用列举法求概率树形图
用列举法求概率(树形图)
=
同时掷两个质地均匀的骰子,计 算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子的点数的和是9; (3)至少有一个骰子的点数为2。
当一次试验要 涉及两个因素(例 如掷两个骰子)并 且可能出现的结果 数目较多时,为不 重不漏,通常采用 列表法。
第1个 第2个
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
经过某十字路口的汽车,它可能继续直行,也 可能向左转或向右转,如果这三种可能性大小相 同,三辆汽车经过这个十字路口,求下列事件的概 率: (1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左传.
第一辆车
左 左 直 右 左
直 直 右 左
右
直 右
第二辆车
第三辆车 左 直右 左左左 左左左 左直右
所有可 能结果
解: P(三辆车全部继续直行)= P(两辆车向右转,一辆车向左转)= =
P(至少有两辆车向左转)=
当一次试验要涉及3个或更多因素(例如 三辆汽车行驶方向问题)时,列方形表就不方 便了,为了不重不漏列出所有可能结果,通常 采用树形图。 用树形图列举出的结果看起来一目了然, 当事件要经过多次步骤(三步或三步以上) 完成时,用这种“树形图”的方法求事件的 概率很有效。
议一议
对于概率问题,什么时候使用“列表法” 方便,什么时候使用“树形图法”方便
当试验包含两步时,列表法比较方便,当 然此时也可用树形图法,当试验在三步或三步 以上时用树形图法方便,此时,难以列表.
3.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
用列举法求概率---画树状图法(2步或3步及以上概率)
25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)一.【知识要点】1.画树状图法(2步或3步及以上概率)二.【经典例题】1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112=++-bx x a 有实数根的概率为_______。
3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。
所有卡片的形状、大小都完全相同。
现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。
(1)请用树状图的方法求这三条线段能组成三角形的概率。
(2)求这三条线段能组成直角三角形的概率。
4.(绵阳2019年第20题11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.(1)摸出的2个球都是白球的概率为__________.(2)下列事件中,概率最大的是( )A.摸出的两个球的颜色都相同.B.摸出的两个球的颜色不相同.C.摸出的两个球中至少有1个红球.D.摸出的两个球中至少有1个白球.6.(2020年绵阳期末第20题)(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .(1)用列举法或树状图法求(a ,b )的结果有多少种?(2)求方程02=++a bx x 有实数解的概率.三.【题库】【A 】【B 】1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A. 14B. 12C. 34D. 562.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作把作为点的横、纵坐标.(1)请你通过列表法或画树状图求点的个数;(2)求点在函数的图象上的概率.【C 】1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )A.16B.12C.19D.13 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.3.(11分)每年3月12日,是中国的植树节。
用树状图求概率
.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
2.小明是个小马虎,晚上睡觉时将两双不同的袜子放在 床头,早上起床没看清随便穿了两只就去上学,问小 明正好穿的是相同的一双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
►
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙C
D
丙 H IH I
E
CD
E
H I H IH I H I
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
AAAAAABBBBBB CC DDEECCDDEE HI HI HIHIHI HI
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)=
► 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
率;(3)求这个家庭至少有一个男孩的概
率.
解:
(1)这个家庭的3个孩子都是男孩的概率为 1/8;
(2)这个家庭有2个男孩和1个女孩的概率
为3/8;
(3)这个家庭至少有一个男孩的概率为7/8.
例2.在一个不透Βιβλιοθήκη 的袋中装有除颜色外其余都相► 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
列举法、列表法、画树状图法求概率 ppt课件
例1.掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部反面朝上; (2)一枚硬币正面朝上,一枚硬币反面朝上. 解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:
A
正 反
B
正
反
(正,正) (反,正)
(正,反) (反,反)
总共4种结果,每种结果出现的可能性相同.
(1)所有结果中,满足两枚硬币全部反面朝上的结果只 有一个,即”(反,反)”,所以 1 P(两枚硬币全部反面朝上)= 4 (2)所有结果中,满足一枚硬币正面朝上, 一枚硬币反 面朝上的结果有2个,即”(正,反),(反,正)”,所以 ppt课件 P(一枚硬币正面朝上,一枚硬币反面朝上 )= 2 1 4 2
4
9 3、在6张卡片上分别写有1—6的整数,随机的抽取
一张后放回,再随机的抽取一张,那么,第一次取出 的数字能够整除第2次取出的数字的概率是多少?
ppt课件 11
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可 能出现的情况,如图所示,共有36种情况。
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1), (2,1),(2,2),(3,1),(3,3),(4,1),(4,2), (4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
当一次试验涉及3个因素或3个以上 当一次试验涉及两个因素时,且可能 出现的结果较多时,为不重复不遗漏地 的因素时,列表法就不方便了,为不 重复不遗漏地列出所有可能的结果, 列出所有可能的结果,通常用列表法 通常用树形图 17 ppt课件
2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
25.2用树状图求概率
右
左 直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右 左 左 左 左 左 左 左 左 左直 直 直直 直 直 直 直 直 右 右 右右 右 右 右 右 右 左 左 左 直 直 直 右 右 右左 左 左直 直 直 右 右 右 左 左 左直 直 直 右 右 右 左 直 右 左 直 右 左 直 右左 直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右
H I H
D E
I
E
H I
A
B
C
D
E
C
D
E
H
A C H
I
A C I
H
A D H
I
A D Iຫໍສະໝຸດ HA E HI
A E I
H
B C H B C I
I
H
B D H
I
B D I
H
B E H
I
B E I
当一次试验涉及3个因素或3个以上的因素时, 列表法就不方便了,为不重复不遗漏地列出所 有可能的结果,通常用树形图
用树状图求概率
经过某十字路口的汽车,它可能继续直 行,也可能左转或右转,如果这三种可 能性大小相同,同向而行的三辆汽车都 经过这个十字路口时,求下列事件的概率 1)三辆车全部继续直行(2)两辆车右 转,一辆车左转(3)至少有两辆车左转
第一辆车
第二辆车 左
第三辆车
左 直 右 左
直 直 右 左
右 直
25.2. 用树状图求概率
Waiyuxuexiao
Liudeguang
2006.10.17
用列举法求概率 什么时候用“列表法”方便?
当一次试验涉及两个因素时,且可能 出现的结果较多时,为不重复不遗漏地 列出所有可能的结果,通常用列表法。
人教版九年级数学上册用列举法求概率之树状图法-老师版
解:(1)两个骰子的点数相同(记为事件A) ∴P(A)=6/36=1/6(2)两个骰子点数之和是9(记为事件B) ∴ P(B)=4/36=1/9(3)至少有一个骰子的点数为2 (记为事件C) ∴ P(C)=11/361.用树状图法求三步试验的概率【例1】(2015•绵阳模拟)甲、乙、丙三个人打乒乓球,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两人先打,如果三个人手心或手背都向上则重来,则甲乙两先打的概率为()A.B.C.D.总结:画树状图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)明确随机事件A,数出所求事件发生的可能结果m,以及所有可能发生的试验结果n;(4)计算随机事件的概率P A=mn ().练1(2015•塘沽区三模)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为______.2.用树状图法求有放回、无放回摸球试验的概率【例2】(2015•大兴区一模)布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红﹣黄﹣蓝”的概率是()A.B.C.D.总结:以摸球为背景考查概率知识是一种常见题型,解答此类问题时,首先必须弄清楚摸球后有无放回,有放回与无放回对概率的影响不同:(1)第一次无放回,第二次只能从第一次剩下的球里面摸球,不能出现两次摸球是同一个球的情况;(2)有放回摸球,两次摸到的球可能是同一个,与无放回摸球相比,多了两次都是同一个球的情况;(3)分清楚有无放回后,利用画树状图的方法分析所有等可能的结果及所关注的结果,在此基础上计算出概率.练2(2015•宿迁)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为_______;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.3.用树状图法求配套问题的概率【例3】(2011•盐城)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、黑色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.总结:用列表法或树状图法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=mn.一.选择题1.(2015•福州校级模拟)有一个从袋子中摸球的游戏,小红根据游戏规则,作出了如下图所示的树形图,则此次摸球的游戏规则是()A.随机摸出一个球后放回,再随机摸出1个球B.随机摸出一个球后不放回,再随机摸出1个球C.随机摸出一个球后放回,再随机摸出3个球D.随机摸出一个球后不放回,再随机摸出3个球2.(2014•江阴市校级二模)如图,一只蚂蚁在如图所示位置向上爬,在树枝上寻觅食物,假定蚂蚁在每一个岔路口都会随机的选择一条路径,那么这只蚂蚁爬到树枝头A和E的概率的大小关系是()A.A的概率大B.E的概率大C.同样大D.无法比较二.填空题3.(2015•温州)一个不透明的袋中只装有1个红球和2个篮球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是______.4.(2015•红桥区一模)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为______.5.(2013•黄石)甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是________.三.解答题6.(2016•贵阳模拟)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.7.(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.8.(2015•连云港)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?9.(2015•安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.10.(2015•黄石)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性是否会增大?请说明理由.11.(2015•东莞)老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.典例探究答案:【例1】】分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲乙两先打的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有8种等可能的结果,甲乙两先打的有2种情况,∴甲乙两先打的概率为:=.故选C.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.练1.分析:画出树状图,然后根据概率公式解答即可.解答:解:根据题意,画出树状图如下:一共有9种情况,两辆汽车经过十字路口全部继续直行的有1种情况,所以,P(两辆汽车经过十字路口全部继续直行)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.【例2】分析:列举出所有情况,看球的顺序依次是“红﹣黄﹣蓝”的情况数占所有情况数的多少即可.解答:解:共有27种情况,球的顺序依次是“红﹣黄﹣蓝”的情况数有1种,所以概率为.故选A.点评:考查用列树状图的方法解决概率问题;得到球的顺序依次是“红﹣黄﹣蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.练2.分析:(1)直接利用概率公式求出摸出红球的概率;(2)利用树状图得出所有符合题意的情况,进而理概率公式求出即可.解答:解:(1)从袋中随机摸出1个球,摸出红球的概率为:=;故答案为:;(2)如图所示:,所有的可能有12种,符合题意的有10种,故两次摸到的球颜色不相同的概率为:=.【例3】分析:先画出树状图展示所有可能的6种结果,找出取出红色水笔和白色橡皮占1种,然后根据概率的概念求解即可.解答:解:画树状图:共有6种等可能的结果,其中取出红色水笔和白色橡皮占1种,∴出红色水笔和白色橡皮配套的概率=.点评:本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P A=mn ().点评:此题主要考查了树状图法求概率,根据题意利用树状图得出所有情况是解题关键.练3.分析:(1)首先分别用A,B表示两支不同的笔,分别用a,b,c,d表示四个不同的笔帽,然后根据题意画树状图,由树状图求得所有等可能的结果;(2)由(1)中的树状图求得取出的笔和笔帽恰好配套的情况,再利用概率公式即可求得答案.解答:解:(1)分别用A,B表示两支不同的笔,分别用a,b,c,d表示四个不同的笔帽,画树状图得:则共有8种等可能的结果;(2)∵取出的笔和笔帽恰好配套的有2种情况,∴取出的笔和笔帽恰好配套的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.课后小测答案:一.选择题1.分析:根据树形图,可得此次摸球的游戏规则是:随机摸出一个球后放回,再随机摸出1个球.解答:解:观察树形图可得:袋子中共有红、黄、蓝三个小球,此次摸球的游戏规则为:随机摸出一个球后放回,再随机摸出1个球.故选A.点评:此题考查了用树状图法求概率的知识.注意掌握试验是放回实验还是不放回实验.2.分析:分别求出到达树枝A与树枝E的概率,然后再比较大小.解答:解:蚂蚁到达树枝A的概率是×=,蚂蚁到达树枝E的概率是×=,∵<,∴蚂蚁爬到树枝头E的概率大.故选B.点评:本题主要考查了概率公式,用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.二.填空题3.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机从袋中摸出两个球,颜色是一红一蓝的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一蓝的有4种情况,∴随机从袋中摸出两个球,颜色是一红一蓝的概率是:=.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.分析:先利用树状图展示所有16种等可能的结果数,再找出两次摸出球的颜色不同的结果数,然后根据概率公式求解.解答:解:共有16种结果,两次都摸到白球的有4种结果,则概率是=.故答案是:.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求解.5.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与m、n满足|m ﹣n|≤1的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,m、n满足|m﹣n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.三.解答题6.分析:(1)列举出所有情况,看足球踢到了小华处的情况数占所有情况数的多少即可;(2)可设球从小明处先开始踢,得到3次踢球回到小明处的概率,进而根据树状图可得球从其他2位同学处开始,3次踢球回到小明处的概率,比较可得可能性最小的方案.解答:解:(1)如图:∴P(足球踢到小华处)=(2)应从小明开始踢如图:若从小明开始踢,P (踢到小明处)==同理,若从小强开始踢,P (踢到小明处)=若从小华开始踢,P (踢到小明处)=(理由3分)点评:考查用列树状图的方法解决概率问题;分类得到3次踢球踢到小明处的情况数是解决本题的难点;用到的知识点为:概率等于所求情况数与总情况数之比.7.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.第一次第二次x 2+1 ﹣x 2﹣2 3x 2+1﹣x2﹣23点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是2时,|x|=0,不会有奖.解答:解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是2时,|x|=0,不会有奖.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.分析:(1)首先分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,然后根据题意画树状图,再由树状图求得所有等可能的结果与爸爸吃前两个汤圆刚好都是花生馅的情况,然后利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与爸爸吃前两个汤圆都是花生的情况,再利用概率公式即可求得给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的概率,比较大小,即可知爸爸吃前两个汤圆都是花生的可能性是否会增大.解答:解:(1)分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,∴爸爸吃前两个汤圆刚好都是花生馅的概率为:=;(2)会增大.理由:分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有20种等可能的结果,爸爸吃前两个汤圆都是花生的有6种情况,∴爸爸吃前两个汤圆都是花生的概率为:=>;∴给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性会增大.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.分析:(1)根据题意可得此题是放回实验,即可补全树状图;(2)由树状图可求得所有等可能的结果与小明同学两次抽到卡片上的数字之积是奇数的情况,再利用概率公式即可求得答案.解答:解:(1)补全小明同学所画的树状图:(2)∵共有9种等可能的结果,小明同学两次抽到卡片上的数字之积是奇数的有4种情况,∴小明同学两次抽到卡片上的数字之积是奇数的概率为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.12.分析:(1)用完全列举法得到选考结果为AC,AD,BC,BD;(2)根据概率公式求解;(3)用1、2、3、4分别表示AC、AD、BC、BD,先利用树状图法展示所有16种等可能的结果数,找出甲、乙两个考生选考结果完全相同的结果数,然后根据概率公式求解.解答:解:(1)如果考生随机选考,共有4种不同的选考结果,它们是AC,AD,BC,BD;(2)恰好选中掷实心球和篮球运球投篮的概率,即P(AC)=;(3)用1、2、3、4分别表示AC、AD、BC、BD,画树状图为:共有16种等可能的结果数,其中甲、乙两个考生选考结果完全相同的占4种,所以甲、乙两个考生选考结果完全相同的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B概率.。
用列举法求概率(树形图法)
缺点
对于非常复杂的事件,树形图 可能会变得难以绘制和整理。
列举法与树形图法的应用场景
列举法适用于简单的事件,如掷骰子、抽签等。
树形图法适用于复杂的事件,如决策树、业务流程等。
通过列举法和树形图法,我们可以清晰地看到事件的全部可能性和它们之间的相互关系,从 而更好地理解和计算概率。在实际应用中,可以根据事件的复杂程度和具体情况选择合适的 方法来解决问题。
问题。
Байду номын сангаас
未来研究可以进一步探讨列举法 和树形图法的应用范围和局限性, 以及如何与其他概率计算方法进
行结合和比较。
谢谢
THANKS
树形图法能够清晰地表示 出事件之间的逻辑关系, 有助于理解概率的计算过 程。
适用范围广
树形图法适用于多个事件 之间相互独立或相互关联 的情况,适用范围较广。
缺点分析
绘制复杂
难以处理连续型概率
对于事件数量较多或关系较为复杂的 情况,树形图法的绘制过程可能较为 复杂。
树形图法更适合处理离散型概率问题, 对于连续型概率问题,处理起来较为 困难。
用列举法求概率(树形图法
目录
CONTENTS
• 列举法与树形图法的简介 • 树形图法的基本步骤 • 树形图法的实例分析 • 树形图法的优缺点分析 • 总结与展望
01 列举法与树形图法的简介
CHAPTER
列举法的定义
列举法
通过一一列出事件的所 有可能情况,直接计算
出概率的方法。
适用范围
适用于事件数量较少且 容易列出所有可能情况
将满足条件的样本点标记为“成功”,不满足条件的样本点标记为“失败”。
计算概率
01
计算成功样本点的数量:统计成 功样本点的数量。
列举法求概率(3个因素)
用列举法求概率
第 第 一个 二个
想一想,什么时候用“列表法”方便,什么时候用“树形图”方便?
1
2
3
4
5
6
C H I H
A D I H E I H C I H
B D I H E I
1 2 3 4 5 6
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) A A A A A A B B B B B B (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) C C D D E E C C D D E E H I H I H I H I H I H I (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为不 重复不遗漏地列出所有可能的结果, 通常用树形图
(1)这个家庭的3个孩子都是男孩的概率为 解: 1/8; (2)这个家庭有2个男孩和1个女孩的概率 为3/8; (3)这个家庭至少有一个男孩的概率为7/8.
例2.甲、乙、丙三人打乒乓球.由哪两人先打呢? 他们决定用 “石头、剪刀、布”的游戏来决定,游戏时 三人每次做“石头” “剪刀”“布”三种手势中的一 种,规定“石头” 胜“剪刀”, “剪刀”胜“布”, “布” 胜“石头”. 问一次比赛能淘汰一人的概率是多少? 游戏开始 解: 甲 石 剪 布
25.2. 用列举法求概率 (2)
复习练习
某人有红、白、蓝三件衬衫和红、白、蓝三条 长裤,该人任意拿一件衬衫和一条长裤,求正好 1 。 是一套白色的概率_________
画树状图求概率-(列表法)
1.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少? 解:剪刀一A ,石头一B ,布一C ,画出树形图如下:由树形图可知,三人随机出拳的所有可能情况有27种,每种情况出现的可能性相同,其中,(1)不分胜负的有:AAA ,BBB ,CCC ,ABC ,共4个,P (三人不分胜负);274=(2)一人胜二人负的有:ACC ,AAB ,ABA ,BAA ,BBC ,CBB ,CAC ,CCA ,BCB ,共9个,P (一人胜二人负).31279==2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转. 解:画出树形图:由树形图可知,三辆车在十字路口随机选择的情况共有27种,每种情况出现的可能性大小相同,其中,(1)三辆车全部继续直行的结果只有一个,P (三辆车全部继续直行);271= (2)两辆车向右转,一辆车向左转的结果有3个,P (两辆车向右转,一辆车向左转);91273==(3)至少有两辆车向左转的结果有7个,P (至少有两辆车向左转).277= 3.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数的和是5; (2)至少有一个骰子的点数为5. 解:列表如下: 第2个 第1个 1234561 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A )的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41369=. (2)至少有一个骰子的点数为5(记为事件B )的结果有11个,所以P(B)=1136.4.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.解:(1)画树形图来找出所有可能情况.甲摸得球的颜色:乙摸得球的颜色或用列表法思考所有情况.列表如下:乙甲白红黑白 白,白 红,白 黑,白 红 白,红 红,红 黑,红 黑白,黑红,黑黑,黑(2)由树形图可得,该试验的所有可能情况有9种,其中乙摸到与甲相同颜色球有三种情况,每种情况出现的机会均等,乙取胜的概率为⋅=31935.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明. 解:(1)每个小球被摸到的机会均等,故P (摸到蓝色小球)⋅=31(2)列表思考所有可能情况:小李小王红 黄 蓝 红 红,红 红,黄 红,蓝 黄 黄,红 黄,黄 黄,蓝 蓝蓝,红蓝,黄蓝,蓝由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王赢的情况有3种,小李赢的情况有6种. ∴P (小王赢),3193== P (小李赢) ,3296==∵∴此游戏规则对双方是不公平的.6.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:列表考虑所有可能情况:转盘A两个数字之积转盘B-1 0 2 11 -1 02 1-2 2 0 -4 -2-1 1 0 -2 -1由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P(小力获胜),127=P(小明获胜).125=∴这个游戏对双方不公平.7.从3名男生和2名女生中随机抽取2012年伦敦奧运会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)5名学生中有2名女生,所以抽取1名,恰好是女生的概率为25;(2)共有20种情况树状图如图DJ4,恰好是1名男生和1名女生的情况数有12种,所以概率为35.图DJ48.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数的和是5;(2)至少有一个骰子的点数为5.解:列表如下:可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A)的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41.369(2)至少有一个骰子的点数为5(记为事件B)的结果有11个,所以P(B)=1136.9.在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.小明先从袋中随机摸出一个小球,记下数字后不再放回,再从袋中剩下的3个小球中又随机摸出一个小球,记下数字.请用列表或画树状图的方法求出先后摸出的两个小球上的数字和为奇数的概率是多少?解:(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=.10.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 解:(1)10,50; (2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=. 11.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.(1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3) 1234 第一次摸球 第二次摸球 010 20 30 102030 100 20 30 103040 0 10 30 20203050 20 300 10 503040第一次第二次 和解:(1)P (两数相同)=13.(2)P (两数和大于10)=49.12.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球. (1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率. 解:(1)根据题意列表如下:(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种, 所以,P (两个数字之积是奇数)21126==. 13.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A .打扫街道卫生;B .慰问孤寡老人;C .到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容. (1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率. 解:(1)画树状图分析如下:树形图6 76 -276 7 76 -2 -2 -2(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==.14.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P ,3296)(==牌面数字不同P . ∵31<32,∴此游戏规则不公平,小李赢的可能性大.15.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,3 4 53 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3) (5,4) (5,5)小李小王再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种.∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平. 16.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由. 解:树状图为: 或列表为:开始红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=63168=,P(小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.17.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是________; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是________; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.解:(1)12.(2)13. (3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.∴P (4的倍数)41164==. 18.除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 4 4开始否相等,并说明理由.解:摸出两个异色小球的概率与摸出两个同色小球的概率不相等. 画树状图如下(画出一种情况即可):∴摸出两个异色小球的概率为59,摸出两个同色小球的概率49.19.一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.解:(1)p (一个球是白球)=23. (2)树状图如下(列表略):开始∴P (两个球都是白球)2163==.20.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.红 白 白 红红 白 白 红红 白 白 白开始 或红 红 白 白红红 白 白红红 白红开始 白2红白1 白1红白2 白1白2 红解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小明胜的概率为,∵ ≠ ,∴这个游戏对双方不公平21.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为,两数之积为负的情况有5种,则两数之积为为负的概率为.≠,因此该游戏不公平。
概率讲义(树状图和列表法)
概率知识点1 树状图(或列表法)的使用对于简单的概率类题型我们可以通过列举法,计算事件发生的频率的分析来估计事件发生的概率,但是对于可能情况较多的事件,我们可以通过用树状图或列表法来解决树状图法:①分层.分清事件发生的层次,哪些情况是第一层(第一次)发生的,哪些是第二层(第二次)发生的;②根据分层用树状图把每一层(每一次)表示出来,然后计算事件发生的概率;列表法:将前后两次发生的事件在表格中全部表达出来,在其中计算事件发生的次数,进而计算频率.例1.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率为例2.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.21=63【解析】(1)树状图如图所示,选手一共有8种等可能的结果,分别为(√,√,√)、(√,√,×)、(√,×,√)、(√,×,×)、(×,√,√)、(×,√,×)、(×,×,√)、(×,×,×). 开始(2)由(1)得选手A 的结果共有8种等可能情况,其中晋级的情况有4种,故其概率为41=82例 3.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是无理数的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图的方法列出所有等可能的结果,并求出两次好抽取的卡片上的实数之差为有理数的概率.【解析】(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,∴从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是:23(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况, ∴两次好抽取的卡片上的实数之差为有理数的概率为: 例4.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( )A .15B .25C .35D .45例5.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.例6.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 .例7.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x ;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x 、y 确定的点(x ,y )在函数6y x =-+图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x 、y 满足xy>6,则小明胜;若x 、y 满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?例8.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x 2-3x+2=0的解的概率.。
九年级数学上册教学课件《用画树状图法求概率》
AB 甲
CD E乙
HI 丙
解:记取出的3个小球上恰好有1个、2个、3个元
音字母分别为事件A、B、C.
P(A)=
5 12
.
P(B)=
4 12
=
1 3
.
P(C)=
1 12 .
甲
A
B
乙
C DE
C DE
丙 HI HI HI HI HI HI
n
注意 用列表法或画树状图法求概率的前提: 1.可能出现的结果只有有限个; 2.各种结果出现的可能性大小相等.
思考
列表法和画树状图法的选用:
(1)当一次试验要涉及两个因素(或两个步骤), 且可能出现的结果数目较多时,可用“列表法”; (2)当一次试验要涉及三个或更多的因素(或步 骤)时,应采用“画树状图法”.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1
B1
A2
B2
练习
【教材P139练习】
经过某十字路口的汽车,可能直行,也可能向左转或向
右转.如果这三种可能性大小相同,求三辆汽车经过这个十
字路口时,下列事件的概率:
(1)三辆车全部继续直行;
P(B)
3 6
1 2
.
拓展延伸
6. 两张图片形状完全相同,把两张图片全部从中间剪断, 再把四张形状相同的小图片混合在一起.从四张图片 中随机地摸取一张,接着再随机地摸取一张,则两张 小图片恰好合成一张完整图片的概率是多少?
用列举法求概率2树状图
容易遗漏或重复
在列举可能的情况时,可能会遗漏某 些情况或者重复计算某些情况,导致 计算结果不准确。
THANKS
感谢观看
REPORTING
https://
PART 05
用树状图表示列举法求概 率的过程
REPORTING
WENKU DESIGN
树状图的定义
树状图是一种图形化工具,用于表示事件或结果的可能性和 它们之间的关系。
它通常由一系列的节点和边组成,节点表示事件或结果,边 表示它们之间的关系。
如何绘制树状图
确定要列举的事件或结果,并按 照逻辑顺序排列。
概率的加法原理
如果两个随机事件A和B是互斥的 ,即A和B不能同时发生,那么 P(A或B) = P(A) + P(B)。
列举法的原理
列举法
通过列出所有可能的结果,计算随机 事件发生的概率。列举法适用于随机 事件数量较少的情况,可以直观地看 到所有可能的结果。
树状图
树状图是一种列举法常用的工具,可 以清晰地展示随机事件的所有可能结 果及其相互之间的关系。通过树状图 ,可以更方便地计算概率。
04
使用树状图进行逻辑推 理和计算,求出所求事 件的概率。
PART 06
列举法求概率的优缺点
REPORTING
WENKU DESIGN
优点
01
02
03
直观易懂
列举法通过具体的例子和 数据来展示概率,使得概 率计算过程更加直观易懂。
简单易行
列举法不需要复杂的数学 公式和计算,只需要将可 能的情况一一列出,便于 操作。
用列举法求概率2树状 图
https://
REPORTING
• 引言 • 列举法求概率的原理 • 用列举法求概率的步骤 • 用列举法求概率的实例 • 用树状图表示列举法求概率的过程 • 列举法求概率的优缺点
用列举法求概率树状图法ppt课件
1
当一次试验要涉及两个因素,并且可能出现 的结果数目较多时,为了不重不漏的列出所有可 能的结果,通常采用列表法.
列表法中表格构造特点: 一个因素所包含的可能情况
另一 个因素 所包含 的可能 情况
两个因素所组合的 所有可能情况,即n
当一次试 验中涉及3个 因素或更多 的因素时,怎 么办?
当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法;
当试验在三步或三步以上时,用树形图法 方便.
9
1. 在6张卡片上分别写有1~6的整数,随机的抽取一张 后放回,再随机的抽取一张,那么,第2次取出的数字能 够整除第1次取出的数字的概率是多少?
2.经过某十字路口的汽车,它可能继续直行,也可能向左 转或向右转,如果这三种可能性大小相同,当有三辆汽车 经过这个十字路口时,求下列事件的概率:
所以穿相同一双袜子的概率 P 4 1
12 3
17
A1
A2
B1 B2
A1 A2 B1 B2
18
A1
A2
B1 B2
A1
(A1,A2) (A1,B1) (A1,B2)
A2
(A2,A1)
(A2,B1) (A2,B2)
B1
(B1,A1()B1,A2)
(B1,B2)
B2
(B2,A1)(B2,A2)(B2,B1)
∴ P(C)= 4 1
82
4
例2.甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个 相同的小球,它们分别写有字母C. D和E;丙口袋中装有2个相同的小球,它们分 别写有字母H和I,从3个口袋中各随机地取出1个小球.
(1)取出的3个小球上,恰好有1个,2个和3个元音字母 的概率分别是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总共有8种结果,每种结果出现的可能性相同,而三次正面朝上 的结果有1种,因此P(正正正)=1/8;
注意:
当一次试验要涉及三个或三个以上因素(例如掷 三次硬币)并且可能出现的结果数目较多时,为 不重不漏地列出所有可能结果,通常采用树形图
你知道用树形图和列表的方法求概率的 前提是什么吗?
各种结果出现的可能性相同
B
D E
I
A
C
H
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙 C D 你E能归纳C步骤D了吗?E
丙H I H I H I H I H I H I
A A A A A A B B B B BB C C D D E E C C D D EE H I H I H I H I H I HI
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
开始
男
ቤተ መጻሕፍቲ ባይዱ
女
解:
男女
男女
男 女 女男 男 女 男 女
(1)这个家庭的3个孩子都是男孩的概率为1/8; (2)这个家庭有2个男孩和1个女孩的概率为3/8;
(3)这个家庭至少有一个男孩的概率为7/8.
所以恰好拼成一张图片的概率为
4 12
1 3
(1)这节课中你学会了什么?
(2)这节课中你觉得最难的是什么? 你克服了吗?
(3)对这节课你还有什么疑惑吗?
五、作业:课本138页第3,7题
一个家庭有三个孩子,若一个孩子是男孩还是女 孩的可能性相同.(1)求这个家庭的3个孩子都是男 孩的概率;(2)求这个家庭有2个男孩和1个女孩的概 率;(3)求这个家庭至少有一个男孩的概率.
9
27
拓展探究
.如图所示的两张图片形状完全相同,把两张图
片全部从中间剪断,再把4张形状相同的小图片 混合在一起,从4张图片中随机地摸取一张,接 着再随机地摸取一张,则两张小图片恰好合成一 张完整图片的概率是多少?
拓展探究
解:设两张图片分别为A、a、B、b,则
开始
A
a
B
b
a Bb A Bb A a b A a B
(1)P(只有一个元音字母)=5/12 P(有两个元音字母)= 1/3
P(有三个元音字母)=1/12 (2)P(全是辅音字母)= 1/6
经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能 性大小相同,当有三辆汽车经过这个十字 路口时,求下列事件的概率 (1)三辆车全部继续直行;
25.2. 用列举法求概率(树形图)
文昌华侨中学 郑鼐庆
(1)抛掷一枚质地均匀的硬币一次,掷 出正面的概率是多少?
(2)抛掷一枚质地均匀的硬币两次,掷 出两个正面的概率是多少?
(3)抛掷一枚质地均匀的硬币三次,掷出三 个面都是正面的概率是多少?
解:
开始
第一次:
正
反
第二次: 正反
正反
第三次:
正 反 正反 正 反 正 反
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转
解:画树形图如下:
第
左
直
一
辆
第
二左 直 右 左直 右
辆
右 左直 右
第
三 左直右 左直右 左直右
左直右 左直右
辆
左直右
左直右 左直右 左直右
共有27种行驶方向 (1)P(全部继续直行) 1
(2) P(两右一左) 1
27
(3) P(至少两左) 7
(1) 列表法和树形图法的优点是什么? (2)什么时候使用“列表法”方便?什么时候使 用“树形图法”方便?
利用树形图或表格可以清晰地表示出某个 事件发生的所有可能出现的结果;从而较方便 地求出某些事件发生的概率.
当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法; 当试验在三步或三步以上时,用树形图法方 便.
你知道英语中有哪些元音字母吗?
甲口袋中装有2个相同的小球,它们分别写有字
母A和B;乙口袋中装有3个相同的小球,它们分 别写有字母C.D和E;丙口袋中装有2个相同的小 球,它们分别写有字母H和I,从3个口袋中各随机 地取出1个小球. (1)取出的3个小球上,恰好有1个,2个和3个元音字 母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是 多少?