.与3的乘积等于﹣1的数是( )A .﹣3B .3C .13D .13- 10.对于(﹣4)3和﹣43,下列说法正确的是( )A .底数相同,指数相同B .底数不同,指数不同C .底数相同,运算结果不同D .底数不同,运算结果相同11.观察式子:12345677749734372401716807==7117649====、、、、、、…,请你判断20197的结果的个位数是( ) A .1 B .3 C .7 D .9三、解答题12.计算(1)(﹣12)﹣(﹣20)+(﹣8)﹣15(2)(﹣1)4 + 16 ÷(﹣2)3﹣| 1﹣3 |13.()23-与23-有什么不同?结果相等吗?14.观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.参考答案:1.53()5- 【分析】根据有理数乘方的意义进行化简即可; 【详解】解:3333355555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=53()5-, 故答案为:53()5- 【点睛】本题考查了有理数乘方,明确乘方的意义是解题的关键,本题是基础题.2.1【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:(b +3)2=00,(b +3)2≥0,∵a ﹣2=0,b +3=0,解得a =2,b =﹣3,所以,(a +b )2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.3(3)-【分析】根据乘方的定义即可解答.【详解】算式()()()333-⋅-⋅-用幂的形式可表示为3(3)-.故答案为3(3)-.【点睛】本题考查乘方的定义:求n 个相同因数积的运算叫做乘方,解题的关键是熟练掌握幂的形式. 4.5【分析】根据新运算定义求出(5,125)=3,11,416⎛⎫ ⎪⎝⎭=2,代入计算即可. 【详解】解:∵35125=,∵(5,125)=3, ∵211416⎛⎫= ⎪⎝⎭, ∵11,416⎛⎫ ⎪⎝⎭=2,∵()115,125,416⎛⎫+ ⎪⎝⎭=3+2=5, 故答案为:5.【点睛】此题考查了新定义运算,正确掌握有理数的乘方运算是解题的关键.5.15【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【详解】解:2×4=8,(﹣3)×(﹣5)=15,15>8.∵积最大是15.故答案为:15.【点睛】本题主要考查的知识点是有理数的乘法及有理数大小比较,关键要明确不为零的有理数相乘的法则:两数相乘,同号得正,异号得负,并把绝对值相乘.6.21(1)n n n a +-【分析】根据单项式的正负号、系数、次数与排列位置的关系列代数式即可;【详解】解:∵2a -=1211(1)1a +-,34a =2221(1)2a +-,49a -=3231(1)3a +-,516a =4241(1)4a +-,…,21(1)n n n a +-,故答案为:21(1)n n n a +-;【点睛】本题考查了单项式的变化规律,掌握乘方的性质和运算法则是解题关键.7.C【分析】利用去括号法则与正整数幂的概念判断即可.【详解】解:对于A ,()a b a b -+=--,A 错误,不符合题意;对于B ,3a a a a =⋅⋅,B 错误,不符合题意;对于C ,2()22a b a b -+=--,C 正确,符合题意;对于D ,()a b a b --=-+,D 错误,不符合题意.故选:C .【点睛】本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键. 8.A【分析】根据互为相反数的两个数的和为0即可求解.【详解】解:因为数轴上两点A,B表示的数互为相反数,点A表示的数是-2,所以点B表示的数是2,故选:A.【点睛】此题考查了相反数的性质,数轴上两点间的距离,解题的关键是利用数形结合思想解答.9.D【分析】根据有理数的乘法即可求得.【详解】解:13=13-⨯-,∴与3的乘积等于﹣1的数是13 -,故选:D.【点睛】本题考查了有理数的乘法,熟练掌握和运用有理数的乘法法则是解决本题的关键.10.D【分析】根据幂的性质判断即可;【详解】由(﹣4)3和﹣43可知:指数相同,底数不同,()3464-=-,3446-=-,运算结果相同;故选D.【点睛】本题主要考查了幂的认识和运算,准确分析判断是解题的关键.11.B【分析】通过观察可知个位数字是7,9,3,1四个数字一循环,根据这一规律用2019除以4,根据余数即可得出答案.【详解】解:∵12345677749734372401716807==7117649====、、、、、、…,∵个位数字以7、9、3、1这4个数字一循环,∵2019÷4=504…3,∵20197的个位数字与73的个位数字相同是3.故选:B.【点睛】此题主要考查了数字类规律,正确得出尾数变化规律是解题关键.12.(1)-15(2)-3【分析】(1)根据有理数的加减计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)解:原式1220815=-+--15=-;(2)解:原式()11682=+÷--122=--3=-.【点睛】本题主要考查了有理数的加减计算,含乘方的有理数混合计算,熟知相关计算法则是解题的关键. 13.()23-表示2个-3相乘,而23-表示2个3的乘积的相反数;它们的结果不相等.【分析】根据乘方的意义,即可求解.【详解】解:()23-表示2个-3相乘,而23-表示2个3的乘积的相反数;它们的结果不相等,理由如下:∵()239-=,239-=-,∵()2233-≠-.【点睛】本题主要考查了乘方的运算及其意义,熟练掌握乘方的运算法则及其意义是解题的关键. 14.(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯, 故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅ [][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.。
有理数的乘方运算有理数的混合运算练习附答案
![有理数的乘方运算有理数的混合运算练习附答案](https://img.taocdn.com/s3/m/453450e4f80f76c66137ee06eff9aef8941e48a8.png)
人教版七年级数学上册 1.5.1-2 有理数的乘方运算 有理数的混合运算同步练习题精选 附答案一、选择题。
细心择一择,你一定很准! 1.58表示( )A .5个8连乘B .5乘以8C .8个5连乘D .8个5相加 2.下列式子正确的是( )A .(-6)×(-6)×(-6)×(-6)=-64B .(-2)3=(-2)×(-2)×(-2)C .-54=(-5)×(-5)×(-5)×(-5) D .35×35×35=3353.下列各对数中,数值相等的是( )A .-32与-23B .-23与(-2)3C .-32与(-3)2D .(-3×2)2与-3×22 4. 下列各对数互为相反数的是( )A .32与-23B .32与(-3)2C .(-3)2与-32D .-23与(-2)3 5.如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A .-2B .2C .4D .2或-2 6.如果一个有理数的正偶次幂是非负数,那么这个数是( )A .正数B .负数C .非负数D .任何有理数 7. 下列各式:①-(-2);②-|-2|;③-22;④-(-2)2,计算结果为负数的个数有( )A .4个B .3个C .2个D .1个8. 下列计算:①32=3×2;②(-3)2=9;③(-5)3=-53;④(-2)4=24;⑤(3+2)2=32+22;⑥(-32)2=94.其中正确的结果有( )A .1个B .2个C .3个D .4个 9. 下列各式中,一定成立的是( )A .22=(-2)2B .-22=|-22|C .23=(-2)3D .(-2)3=|(-2)3| 10.计算-23-(-3)3×(-1)2-(-1)3的结果为( )A .0B .-30C .-1D .2011.-16÷(-2)3-22×(-12)的值是( )A .0B .-4C .-3D .412.在算式4-|-3 5|中的“ ”所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .-C .×D .÷13. 设a =-2×32,b =(-2×3)2,c =-(2×3)2,则a ,b ,c 的大小关系是( )A .a <c <bB .c <a <bC .c <b <aD .a <b <c 14. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252 15. -35÷=35中,在( )内应填上的数是( )A .14B .114C .-214D .-1416. 有一列数a 1,a 2,a 3,…,a n ,从第2个数开始,每个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2016为( )A .2010B .2C .12 D .-1二、填空题。
人教版七年级数学上册热点:第1章:有理数乘方及混合运算(乘方)(附模拟试卷含答案)
![人教版七年级数学上册热点:第1章:有理数乘方及混合运算(乘方)(附模拟试卷含答案)](https://img.taocdn.com/s3/m/d5a153e3195f312b3169a5f6.png)
学生做题前请先回答以下问题问题1:说一说乘方的相关概念.问题2:一个数的平方为16,这个数可能是几?一个数的平方可能是0吗?问题3:什么是科学记数法?用科学记数法表示数据的时候需要注意什么?问题4:下列各式一定成立吗?①②③④有理数乘方及混合运算(乘方)(人教版)一、单选题(共14道,每道7分)1.213000 000用科学记数法可表示为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:科学记数法2.某年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:科学记数法3.我国是缺水国家,目前可利用淡水资源总量仅约为,则所表示的原数是( )A.8 990B.899 000C.89 900D.8 990 000答案:B解题思路:试题难度:三颗星知识点:科学记数法4.表示( )A.-3与4的积B.4个-3的积C.4个-3的和D.3个-4的积答案:B解题思路:试题难度:三颗星知识点:乘方的意义5.表示( )A.5个-3的积的相反数B.5个3的积C.5个-3的和的相反数D.5与-3的积的相反数答案:A解题思路:试题难度:三颗星知识点:乘方的意义6.计算:=______;=______.( )A.-25;49B.10;14C.-10;-14D.25;-49答案:D解题思路:试题难度:三颗星知识点:有理数的乘方7.计算:=______;=______.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:有理数的乘方8.下列各数中,互为相反数的一对是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:有理数的乘方9.计算的结果为( )A. B.C. D.答案:D解题思路:故选D.试题难度:三颗星知识点:有理数的乘方10.计算的结果为( )A.2B.0C.32D.24答案:C解题思路:故选C.试题难度:三颗星知识点:有理数的乘方11.计算的结果为( )A.27B.-25C.-29D.答案:B解题思路:故选B.试题难度:三颗星知识点:有理数的乘方12.计算的结果为( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数的乘方13.计算的结果为( )A.2B.C. D.答案:A故选A.试题难度:三颗星知识点:有理数的乘方14.计算的结果为( )A.-72B.18C.24D.72答案:D解题思路:故选D.试题难度:三颗星知识点:有理数的乘方2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.将一副直角三角尺按如图所示的不同方式摆放,则图中α∠与β∠相等的是( )A .B .C .D .2.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°3.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定4.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( ) A.87a B.87|a| C.127|a| D.127a 5.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A .﹣2x 2+y 2B .2x 2﹣y 2C .x 2﹣2y 2D .﹣x 2+2y 26.某县正在开展“拆临拆违”工作,某街道产生了m 立方米的“拆临拆违”垃圾需要清理,一个工程队承包了清理工作,计划每天清理80立方米,考虑到还有其它地方的垃圾需要清理,该工程队决定增加人手以提高50%的清理效率,则完成整个任务的实际时间比原计划时间少用了( ) A.240m 天 B.250m 天 C.260m 天 D.270m 天 7.甲队有51个人,乙队有45个人,从乙队调若干人到甲队后,甲队的人数恰好是乙队的3倍,求变化后乙队有多少人?若设变化后乙队有x 人,可列方程为:A.51+x=3(45-x)B.51-x=3(45+x)C.3x-51=45-xD.51-3x=x-45A .192.5元B .200元C .244.5元D .253元9.下列代数式中:①3x 2-1;②xyz ;③12b ;④32x y +,单项式的是( ) A .① B .② C .③ D .④10.有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m<-1B .n>3C .m<-nD .m>-n11.若等式(﹣5)□5=0成立,则□内的运算符号为( )A .+B .﹣C .× D.÷12.2322...233 (3)m n ⨯⨯⨯+++个个=( ) A.23n m B.m 23n C.32m n D.23m n二、填空题 13.南偏东75°与北偏西15°的两条射线所组成的角(小于平角)等于_______度.14.在钟面上,10点30分时的时针和分针所成的角等于__________度.15.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7∙ 为例进行说明:设0. 7∙=x ,由0.=0.7777…可知,l0x =7.7777…,所以l0x =7+x ,解方程,得x =79于是得0. 7∙=79.将0. 216∙∙ 写成分数的形式是_____. 16.如图是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a +b)米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b)米,则王明家楼梯的竖直高度(即BC 的长度)为________米.17.如图,在3×3的“九宫格”中填数,要使每行每列及每条对角线上的三数之和都相等.则B 表示的数是________________.18.计算:﹣8÷(﹣2)×=_____.19.比较大小:﹣13_____12-(填“>”或“<”). 20.在实数范围定义运算“”:“ab”=2a+b,则满足“x(x ﹣6)”=0的实数x 是________.三、解答题21.34°25′20″×3+35°42′.22.(1)如图1所示,将一副三角尺的直角顶点重合在点O 处.①∠AOC 与∠BOD 相等吗?说明理由;②∠AOD 与∠BOC 数量上有什么关系吗?说明理由.(2)若将这副三角尺按图2所示摆放,直角顶点重合在点O 处,不添加字母,分析图中现有标注字母所表示的角;①找出图中相等关系的角;②找出图中互补关系的角,并说明理由.23.解方程:(1)2976x x -=+;(2)332164x x +-=-. 24.如图,长方形ABCD 中,AB =4cm ,BC =8cm .点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿C→B→A→D→C 的路径匀速运动.两点同时出发,在B 点处首次相遇后,点P 的运动速度每秒提高了3cm ,并沿B→C→D→A 的路径匀速运动;点Q 保持速度不变,继续沿原路径匀速运动,3s 后两点在长方形ABCD 某一边上的E 点处第二次相遇后停止运动.设点P 原来的速度为xcm/s .(1)点Q 的速度为 cm/s (用含x 的代数式表示);(2)求点P 原来的速度.(3)判断E 点的位置并求线段DE 的长.25.(20分)计算化简(1)12﹣(﹣6)+(﹣8)+5(2)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)] (3)a+2b+3a﹣2b(4)2(a﹣1)﹣(2a﹣3)+3.26.计算(每小题5分,共10分)(1)123(0.6)(3)(7)2454----++-︱-2︱(2)—1×—(0.5—1) ×3÷(—32—1)27.100÷(﹣2)2﹣(﹣2)÷(﹣12).28.(1)化简求值:已知,求代数式的值. (2)若化简的结果与的取值无关,求的值.【参考答案】***一、选择题1.C2.A3.B4.C5.B6.A7.C8.B9.B10.D11.A12.B二、填空题13.12014.13515. SKIPIF 1 < 0解析:8 3716.(a﹣2b)17.-401918.219.>20.2三、解答题21.138°58′22.(1)①∠AOC与∠BOD相等,见解析;②∠AOD+∠BOC=180°,见解析;(2)①∠AOB=∠COD,∠AOC=∠BOD;②∠AOB与∠COD,∠AOD与∠BOC,见解析.23.(1)x=﹣3;(2)x=34.24.(1)2x;(2)点P原来的速度为53cm/s.(3)此时点E在AD边上,且DE=2.25.(1)15;(2)28;(3)4a;(4)4.26.(1)-4 (2)17 2027.2128.(1);(2).2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各图中,∠1与∠2互为余角的是( )A. B. C. D.2.如图,两块直角三角板的直顶角O 重合在一起,若∠BOC=15∠AOD ,则∠BOC 的度数为( )A .30° B. 45° C.54° D.60°3.甲乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°.乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN=45°.对于两人的做法,下列判断正确的是()A .甲乙都对B .甲对乙错C .甲错乙对D .甲乙都错4.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+25.若规定:[a]表示小于a 的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是( )A.x 7=B.x 7=-C.17x 2=-D.17x 2= 6.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b(n>6),则a-b 的值为( )A.6B.8C.9D.127.有理数m,n在数轴上的位置如图所示,则化简│n│-│m-n│的结果是()A.mB.2n-mC.-mD.m-2n8.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑧个图形中矩形的个数为( )A.31 B.30 C.28 D.259.当x=4时,式子5(x+b)-10与bx+4的值相等,则b的值为().A.-7B.-6C.6D.710.12018的相反数为()A.2018B.-2018C.12018D.1201811.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2009次后,点B()A.不对应任何数 B.对应的数是2007C.对应的数是2008 D.对应的数是200912.在数轴上表示﹣2,0,6.3,15的点中,在原点右边的点有()A.0个B.1个C.2个D.3个二、填空题13.如图是一副三角尺拼成图案,则∠AEB=_____度.14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y的值为____.15.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________ 。
2019-2020学年人教版七年级数学上册同步精品课堂1-5 有理数的乘方 (练习)(含答案)
![2019-2020学年人教版七年级数学上册同步精品课堂1-5 有理数的乘方 (练习)(含答案)](https://img.taocdn.com/s3/m/7b6aac7802020740be1e9bc7.png)
【点睛】本题考查了近似数,经过四舍五入得到的数为近似数;近似数与精确数的接近程度,可以用精确度表示.
13.(2019·福建省南平市第三中学初一期中)按照如图所示的操作步骤,若输入的值为﹣2,则输出的值为_____.
【答案】30
【解析】根据题目中的操作步骤,可以求得输入的值为 ,输出的值,本题得以解决.
故答案为:1.3×107
【点睛】本题考查科学记数法1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.(2018·福建省厦门市第六中学初一期中)若 ,则 的值为______.
【答案】-8
【解析】根据非负数的性质,可求出m、n的值,代入所求代数式计算即可.
C.(-3)3=-9D.-32=-9
【答案】D
【解析】根据有理数减法法则,有理数加法法则,有理数乘方进行计算,逐一进行判断即可.
【详解】解:A、(-3)-(-5)=(-3)+(+5)=2,故本选项错误;
B、(-3)+(-5)=-(3+5)=-8,故本选项错误;
C、(-3)3=(-3)×(-3)×(-3)=-27,故本选项错误;
(4)根据有理数的乘方、乘除法和加减法可以解答本题.
【详解】(1)(+6)﹣(+12)+(+8.3)﹣(﹣7.7)
=6+(﹣12)+8.3+7.7
=10;
(2)﹣9×(﹣11)÷3÷(﹣3)
=﹣9×11×
=﹣11;
(3)
=(﹣4)+18+15
=29;
(4)
=﹣1+8÷(﹣8)﹣ +1
=﹣1+(﹣1)﹣ +1
人教版数学七年级上册第一章有理数乘方
![人教版数学七年级上册第一章有理数乘方](https://img.taocdn.com/s3/m/3b677dfaaa00b52acfc7cae3.png)
示例 有理数的乘方运算
1.5.1 乘方
栏目索引
1.5.1 乘方
(2)-32×(-3)3-(-2)3÷2
=32×33+23÷2=9×27+8÷2=243+4=247.
(3) 12
1
2 3
7 4
×(-6)2= 12
5 3
7 4
× 36
= 1 ×36- 5×36+ ×736=18-60+63=21.
2
3
4
(4)-22+[18-(-3)×(-2)4]÷6
栏目索引
3.an,-an及(-a)n的区别与联系
an
-an
(-a)n
相同点
指数都是n
不同点 意义不同
n个a相乘的积
n个a相乘的积的相反数
n个-a相乘的积
底数不同
a
a
-a
联系
n为奇数
-an=(-a)n,且-an,(-a)n都与an互为相反数(a≠0)
n为偶数
an=(-a)n,且an,(-a)n都与-an互为相反数(a≠0)
(2)-42-3×22×
1 3
1÷
1
1 3
=-16-3×4× 23× =34-16-6=-22.
点拨 对于乘方运算,要注意幂的符号,注意区分负数乘方与正数乘方
人教版七年级数学上1.5《有理数的乘方》课时练习(有答案)
![人教版七年级数学上1.5《有理数的乘方》课时练习(有答案)](https://img.taocdn.com/s3/m/08748b15960590c69fc37604.png)
七年级数学1.5《有理数的乘方》课时练习一、选择题:1、下列结论中正确的是( )A.绝对值大于1的数的平方一定大于1B.一个数的立方一定大于原数C.任何小于1的数的平方都小于原数D.一个数的平方一定大于这个数2、关于式子(-3)4,正确的说法是( )A.-3是底数,4是幂B.3是底数,4是幂C.3是底数,4是指数D.(-3)是底数,4是指数3、下列各组数中,数值相等的是( )A .-23和 (-2)3B .-22和 (-2)2C .-23和 -32D .-110和 (-1)10 4、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个11相加5、下列说法中正确的是( )A 、23表示2×3的积B 、任何一个有理数的偶次幂是正数C 、-32 与 (-3)2互为相反数D 、一个数的平方是94,这个数一定是32 6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A 、-2B 、2C 、4D 、2或-27、一个有理数的平方是正数,则这个数的立方是( )A 、正数B 、负数C 、正数或负数D 、奇数8、(-1)2019+(-1)2020÷1 +(-1)2021的值等于( ) A 、0 B 、 1 C 、-1 D 、2二、填空题:9、算式(-3)×(-3)×(-3)×(-3)用幂的形式可表示为 ,其值为 .10、设水桶里的水为1,第一天用掉它的一半,第二天用掉剩下的一半,第三天又用去剩下的一半,… 第n 天用去 。
(用n 的式子来表示)11、-7的平方是_________;一个数的平方是49,这个数是_________;一个数的立方是-8,这个数是__________.12、计算(-1)2-(-13)3×(-3)3的结果为 .13、已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…^…推测到320的个位数字是 ;14、如图用苹果垒成的一个“苹果图”,根据题意,第10行有 个苹果,第n 行有 个苹果。
【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)
![【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)](https://img.taocdn.com/s3/m/dbfc651753d380eb6294dd88d0d233d4b14e3fca.png)
有理数的乘方乘方( 2)知识与技术 能确立有理数加、 减、乘、除、乘方混淆运算的次序;能够娴熟地进行有理数的加、减、乘、除、乘方的运 过程与方法教课目的算,并在运算过程中合理使用运算律;培育学生对数的感觉, 提升学生正确运算的能力,培感情态度价养 学生思想的逻辑性和灵巧性,进一步发展学生的值观思想能力.教课要点有理数的混淆运算法例教课难点运算次序确实定和性质符号的办理教课过程(师生活动)设计理念教师提出问题:在 2+ 32×(- 6)这个式子中,存在着哪几种运算?给学生充足议论学生回答后,教师可持续发问:这道题应按什么顺的时间,鼓舞他提出问题序运算?前方我们已经学习加减乘除四则运算,知道们多发布自己的小组议论以为在做有理数混淆运算时,应注意哪些运算次序?请看法。
分 4 人小组议论。
小组议论后,请小组代表报告、沟通议论结果,其他同学增补,教师在学生回答的基础上做适合的总结与增补:( 1) 先算乘方,再算乘除,最后算加减;( 2) 同级运算,从左到右进行;( 3) 若有括号, 先做括号内的运算, 按小括号、 中括号、大括号挨次进行。
培育学生擅长归例 1 计算:纳、总结的能力,( 1)(- 2)3+(- 3)× [ (- 4) 2+2] -(- 3)2÷(-五种代数运算可分为三级;加减 沟通反应是一级,乘除是2);( 2) 1- 1× [3 ×(- 2)2-(- 1)41÷(- 1二级,乘方与开 ]+)方(此后会学)2 342是二级。
值.3、师生共同探请教科书44页的例 4.3.重申:按有理数混淆运算的次序进行运算,在每一步运 算中,仍旧是要先确立结果的符号,再确立符号的绝对要先算乘除,再算加减,此刻又多一种乘方运算,你们例 2 察下边三行数:-2, 4,- 8, 16,- 32, 64,⋯;① 0, 6,- 6, 18,- 30, 66,⋯;②-1, 2,- 4, 8 ,- 16, 32,⋯.③( 1)第①行数按什么律摆列?( 2)第②③行数与第①行数分有什么关系?( 3)取每行数的第 10 个数,算三个数的和.225 ] ,1.算3[39建学生采纳多种方法行算。
人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)
![人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)](https://img.taocdn.com/s3/m/c073427276a20029bc642d97.png)
人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。
1.5.1 人教版七年级上册数学 第一章《有理数》乘方 专题训练含答案及解析
![1.5.1 人教版七年级上册数学 第一章《有理数》乘方 专题训练含答案及解析](https://img.taocdn.com/s3/m/9a2a54fb6294dd88d1d26b0f.png)
简单1、计算(-3)2的结果是()A.-6 B.6 C.-9 D.9 【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】(-3)2=(-3)×(-3)=9.故选D.2、关于-(-a)2的相反数,有下列说法:①等于a2;②等于(-a)2;③值可能为0;④值一定是正数.其中正确的有()A.1个B.2个C.3个D.4个【分析】依据相反数和平方的概念及性质进行判断.【解答】①∵-(-a)2=-a2,∴它的相反数是a2.显然是正确的.②∵(-a)2=a2,∴也是正确的.③当a=0时,a2=0,∴原式的值可能为0,也是正确的.④是错误的,没有考虑0.故有3个是正确的.故选C.3、与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【分析】32+32+32表示3个32相加.【解答】32+32+32=3×32=33.故选A.4、在-(-2)3,(-2)3,-23中,最大的数是____________.【分析】求出每个式子的值,再判断即可.【解答】∵-(-2)3=8,(-2)3=-8,-23=-8,∴最大的数是-(-2)3,故答案为:-(-2)3.5、下列各组数中:①-52与(-5)2;②-33与(-3)3;③0100与0200;④-(-1)2与(-1)3;⑤1与-12.相等的共有()组.A.2 B.3 C.4 D.5【分析】根据有理数的乘方运算依次化简各组的结果.【解答】①-25与25,不相等;②中-27与-27相等;③0与0,相等;④中-1与-1相等;⑤1与-1不相等故选B.6、某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】2×2×2×2=24=16.故选B.7、若a是负数,则下列各式不正确的是()A.a2=(-a)2B.a2=|a2| C.a3=(-a)3D.a3=-(-a3)【分析】若a是负数,则-a是正数,且a与-a是一对相反数.根据一对相反数的奇次幂互为相反数,一对相反数的偶次幂相等,负数的偶数次幂是正数,进行判断.【解答】∵一对相反数的偶次幂相等,∴a2=(-a)2,故A正确;∵a是负数,负数的偶数次幂是正数,∴|a2|=a2,故B正确;∵一对相反数的奇次幂互为相反数,∴(-a)3=-a3,故C不正确;∵一对相反数的奇次幂互为相反数-(-a)3=-(-a3)=a3,故D正确.故选C.8、已知a、b是实数,且满足(a+2)2+|b-3|=0,则a+b=__________.【分析】根据非负数的性质解答.当两个非负数相加和为0时,必须满足其中的每一项都等于0.【解答】∵(a+2)2+|b-3|=0,∴a=-2,b=3,∴a+b=-2+3=1.9、已知|x+1|=4,(y+2)2=4,且x与y异号.试求x+y的值.【分析】根据绝对值的性质与有理数的乘方求出x、y的值,再根据x、y异号确定出x、y的值,然后代入代数式进行计算即可得解.【解答】∵|x+1|=4,(y+2)2=4,∴x+1=4,或x+1=-4,y+2=2或y+2=-2,解得x=3或x=-5,y=0或y=-4,∵x与y异号,∴x=3,y=-4,∴x+y=3+(-4)=-1.简单题1、-23的意义是()A.3个-2相乘B.3个-2相加C.-2乘以3 D.23的相反数【分析】根据乘方的意义和相反数的定义判断.【解答】-23的意义是3个2相乘的相反数.故选D.2、一个数的7次幂是负数,那么这个数的2011次幂是_________(填“正数”“负数”或“0”).【分析】根据负数的奇数次幂是负数解答.【解答】∵一个数的7次幂是负数,∴这个是负数,∴这个数的2011次幂是负数.故答案为:负数.3、一个有理数的平方是正数,那么这个数的立方是()A.正数B.负数C.整数D.正数或负数【分析】正数的平方是正数,负数的平方也是正数,而正数的立方是正数,负数的立方是负数.【解答】∵一个有理数的平方是正数,∴这个有理数是正数或负数.又∵正数的立方是正数,负数的立方是负数,∴这个数的立方是正数或负数.故选D.4、一个数的偶次幂是正数,这个数是()A.正数B.负数C.正数或负数D.任何有理数【分析】根据负数的偶次幂是正数,正数的偶次幂是正数得出.【解答】一个数的偶次幂是正数,这个数是正数或负数.故选C.5、计算:-43×(−12)2=___________.【分析】先算乘方再算乘法,注意负数的偶次幂为正数.【解答】-43×(-12)2=-64×14=-16.故本题答案为:-16.6、计算:2×(-3)2−5÷12×2.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减.【解答】2×(-3)2−5÷12×2=2×9-5×2×2 =18-20=-2.7、计算:4−8×(−12)3=__________.【分析】先算乘方,再算乘法,最后算减法.【解答】原式=4-8×(-18)=4+1=5.故答案为:5.难题1、下列计算正确的是()A.-2+1=-1 B.-2-2=0 C.(-2)2=-4 D.-22=4 【分析】根据有理数的加减法、有理数的乘方,即可解答.【解答】A、-2+1=-1,正确;B、-2-2=-4,故错误;C、(-2)2=4,故错误;D、-22=-4,故错误;故选A.2、计算-22+(-2)2-(-12)-1的正确结果是()A.2 B.-2 C.6 D.10 【分析】根据负整数指数幂和有理数的乘方计算即可.【解答】原式=-4+4+2=2.故选A.3、下列各组数中,数值相等的是()A.32和23B.-23和(-2)3C.-|23|和|-23| D.-32和(-3)2【分析】根据a n表示n个a相乘,而-a n表示a n的相反数,而(-a)2n=a2n,(-a)2n+1=-a2n+1(n是整数)即可求解.【解答】A、32=9,23=8,故本选项错误;B、-23=(-2)3=-8,正确;C、-|23|=-8,|-23|=|-8|=8,故本选项错误;D、-32=-9,(-3)2=9,故本选项错误.故选B.4、-42计算的结果是()A.-8 B.8 C.16 D.-16【分析】根据乘方的意义得到42=4×4=16,则有-42=-16.【解答】∵42=4×4=16,∴-42=-16.故选D.5、下列各式中.计算结果得0的是()A.-22+(-2)2B.-22-22C.-22-(-2)2D.(-2)2+22【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【解答】A、-22+(-2)2=-4+4=0,故本选项正确;B、-22-22=-4-4=-8,不是0,故本选项错误;C、-22-(-2)2=-4-4=-8,不是0,故本选项错误;D、(-2)2+22=4+4=8,不是0,故本选项错误.故选A.6、关于(-3)4的正确说法是( ) A .-3是底数,4是幂B .-3是底数,4是指数,-81是幂C .3是底数,4是指数,81是幂D .-3是底数,4是指数,81是幂【分析】根据有理数乘方的定义进行解答即可. 【解答】(-3)4中,-3是底数,4是指数,81是幂. 故选D .7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )米.A .31()2B .51()2C .61()2D .121()2【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为21()2米,那么依此类推得到第六次后剩下的绳子的长度为61()2米.【解答】∵11122-=, ∴第2次后剩下的绳子的长度为21()2米;依此类推第六次后剩下的绳子的长度为61()2米.故选C .8、如果n 是正整数,则(-1)2n +1+(-1)2n =_________. 【分析】根据-1的奇数次幂是-1,-1的偶数次幂是1进行计算. 【解答】(-1)2n +1+(-1)2n =-1+1=0.9、如图是一个数值转换机的示意图,当输入x =3时,则输出的结果为________.【分析】根据题意列出关系式,将x=3代入计算即可求出值.【解答】根据题意列得:3x2-1,将x=3代入得:3×9-1=26.故答案为:26难题1、若(a-3)2+|b+4|=0,则(a+b)2014的值是()A.2014 B.-2014 C.1 D.-1 【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】根据题意得:a-3=0,b+4=0,解得:a=3,b=-4,则原式=1.故选C.2、一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).【分析】先分别计算棱长分别为1米、2米、4米的正方体的表面积,再去掉粘合部分的面积即可.【解答】6(1×1+2×2+4×4)-2(1×1+2×2), =6×(1+4+16)-2(1+4), =116m 2,答:模型的涂漆面积116m 2.3、一块面积为1㎡的长方形纸片,第一次裁去它的一半,第二次裁去剩下纸片的一半,如此裁下去,第八次裁完后剩下的纸片的面积是( ) A .132㎡ B .164㎡ C .1128㎡ D .1256㎡ 【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,根据规律,总结出一般式,由此可以求出第八次剩下的纸片的面积.【解答】根据题意,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,则第n 次剩下的面积为12n m 2.则第八次剩下的面积为812m 2,即1256m 2.故选D .4、算式999032+888052+777072之值的十位数字为何?( ) A .1B .2C .6D .8【分析】分别得出999032、888052、777072的后两位数,再相加即可得到答案. 【解答】999032的后两位数为09, 888052的后两位数为25, 777072的后两位数为49,09+25+49=83,所以十位数字为8, 故选D .5、观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32015的末位数字是()A.3 B.9 C.7 D.1 【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32015=3503+3的个位数字与与32的个位数字相同,应为7.故选C.6、日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33 【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.7、若a=(-3)13-(-3)14,b=(-0.6)12-(-0.6)14,c=(-1.5)11-(-1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 【分析】分别判断出a-b与c-b的符号,即可得出答案.【解答】∵121413141214131433 330.60.633055a b-=-----+-=---+()()()()<,∴a<b,∵11131214 111312141.5 1.50.60.61.5 1.50.60.60c b-=-----+-=-+-+()()()()()>,∴c>b,∴c>b>a.故选D.8、某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔__________支.【分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答】320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.。
七年级数学上册有理数的乘方习题精选(供参考)
![七年级数学上册有理数的乘方习题精选(供参考)](https://img.taocdn.com/s3/m/3219703276a20029bc642d7d.png)
七年级数学上册有理数的乘方(一)一、 选择题1.以下说法正确的选项是( )A .平方得9的数是3B .平方得-9的数是-3C .一个数的平方不能是负数D .一个数的平方只能是正数2.以下运算正确的选项是( )A. -24=16B. -(-2)2=-4C.(-13)2=-19D. (-12)2=-143.以下各组数中,数值相等的是( )A. 32与23B.(-2)3与-23C.(-3)2与-32D.(-3×2)2与-32×24.(-0.125 ) 2012 ×(-8 ) 2013的值为( )A .-4 B. 4 C. 8 D .-85.假设a 为任意一个有理数,那么以下说法正确的选项是( )A. (a +1 )2的值老是正的B. -(a-1)2的值总得负的C. 1-a 2的值总小于1D. 1+a 2的值必然不小于16.关于(-2)4与-24,以下说法正确的选项是( )A .它们的意义相同B .它们的结果相同C .它们的意义不同,结果相同D .它们的意义不同,结果也不同7.计算(-1)2020+(-1) 2021的值等于( )A. 0B. 1 C .-1 D. 28.假设a 、b 互为相反数,n 是自然数,那么( )A. a 2n 和b 2n 互为相反数B. a 2n+1和b 2n+1互为相反数C.a 2和b 2互为相反数D. a n 和b n 互为相反数※9.下面是一组按规律排列的数:1,2,4,8,16,…,第2012个数应是( )A. 22011B. 22012-1C.22012 D .以上答案均不对※10.已知A=a+a 2+a 3+a 4+…+ a 2012,假设a=-1,那么A 等于( )A .-2012 B.0 C .-1 D. 1二、填空题11.(-5)4中指数为________,底数为_______,结果是_______12.(-4)2=_______,-42=__________,100=(______)2.13.若是一个数的3次幂是负数,那么那个数的2020次幂是________数.14.若是一个数的立方等于127,那么那个数是_________;平方得116的数是________ ※15.假设x 2=4,那么x 3=_______16.平方等于它本身的数是________,立方等于它本身的数是________,平方等于它的立方的数是_______.17.假设a 、b 互为相反数,m 、n 互为倒数,那么201120121()()a b mn ++=_________. 18.假设1x ++(y+3 )2 =0,那么(xy )2=_________※19.观看以下算式:21 =2,22 =4,23=8,24=16,25=32,26=64,27=128,28=256.通过观看,用你发觉的规律写出82021的末位数字是_________20.已知a, b 互为相反数,c,d 互为倒数,x 的绝对值等于2,那么x 2+(a+b +cd)x=___三、计算题22.计算:①(-8)-(-4)2×5=_______.②[(-8)-(-42)]×5=_________.③【(-8)-(-4)】2×5=_______.④(-8)-(-4×5)2=_________.23.计算(设n为自然数):①(-1 )2n-1=_______;②(-1)2n =________;③(-1) n+l=_______24.依次排列的一列数2,4,8,16,32……(1)依照给出的几个数的排列规律,继续写出后面的三项.(2)这一列数的第n个数是什么?25.已知a、b互为相反数,c与d互为倒数,x的绝对值是3,求:x2-(a+b+cd)x+ (a+b )2021+(-cd)2020的值.※26.已知:a 与b 互为相反数,c 与d 互为倒数,x 的绝对值是12,y 不能作除数,求2(a +b )2021-2 (cd) 2011+1x +y2012.※27.已知42(1)0a b -++=,求20122012891()(1)2()a b a--+-+的值※28.观看以下各式: 13+23= 9=14×4×9=14×22×32 13+23 +33= 36=14×9×16=14×32×42 13+23 +33+44= 100=14×16×25=14×42×52 ……若n 为正整数,试猜想13+23+33 +43+……+n 3等于多少?并利用此式比较13+23+33+…+1003与(-5000)2的大小.※(附加题)29. 有理数a 、b 、c 均不为0,且a+b+c=0,设x=||||||a b c b c a c a b+++++,试求代数式2020x+2021的值15.有理数的乘方(一)一、1.D 2.C 3.D 4.C 5.B 6.C 7.B 8.D 9.A lO.B二、11.(- 2)4 12.1 0 ±1 0 13. (1) -0.027 (2) -0. 09 14. -2 3 3个-2相乘 15.-2 32 2个-23相乘 16.4517.±71418.1 -1 19.(-2.7)5<(-2.7)3<(-2. 7)4 20.0三、21. (1) -16 (2)278(3) -27 (4) -272(5)-4 (6)-485(7)-6 (8)4322.9 23.13224.C 25.B。
七年级数学上册《有理数的乘方》同步练习题(附答案)
![七年级数学上册《有理数的乘方》同步练习题(附答案)](https://img.taocdn.com/s3/m/7c8019214b7302768e9951e79b89680203d86bf2.png)
七年级数学上册《有理数的乘方》同步练习题(附答案)一、选择题1、对乘积(−3)×(−3)×(−3)×(−3)记法正确的是( )A .-34B .(-3)4C .-(+3)4D .-(-3)42、下列计算:①(−12)2=14;②(25)2=45;③(−0.2)3=0.008;④−32=9;⑤−(−13)2=19.其中正确的是( )A .1个B .2个C .3个D .4个3、已知|x −3|+(2+y)2=0,则y x 的值为( )A .9B .−9C .−8D .84、计算(−23)2019×1.52020×(−1)2022的结果是( )A .23B .32C .−23D .−325、如图是一个计算程序,若输入a 的值为2-,则输出的结果应为( ).A .2B .2-C .±2D .−46、下列各数:①−12;②−(−1)2;③−13;④|−(−1)2|,其中结果等于−1的是( ) A .①①①B .①①①C .①①①D .①①①①7、若a =−0.1,则a ,1a ,a 3从小到大排列的顺序是( )A .a 3<a <1aB .a <1a <a 3C .1a <a <a 3D .a <a 3<1a8、观察下列等式:3¹=3,3²=9,3³=27,…,则3+32+…+32019的末位数字是( )A.0B.1C.3D.99、设a=-2×42,b=-(2×4)2,c=-(2-4)2,则a,b,c的大小关系为()A. a<b<cB. b<a<cC. c<b<aD. b<c<a二、填空题10、定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125−log381=______.11、观察下列各式:1-122=12×32,1-132=2433,1-142=34×54⋯,根据上面的等式所反映的规律(1-122)(1-132)(1-142)⋯(1−120192)=________12、几个相同的加数相加,可以简化记为乘法:(1)3+3+3+3+3=________(2)(-3)+(-3)+(-3)+(-3)=_____________若干个非零数连乘,确定乘积符号的方法是:若有奇数个负因数,则得_________;若有偶数个负因数,则得_________13、求n个相同因数的积的运算,叫做_____,乘方的结果叫做______.在n a中,a叫做______,n叫做______.当n a看做a的n次方的结果时,也可读作“___________”.14、有理数乘方的符号法则:负数的奇次幂是________,负数的偶次幂是__________.正数的任何次幂都是________,0的任何正整数次幂都是______.15、有理数的混合运算顺序:①先算______,再算乘除,最后算______;②同级运算,从___到___进行;③如果有括号,要先算__________的运算.(按小括号、中括号、大括号依次进行)16、(-5)2的底数是____,指数是____,(-5)2表示2个____的乘积,叫做____的2次方,也叫做-5的_____.三、计算题17、计算:(1)﹣12+11﹣10+26;(2)413 991899()9918555⨯+⨯--⨯;(3)−32−35÷(−7)+18×(−13)2.18、计算:(1)−3−(−8)+(−6)+(+10)(2)−14+|3−5|−8÷(−2)×12(3)3×(−1)3+(−5)×(−3)(4)(12−13)÷(−16)+(−2)2×(−14)19、计算:(1)17+(−2)−(−67)(2)6.868×(−5)+68.68×(−1.2)+3.434×(+34)(3)−23+|2−3|−2×(−1)2013(4)−14−[1−(1−0.5×13)×6].参考答案一、选择题1、B【分析】根据乘方的意义,可知四个(-3)相乘,可记为(−3)4.【详解】(−3)×(−3)×(−3)×(−3)=(−3)4.故选:B .【点睛】本题考查有理数乘方的意义:求几个相同因数积的运算,叫做乘方.2、A【分析】根据乘方的意义:a n 表示n 个a 相乘,分别计算出结果,根据结果判断即可.【详解】①(−12)2=14,故本选项正确,②(25)2=425,故本选项错误,③(−0.2)3=−0.008,故本选项错误,④−32=−9,故本选项错误,⑤−(−13)2=−19,故本选项错误,正确的有:①1个.故选:A .【点睛】本题主要考查了乘方的意义,能正确进行计算是解此题的关键,注意计算时应先确定结果的符号.3、C【分析】根据非负数的性质求出x 、y 的值,代入计算即可.【详解】解:根据题意得,x -3=0,2+y =0,①x =3,y =-2,①y x =(-2)3=-8.故选:C .【点睛】本题考查了非负数的性质.熟练掌握非负数的性质是解题的关键.4、D【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】解:(−23)2019×1.52020×(−1)2022, =−(23)2019×1.52020×1 =−23×⋅⋅⋅×23�2019个×1.5×⋅⋅⋅×1.5�2020个,=−23×1.5⋅⋅⋅×23×1.5�2019个×1.5, =−32,故选:D .【点睛】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.5、B【分析】根据图表列出代数式(a 2−2)×(−3)+4,再按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的,从而可得答案.【详解】由图可得,当a =−2时,(a 2−2)×(−3)+4=[(−2)2−2]×(−3)+4=(4−2)×(−3)+4=2×(−3)+4=(−6)+4=−2.故选择:B .【点睛】本题考查的是代数式的求值,弄懂题意,掌握代数式的运算顺序与有理数运算法则是解题的关键.6、C【分析】根据有理数的乘方,以及相反数和绝对值的求法,逐项判定即可.【详解】解:①−12=−1,②2(1)1--=-,③−13=−1,④|−(−1)2|=1,∴其中结果等于-1的是:①①①.故选:C.【点睛】此题主要考查了有理数的乘方,以及相反数和绝对值的求法,求一个数的相反数的方法就是在这个数的前边添加“-”.7、C【分析】根据a=−0.1,分别求出1a,a3的值,然后比较大小即可.【详解】解:∵a=−0.1∴1a=−10,a3=−0.001∴1a<a<a3故选C.【点睛】本题考查了有理数大小的比较,正确理解倒数、相反数和乘方的意义是解题的关键.8、D【分析】由题意得出规律是末位数,每4个一循环,由2019÷4=504……3,求出31+32+33+…+32019的末位数字的和,即可得出答案.【详解】解:①31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,①末位数,每4个一循环,①2019÷4=504……3,①31+32+33+…+32019的末位数字相当于:3+9+7+1+…+7=(3+9+7+1)×504+3+9+7=10099,①31+32+33+…+32019的末位数字是9;故选:D.【点睛】本题考查了数字的变化类.本题涉及到两个规律,一个是3的乘方的末位数字以4个一循环,一个是每一个循环末位数字之和为0.9、C【分析】略二、填空题10、-1【分析】根据题意可以计算出所求式子的值.【详解】解:由题意可得,log5125-log381=3-4=-1,故答案为:-1.【点睛】本题考查了新定义运算,解答本题的关键是明确新定义运算的计算方法.11、10102019【分析】先根据已知等式探索出变形规律,然后根据规律进行变形,计算有理数的乘法运算即可.【详解】解:由已知等式可知:1−122=12×32=2−12×2+12,1−132=23×43=3−13×3+13,1−142=34×54=4−14×4+14,归纳类推得:1−1n2=n−1n⋅n+1n,其中n为正整数,则1−120192=2019−12019×2019+12019=20182019×20202019,因此(1−122)(1−132)(1−142)⋯(1−120192),=12×32×23×43×34×54×⋯×20182019×20202019,=12×20202019,=10102019,故答案为:10102019.【点睛】此题考查的是有理数运算的规律题,根据已知等式探索出运算规律并应用是解题关键.12、①. 乘方①. 幂①. 底数①. 指数①. a的n次幂13、①. 负数①. 正数①. 正数①. 014、①. 乘方①. 加减①. 左①. 右①. 括号内15、①. -5 ①. 2 ①. -5 ①. -5 ①. 平方16、(1)15;(2)0;(3)-2【分析】(1)先同号相加,再异号相加;(2)根据乘法交换律计算;(3)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.【详解】解:(1)-12+11-10+26=-22+37=15;(2)99×1845+99×(−15)−99×1835=99×(1845−15−1835)=99×0=0;(3)−32−35÷(−7)+18×(−13)2=-9+5+18×19=-9+5+2=-2.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17、(1)9;(2)3;(3)12;(4)-57【分析】(1)先化简,再计算加减法;(2)先算乘方和绝对值,再算乘除,最后算加减;(3)先算乘方,再算乘法,最后算加减;(4)先算乘方和括号内的,再算乘除,最后算加减.【详解】解:(1)−3−(−8)+(−6)+(+10)=-3+8-6+10=-9+18=9;(2)−14+|3−5|−8÷(−2)×12=-1+2+2=3;(3)3×(−1)3+(−5)×(−3)=3×(−1)+5×3=−3+15=12;(4)(12−13)÷(−16)+(−2)2×(−14)=1 6÷(−16)−4×14=−1−56=-57【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18、(1)-1;(2)0;(3)-5;(4)3【分析】(1)先化简符号,再作加减法;(2)利用乘法结合律简化计算;(3)先算乘方和绝对值,再算乘法,最后算加减;(4)先算乘方和括号,再算乘除,最后算加减.【详解】解:(1)17+(−2)−(−67)=1 7+67−2=12=-1;(2)6.868×(−5)+68.68×(−1.2)+3.434×(+34) =6.868×(−5)+6.868×(−12)+6.868×(+17)=6.868×[(−5)+(−12)+(+17)]=6.868×0=0;(3)−23+|2−3|−2×(−1)2013=−8+1−2×(−1)=−8+1+2=-5;(4)−14−[1−(1−0.5×13)×6]=−1−[1−(1−12×13)×6]=−1−(1−56×6) =−1−(1−5)=−1+4=3【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.。
数学人教版(2024)七年级上册 第二章 有理数的运算 习题 2.3.1 乘方
![数学人教版(2024)七年级上册 第二章 有理数的运算 习题 2.3.1 乘方](https://img.taocdn.com/s3/m/bfb78d98fbb069dc5022aaea998fcc22bdd1436a.png)
×5×6×11
(1)12+22+32+42+52=
1
2
3
4
5
6
7
8
9
=
10
11
;
55
12
13
14
15
16
2.3.1
乘方
分层检测
(2)12+22+32+42+52+…+122=
;
650
(3)计算132+142+152+…+242的值.
解:原式=(12+22+33+…+242)-(12+22+32+…+122)
的数是
2m
1
,第③行该列
;
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2.3.1
乘方
分层检测
(3)取每行数的第10个,计算这三个数的和.
解:第①行第10个数为(-2)10=1 024,
第②行第10个数为1 024+2=1 026,
第③行第10个数为1 024×2=2 048,
1 024+1 026+2 048=4 098.
3
;
解:原式=-16+18+(-6)÷
=-16+18-54
=-52;
1
2
3
4
5
6
7
8
9
10
11
12
13
1415162.3.1乘方
分层检测
1
2
(2)-2 ×(-1 )-32÷(-2)2-27÷
2
−33 .
解:原式=-4×(- )-32÷4-27÷27
人教版数学七年级上册有理数的乘方
![人教版数学七年级上册有理数的乘方](https://img.taocdn.com/s3/m/efe5592816fc700aba68fc0c.png)
锦囊妙计
有理数乘方的其他结论 0, 1, 5, 6的任何正整数次幂的个位数字都 是它们本身;2的 正整数次幂的个位数字是按 2, 4, 8, 6四个数字循环的;3的正整数 次幂的个 位数字是按3, 9, 7, 1四个数字循环的;4的正整 数次幂 的个位数字是按4, 6两个数字循环的;7的 正整数次幂的个位数字 是按7, 9, 3, 1四个数字循环 的;8的正整数次幂的个位数字是按8, 4, 2, 6四个 数字循环的;9的正整数次幂的个位数字是按9, 1 两个 数字循环的.
锦囊妙计
把较大的数精确到十位、百位、千位的方法 把较大的数按要求用四舍五入法精确到十 位、百位、千 位, 先把较大的数用科学记数法 表示为a×10n的形式, 再按照 精确度的要求, 在 a中确定出精确度所对应的数字, 然后用四舍 五 入法取近似值.
题型七 有理数乘方的规律探究题
例题9 已知:31=3, 32=9, 33=27, 34=81, 35=243, 36=729, 37=2187, 38=6561, …, 试确定32019 的末位数字.
例题6 下列用科学记数法表示的数, 原来各 是什么数? (1)5.18×103;(2)-3.12×105;(3)4.05×1012.
解 (1)5.18×103=5180. (2)-3.12×105=-312 000. (3)4.05×1012=4 050 000 000 000.
锦囊妙计
用科学记数法表示数的方法 (1)确定a:a是只有一位整数的数. (2)确定 n:当原数的 绝对值≥10时, n为正整数, n等于原 数的整数位数减1. 把含计数单位的数用科学记数法表示时, 先把计数单位化 去, 再用科学记数法表示.如 1亿= 108, 1万= 104.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 3.10104 的有效数字是( )
A.3,1 B.3,1,0 C.3,1,0,0,0 D.3,1,0,1,0
9.由四舍五入法得到的近似数3.20105 ,下列说法中正确的是( )
A.有 3 个有效数字,精确到百位
B.有 6 个有效数字,精确到个位
C.有 2 个有效数字,精确到万位
D. 有 3 个有效数字,精确到千位
A.2.595 x 2.605
B. 2.50 x 2.70
C. 2.595 x 2.605
D. 2.600 x 2.605
拓展提高
解答题
1. 下列由四舍五入法得到的近似数,各精确到哪一位?各有几个有效数字?
⑴25.7 ⑵28 ⑶0.501
⑷0.03 ⑸ 3.2105 ⑹2.89 万
2. 用四舍五入法,对下列各数按括号中的要求取近似数。 ⑴4.0056(保留三个有效数字)⑵9.23456(精确到 0.0001)
.
9.月球轨道呈椭圆形,近地点平均距离为 363300 千米,远地点平均距离为 405500 千米 , 用
科学记数法表示 : 近地点平均距离为
, 远地点平均距离为
.
10.5.9406×102 的原数是
.
近似数
基础练习 1.1.449 精确到十分位的近似数是( )
A.1.5 B.1.45 C.1.4 D.2.0 2. 由四舍五入法得到的近似数 0.002030 的有效数字的个数是( )
义务教育基础课程初中教学资料
乘方
基础练习
1.118 表示( )
A、11 个 8 连乘 B、11 乘以 8
C、8 个 11 连乘
2.-32 的值是( )
A、-9 B、9
C、-6
D、6
3.下列各对数中,数值相等的是( )
A 、 -32 与 -23
B、-23 与 (-2)3
D、8 个别 1 相加
C 、 -32 与 (-3)2 4 D、(-3×2)2 与-3×22 .下列说法中正确的是( )
A、-2 B、2
C、4
D、2 或-2
7.一个数的立方是它本身,那么这个数是( )
A、 0 B、0 或 1
C、-1 或 1
D、0 或 1 或-1源自8.如果一个有理数的正偶次幂是非负数,那么这个数是( )
A、正数 B、负数
C、 非负数 D、任何有理数
拓展提高
1.(-2)6 中指数为
,底数为
;4 的底数是
,指数是
A.3 B.4 C.5 D.6
3.有效数字的个数是( )
A.从右边第一个不是零的数字算起 B. 从左边第一个不是零的数字算起
C.从小数点后第一个数字算起
D. 从小数点前第一个数字算起
4.下列数据中,准确数是( )
2
A.王敏体重 40.2 千克
C.珠穆朗玛峰高出海平面 8848.13 米
30. 万精确到( )
A.1.7×10-7 吨
B.1.7×107 吨; C.1.7×108 吨
4.用科学记数法表示 430000 是( )
A.43×104 B.4.3×105 C.4.3×104 D.4.3×106
) D.1.7×109 吨
拓展提高
你能填的又对又快吗?
5.0.0036×108 整数部分有
位,-87.971 整数部分有
3
10.下列说法中正确的是( )
A.近似数 3.50 是精确到个位的数,它的有效数字是 3、5 两个
B.近似数 35.0 是精确到十分位的数,它的有效数字是 3、5、0 三个
C.近似数六百和近似数 600 的精确度是相同的
D.近似数 1.7 和 1.70 是一样的
11.近似数 2.60 所表示的精确值 x 的取值范围是( )
;
7. 2 73 , 2 74 , 2 75 的大小关系用“<”号连接可表示为
;
3 5
2
;
8.如果 a 4 a 4 ,那么 a 是
;
9. 1 22 33 42001 2002 ;
1
科学记数法
基础练习
1.用科学记数法记地球上煤的储量,估计为 15 万亿吨的数为( )吨
A.1.5×1012
B.0.15×1015;
C.15×1012
D.1.5×1013
2.某校有在校师生共 2000 人,如果每人借阅 10 册书,那么中国国家图书馆共 2 亿册书,可以
供多少所这样的学校借阅( )
A.1000 所 B.10000 所 C.100000 所 D.2000 所
3.我国某年石油产量约为 170000000 吨,用科学记数法表示为(
位, 光的速度是 300000000 米
/秒是
位整数.
6.用科学记数法表示 679 亿元=
亿元.18547.9 亿元= 亿元= 元
7. 用科学记数法表示下列各数.
(1)50302=
;(2)16.71×104=
;
(3)-50.01×106=
;(4)0.0051×106=
.
8.若月球的质量用科学记数法表示 7.34×1015 万吨,则原数是
的底数是
,指数是
,结果是
;
2.根据幂的意义,(-3)4 表示
,-43 表示
3.平方等于 1 的数是 64
,立方等于 1 的数是 64
4. 一个数的 15 次幂是负数,那么这个数的 2003 次幂是
5. 平方等于它本身的数是
,立方等于它本身的数是
6.
3 3
4
,
33
4
33 ,
4
; ; ; ;
A.千位
B.百分位
C.万位
6.20000 保留三个有效数字近似数是( )
B.初一(3)班有 47 名学生 D.太平洋最深处低于海平面 11023 米
D.百位
A.200 B. 200 105 C. 2104 D. 2.00104
7.208031 精确到万位的近似数是( )
A. 2 105 B. 2.1105 C. 21104 D. 2.08 万
A、23 表示 2×3 的积
B、任何一个有理数的偶次幂是正数
C、-32 与 (-3)2 互为相反数
4
2
D、一个数的平方是 ,这个数一定是
9
3
5.下列各式运算结果为正数的是( )
A、-24×5
B、(1-2)×5
C、(1-24)×5
D、1-(3×5)6
6.如果一个有理数的平方等于(-2)2,那么这个有理数等于( )