人教版八年级质量检测数学试题
人教版八年级第二学期第一次质量检测数学试题含答案
人教版八年级第二学期第一次质量检测数学试题含答案一、选择题1.下列计算正确的是( )A 1BCD ±2.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-3.有意义,则x 的取值范围是( ) A .x≠2 B .x >-2C .x <-2D .x≠-24.下列计算正确的是( )A =B 1-=C =D 6==5.已知m 、n m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是6.下列二次根式中,是最简二次根式的是( ).A .BC D7.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n-- 8.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( ) A .536+ B .56+C .56-D .536-9.当11994x +=时,多项式()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-10.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( ) A .3B .4C .6D .911.已知最简二次根式23a -与2a 是同类二次根式,则a 的值是( ) A .2B .-1C .3D .-1或312.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题13.使函数21122y x x x=-+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.15.已知a ,b 是正整数,且满足15152()a b是整数,则这样的有序数对(a ,b )共有____对.16.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 17.计算:652015·652016=________. 18.若a 、b 都是有理数,且2222480a ab b a -+++=ab . 19.化简:3222=_____.20.已知23x =243x x --的值为_______.三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.24.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.25.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣26.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==27.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.28.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.29.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.30.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】2÷故选A.2.C解析:C【分析】根据二次根式的性质及除法法则逐一判断即可得答案.【详解】9=,故该选项计算错误,不符合题意,=C.(22=,故该选项计算正确,符合题意,=,故该选项计算错误,不符合题意,5故选:C.【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.3.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得:x+>,20x>-.解得:2故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.4.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】====,故本项错误;D. 6故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.5.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.6.A解析:A【详解】根据最简二次根式的意义,可知2=. 故选A.7.C解析:C【解析】【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n n n a a -=-=-. 故选C .【点睛】 本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.8.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x =<∴0x <,∴266x =-+,∴212236x =-⨯=,∴x =∵5=-, ∴原式5=-5=-故选D .【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.9.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵x =, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 10.A解析:A【解析】根据题意得:|x 2–4x ,所以|x 2–4x +4|=0,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .11.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a 2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.12.A解析:A【分析】利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成. 【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x 2﹣2y 2+3x ﹣3y ﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.16.【解析】根据题意,由二次根式的性质,可知a的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 17.【解析】原式=.故答案为.【解析】原式=20152015=18.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】 直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级上学期学业质量监测数学试题
人教版八年级上学期学业质量监测数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 分解因式a2b-b3结果正确的是A.b(a+b)(a-b)B.b(a-b)2C.b(a2-b2)D.b(a+b)22 . 十二边形的内角和为()A.1080°B.1360°C.1620°D.1800°3 . 某开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完成;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.小亮设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲先做了4天B.甲乙合作了4天C.甲先做了工程的D.甲乙合作了工程的4 . 在平面直角坐标系中,A(m,4),B(2,n),C(2,4-m),其中 m+n=2,并且2 £2m+n £5,则△ABC 面积的最大值为()A.1B.2C.3D.65 . 如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=58°,则∠CAD的度数是()A.22°B.29°C.32D.61°6 . 如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.67 . 如图,在ABC 与AEF 中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交 EF 于点 D,下列结论正确的个数是①∠C=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°A.1B.2C.3D.48 . (-a5)2+(-a2)5的结果是()A.0B.C.D.9 . 学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正确的是()A.小明B.小亮C.小芳D.没有正确的10 . 下列一些标志中,可以看作是轴对称图形的是()A.B.C.D.二、填空题11 . 若,则__________.12 . 若x2_4x+m是一个完全平方式,则m=_____.13 . 在平面直角坐标系中,已知,动点从点出发,以每秒1个单位的速度向下运动,动点从点出发,以每秒1个单位的速度向右运动,过点作的平行线交于点,当的值最小时,此时_____________秒.14 . 化简:= .15 . 如图,D、E、F分别为BC、AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于_____________.16 . 如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.三、解答题17 . 如图,正比例函数的图象过点.直线沿y轴平行移动,与x轴,y轴分别交于点B,C,与直线OA交于点D.(1)若点D在线段OA上(含端点),求b的取值范围;(2)当点A关于直线BC的对称点A恰好落在y轴上时,求的面积.18 . 如图,在Rt△ABC中,∠A=90°,点D为斜边BC上一点,且BD=BA,过点D作BC的垂线交AC于点A.求证:点E在∠ABC的角平分线上.19 . (1)计算:(3+2)(3-2)-(-)2.(2)解方程:4(x+3)2-9(x-3)2=0.20 . 一项工程,甲、乙两公司合作,12天可以完成,如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,求甲、乙两公司单独完成这项工程各需多少天.21 . 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为、,求的值.22 . 先化简,再求值:,其中.23 . 如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′A.(1)请你在图中把图补画完整;(2)求C′B的长.24 . 如图,△AOB,△COD是等腰直角三角形,点D在AB上.(1)求证:△ACO≌△BDO;(2)若∠BOD=30°,求∠ACD度数.25 . 解方程:参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、三、解答题1、2、3、4、5、6、7、8、9、。
2024-2025学年第一学期八年级数学阶段性质量监测试题
2024-2025学年第一学期阶段性质量监测试题(卷)八年级数学说明:本试卷满分150分,考试时间120分钟。
一、选择题(每小题3分,满分30分) 1. 下列图形具有稳定性的是( )A A .锐角三角形B .正方形C .长方形D .六边形2.下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cmB .8cm ,4cm ,2cmC .3cm ,3cm ,4cmD .3cm ,4cm ,8cm3.某同学把一块玻璃打碎成4块(如图),现在他打算带一块玻璃片到玻璃店去配一块与原来一样的玻璃,那么他应带( )(第3题图)A .①B .①C .①D .①4.已知正多边形的一个外角等于45°,那么这个正多边形的边数为( ) A .6 B .7 C .8 D .95.已知三角形两边的长分别为5和8,则第三边的长可以是( ) A .3 B .8 C .13 D .186 . 如图,CD ,CE ,CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( )(第6题图)A .AB=2BFB .∠ACE= 12∠ACB C .AE=BE D .CD ⊥BE7. 如图,在△ABC 中,D 是BC 中点,E 是AD 中点,连接BE 、CE ,若△ABC 的面积为20,则△BCE 的面积为( )(第7题图) (第8题图)A .5B .10C .15D .188.如图,已知AB=AD ,那么添加下列一个条件后,不能判定△ABC ≌△ADC 的是( ) A .CB=CD B .∠BAC= ∠DACC .∠BCA= ∠DCAD .∠B=∠D=90°9 . 将一块三角板和一把直尺按如图所示摆放,若∠1=41°,则∠2的度数为( )(第9题图)A .149°B .131°C .139°D .141°10.如图,在△ABC 中,AE 是角平分线,AD ⊥BC ,垂足为D ,点D 在点E 的左侧,∠B=60°,∠C=40°,则∠DAE 的度数为( )(第10题图) A .10°B .15°C .30°D .40°二、填空题(本题共计8小题,每题4分,共计32分)11.若三角形有两边长分别为2和5,第三边为a ,则a 的取值范围是________.12.工程建筑中经常采用三角形的结果,如屋顶的钢架、输电线的支架等,这里利用到的数学原理是:________.13.如图,已知A 、B 、C 、D 四点在同一直线上,AB=CD ,∠A=∠D ,请你填一个直接条件,_______,使△AFC ≌△DEB .(第13题图)(第14题图)14.如图,△ABC 中∠A=100°,BO 、CO 分别是∠ABC 、∠ACB 的角平分线且相交于O 点,则∠BOC 的度数为_______.15. 正多边形的一个内角等于144°,则该正多边形的边数为________.16.在△ABC 中,∠A:∠B:∠C=1:2:3,则△ABC 是________(填“锐角三角形”“直角三角形”或“钝角三角形”).17.如图,△ABC ≌△ADE ,若∠E=100°,∠D=30°,∠CAD=35°,则∠BAD=_____.(第17题图) (第18题图)18.如图,E 是边BC 的中点,若AB=4,△ACE 的周长比△AEB 的周长多1,则AC=__________.三、解答题(本题共计4小题,共计38分)座位号---------------------------------------装----------------------------订-------------------------------------------线-------------------------------------------姓名:________________ 班级:______________ 考场:________________19.(10分) 如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点(网格线的交点)上,利用网格画图.(1) 作BC 边上的高线AD ,垂足为D ;(2)在AC 边上取一点E ,连接BE ,使得BE 平分△ABC 的面积; (3)△ABC 的面积为_________.20.(8分)探究归纳题:(1)如图1,经过四边形的一个顶点可以作________ 条对角线,它把四边形分成________ 个三角形; (2)如图2,经过五边形的一个顶点可以作________ 条对角线,它把五边形分成________ 个三角形; (3)探索归纳:对于n 边形(n>3),过一个顶点可以作________ 条对角线,它把n 边形分成________个三角形;(用含n 的式子表示)(4)如果经过多边形的一个顶点可以作100条对角线,那么这个多边形的边数为________ .21.(10分) 一个多边形的内角和等于它外角和的2倍,它是几边形?22.(10分) 如图所示,直线a ∥b ,∠2=31°,∠A=28°,求∠1的度数.四、解答题(本题共计4小题,共计50分)23.(12分)如图,已知AB=AC,∠1=∠2,AD=AE .求证:∠D=∠E .24.(12分)如图,A 、C 、F 、B 在同一直线上,∠E=∠D ,AE=BD ,且AE ∥BD .求证:EF =DC .25.(12分)已知,如图,CA ⊥AB ,DB ⊥AB ,点A 、E 、F 、B 在同一条直线上,AE=BF ,CF=DE (1)求证:AC=BD ;(2)若∠AFC=25°,求∠D 的度数26.(14分)如图,已知AB ∥CD ,点E 在直线AB ,CD 之间,连接AE ,CE .(1)如图①,若∠BAE=40°,∠ECD=50°,则∠AEC=__________°;(2)如图①,猜想∠BAE 、∠ECD 和∠AEC 之间有什么样的数量关系,并说明理由;(3)如图①,若AH 平分∠BAE ,将线段CE 沿CD 方向平移至FG (CE ∥FG ),若∠AEC=80°,FH 平分∠DFG ,则∠AHF=__________°.。
人教版八年级第一学期教学质量监测数学试题
人教版八年级第一学期教学质量监测数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 下列四组数中,不能作为直角三角形三边长的是()A.1,,B.2,3,4C.5,12,13D.6,8,102 . 如图,在正方形ABCD中,连接BD,点O是BD的中点,若M,N是边AD上的两点,连接MO,NO,并分别延长交边BC于两点M′,N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对3 . 在中,,,,则中边上的高线长为()A.B.6C.4.8D.4 . 以下图形中,既是中心对称图形,又是轴对称图形的是()A.(A)B.(B)C.(C)D.(D)5 . 如图,OC为∠AOB的平分线,CM⊥OB于M,OC=5,OM=4,则点C到射线OA的距离为()A.2B.3C.4D.56 . 如图,在直角坐标系中,点A在函数的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数的图象交于点D.连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.B.3C.6 D.367 . 如图,在中,,,平分交于点,于点.若,则().A.B.C.D.8 . 如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE上,则∠BAD的度数为()A.15°B.20°C.25°D.30°二、填空题9 . 在△ABC中,∠ACB=60°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F,若∠ABD:∠ACF=2:3,则∠BEC的度数为_____.10 . 如图,已知矩形中,经过对角线的交点,且分别交AD、BC于E、F,请你添加一个条件:__________,使四边形是菱形。
(写出一个即可)11 . 如图,在中,,点分别在边上,,且,若,则的长是__________.12 . 一个锐角及斜边分别相等的两个直角三角形全等.(______)13 . 如图,△ABC中,∠C=90º,BD平分∠A BC交AC于D,DE是AB的垂直平分线,DE=BD,且DE=1.5cm,则AC等于________.14 . D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.15 . 如图,在ABC 中,AB=AC,点 D 在AC 上,DE∥AB,若∠CDE=160°,则∠B 的度数为_____.16 . 若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.17 . 如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13,则、、、的面积和是_____.18 . 如图,在和中,,、相交于点,请你补充一个条件,使得.你补充的条件是____.三、解答题19 . 实践操作如图,是直角三角形,,利用直尺和圆规按下列要求作图,并在图中表明相应的字母.(保留作图痕迹,不写作法)(1)①作的平分线,交于点;②以为圆心,为半径作圆.综合运用在你所作的图中,(2)与⊙的位置关系是;(直接写出答案)(3)若,,求⊙的半径.(4)在(3)的条件下,求以为轴把△ABC旋转一周得到的圆锥的侧面积.20 . 如图,在中,为三角形的角平分线,于点交于点(1)若,直接写出度(2)若,①求证:②若,直接写出(用含的式子表示)21 . 如图1,△ABC中,∠ACB=90°,AC=BC=6,M点在边AC上,且CM=2,过M点作AC的垂线交AB边于E点,动点P从点A出发沿AC边向M点运动,速度为1个单位/秒,当动点P到达M点时,运动停止.连接EP、EC,设运动时间为t.在此过程中:(1)当t=1时,求EP的长度;(2)当t为何值时,△EPC是等腰三角形?(3)如图2,若点N是线段ME上一点,且MN=3,点Q是线段AE上一动点,连接PQ、PN、NQ得到△PQN,请直接写出△PQN周长的最小值.22 . 如图,中,,,,若动点从点开始,按的路径运动,且速度为每秒,设运动的时间为秒.(1)当为何值时,把的周长分成相等的两部分;(2)当为何值时,把的面积分成相等的两部分,并求出此时经过的路程;(3)当为何值时,为等腰三角形?(直接写出所有的值)23 . 如图,在和中,、、、在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①;②;③;④解:我写的真命题是:在和中,已知:___________________.求证:_______________.(不能只填序号)证明如下:24 . 如图,点在线段上,,,.平分.求证:(1);(2) .25 . 如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足,(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;26 . 如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE上AD,交BD的延长线于点E(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.27 . 已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t=(s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s 的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q 都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.28 . 将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:(1)若∠DCE=35°,则∠ACB的度数为▲°;(2)若∠ACB=140°,则∠DCE的度数为▲°;(3)∠ACB与∠DCE有怎样的数量关系?(4)三角尺ACD不动,将三角尺BCE的CE边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠ACE(0°<∠ACE<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度所有可能的值,不用说明理由.参考答案一、单选题1、2、3、4、5、6、7、8、二、填空题1、2、3、4、5、6、7、8、9、10、三、解答题1、2、3、4、5、6、7、8、9、10、第11 页共11 页。
人教版八年级(下)学期 第一次质量检测数学试题及答案
人教版八年级(下)学期 第一次质量检测数学试题及答案一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-2.下列运算正确的是( )A 2=B 5=-C 2=D 012=3.若01x <<=( ). A .2xB .2x-C .2x -D .2x4.下列二次根式是最简二次根式的是( )A BCD 5.下列运算正确的是( )A =B =C .3=D 2= 6.下列运算中,正确的是( )A =B 1=C =D 2=7.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D 8.下列计算正确的是( )A .+=B .()322326a ba b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++9.以下运算错误的是( )A =B .2=CD .2342a b ab b =(a >0)10.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( ) A .3B .4C .6D .911.下列计算正确的是( ) A .235+= B .2332-= C .()222= D .393=12.要使等式230x x +-=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.已知a =﹣73+,则代数式a 3+5a 2﹣4a ﹣6的值为_____. 14.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.15.计算:652015·652016=________. 16.把1a-17.已知2,n=1222m n mn +-的值________. 18.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________. 19.4102541025-+++=_______. 201262_____.三、解答题21.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b 26a ++2b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b 2;(3)1.【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.计算:(1)012⎛⎫ ⎪⎝⎭(2)(4 【答案】(1)-5;(2)9 【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果; (2)利用平方差公式计算即可. 【详解】(1)012⎛⎫ ⎪⎝⎭41=--, 5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.27.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.28.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab 的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可. 【详解】(1)∵a b ,∴a +ba ﹣b =,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.29.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a,a﹣1=2﹣a+a﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.30.先化简,再求值:2443(1)11m mmm m-+÷----,其中2m=.【答案】22mm-+1.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=221 mm--()÷(31m-﹣211mm--)=221 mm--()÷2 41m m--=221 mm--()•122mm m--+-()()=﹣22m m -+ =22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.C解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误; 故选:C . 【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.3.D解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.4.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】解:ABC 0.1,故此选项错误;D 2故选:A .【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.5.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;=,所以D选项正确.D2故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.7.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为S ====故选:A .【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.8.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A 选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.9.C解析:C【分析】利用二次根式的乘法法则对A 、B 进行判断;利用二次根式的化简对C 、D 进行判断.【详解】A .原式=所以A 选项的运算正确;B .原式=所以,B 选项的运算正确;C .原式==5,所以C 选项的运算错误;D .原式=2,所以D 选项的运算正确.故选C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.11.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可. 【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.14.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =a a c b c b=-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.15.【解析】原式=.故答案为.【解析】原式=20152015=16.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a ≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.17.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.18.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.19.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)6=+21)=∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.20.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级(下)学期 第一次质量检测数学试卷含答案
一、选择题1.下列计算正确的是( ) A .916916+=+ B .2222-=C .()2236=D .1515533==2.若2a <,化简()223a --=( )A .5a -B .5a -C .1a -D .1a --3.下列各式计算正确的是( )A .532-=B .1236⨯=C .3232+=D .222()-=-4.在函数y=2x +中,自变量x 的取值范围是( ) A .x≥-2且x≠3B .x≤2且x≠3C .x≠3D .x≤-25.若2019202120192020a =⨯-⨯,2202242021b =-⨯,2202020c =+,则a ,b ,c 的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<6.下列计算正确的是( )A .822-=B .321-=C .325+=D .(4)(9)496-⨯-=-⨯-=7.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .78.已知a 满足2018a -2019a -a ,则a -2 0182=( ) A .0B .1C .2 018D .2 0199.12的下列说法中错误的是( ) A 1212的算术平方根 B .3124<< C 12不能化简D 12是无理数10.下列各式成立的是( ) A ()222- B ()255-=- C 2x xD ()266-=-二、填空题11.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.14222a a ++的最小值是______. 15.11882. 16.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____. 17.化简(32)(322)+-的结果为_________.18.28n n 为________. 19.12a 1-能合并成一项,则a =______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.1123124231372831-+-533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】1123124231372831-+-=48132331)32(337228+⨯⨯⨯=462331323371. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为=25(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.观察下列各式.====…… 根据上述规律回答下列问题. (1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律; (3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5=(2(n =+ (3)直接根据二次根式的化简即可证明. 【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】5==,=,(24312=⨯=,选项D 正确.2.D解析:D 【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解. 【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a , 故选:D . 【点睛】||a =这个公式是解决本题的关键.3.B解析:B 【分析】根据二次根式的加减法对A 、C 进行判断;根据二次根式的乘法法则对B 进行判断;根据a =对D 进行判断 .【详解】解:A 不能合并,所以A 选项错误;B 6=,正确,所以B 选项正确;C 、3不能合并,所以C 选项错误;D 22=--=(),所以D 选项错误.故选:B . 【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.4.A解析:A 【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式组求解. 【详解】 解:根据题意,有2030x x +≥⎧⎨-≠⎩, 解得:x ≥-2且x ≠3; 故选:A . 【点睛】当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.5.A解析:A 【分析】利用平方差公式计算a ,利用完全平方公式和二次根式的化简求出b ,利用二次根式大小的比较办法,比较b 、c 得结论. 【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020 =20202-1-20202+2020 =2019; ∵20222-4×2021 =(2021+1)2-4×2021 =20212+2×2021+1-4×2021 =20212-2×2021+1 =(2021-1)2 =20202, ∴b=2020;> ∴c >b >a . 故选:A .本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020、2-⨯,利用完全平方公式计算出其值,是202242021解决本题的关键.6.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】A. 82222=2-=-,正确;B. 32,,不是同类二次根式,不能加减,故本项错误;C. 32,,不是同类二次根式,不能加减,故本项错误;-⨯-=⨯==,故本项错误;D. (4)(9)49366故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.7.C解析:C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,,所以.故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化.8.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.-=a成立,则a≥2019,解:等式2018a∴,,∴a-2019=20182,∴a-20182=2019.故选D.【点睛】本题主要考查的是二次根式有意义的条件,求得a的取值范围是解题的关键.9.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.10.A解析:A【分析】直接利用二次根式的性质化简求出即可.【详解】解:,正确,故选项A符合题意;=,原选项计算错误,故选项B不符合题意;=,原选项计算错误,故选项C不符合题意;||xD. =,原选项计算错误,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解答此题的关键.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.14.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
人教版八年级数学第二学期期末质量检测试卷(含答案)
人教版八年级数学第二学期期末质量检测试卷(含答案)一、选择题(每小题3分,共30分)在实数范围内有意义,则x的取值范围是( )1.若二次根式2√3+xA.x≠-3B. x≥- 3C.x≤ - 3D.x>-32下列各式中,运算正确的是( )=9 C.3√2−√2=3 D.√27÷√3=3 A.√36=±6 B.√27×√133.如图所示,点B,D在数轴上,OB=3 ,OD=BC=1,∠OBC=90°,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是( ) A.√10 B.√17+1C.√17−1D.不能确定4.小凡同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污字无关的是( )A.平均数B.中位数C.众数D.方差5.甲、乙、丙、丁四人的数学测验成绩分别是90分、90分、x分、80分,若这组数据的平均数与众数恰好相等,则这组成绩的众数是( )A.100分B.95分C.90分D.85分6.《九章算术》见我国古代数学的重要著作,其中有一道题,原文是:今有户不知高广,竿不知长,短横之不出四尺,从之不二尺,斜之适出,问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长。
横放,竿比门宽多4尺;坚放,竿比门高多2尺;斜放,竿与门对角线恰好相等。
问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为( )A. x2=(x−4)2+(x−2)2B. 2x2=(x−4)2+(x−2)2C. x2=42+(x−2)2D. x2=(x−4)2+227. 如图,菱形ABCD的对角线AC, BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为 ( )A.24√7B.48C.72D.968.如图,在△ABC中,∠C=90°, AC=12,BC=5.P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连接EF,则线段EF的最小值为( )A.2013 B. 4513C. 6013D . 1329. 已知等腰三角形的周长是10.底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间的函数关系的图象是 ( )9.如图,已知平行四边形AOBC的顶点O(0,0),点B在x轴正半轴上,按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;DE的长为半径作弧,两弧在∠AOB内交于点②分别以点D,E为圆心,大于12F;③作射线OF,交边AC于点G.若G的坐标为(2,4),则点A的坐标是( )A.(-3, 4)B.(-2, 4)C.(2-2√5, 4)D.(√5-4, 4)二、填空题(每题3分,共15分)=____________.11.计算:√27-√12+ √1412. 小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为95分、80分、90分,若依次按照60% 、30%、10%确定成绩,则小王的成绩是___________.13. 已知一组数据为7,2,5,x.8,它们的平均数是5.则这组数据的方差为__.14. 如图,D是△ABC的边BC 的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10cm,DE=2cm,则AC 的长为____cm15. 如图,在Rt△ABC中,∠C=90,AC=4, BC=6,D是BC的中点,E是AC上一动点,将△CDE沿DE折叠到△C′DE,连接AC′,当△AEC′是直角三角形时,CE的长为__________.三、解答题(共8小题,共75分)16.已知x =√3-2.求代数式(7+4√3)x 2+(2+√3)x +√3的值.17. (9分)为了丰富少年-儿童的业余生 活,某社区要 在如图所示的 直线AB 上建一 座图书室P 本社区有两所学校,所在 的位置为点C 和点D 处,CA ⊥AB 于点A ,DB ⊥AB 于点B ,已知AB=5km ,DB=2km ,CA=3Km ,要求图书室P 到两所学校的距离相等.(1)在图中作出点P ;(要求尺规作图,保留作图痕迹,不写作法)(2)求出图书室P 到点A 的距离;(3) 连接PC,PD,CD,则△PCD 的形状是(4) ____________三角形.18. (9分)如图,直线y ₁=2x -2的图象与y 轴交于点A,直线 y ₂=-2x +6的图象与y 轴交于点B,两直线相交于点C.(1)方程组{2x −y =22x +y =6的解是___________; (2)当y 1>y 2≥0成立时,x 的取值范围为_________;(3)在直线y ₁=2x -2上存在异于点C 的另一点P,使得△ABP 与△ABC 的面积相等,请求出点P 的坐标.19.(9分)某校八年级数学老师们在全年级开展教学创新对比试验,所有班级都被设为实验班或对比班,一学期后对全年级同学进行了数学水平测试,观察实验效果.从实验班和对比班中各随机抽取20名学生的测试成绩(满分100)进行整理和分析(成绩共分成五组:A.50≤x<60, B.60≤x<70, C.70≤x<80,D.80≤x<90,E.90≤x≤100),绘制了不完整的统计图表.一、收集、整理数据实验班20名学生的数学成绩分别为:50,65,68,76,77,78,87,88,88,88,89,89,89,89,93,95,97,97,98,99;对比班学生数学成绩在C组和D组的分别为:73,74,74,74,74,76,83,88,89.二、分析数据:两组样本数据的平均数、中位数和众数如表所示:三、描述数据:请根据以上信息,回答下列问题:(1)①补全频数分布直方图;②填空:a=______,b=______;(2)根据以上数据,你认为实验班的数学成绩更好还是对比班的数学成绩更好?判断并说明理由(两条理由即可);(3)如果我校八年级实验班共有学生 900名,对比班共有学生600名,请估计全年级本次数学成绩不低于80分的学生人数。
人教版八年级第二学期数学期末教学质量检测试题(附参考答案和评分标准)
1人教版八年级第二学期数学期末教学质量检测试题(附详细参考答案及评分标准)第Ⅰ卷 (选择题 共48分)一、 选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.)1.下面哪个点不在函数y=﹣2x+3的图象上A .(﹣5,13)B .(0.5,2)C .(3,0)D .(1,1)2.点A (-3,-4)到原点的距离为 A .3B .4C .5D .73.已知关于x 的一元二次方程2x 2+mx ﹣3=0的一个根是﹣1,则另一个根是A .1B .﹣1C .D .﹣4.下列说法正确的是A .了解某型导弹杀伤力的情况应使用全面调查B .一组数据3、6、6、7、9的众数是6C .从2000名学生中选200名学生进行抽样调查,样本容量为2000D .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2甲=0.3,S 2乙=0.4,则乙的成绩更稳定 5.函数y=中,自变量x 的取值范围是A .x ≥1B .x >1C .x ≥1且x ≠2D .x ≠26.下列判断错误的是学校 班级 姓名 考号 .A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形7.关于函数,下列结论正确的是A.函数图象必经过点(1,4)B.函数图象经过二三四象限C.y随x的增大而增大D.y随x的增大而减小8.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.A.1个B.2个C.3个D.4个9.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为A.24 B.3.6 C.4.8 D.52310.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入为300美元,预计2019年人均收入将达到1200美元,设2017年到2019年该地区居民年人均收入平均增长率为x ,可列方程为A .300(1+2x )=1200B .300(1+x )2=1200C .300(1+x 2)=1200D .300+2x =120011.如图,等边△ABC 沿射线BC 向右平移到△DCE 的位置,连接AD 、BD ,则下列结论:①AD=BC ;②BD 、AC 互相平分;③四边形ACED 是菱形.其中正确的个数是 A .0 B .1 C .2 D.3 12.对于实数a ,b ,定义运算“⊗”:a ⊗b =,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x 1,x 2是一元二次方程x 2﹣3x+2=0的两个根,则x 1⊗x 2等于 A .﹣1 B .±2 C .1D .±1第Ⅱ卷 (非选择题 共102分)二、 填空题(本大题共6小题,共计24分,只要求填写最后结果,每小题填对得4分.)13.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为14.已知x 1,x 2是关于x 的方程x 2﹣(2m ﹣2)x+(m 2﹣2m )=0的两根,且满足x 1•x 2+2(x 1+x 2)=﹣1,那么m 的值为415.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则当路程是x (千米)(x >3)时,车费y (元)与路程x (千米)之间的关系式(需化简)为: 16.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为17.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFC 为直角,若AC =6cm ,BC =8cm ,则DF 的长为18.在直角坐标系中,直线l 1:y =与x 轴 交于点B 1,以OB 1为边长作等边△A 1OB 1,过点A 1,作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边△A 2A 1B 2,过点A 2作A 1B 2平行于x 轴,交直线l 于点B 3,以A 2B 3,为边长作等边△A 3A 2B 3…,则等边△A 2019A 2018B 2019的边长是三、解答题(本大题共7小题,共计78分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(本题满分10分)用适当的方法解下列方程(1)x(x﹣4)=1(2)(x+3)2=2(x+3)20.(本题满分10分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)直接写出表中m、n、p的值为:m=,n=,p=;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为分,请简要说明理由.521.(本题满分8分)如图,在4×3的正方形网格中,每个小正方形的边长都为1.(1)线段AB的长为;(2)在图中作出线段EF,使得EF的长为,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.22.(本题满分12分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.(1)商场若想每天盈利1200元,每件衬衫应降价多少元?(2)问在这次活动中,平均每天能否获得1300元的利润,若能,求出每件衬衫应降多少元;若不能,请说明理由.6723.(本题满分12分)如图,在四边形ABCD 中,∠BAC =90°,E 是BC 的中点,AD ∥BC ,AE ∥DC ,EF ⊥CD 于点F .(1)求证:四边形AECD 是菱形; (2)若AB =5,AC =12,求EF 的长.24.(本题满分12分)已知,A 点坐标是(1,3),B 点坐标是(5,1),C 点坐标是(1,1) (1)求△ABC 的面积是 ; (2)求直线AB 的表达式;(3)一次函数y =kx+2与线段AB 有公共点,求k 的取值范围; (4)y 轴上有一点P 且△ABP 与△ABC 面积相等,求P 点坐标是25.(本题满分14分)如图,已知平行四边形ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=-43x+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).(1)直接写出顶点D的坐标,对角线的交点E的坐标;(2)求对角线BD的长;(3)是否存在t,使S△POQ=S▱ABCD,若存在,请求出的t值;不存在说明理由.(4)在整个运动过程中,PQ的中点到原点O的最短距离是cm,(直接写出答案)8数学参考答案及评分标准一、选择题1-5 CCCBC 6-10 CCDCB 11-12 DD二、填空题13、5 14、1,-3 15、 y=1.2x+1.416、1cm 18、22018三、解答题19、解:(1)x(x﹣4)=1,整理得:x2﹣4x=1,配方得:x2﹣4x+4=1+4,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣; -------------5分(2)(x+3)2=2(x+3)方程移项得:(x+3)2﹣2(x+3)=0,分解因式得:(x+3)(x+3﹣2)=0,解得:x1=﹣3,x2=﹣1. -------------5分20、解:9(1)九(1)班的平均分==94,九(2)班的中位数为(96+95)÷2=95.5,九(2)班的众数为93,故答案为:94 95.5 93; ---------6分(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好; -------2分(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为95.5(中位数).因为从样本情况看,成绩在95.5以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为95.5,九(2)班有一半的学生能够评定为“优秀”等级,故答案为95.5. ------------2分21、解:(1)AB==;故答案为:; --------2分(2)如图,EF==,CD==2, ----画出EF长2分∵CD2+AB2=8+5=13,EF2=13,∴CD2+AB2=EF2,∴以AB、CD、EF三条线可以组成直角三角形. ------------4分1022、解:(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),由题意,得(40﹣x)(20+2x)=1200, -----4分即:(x﹣10)(x﹣20)=0,解得x1=10,x2=20,为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元; -----3分(2)不能, ------------1分假设能达到,由题意,得(40﹣x)(20+2x)=1300,整理,得x2﹣30x+250=0,△=302﹣4×1×250=<0,∴方程无实数根. -----------4分故不能.23、(1)证明:∵AD∥BC,AE∥DC,11∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形; ---------6分(2)解:过A作AH⊥BC于点H,如图所示∵∠BAC=90°,AB=5,AC=12,∴BC==13,∵△ABC的面积=BC×AH=AB×AC,∴AH==,∵点E是BC的中点,四边形AECD是菱形,∴CD=CE,=CE•AH=CD•EF,∵S▱AECD∴EF=AH=. ----------6分(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),12∴AC=3﹣1=2,BC=5﹣1=4,∠C=90°,∴S△ABC=AC•BC=×2×4=4.故答案为4; ------------3分(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=﹣x+; ------------3分(3)当k>0时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则0<k≤1;当k<0时,y=kx+2过B(5,1),1=5k+2,解得k=﹣,∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<0.综上,满足条件的k的取值范围是0<k≤1或﹣≤k<0; ------3分13(4)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=﹣x+n,∵C点坐标是(1,1),∴1=﹣+n,解得n=,∴直线CP的解析式为y=﹣x+,∴P(0,).设直线AB:y=﹣x+交y轴于点D,则D(0,).将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(0,).综上所述,所求P点坐标是(0,)或(0,).故答案为(0,)或(0,). ---------3分1425解:解:(1)把x=0代入y=+6,可得y=6,即A的坐标为(0,6),把y=0代入y=+6,可得:x=8,即点C的坐标为(8,0),根据平行四边形的性质可得:点B坐标为(﹣8,0),所以AD=BC=16,所以点D坐标为(16,6),对角线的交点E的坐标为(4,3) -----------4分(2)因为B(﹣8,0)和D(16,6),∴BD=; ------------2分(3)设时间为t,可得:OP=6﹣t,OQ=8﹣2t,,∵S△POQ=S▱ABCD∴,解得:t1=2,t2=8(不合题意,舍去),15答:存在S△POQ=S,此时t值为2; --------------------5分▱ABCD(4)当Q与O点重合时,此时PQ的中点到原点O的距离最短,即8﹣2t=0,t=4,所以OP=6﹣t=6﹣4=2,此时PQ的中点到原点O的最短距离为1, -------3分故答案为:11617。
人教版八年级数学第二学期期末质量检测试卷及答案三
人教版八年级数学第二学期期末质量检测试卷及答案一.选择题(共10小题,满分40分,每小题4分)1.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥2.下图中不是中心对称图形的是()A.B.C.D.3.若△ABC中,AB=c,AC=b,BC=a,由下列条件不能判定△ABC为直角三角形的是()A.(c+b)(c﹣b)=a2B.∠A+∠B=∠CC.a=32,b=42,c=52D.a:b:c=5:12:134.一个容量为70的样本最大值为141,最小值60,取组距为10,则可以分成()A.10组B.9组C.8组D.7组5.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限6.一次函数y=﹣2x+1的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限7.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.B.C.6D.48.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.109.如图,在直角坐标系中,△AOB是等边三角形,若点B的坐标是(4,0),则点A的坐标是()A.(2,2)B.(2,2)C.(2,2)D.(1,2)10.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△BEF=S△ABE.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为.12.如图,正比例函数图象经过点A,则该函数的解析式为.13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.14.如图,在矩形纸片ABCD中,边AB=12,AD=5,点P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠,则CD′的最小值为.15.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b的值为.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.17.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.18.如图,等腰三角形ABC的底边BC长为8,面积是48,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.三.解答题(共8小题,满分78分)19.(6分)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的平行四边形为整点平行四边形.如图,已知整点A(2,5),B(3,2),请在所给网格区域内按要求画以A,B,C,D为顶点的整点平行四边形.(1)在图1中画出点C,D,使点C的横、纵坐标之和等于点D的横、纵坐标之和的3倍;(2)在图2中画出点C,D,使点C的横、纵坐标之积等于点D的横、纵坐标之积的2倍.21.(8分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积22.(10分)如图,在Rt△ABC中,∠ACB=90°,D,E分别是边AB,BC的中点,连接DE并延长到点F,使EF=DE,连接CF,BF.(1)求证:四边形CFBD是菱形;(2)连接AE,若CF =,DF=2,求AE的长.23.(10分)为贯彻落实教育部印发的《大中小学劳动教育指导纲要(试行)》通知要求,培养学生劳动习惯与劳动能力,某校学生发展中心在暑假期间开展了“家务劳动我最行”的实践活动,开学后从校七至九年级各随机抽取30名学生,对他们的每日平均家务劳动时长(单位:min)进行了调查,并对数据进行了收集、整理和描述.下面是其中的部分信息:a.90名学生每日平均家务劳动时长的频数分布表:分组频数20≤x<925m25≤x<301530≤x<3535≤x<2440n40≤x<45945≤x<50合计90b.90名学生每日平均家务劳动时长频数分布直方图:c.每日平均家务劳动时长在35≤x<40这一组的是:35 35 35 35 36 36 36 36 36 37 37 37 38 38 38 38 38 38 38 39 39 39 39 39d.小东每日平均家务劳动时长为37min.根据以上信息,回答下列问题:(1)写出频数分布表中的数值m=,n=;(2)补全频数分布直方图;(3)小东每日平均家务劳动时长样本中一半学生的每日平均家务劳动时长;(填“超过”或“没超过”)(4)学生发展中心准备将每日平均家务劳动时长达到40min及以上的学生评为“家务小能手”,如果该校七至九年级共有420名学生,请估计获奖的学生人数.24.(10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.25.(13分)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?26.(13分)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).参考答案一.选择题(共10小题,满分40分,每小题4分)1.解:在函数y=中,自变量x的取值范围是x≤,故选:B.2.解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项符合题意;故选:D.3.解:由(c+b)(c﹣b)=a2整理得:a2+b2=c2,故选项A不符合题意;由∠A+∠B=∠C,可知∠C=90°,故选项B不符合题意;a=32,b=42,c=52,则a2+b2≠c2,故选项C符合题意;当a:b:c=5:12:13时,则a2+b2=c2,故选项D不符合题意;故选:C.4.解:(141﹣60)÷10=8.1,因此可以分9组,故选:B.5.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.6.解:∵k=﹣2<0,∴一次函数的图象经过第二四象限,∵b=1>0,∴一次函数y=﹣2x+1的图象与y轴正半轴相交,经过第一象限,∴一次函数y=﹣2x+1的图象经过第一二四象限,故选:D.7.解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵ED垂直平分AB,∴EA=EB,∴∠A=∠ABE,∴∠A=∠ABE=∠CBE=×90°=30°,在Rt△ABC中,BC=AC=×9=3,在Rt△BCE中,CE=BC=×3=3,∴BE=2CE=6,∴AE=6.故选:C.8.解:∵360÷40=9,∴这个多边形的边数是9.故选:C.9.解:过点A作AC⊥OB于点C,∵△AOB是等边三角形,∴OA=OB,OC=BC,∠AOB=60°,∴∠OAC=30°,∵点B的坐标为(4,0),∴OB=4,∴OA=4,∴OC=OA=2,∴AC===2,∴A(2,2).故选:B.10.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF.若AD与BF相等,则BF=BC,题中未限定这一条件,若S△BEF=S△ACD;则S△BEF=S△ABC,则AB=BF,∴BF=BE,题中未限定这一条件,∴④不一定正确.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确;故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为:65°.12.解:设该正比例函数的解析式为y=kx,由图象可知,该函数图象过点A(2,4),∴2=k,即该正比例函数的解析式为y=2x.故答案为:y=2x.13.解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.14.解:连接AC,当点D'在AC上时,CD'有最小值,∵四边形ABCD是矩形,AB=12,AD=5,∴∠D=∠B=90°,AD=BC,∴AC=,由折叠性质得:AD=AD'=5,∠AD'P=∠D=90°,∴CD'的最小值=AC﹣AD'=13﹣5=8,故答案为:8.15.解:由作图可知,线段AB向右平移3个单位,再向下平移1个单位得到线段A′B′,∵A(﹣1,0),B(0,2),∴A′(2,﹣1),B′(3,1),∴a=﹣1,b=3,∴a+b=2,故答案为:2.16.解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.17.解:∵l:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256),故答案为:(0,256).18.解:连接AD,AD与EF的交点即为M,∵EF是AC的垂直平分线,∴C点与A点关于直线EF对称,∴AM=CM,∴CM+MD=AD,此时△CDM周长最小,∵△ABC是等腰三角形,D是BC的中点,∴AD⊥BC,∵BC长为8,面积是48,∴AD=12,∴△CDM周长=AD+CD=12+4=16,故答案为16.三.解答题19.解:(1)∵∠ABC+∠ADC=360°﹣(α+β)=240°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=α+β=120°.(2)β﹣α=60°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.20.解:(1)如图,四边形ACBD即为所求.(2)如图,四边形ACBD即为所求.21.解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),(3)S△BOD=2×1=1.22.证明:(1)∵点E为BC的中点,∴CE=BE,又∵EF=DE,∴四边形CFBD是平行四边形,∵D是边AB,∠ACB=90°,∴CD=AB=BD,∴四边形CFBD是菱形;(2)∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DF=2DE=2EF,DF=2,∴AC=2,EF=1,∵CF=,四边形CFDB是菱形,∴∠CEF=90°,∴CE===3,∵∠ACE=90°,∴AE===,即AE的长是.23.解:(1)由频数分布直方图知m=12,则n=90﹣(9+12+15+24+9)=21,故答案为:12、21;(2)补全频数分布直方图如下:(3)样本中一半学生的每日平均家务劳动时长为≈42.8(min),所以小东每日平均家务劳动时长没超过样本中一半学生的每日平均家务劳动时长,故答案为:没超过;(4)如果该校七至九年级共有420名学生,估计获奖的学生人数为420×=140(人).24.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.25.解:(1)由题意,设y关于x的函数解析式为y=kx+b,把(280,40,),(290,39)代入得:,解得:,∴y与x之间的函数解析式为y=﹣x+68(200≤x≤320);(2)设宾馆的利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+68)=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵﹣<0,∴当x<350时,w随x的增大而增大,∵200≤x≤320,∴当x=320时,w取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.26.解:(1)如图①,过点B作BH⊥OA,垂足为H,由点A(4,0),得OA=4,∵BO=BA,∠OBA=90°,∴OH=BH=OA==2,∴点B的坐标为(2,2);(2)①由点E(﹣,0),得OE=,由平移知,四边形O'C'D'E'是矩形,得∠O'E'D'=90°,O'E'=OE=,∴OE'=OO'﹣O'E'=t﹣,∠FE'O=90°,∵BO=BA,∠OBA=90°,∴∠BOA=∠BAO=45°,∴∠OFE'=90°﹣∠BOA=45°,∴∠FOE'=∠OFE',∴FE'=OE'=t﹣,∴S△FOE'=OE'•FE'=(t﹣)2,∴S=S△OAB﹣S△FOE'=,即S=﹣t2+t﹣(4≤t<);②(Ⅰ)当4<t≤时,由①知S=﹣t2+t﹣=﹣(t﹣)2+4,∴当t=4时,S有最大值为,当t=时,S有最小值为,∴此时≤S<;(Ⅱ)当<t≤4时,如图2,令O'C'与AB交于点M,D'E'与DB交于点N,∴S=S△OAB﹣S△OE'N﹣S△O’AM=4﹣(t﹣)2﹣(4﹣t)2=﹣t2+t﹣=﹣(t﹣)2+,此时,当t=时,S有最大值为,当t=4时,S有最小值为,∴≤S≤;(Ⅲ)当≤t≤时,如图3,令O'C'与AB交于点M,此时点D'位于第二象限,∴S=S△OAB﹣S△O’AM=4﹣(4﹣t)2=﹣t2+4t﹣4=﹣(t﹣4)2+4,此时,当t=时,S有最小值为,当t=时,S有最大值为,∴≤S≤;综上,S的取值范围为≤S≤;∴S的取值范围为≤S≤.。
2023年新人教版八年级数学下册第十六单元学习质量检测卷(附参考答案)
2023年新人教版八年级数学下册第十六单元学习质量检测卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)下列计算正确的是()A.2√3+3√2=5√5B.2√3×3√2=6√6C.5√5−2√3=3√2D.√30÷(√5+√3)=√6+√102.(3分)实数a,b,c在数轴上的对应点如图所示,化简﹣a+|b﹣a|+√c2的结果是()A.﹣b﹣c B.c﹣b C.2a﹣2b+2c D.2a+b+c=0,则√b2−√a−√c的值是()3.(3分)若|a﹣2|+b2+4b+4+√c2−c+14√2B.4C.1D.8A.2−324.(3分)当x=1+√2022时,多项式4x3﹣2025x﹣2022的值为()2A.3B.﹣3C.1D.﹣15.(3分)下列运算正确的是()=2,⑤√(−3)2=−3,⑥√33=3.①√2+√3=√5,②√18=3√2,③√2⋅√3=√6,④√2÷√12A.1个B.2个C.3个D.4个6.(3分)若2、5、n为三角形的三边长,则化简√(3−n)2+√(8−n)2的结果为()A.5B.2n﹣10C.2n﹣6D.107.(3分)下列计算正确的是()A.2√3+3√2=5√5B.2√3×3√2=6√6C.√(−6)2=−6D.√30÷(√5+√3)=√6+√108.(3分)下列各式计算正确的是()A.3√3−2√3=1B.(√5+√3)(√5−√3)=2C.√3√5=35D.−√(−15)2=159.(3分)如图,在甲、乙两个大小不同的6×6的正方形网格中,正方形ABCD,EFGH分别在两个网格上,且各顶点均在网格线的交点上.若正方形ABCD,EFGH的面积相等,甲、乙两个正方形网格的面积分别记为S甲,S乙,有如下三个结论:①正方形ABCD的面积等于S甲的一半;②正方形EFGH的面积等于S乙的一半;③S甲:S乙=9:10.上述结论中,所有正确结论的序号是()A.①②B.②③C.③D.①②③10.(3分)如果ab>0,a+b<0,那么下列各式中正确的是()A.√ab =√a√bB.√ab×√ba=1C.√ab÷√ab=b D.(√ab)2=﹣ab11.(3分)若二次根式√4−m有意义,且关于分式方程2x−1−3=m1−x有正整数解,则符合条件的整数m的和是()A.5B.3C.﹣2D.012.(3分)已知a=2020×2022﹣2020×2021,b=√20232−4×2022,c=√20212−1,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a二、填空题(共6小题,满分18分,每小题3分)13.(3分)已知a,b满足√a−2b+√a+b+3=0,则√ab•√ab的值为.14.(3分)已知m=2+√3,n=2−√3,则√m2+n2−3mn的值为.15.(3分)把−1a√−a11中根号外因式适当变形后移至根号内得.16.(3分)已知√16−x2−√4−x2=2√2,则√16−x2+√4−x2=.17.(3分)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在底面为长方形(长为√21cm,宽为4cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图中两块阴影部分的周长和是.18.(3分)已知x=x6﹣2√2021x5﹣x4+x3﹣2√2022x2+2x−√2022的值√2022−√2021为.三、解答题(共7小题,满分66分)19.(8分)已知:a=√7+2,b=√7−2,求:(1)ab的值;(2)a2+b2﹣3ab的值;的值.(3)若m为a整数部分,n为b小数部分,求1m+n20.(8分)计算:)﹣2+|1−√2|﹣(π﹣2)+√8;(1)(√5−1)(√5+1)﹣(−13.(2)(2√5+6)÷(√5+1)×2(√5+1)21.(8分)解答下列各题:(1)已知2b+1的平方根为3,3a+2b﹣1的立方根为2,求3a+2b的平方根.(2)如果最简二次根式√3a+4与√19−2a同类二次根式,且√4a−3x+√y−a=0,求x,y的值.22.(10分)小明在做二次根式的化简时,遇到了比较复杂的二次根式√5−2√6,通过资料的查询,他得到了该二次根式的化简过程如下√5−2√6=√2−2×√2×√3+3=√(√2)2−2×√2×√3+(√3)2=√(√2−√3)2= |√2−√3|=√3−√2.(1)结合以上化简过程,请你动手尝试化简√4−2√3.(2)善于动脑的小明继续探究:当a,b,m,n为正整数时,若a+2√b=(√m+√n)2,则有a+2√b=(m+n)+2√mn,所以a=m+n,b=mn.若a+2√17=(√m+√n)2,且a,m,n为正整数,m>n求a,m,n的值.23.(10分)著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例如:√3+2√2=√1+2×1×√2+2=√12+2×1×√2+(√2)2=√(1+√2)2=1+√2.解决问题:(1)在括号内填上适当的数:√14+6√5=√9+2×3×√5+①=√(3+②)2=③①:,②:,③.(2)根据上述思路,化简并求出√28−10√3√7+4√3的值.24.(11分)【阅读理解】阅读下列材料,然后解答下列问题:我们知道形如√2,2−√3的数可以化简,其化简的目的主要先把原数分母中的无理数化为有理数,如:√2=√2√2×√2=√22,2−√3=√3)(2−√3)(2+√3)=2+√3,这样的化简过程叫做分母有理化.我们把√2叫做√2的有理化因式,2+√3叫做2−√3的有理化因式.(1)√3的有理化因式是,√3+√5的有理化因式是;(2)化简:√23−2√2;(3)利用你发现的规律计算:(√2+1+√3+√2+√4+√3+√2022+√2021)(√2022+1)的值.25.(11分)阅读下列材料,解答后面的问题:√2+1+√3+√2=√3−1;√2+1+√3+√2+2+√3=2﹣1=1;√2+1+√3+√2+2+√3√5+2=√5−1;⋯(1)写出下一个等式;(2)计算√2+1+√3+√2+2+√3+⋯√100+√99的值;(3)请求出(√101+√100√102+√101+⋯√2122+√2121)×(√2122+√100)的运算结果.参考答案一、选择题(共12小题,满分36分,每小题3分)1.B2.A3.A4.D5.C6.A7.B8.B9.B10.B11.A12.C;二、填空题(共6小题,满分18分,每小题3分)13.214.15.16.17.16cm18.;三、解答题(共7小题,满分66分)19.解:(1)∵a=√7+2,b=√7−2,∴ab=(√7+2)(√7−2)=7﹣4=3;(2)∵a=√7+2,b=√7−2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(√7+2)﹣(√7−2)]2﹣3=(√7+2−√7+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=√7+2,b=√7−2,∴m=4,n=b=√7−2∴1m+n=4+√7−2=2+√7=√7−23,∴1m+n 的值√7−23.20.解:(1)原式=5﹣1﹣9+√2−1﹣π+2+2√2=﹣4﹣π+3√2;(2)原式=√5+6√5+1×2(√5+1)=√5+62(√5+1)2=√5+62(2√5+6)=12.21.解:(1)∵2b+1的平方根为3,∴2b+1=9,解得b=4,又∵3a+2b﹣1的立方根为2,∴3a+2b﹣1=8,∵b=4,,∴a=13∴3a+2b=1+8=9,∴9的平方根为±√9=±3,即3a+2b的平方根为±3;(2)∵最简二次根式√3a+4与√19−2a同类二次根式,∴3a+4=19﹣2a,解得a=3,当a=3时,√4a−3x+√y−a=0,即√12−3x+√y−3=0,∴12﹣3x=0,y﹣3=0,解得x=4,y=3,答:x=4,y=3.22.解:(1)√4−2√3=√3−2×√3×1+1=√(√3)2−2×√3×1+12=√(√3−1)2=√3−1.(2)∵a+2√17=(√m+√n)2,∴a+2√17=(m+n)+2√mn,∴a=m+n,mn=17,m>n,∵a,m,n为正整数,∴m=17,n=1,∴a=17+1=18.23.解:(1)由题意得,√14+6√5=√9+2×3×√5+5=√(3+√5)2=3+√5,则①=5,②=√5,③=3+√5,故答案为:①5;②√5;③3+√5;(2)√28−10√3+√7+4√3=√25−2×5×√3+3+√4+2×2×√3+3=√(5−√3)2+√(2+√3)2=5−√3+2+√3=7.24.解:(1)√3的有理化因式是√3,√3+√5的有理化因式是√3−√5,故答案为:√3,√3−√5;(2)√23−2√2=√2×(3+2√2)(3−2√2)×(3+2√2)=3√2+49−8=3√2+4;(3)(√2+1+√3+√2+√4+√3+√2022+√2021)(√2022+1)=(√2−1+√3−√2+√4−√3+•+√2022−√2021)(√2022+1)=(√2022−1)(√2022+1)=2022﹣1=2021.25.解:(1)第4√2+1+√3+√2+2+√3+√5+2+√6+√5=√6−1;(2)√2+1+√3+√2+2+√3+⋯√100+√99=√100−1=10﹣1=9;(3)(√101+√100√102+√101+⋯√2122+√2121)×(√2122+√100)=[√2+1+√3+√2+⋯+√2122+√2121−(√2+1+√3+√22+√3+⋯+√100+√99)]×(√2122+√100)=(√2022−1﹣9)×(√2122+√100)=(√2022−10)×(√2122+√100)=(√2022−10)×(√2122+10)=2122﹣100=2022.。
2023年新人教版初中数学八年级下册第十七单元学习质量检测卷(附参考答案)
2023年新人教版初中数学八年级下册第十七单元学习质量检测卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)若直角三角形的三边长为5,12,m,则m2的值为()A.13B.119C.169D.119或1692.(3分)在平面直角坐标系xOy中,△ABC的顶点B,C的坐标分别为(−√2,0),(2√2,0)点A在y轴上,点D为AC的中点,DE⊥AB于点E,若∠ABD=∠DBC,则DE的长为()A.√6B.2C.2√2D.33.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21.大正方形的面积为13.则小正方形的面积为()A.3B.4C.54.(3分)意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+ababC.S2=c2D.S2=c2+125.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的三边为边向外做正方形ACDE,正方形CBGF,正方形AHIB,连结EC,CG,作CP⊥CG交HI于点P,记正方形ACDE 和正方形AHIB的面积分别为S1,S2,若S1=4,S2=7,则S△ACP:S△BCP等于()A.2:√3B.4:3C.√7:√3D.7:46.(3分)如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2√2B.6C.8D.2√617.(3分)如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.198.(3分)如图,在3×3的正方形网格中,每个小正方形的边长为1,A,B,C均为格点(网格线的交点),以点A为圆心,AB的长为半径作弧,交格线于D,则CD的长为()A.3−√7B.√7−2C.3﹣2√2D.2√2−29.(3分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=10 10.(3分)将一个等腰三角形ABC纸板沿垂线段AD,DE进行剪切,得到三角形①②③,再按如图2方式拼放,其中EC与BD共线.若BD=6,则AB的长为()A.223B.152C.√50D.711.(3分)如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC长为半在作弧交数轴正半轴于点M,则点M所表示的数为()A.√10B.√10−1C.√10+1D.212.(3分)赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI=2,CI =1,S2=5S1,则GI的值是()A.√105B.920√2C.√58D.34二、填空题(共6小题,满分18分,每小题3分)13.(3分)在△ABC中,∠ACB=135°,AC=2,BC=√2,AC、BC的中垂线分别交AB 于D、E两点,则△CDE的周长为.14.(3分)如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2√3,则AC的长是.15.(3分)如图,为测量学校A与河对岸超市B之间的距离,在A附近选一点C,利用测量仪器测得∠BAC=60°,∠ACB=90°,AC=2km,则可求得学校与超市之间的距离AB 等于km.16.(3分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,且CD=2,AC =6,则AB=.17.(3分)如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E.若∠B=30°,AE=1.(1)BE的长为;(2)在△ABC的腰上取一点M,当△DEM是等腰三角形时,BM长为.18.(3分)如图,在平面直角坐标系中,四边形ABCO的四个顶点分别为点A(1,2),B(10,2),C(10,0),O(0,0),点D是线段OC的中点,点P在AB边上,若△OPD是腰为5的等腰三角形,则点P的坐标为.三、解答题(共7小题,满分66分)19.(8分)已知,如图,Rt△ABC中,∠B=90°,AB=6,BC=4,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足AD∥BC,并作腰上的高AE.(1)求证:AB=AE;(2)求等腰三角形的腰长CD.20.(8分)暑假中,小明到某海岛探宝,如图,他到达海岛登陆点后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,问登陆点到埋宝藏点的直线距离是多少?21.(8分)一架梯子AB长5.2米,如图斜靠在墙上,梯子的底部离墙的底端的距离BC为5.1米.(1)求梯子的顶端与地面的距离AC;(2)如果梯子的顶端上升了4.0米,那么梯子底部在水平方向是不是也向墙的底端靠近了4.0米?为什么?22.(9分)如图,已知△ABC,AB=AC,∠B=50°,点D在线段BC上,点E在线段AC 上,设∠BAD=α,∠CDE=β.(1)如果α=20°,β=10°,那么△ADE是等边三角形?请说明理由;(2)若AD=AE,试求α与β之间的关系.23.(10分)阅读下列文字,然后回答问题.已知在平面内有两点P1(x1,y1),P2(x2,y2),它们之间的距离P1P2=√(x1−x2)2+(y1−y2)2.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离.(2)已知△DEF各顶点的坐标为D(1,6),E(﹣2,2),F(4,2),请判断此三角形的形状,并说明理由.24.(11分)已知△ABC一张直角三角形纸片,其中∠BAC=90°,∠ABC=30°,小亮将它绕点A逆时针旋转β后得到△AED,直线AD交直线BC于点F.(1)如图1,当β=90°时,ED所在直线与线段BC有怎样的位置关系?请说明理由;(2)如图2,当0°<β<180°时,若△ABF为等腰三角形,直接写出β的度数;(3)当0°<β<180°时,若直线ED直线与直线BC所夹锐角为30°,直接写出β的度数.25.(12分)如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋千AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=m,BC=m,CD=m;(2)根据(1)中求得的数据,求秋千的长度.(3)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.参考答案一、选择题(共12小题,满分36分,每小题3分)1.D2.B3.C4.B5.A6.C7.A8.B9.D10.B11.B12.A;二、填空题(共6小题,满分18分,每小题3分)13.14.15.416.7.517.3;3或18.(5,2)或(,2);三、解答题(共7小题,满分66分)19.(1)证明:∵DA=DC,∴∠DAC=∠DCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠ACB=∠DCA,又∵AE⊥CD,∴∠AEC=90°,∴∠A=∠AEC=90°,在△ABC和△AEC中,{∠B=∠AEC∠ACB=∠DCAAC=AC,∴△ABC≌△AEC(AAS),∴AB=AE;(2)解:由(1)得:AE=AB=6,CE=CB=4,设DC=x,则DA=x,DE=x﹣4,由勾股定理得:DE2+AE2=DA2,即(x﹣4)2+62=x2,解得:x=132,即CD=132.20.解:过点B作BD⊥AC于点D,根据题意可知,AD=8﹣3+1=6千米,BD=2+6=8千米,在Rt△ADB中,由勾股定理得AB=√AD2+BD2=10千米,答:登陆点到宝藏处的距离为10千米.21.(1)解:根据勾股定理可得,梯子的顶端与地面的距离为:AC=√AB2−BC2=√(5.2)2−(5.1)2≈1.0(米),答:梯子的顶端与地面的距离为1.0米.;(2)解:梯子的顶端上升4.0米后,梯子的顶端与地面的距离为:A'C=1.0+4.0=5(米),此时梯子的底部离墙的底端的距离为:B′C=√A′B′2−A′C2=√(5.2)2−52≈1.4(米),梯子底部在水平方向移动的距离为:BB'=5.1﹣1.4=3.7(米),∵3.7≠4.0,∴梯子底部在水平方向不是也向墙的底端靠近了4.0米.22.解:(1)△ADE是等边三角形,理由:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠BAC=180°﹣∠B﹣∠C=80°,∴∠DAE=∠BAC﹣∠BAD=80°﹣α=80°﹣20°=60°,∵β=10°,∴∠DAE=∠C+β=60°,∴△ADE是等腰三角形;(2)若AD=AE时,则α=2β,证明:∵AB=AC,∴∠B=∠C,∵∠ADC=∠B+∠BAD,∴∠ADE+∠CDE=∠B+∠BAD,∴∠ADE+β=∠B+α,∴∠ADE=∠B+α﹣β,∵∠AED=∠C+∠CDE=∠B+β,∵AD=AE,∴∠ADE=∠AED,∴∠B+α﹣β=∠B+β,∴α=2β.23.解:(1)根据两点的距离公式得,AB=√(2+3)2+(4+8)2=13;(2)△DEF为等腰三角形.理由:∵D(1,6),E(﹣2,2),F(4,2),∴DE=√(1+2)2+(6−2)2=5,EF=√(4+2)2+(2−2)2=6,DF=√(4−1)2+(2−6)2=5,∴DE=DF,∴△DEF为等腰三角形.24.解:(1)ED⊥BC,理由如下:如图1,延长ED交BC于点G,当β=90°时,则∠DAC=∠BAC=90°,∴点D在AB上,由旋转得∠EAD=∠BAC=90°,∠E=∠B=30°,∴∠EAD+∠BAC=180°,∠C=60°,∴E、A、C三点在同一直线上,∴∠E+∠C=90°,∴∠EGC=90°,∴ED⊥BC.(2)当AB=FB,且点F在线段BC上,如图2,=75°,∵∠BAF=∠BF A=180°−30°2∴β=∠DAC=90°﹣75°=15°;当点D落在BC上,如图3,则点F与点D重合,∵AD=AC,∠C=60°,∴△ACD是等边三角形,∴DAC=60°,∴∠B=∠DAB=30°,∴AD=BD,即AF=BF,∴β=∠DAC=60°,当AB=FB,且点F在CB的延长线上,如图4,则∠BAF=∠F,∴∠BAF+∠F=2∠BAF=∠ABC=30°,∴∠BAF=15°,∴β=∠DAC=90°+15°=105°;当AF=AB时,如图5,点F在BC的延长线上,则∠F=∠B=30°∴∠BAD=∠F+∠B=60°,∴β=∠DAC=90°+60°=150°,综上所述,β的度数为15°或60°或105°或150°.(3)设直线DE与直线BC相交于点H,如图6,∠DHC=30°,且点H在线段BC上,设AD交BC于点I,∵∠D=∠C=60°,∴β=∠DAC=∠DIC﹣∠C=∠DIC﹣∠D=∠DHC=30°;如图7,∠H=30°,且点H在线段CB的延长线上,∵∠ADH=180°﹣∠ADE=180°﹣60°=120°,∴β=∠DAC=360°﹣120°﹣30°﹣60°=150°,综上所述,β的度数为30°或150°.25.解:(1)由题意得:BF=1.6m,BC=3m,DE=0.6m,∵BF⊥EF,AE⊥EF,BC⊥AE,∴四边形BCEF是矩形,∴CE=BF=1.6m,∴CD=CE﹣DE=1.6﹣0.6=1(m),故答案为:1.6,3,1;(2)∵BC⊥AC,∴∠ACB=90°,设秋千的长度为xm,则AB=AD=xm,AC=AD﹣CD=(x﹣1)m,在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即(x﹣1)2+32=x2,解得:x=5(m),即秋千的长度是5m;(3)当BF=2.6m时,CE=2.6m,∵DE=0.6m,∴CD=CE﹣DE=2.6﹣0.6=2(m),由(2)可知,AD=AB=5m,∴AC=AD﹣CD=5﹣2=3(m),在Rt△ABC中,由勾股定理得:BC=√AB2−AC2=√52−32=4(m),即需要将秋千AD往前推送4m,故答案为:4.。
2023年人教版八年级上学期期末数学质量检测试卷【解析版】[1]
人教版八年级上学期期末数学质量检测试卷一、选择题(共7小题,每小题3分,满分21分)1.(3分)9的算术平方根是()A.±3 B.3C.D.2.(3分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短3.(3分)下列计算正确的是()A.a+2a=3a2B.a3•a2=a6C.(a m)2=a m+2D.(a2b)3=a6b34.(3分)要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图5.(3分)如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧6.(3分)已知等腰三角形的顶角为50°,则这个等腰三角形的底角为()A.50°B.65°C.80°D.50°或65°7.(3分)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2二、填空题(共10小题,每小题4分,满分40分)8.(4分)大于且小于的整数是.9.(4分)计算:=.10.(4分)命题“如果a=b,那么a2=b2”的逆命题是.11.(4分)已知直角三角形的两直角边分别为5cm和12cm,则斜边长为.12.(4分)计算:已知:a+b=3,ab=1,则a2+b2=.13.(4分)如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=.14.(4分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为cm.15.(4分)某校对200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这个小组的频率是0.25,则该组的人数为名.16.(4分)如图,已知AD=AE,要使△ABD≌△ACE,应添加的条件是(添上一个条件即可).17.(4分)为了庆祝“元旦”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m,高为3m.如果要求彩带从柱子底端的A处绕柱子1圈后到达柱子顶端的B 处(线段AB与地面垂直),那么彩带的长度最短为m;如果绕柱子n圈,则彩带的长度至少为m.三、解答题(共9小题,满分89分)18.(12分)计算:(1)(2)(27x3﹣15x2+6x)÷3x.19.(8分)先化简,再求值:(a﹣2b)(a+2b)﹣a(a﹣b),其中a=﹣1,b=2.20.(12分)把下列多项式分解因式:(1)3x2﹣27(2)x2﹣8x+16.21.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:(1)△ABC≌△BAD;(2)OC=OD.22.(8分)如图,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:(1)到公园两个出入口A、C的距离相等;(2)到公园两边围墙AB、AD的距离相等.请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)23.(9分)如图1、2是202X-202X八年级(1)班数学老师对该班学生期202X届中考试数学成绩等级情况分别制成的条形统计图和扇形统计图.(1)202X-202X八年级(1)班共有学生人;(2)202X-202X八年级(1)班期202X届中考试数学成绩为C级的学生有人;(3)请把条形统计图中“D级”补充完整.24.(9分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.25.(11分)已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的三角形有几个?请你求△ABD的周长.26.(12分)如图,在△ABC外作两个大小不同的等腰直角三角形,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.连结DC、BE交于F点.(1)请你找出一对全等的三角形,并加以证明;(2)直线DC、BE是否互相垂直,请说明理由;(3)求证:∠DFA=∠EFA.参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.(3分)9的算术平方根是()A.±3 B.3C.D.考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:9的算术平方根是3,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.2.(3分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:常规题型.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.3.(3分)下列计算正确的是()A.a+2a=3a2B.a3•a2=a6C.(a m)2=a m+2D.(a2b)3=a6b3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、a+2a=3a,计算错误,故本选项错误;B、a3•a2=a5,计算错误,故本选项错误;C、(a m)2=a2m,计算错误,故本选项错误;D、(a2b)3=a6b3,计算正确,故本选项正确.故选D.点评:本题考查了幂的乘方和积的乘方、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题的关键.4.(3分)要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.5.(3分)如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧考点:作图—基本作图.分析:运用作一个角等于已知角可得答案.解答:解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.点评:本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.6.(3分)已知等腰三角形的顶角为50°,则这个等腰三角形的底角为()A.50°B.65°C.80°D.50°或65°考点:等腰三角形的性质.专题:探究型.分析:根据等腰三角形的性质及三角形内角和定理进行解答即可.解答:解:∵等腰三角形的顶角为50°,∴这个等腰三角形的底角==65°.故选B.点评:本题考查的是等腰三角形的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.7.(3分)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2考点:平方差公式的几何背景.专题:应用题.分析:左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.解答:解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.点评:本题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.二、填空题(共10小题,每小题4分,满分40分)8.(4分)大于且小于的整数是2.考点:估算无理数的大小.分析:根据=2和<<即可得出答案.解答:解:∵=2,<<,∴大于且小于的整数有2,故答案为:2.点评:本题考查了估算无理数的大小的应用,主要考查学生的北京两个无理数大小的能力.9.(4分)计算:=﹣3.考点:立方根.专题:计算题.分析:根据(﹣3)3=﹣27,可得出答案.解答:解:=﹣3.故答案为:﹣3.点评:此题考查了立方的知识,属于基础题,注意立方根的求解方法,难度一般.10.(4分)命题“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b.考点:命题与定理.分析:把一个命题的条件和结论互换就得到它的逆命题.命题“如果a=b,那么a2=b2”的条件是如果a=b,结论是a2=b2”,故逆命题是如果a2=b2,那么a=b.解答:解:“如果a=b,那么a2=b2”的逆命题是:如果a2=b2,那么a=b.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.11.(4分)已知直角三角形的两直角边分别为5cm和12cm,则斜边长为13cm.考点:勾股定理.分析:直接利用勾股定理求斜边长.解答:解:由勾股定理,得斜边==13cm.故答案为:13cm.点评:本题考查了勾股定理的运用.本题比较简单,关键是利用勾股定理求斜边.12.(4分)计算:已知:a+b=3,ab=1,则a2+b2=7.考点:完全平方公式.专题:计算题.分析:将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.解答:解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7点评:此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.13.(4分)如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=4.考点:等腰三角形的性质.分析:根据三线合一定理即可求解.解答:解:∵AB=AC,AD平分∠BAC,∴BD=BC=4.故答案是:4.点评:本题考查了等腰三角形的性质,等腰三角形底边上的高线、顶角的平分线以及底边上的中线,三条线重合.14.(4分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为7cm.考点:线段垂直平分线的性质.分析:由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.解答:解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.15.(4分)某校对200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这个小组的频率是0.25,则该组的人数为50名.考点:频数与频率.分析:根据频率=频数÷数据总数,得频数=数据总数×频率.解答:解:根据题意,得该组的人数为200×0.25=50(人).故答案为50.点评:此题主要考查了频数与频率,关键是掌握频率=频数÷数据总数.16.(4分)如图,已知AD=AE,要使△ABD≌△ACE,应添加的条件是AB=AC(添上一个条件即可).考点:全等三角形的判定.专题:开放型.分析:根据“SAS”添加条件.解答:解:∵AD=AE,∠BAD=∠CAE,∴当AB=AC时,可根据“SAS”判断△ABD≌△ACE.故答案为AB=AC.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.17.(4分)为了庆祝“元旦”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m,高为3m.如果要求彩带从柱子底端的A处绕柱子1圈后到达柱子顶端的B 处(线段AB与地面垂直),那么彩带的长度最短为m;如果绕柱子n圈,则彩带的长度至少为m.考点:平面展开-最短路径问题.分析:要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.解答:解:将圆柱表面切开展开呈长方形.如果绕柱子1圈时,则有螺旋线长为1个长方形的对角线长,设此时彩带的长为xm.∵圆柱的底面周长为1m,高为3m,∴x2=12+32=10,解得x=.所以,如果绕柱子1圈,则彩带的长度至少为m;如果绕柱子n圈时,则有螺旋线长为n个长方形并排后的长方形的对角线长,设此时彩带的长为ym.∵圆柱的底面周长为1m,高为3m,∴y2=(1×n)2+32=n2+9,解得y=.所以,如果绕柱子n圈,则彩带的长度至少为m.故答案为;.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.三、解答题(共9小题,满分89分)18.(12分)计算:(1)(2)(27x3﹣15x2+6x)÷3x.考点:实数的运算;整式的除法.分析:(1)根据立方根、二次根式、绝对值进行计算即可;(2)根据多项式除以单项式进行计算即可.解答:解:(1)原式=﹣2+3+﹣1=;(2)(27x3﹣15x2+6x)÷3x=9x2﹣5x+2.点评:本题考查了实数的运算以及整式的除法,是基础知识要熟练掌握.19.(8分)先化简,再求值:(a﹣2b)(a+2b)﹣a(a﹣b),其中a=﹣1,b=2.考点:整式的加减—化简求值.专题:计算题.分析:原式第一项利用平方差公式计算,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式=a2﹣4b2﹣a2+ab=﹣4b2+ab,当a=﹣1,b=2时,原式=﹣4×22+(﹣1)×2=﹣16﹣2=﹣18.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(12分)把下列多项式分解因式:(1)3x2﹣27(2)x2﹣8x+16.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取3,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.解答:解:(1)原式=3(x+3)(x﹣3);(2)原式=(x﹣4)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:(1)△ABC≌△BAD;(2)OC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:(1)利用AAS判定△ABC≌△BAD;(2)再根据全等三角形的对应边相等求得AD=BC,再由∠1=∠2,可得AO=BO,从而求得OC=OD.解答:解:(1)在△ABC与△BAD中∴△ABC≌△BAD(AAS).(2)∵△ABC≌△BAD,∴AD=BC,∵∠1=∠2,∴AO=BO,∴AD﹣AO=BC﹣BO,即OC=OD.点评:本题主要考查三角形全等的判定方法及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.本题比较简单,做题时要找准对应关系.22.(8分)如图,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:(1)到公园两个出入口A、C的距离相等;(2)到公园两边围墙AB、AD的距离相等.请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)考点:作图—应用与设计作图.分析:首先作出AC的垂直平分线,再作出∠BAD的角平分线两线的交点P为所求作的点.解答:解:如图所示:点评:此题考查的知识点是角平分线的性质及线段垂直平分线的性质,解答此题的关键是根据要求明确所求点的位置是∠BAD的平分线和边AC的垂直平分线的交点.23.(9分)如图1、2是202X-202X八年级(1)班数学老师对该班学生期202X届中考试数学成绩等级情况分别制成的条形统计图和扇形统计图.(1)202X-202X八年级(1)班共有学生40人;(2)202X-202X八年级(1)班期202X届中考试数学成绩为C级的学生有16人;(3)请把条形统计图中“D级”补充完整.考点:条形统计图;扇形统计图.专题:计算题.分析:(1)由等级为A的人数除以占的百分比求出班级学生总数即可;(2)由学生总数乘以等级C占的百分比求出C的学生数即可;(3)求出等级D的人数,补全条形统计图即可.解答:解:(1)根据题意得:10÷25%=40(人),则202X-202X八年级(1)班共有学生40人;(2)根据题意得:40×40%=16(人);故答案为:(1)40;(2)16;(3)根据题意得:D级人数为40×(1﹣40%﹣25%﹣25%)=4(人),如图所示:点评:此题考查了条形统计图,扇形统计图,弄清题意是解本题的关键.24.(9分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.解答:解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形的边长为点评:本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.25.(11分)已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的三角形有几个?请你求△ABD的周长.考点:勾股定理;等腰三角形的判定.分析:分三种情况讨论:①如图1,当AB=AD=10时;如图2,当AB=BD=10时;当AB为底时.解答:解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的周长为32m.②如图2,当AB=BD=10时,得CD=4,在Rt△ACD中,AD===4∴△ABD的周长为m.③如图3,当AB为底时,设AD=BD=x,则CD=x﹣6,在Rt△ACD中,AD2=CD2+AC2,即x2=(x﹣6)2+82,解得:x=,则△ABD的周长为m.点评:本题考查了勾股定理,解决本题的关键是正确认识到需要讨论,讨论等腰三角形的边应如何分类.26.(12分)如图,在△ABC外作两个大小不同的等腰直角三角形,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.连结DC、BE交于F点.(1)请你找出一对全等的三角形,并加以证明;(2)直线DC、BE是否互相垂直,请说明理由;(3)求证:∠DFA=∠EFA.考点:全等三角形的判定与性质.分析:(1)由题意可得AD=AB,AC=AE,由∠DAB=∠CAE=90°,可得到∠DAC=∠BAE,从而可证△DAC≌△BAE;(2)由(1)可得∠ACD=∠AEB,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM⊥DC于M,AN⊥BE于N,利用全等三角形的面积相等及角平分线的判定即可证得结论.解答:解:(1)△DAC≌△BAE,理由是:∠DAB=∠CAE=90°,∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,又∵AD=AB,AC=AE,在△DAC与△BAE中∴△DAC≌△BAE;(2)DC⊥BE理由是:∵△DAC≌△BAE∴∠ACD=∠AEB∵∠AEB+∠ANE=90°∠ANE=∠FNC∴∠FNC+∠ACD=90°∴∠NFC=90°∴DC⊥BE(3)作AM⊥DC于M,AN⊥BE于N,∵△DAC≌△BAE∴S△DAC=S△BAE,DC=BE,∴DC•AM=BE•AN,∴AM=AN,∴FA是∠DFE的平分线,即:∠DFA=∠EFA.点评:本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
人教版2024~2025学年八年级数学上册期末质量检测卷[含答案]
期末质量检测卷(一)(满分:120分 时间:120分钟)一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.在下列四个图案中,不是轴对称图案的是( )A .B .C .D .2.一种花瓣的花粉颗粒直径用科学记数法表示为66.510m -´,这个数用小数表示为( )A .0.000065B .0.00000065C .0.0000065D .0.000653.下列运算中正确的是( ).A .2510x x x ×=B .()428x x -=-C .()224xy xy -=D .532x x x ¸=4.因式分解x 2﹣9y 2的正确结果是( )A .(x+9y )(x ﹣9y )B .(x+3y )(x ﹣3y )C .(x ﹣3y )2D .(x ﹣9y )25.三角形中,到三边距离相等的点是( )A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点6.若22425x axy y ++是一个完全平方式,则a 的值为( )A .20B .-20C .±20D .±107.若式子2244x x x -++的值等于0,则x 的值为( )A .±2B .-2C .2D .-48.已知等腰三角形ABC 的底边8BC =,且4AC BC -=,则腰AC 长为( )A .4或12B .12C .4D .8或129.如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若∠A =35°,∠B =30°,∠C =45°,则∠AFB 的大小为( )A .75°B .80°C .100°D .110°10.为了疫情防控需要,某医疗器械厂原计划生产24000箱抗原试剂,但在实际生产时,,求实际每天生产抗原试剂的箱数.在这个问题中,若设原计划每天生产抗原试剂x 箱,可得方程2400024000103x x -=,则被污染看不清的 应是( )A .每天生产的抗原试剂是原计划的3倍,结果提前10天完成B .每天生产的抗原试剂是原计划的3倍,结果延期10天完成C .每天生产的抗原试剂是原计划的10倍,结果提前3天完成D .每天生产的抗原试剂是原计划的10倍,结果延期3天完成11.如图,要用木板为一幅正方形油画装裱边框,其中油画的边长为4dm ,边框每条边的宽度为dm a ,则制作边框的木板面积为( )(不计接缝)A .216dm a B .()22416dm a a + C .224dm a D .()228dm a a +12.如图,已知:30MON ∠=︒,点1A 、2A 、3A 、…在射线ON 上,点1B 、2B 、3B 、…在射线OM 上,112A B A △、223A B A △、334A B A V 、…均为等边三角形,若11OA =,则9910A B A V 的边长为( )A .32B .64C .128D .256二、填空题(本大题共6小题,每小题2分,共12分)13.如图,在ABC V 和ADC △中,AB AD =,BC DC =,130B ︒∠=,则D ∠= º.14.小敏设计了一种衣架,如图,在使用时能轻易收拢,然后套进衣服后松开即可,衣架杆18OA OB cm ==,若衣架收拢时,60AOB ∠=o ,则A 、B 的距离为 cm .15.给出下列五个命题:(1)三角形的内角和是180︒;(2)三角形不具有稳定性;(3)有一个角是60︒的等腰三角形是等边三角形;(4)三角形的一个外角等于和它不相邻的两个内角和;(5)三角形的任意两边之差大于第三边,所有的假命题是.(填写序号)16.分式方程2311x x x-=--的解为 .17.已知()()21x mx x n ++-的展开式中不含x 项,2x 项的系数为2-,则mn m n +-的值为 .18.如图,在ABC V 中,AB AC =,36A ∠=︒,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,在下列结论中:①BD 平分ABC ∠;②点D 是线段AC 的中点:③AD BD BC ==;④BDC V 的周长等于AB BC +.正确结论的序号是 .三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.计算:(1)01122183-æöæöç÷ç÷èø¸-ø--è;(2)()()()2211x x x +-+-.20.化简求值:先化简,再求值:22291416933x x x x x x x x æö-+-¸-ç÷-+--èø,其中4x =.21.如图,在平面直角坐标系中,()4,1A ,()4,2B --,()1,3C -.(1)作出ABC V 关于x 轴对称的图形111A B C △,并写出点1B 的坐标;(2)在x 轴上作出点P ,使得PB PC +最短,并写出点P 的坐标.22.已知,点D 为线段BC 上一点,ED BC =,E ABC ∠=∠,∥D E A C .(1)求证:BD AC =.(2)若105A ∠=︒,46C ∠=︒,求ABE ∠的度数.23.中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》的套数的2倍,求每套《三国演义》的价格.24.如图,在等边三角形ABC 中,D 是AB 边上的动点,以CD 为一边,向上作等边三角形EDC ,连接AE .(1)求证:DBC EAC △≌△;(2)若8,BC AC =与DE 交于点O ,当AE CE ^时,求AO 的长.25.综合与实践:初步认识筝形后,实践小组动手制作了一个“筝形功能器”,如图,在笔形ABCD 中,,AB AD CB CD ==.(1)【操作应用】如图1,将“筝形功能器”上的点A 与PRQ ∠的顶点R 重合,,AB AD 分别放置在角的两边,RP RQ 上,并过点,A C 画射线AE ,求证:AE 是PRQ ∠的平分线;(2)【实践拓展】实践小组尝试使用“筝形功能器”检测教室门框是否水平.如图2,在仪器上的点A 处栓一条线绳,线绳另一端挂一个铅锤,仪器上的点,B D 紧贴门框上方,观察发现线绳恰好经过点C ,即判断门框是水平的.实践小组的判断对吗?请说明理由.26.【学习新知】等边对等角是等腰三角形的性质定理,如图1,可以表述为∵AB AC=∴B C∠=∠【新知应用】已知:在ABC V 中,AB AC =,若110A ∠=︒,则B ∠=______;若70B ∠=︒,则A ∠=______.【尝试探究】如图2,四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,若连接CA ,则CA 平分BCD ∠.某数学小组成员通过观察、实验,提出以下想法:延长CD 到点E ,使得DE BC =,连接AE ,利用三角形全等的判定和等腰三角形的性质可以证明.请你参考他们的想法,写出完整的证明过程.【拓展应用】借助上一问的尝试,继续探究:如图3所示,在五边形ABCDE 中,AB AE =,BC DE CD +=,180B AED ∠+∠=︒,连接CA ,CA 平分BCD ∠吗?请说明理由.【分析】根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【详解】解:A 、该图形是轴对称图形,故不合题意;B 、该图形不是轴对称图形,故合题意;C 、该图形是轴对称图形,故不合题意;D 、该图形是轴对称图形,故不合题意;故选:B .2.C【分析】把6.5的小数点向左移动6位即可求解;【详解】66.510-´用小数表示为:0.0000065故选:C【点睛】本题主要考查科学记数法,科学记数法10n a ´表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数,若科学记数法表示较小的数10n a -´,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.3.D【分析】根据同底数相乘,幂的乘方,积的乘方,同底数相除法则,逐项判断即可求解.【详解】解:A 、257x x x ×=,故本选项错误,不符合题意;B 、()428x x -=,故本选项错误,不符合题意;C 、()2242y xy x =-,故本选项错误,不符合题意;D 、532x x x ¸=,故本选项正确,符合题意;故选:D【点睛】本题主要考查了同底数相乘,幂的乘方,积的乘方,同底数相除法则,熟练掌握同底数相乘,幂的乘方,积的乘方,同底数相除法则是解题的关键.4.B【分析】原式利用平方差公式分解即可【详解】解:x 2-9y 2=(x+3y )(x-3y ),故选B .【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.【分析】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.利用角平分线的性质,只有角平分线的交点到三边的距离相等.【详解】解:到三角形各边距离相等的点是三角形三条角平分线的交点,故选:C .6.C【分析】根据完全平方式的特点可得解.【详解】∵22425x axy y ++是一个完全平方式,∴222(25)42025x y x xy y +=±+,∴a =±20,故选:C .7.C 【详解】2x - =0且x²+4x+4≠0,解得x=2.故选C.8.B【分析】先化简绝对值,得到4AC BC -=±,结合三角形的三边关系,即可得到腰的长度.【详解】解:∵4AC BC -=,∴4AC BC -=±,∵等腰ΔABC 的底边8BC =,∴12AC =.4AC =,∵448+=,则4AC =不符合题意,故选:B .【点睛】本题考查了等腰三角形的性质,化简绝对值,以及三角形的三边关系,解题的关键是正确化简绝对值.9.D【分析】由题意结合三角形内角和易求出100ADC ∠=︒、105BEC ∠=︒,再根据四边形内角和即可求出DFE ∠的大小,最后根据对顶角相等即可求出AFB ∠的大小.【详解】∵353045A B C ∠=︒∠=︒∠=︒,,∴1801803545100ADC A C ∠=︒-∠-∠=︒-︒-︒=︒,1801803045105BEC B C ∠=︒-∠-∠=︒-︒-︒=︒,在四边形CDFE 中,36036010510045110DFE FEC FDC C ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,∴110AFB DFE ∠=∠=︒.故选D .【点睛】本题考查三角形内角和定理,多边形的内角和.利用数形结合的思想是解答本题的关键.10.A【分析】本题考查了分式方程的应用,根据方程找到等量关系是解题的关键.依题意,设原计划每天生产抗原试剂x 箱,实际每天生产抗原试剂3x 箱,根据方程的左右两边的关系可知原计划所用时间比实际的时间多10天,即可求解.【详解】解:设原计划每天生产抗原试剂x 箱,由方程2400024000103x x-=可知,实际每天生产抗原试剂3x 箱,结果提前10天完成.故选:A .11.B【分析】此题考查了整式混合运算的应用,根据题意,总面积减去正方形油画的面积即可.【详解】解:根据题意,制作边框的面积是:()()222224241616416416dm a a a a a +-=++-=+,故选:B .12.D【分析】本题考查了等边三角形的性质,等腰三角形的判定,数字规律的探求,正确得出各三角形边长的数字规律是解题的关键.根据等边三角形的性质及等腰三角形的性质,可得出每个等边三角形的边长的规律,进而得出答案.【详解】112A B A QV 是等边三角形,11260B A A \∠=︒30MON ∠=︒Q 1130OB A MON \∠=∠=︒11112121B A OA B A A A \====,同理可得222112B A OA ==+=,233311242B A OA ==++==,3444112482B A OA ==+++==L ,以此类推7899911222256B A OA ==++++==L ,9910A B A \V 的边长为256.故选D .13.130【分析】证明△ABC ≌△ADC 即可.【详解】∵AB AD =,BC DC =,AC=AC ,∴△ABC ≌△ADC ,∴∠D=∠B=130°,故答案为:130.【点睛】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键.14.18【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接AB ,如图所示:∵OA OB =,60AOB ∠=o ,∴AOB D 是等边三角形,∴18AB OA cm ==,故答案为:18.【点睛】本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定方法是解题的关键.15.②⑤##⑤②【分析】根据三角形内角和定理,三角形的稳定性,等边三角形的判定和三角形外角的性质求解即可.【详解】(1)三角形的内角和是180︒,真命题;(2)三角形具有稳定性,原说法是假命题;(3)有一个角是60︒的等腰三角形是等边三角形,真命题;(4)三角形的一个外角等于和它不相邻的两个内角和,真命题;(5)三角形的任意两边之差小于第三边,原说法是假命题;综上所述,所有的假命题是②⑤.故答案为:②⑤.【点睛】本题考查了命题的真假,三角形内角和定理,三角形的稳定性,等边三角形的判定和三角形外角的性质,判断一个命题是真命题,则要通过证明,判断一个命题是假命题,只要举出反例即可.16.4x =【分析】本题考查解分式方程,将分式方程转化为整式方程,求解后,进行检验即可.【详解】解:2311x x x-=--去分母,得:()231x x +=-,解得:4x =;经检验4x =是原方程的解,故答案为:4x =.17.1-【分析】本题考查多项式乘以多项式不含某一项问题,先进行多项式乘以多项式的计算,再根据展开式中不含x 项,2x 项的系数为2-,得到2,10m n mn -=--=,整体代入代数式计算即可.【详解】解:()()22321x nx mx mnx x nx mx x n ++--=-++-()()321x m n x mn x n =+----,由题意,得:2,10m n mn -=--=,∴1mn =,∴211mn m n +-=-+=-;故答案为:1-.18.①③④【分析】根据AB AC =,36A ∠=︒,可知ABC V 为等腰三角形,进而可知72ABC ∠=︒,由DE 为AB 的中垂线,可知36DBC ∠=︒,根据角度可知BD 平分ABC ∠,故①正确,根据36DBC ∠=︒,72C ∠=︒,72BDC ∠=︒,根据等角对等边可知BD BC AD ==,故③正确,则BDC V 周长为:BD BC DC AD DC BC AC BC ++=++=+,故④正确;根据角之间的关系,72BDC C ∠=∠=︒,36DBC ∠=︒,可知BD DC ¹,故AD DC ¹,故②错误.【详解】解:∵AB AC =,∴ABC V 为等腰三角形,∵36A ∠=︒,∴()18036272ABC C ∠=∠=︒-︒¸=︒,∵DE 为AB 的中垂线,∴AD =BD ,∴36ABD A ∠=∠=︒,∴723636DBC ∠=︒-︒=︒,∴BD 平分ABC ∠,故①正确;∵36DBC ∠=︒,72C ∠=︒,∴180367272BDC ∠=︒-︒-︒=︒,∴BD BC AD ==,故③正确;∴BDC V 周长为:BD BC DC AD DC BC AC BC ++=++=+,故④正确;∵72BDC C ∠=∠=︒,36DBC ∠=︒,∴BD DC ¹,故AD DC ¹,故②错误;故答案为:①③④.【点睛】本题考查垂直平分线的性质,等边对等角,等角对等边,以及周长公式,熟练掌握垂直平分线的性质是解决本题的关键.19.(1)12(2)45x +【分析】本题考查零指数幂,负整数指数幂,整式的运算:(1)先进行零指数幂,负整数指数幂的运算,再进行有理数的运算即可;(2)利用乘法公式进行计算后,合并同类项即可.【详解】(1)解:原式()131********=-´--=+-=;(2)原式2244145x x x x =++-+=+.20.21x x-,154【分析】根据分式的加减运算以及乘除法运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】解:原式2(3)(3)1(3)1(3)34x x x x x x x x éù+--=+×-êú--+ëû31(3)1334x x x x x x x +-æö=+×-ç÷--+èø4(3)134x x x x x x+-=×--+1x x =-21x x-=,当4x =时,原式1611544-==.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则.21.(1)图见解析,()14,2B -(2)图见解析,()2,0P -【分析】(1)根据A (4,1),B (﹣4,﹣2),C (1,﹣3)和轴对称的性质即可作出△ABC 关于x 轴对称的图形△A 1B 1C 1,进而写出点B 1的坐标;(2)连接B 1C 交x 轴于点P 即可使得PB +PC 最短,进而可以写出点P 的坐标.【详解】(1)解:如图,△A 1B 1C 1即为所求;点B 1的坐标为(﹣4,2);(2)解:如图,点P 即为所求;点P 的坐标:(﹣2,0).【点睛】本题考查了作图﹣旋转变换,轴对称﹣最短路径问题,坐标与图形变化﹣平移,解题的关键是掌握旋转的性质.22.(1)证明见解析(2)76ABE ∠=︒【分析】本题考查全等三角形的判定与性质,平行线的性质,三角形内角和定理.熟练掌握全等三角形的判定与性质是解题的关键.(1)先利用平行线的性质得出BDE C ∠=∠,再根据ASA 证明BDE ACB V V ≌即可;(2)先由三角形内角和定理求出29ABC ∠=︒,再根据BDE ACB V V ≌得出105DBE A ∠=∠=︒,即可由ABE DBE ACB ∠=∠-∠求解.【详解】(1)证明:∵DE AC ∥,∴BDE C ∠=∠,在BDE V 与ACB △中,E ABC ED BCBDE ACB ∠=∠ìï=∠íï∠=∠î,∴()ASA BDE ACB V V ≌,∴BD AC =;(2)解:∵105A ∠=︒,46C ∠=︒,∴18029ABC A C ∠=︒-∠-∠=︒,由(1)知:BDE ACB V V ≌,∴105DBE A ∠=∠=︒,∴1052976ABE DBE ACB ∠=∠-∠=︒-︒=︒.23.每套《三国演义》的价格为80元【分析】本题考查分式方程的实际应用,设每套《三国演义》的价格为x 元,根据每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》的套数的2倍,列出分式方程进行求解即可.【详解】解:设每套《三国演义》的价格为x 元,则每套《西游记》的价格为()40x +元,由题意,得:32002400240x x =´+,解得:80x =;经检验,80x =是原方程的解,答:每套《三国演义》的价格为80元.24.(1)见解析(2)2【分析】本题考查等边三角形的性质,全等三角形的判定和性质,含30度角的直角三角形:(1)根据等边三角形的性质,利用SAS 证明DBC EAC △≌△即可;(2)根据全等三角形的性质,得到60CAE CBD ∠=∠=︒,根据含30度角的直角三角形的性质,进行求解即可.【详解】(1)证明:∵等边三角形ABC ,等边三角形EDC ,∴,,60AC BC CD CE ACB DCE ====︒∠∠,∴60DCB ACE ACD ∠=∠=︒-∠,在DBC △和EAC V 中,AC BC DCB ACE CD CE =ìï∠=∠íï=î,∴DBC EAC △≌△.(2)解:∵等边三角形ABC ,等边三角形EDC ,∴60,60B CED ∠=∠=︒,∵DBC EAC △≌△,∴60CAE CBD ∠=∠=︒,∵AE CE ^,∴90AEC ∠=︒,∴30ACE ∠=︒,30AEO ∠=︒∴11422AE AC BC ===,18090AOE CAE AEO ∠=︒-∠-∠=︒,∵30AEO ∠=︒,4AE =,∴122OA AE ==.25.(1)见解析;(2)实践小组的判断对,理由见解答.【分析】此题考查了全等三角形的判定与性质,等腰三角形的性质;(1)证明()SSS ABC ADC V V ≌,得BAC DAC ∠=∠,即可解决问题;(2)根据等腰三角形的三线合一可得AC BD ^,进而可以解决问题.【详解】(1)证明:在ABC V 和ADC V 中,AB AD BC DC AC AC =ìï=íï=î,()SSS ABC ADC \V V ≌,BAC DAC \∠=∠,AE \是PRQ ∠的平分线;(2)解:实践小组的判断对,理由如下:ABD QV 是等腰三角形,AB AD =,由(1)知:AC 平分BAD ∠,AC BD \^,AC Q 是铅锤线,BD \是水平的.\门框是水平的.\实践小组的判断对.26.新知应用:35︒;40︒尝试探究:见解析拓展应用:CA 平分BCD ∠;见解析【分析】(1)根据等腰三角形的性质和三角形内角和定理求解即可;(2)延长CD 到点E ,使得DE BC =,连接AE ,证明(SAS)ABC ADE V V ≌得到AC AE =,23E ∠=∠=∠,从而得出CA 平分BCD ∠;(3)连接AD ,延长DE 到F ,使EF BC =,连接AF ,由(SAS)ABC AEF △≌△,得到AC AF =,BCA F ∠=∠,CD FD =,再证明(SSS)ACD AFD ≌△△得到ACD F BCA ∠=∠=∠,从而得出CA 平分BCD ∠.【详解】新知应用:∵AB AC =,∴B C ∠=∠,若110A ∠=︒,则()1180110352B C ∠=∠=︒-︒=︒;若70B ∠=︒,则70B C ∠=∠=︒,∴180180707040A B C =︒-∠-∠=︒-︒-︒=︒∠;故答案是35︒;40︒尝试探究:证明:如图,延长CD 到点E ,使得DE BC =,连接AE ,∵180B ADC ∠+∠=︒,又∵1180ADC ∠+∠=︒,∴1B ∠=∠,∵在ABC V 和ADE V 中,1AB AD B BC DE =ìï∠=∠íï=î,∴(SAS)ABC ADE V V ≌,∴AC AE =,2E ∠=∠,又∵AC AE =,∴3E ∠=∠,∴23∠∠=,即CA 平分BCD ∠;拓展应用:证明:连接AD ,延长DE 到F ,使EF BC =,连接AF ,∵180B AED ∠+∠=︒,1180AED ∠∠+=︒,∴1B ∠=∠∵在ABC V 和AEF △中,1AB AE B BC EF =ìï∠=∠íï=î,∴(SAS)ABC AEF △≌△,∴AC AF =,BCA F ∠=∠,又∵BC DE CD +=,EF DE DF +=,∴CD FD=在ACD V 和AFD △中,AC AF CD FD AD AD =ìï=íï=î,∴(SSS)ACD AFD ≌△△,∴ACD F ∠=∠,∴ACD BCA ∠=∠,即CA 平分BCD ∠;【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,角平分线的定义等知识,熟练掌握等腰三角形的性质,全等三角形的判定和性质是解题的关键.。
人教版八年级(下)学期 第一次 质量检测数学试题及答案
一、选择题1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F 是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )A .4B .5C .6D .72.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .1053.已知,如图,ABC ,点,P Q 分别是BAC ∠的角平分线AD ,边AB 上的两个动点,45C ︒∠=,6BC =,则PB PQ +的最小值是( )A .3B .3C .4D .324.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A.62B.22C.210D.65.下列长度的三条线段能组成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2,3D.5,11,12 6.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C.245D.107.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是()A.6 B.8 C.10 D.128.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.49.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个10.有下列的判断:①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形③如果△ABC是直角三角形,那么a2+b2=c2以下说法正确的是()A.①②B.②③C.①③D.②二、填空题11.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .12.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.13.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.14.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____.15.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.16.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.17.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.23.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.24.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .25.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③ ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.26.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.27.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .28.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(62)m ,BC =5m ,CD =7m ,AD =6m ,∠A =60°,求该块草地的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE =15°,进而两次利用勾股定理可求解.【详解】∵△ABC为等边三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴2222-=-321BF FGAB2=AG2+BG2323)2=6.故选C.【点睛】本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG为等腰直角三角形是解题关键.2.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==925725625>>∴53752925>>∴需要爬行的最短距离为25cm【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.3.D解析:D【分析】先根据等腰三角形的性质得出AD 是线段QE 垂直平分线,再根据垂直平分线的性质、两点之间线段最短得出PB PQ +最小值为BE ,最后根据垂线段最短、直角三角形的性质得出BE 的最小值即可得.【详解】如图,作QE AD ⊥,交AC 于点E ,∵AD 平分∠BAC ,∴∠BAD=∠CAD ,AD ∴是线段QE 垂直平分线(等腰三角形的三线合一)PQ PE ∴=PB PQ PB PE ∴+=+由两点之间线段最短得:当点,,B P E 共线时,PB PE +最小,最小值为BE点,P Q 都是动点BE ∴随点,P Q 的运动而变化由垂线段最短得:当BE AC ⊥时,BE 取得最小值在Rt BCE ∆中,456,C C B ∠=︒= 232BE CE BC ∴=== 即PB PQ +的最小值为32故选:D .【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、两点之间线段最短等知识点,利用两点之间线段最短和垂线段最短确认PB PQ +的最小值是解题关键.4.C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.5.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、因为92+72≠122,所以三条线段不能组成直角三角形;B 、因为22+32≠42,所以三条线段不能组成直角三角形;C 、因为123= 22,所以三条线段能组成直角三角形;D 、因为52+112≠122,所以三条线段不能组成直角三角形.故选C .【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.解析:C【分析】本题根据所给的条件得知,△ABC 是直角三角形,再根据三角形的面积相等即可求出BC 边上的高.【详解】∵AB =8,BC =10,AC =6,∴62+82=102,∴△ABC 是直角三角形,∠BAC =90°,则由面积公式可知,S △ABC =12AB ⋅AC =12BC ⋅AD , ∴AD =245.故选C. 【点睛】 本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD 的值.7.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13当1312=;故这个三角形的第三条边可以是12.故选:D .【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.8.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA是4.2尺.故答案选:C.【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.9.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B.考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c不一定是斜边,故错误;②正确;③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴22AC BC +,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.12.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.13.82 【分析】 根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8,DE 22228882AE AD ++=即PA +PD 的最小值为2 .故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.14.125【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.【详解】解:∵222225,7a b a b +=-=,将两个方程相加得:2232a =,∵a >0,∴a=4代入得:22425b +=,∵b >0,∴b=3,∵a=3,b=4,c=5满足勾股定理逆定理,∴△ABC 是直角三角形,如下图,∠ACB=90°,CD ⊥AB ,1122ABC S AC BC AB CD =⋅⋅=⋅⋅ , 即:1134522CD ⋅⋅=⋅⋅, 解得:CD=125, 故答案为:125. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.15.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=22125CD AD =+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得, 22435AB DE ==+=,224225BD =+=,22125CD AD ==+=, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.16.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,22"BC BA -22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.17.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确. ∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.8或10或12或253 【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC 到D ,使BD=AB=5m ,故CD=2m , 此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.20.22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+= ∴222=BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE最小时的状态,化动为静.三、解答题21.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE2AD,∵CD=DE+CE,∴CD2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(15132)见解析;(3)23【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.【详解】解:(1)当MN 最长时,225MN AM -,当BN 最长时,2213AM MN +(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,在△ADC 和△BNC 中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B作BP⊥AB,使得BP=AM=1,根据(2)中过程可得:△CPB≌△CMA,△CMN≌△CPN,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN,∴BN=22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++ ∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.25.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB SS S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯11222322=⨯⨯+⨯⨯ 13=+,故②正确; ③在Rt AHB 中,由①知:6EH HB ==, ∴62AH AE EH =+=+, 2222225662322AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称,∴523AB BC ==+∴225231043AC BC ==+=+∴ min PC AC AP =-,10432=+⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.26.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°, ∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH , ∴222GH BG BH BG =+=, ∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.27.(1)见解析;(2)27BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中,∴OC ==.在Rt △BOC 中,∴BC === 【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.28.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD的边长为2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--,化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M , ②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.29.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .∵四边形ABCD 是正方形,∴CD=CB ,∠ECD=∠ECB=45°,。
人教版八年级数学下册教学质量检测试卷及答案(Ⅰ卷、Ⅱ卷)
人教版八年级数学下册教学质量检测试卷及答案 说明:本试题共两份(Ⅰ卷)(Ⅱ卷),每份满分100分,时间100分钟;均有答案。
(Ⅰ卷)一、填空题(2×11=22分) 1、23是__________的算术平方根。
2、每一个外角都是720的多边形的边数是______,这个多边形的内角和等于 度。
3、已知32==d c b a ,且4=-c a , 则=-d b ________。
4、23-的倒数为 。
5、数轴上表示5-的点到原点的距离等于_____________ 。
6、如图,在△ABC 中,DE // BC ,且AD =1,BD =2,则=BCDE________。
EDCB ADCAB7、如图,平行四边形ABCD 的周长为32cm ,AB =6cm ,对角线BD =8cm ,则此平行四边形ABCD 的面积为_______cm 2 8、比较大小:6______432--(填>或<)。
9、在Rt △ABC 中,两条直角边长分别为6和8,则斜边上的中线为 。
10、一个等腰梯形的上底长为9cm ,下底长为15cm ,一个底角为60度,则其腰长为____cm 11、若2)2(2-=-x x x x 成立,则x 的取值范围是____________。
二、选择题(3×6=18分)12、一个数如果有两个平方根,那么这两个平方根的积必定( )A 、大于0B 、等于0C 、小于0D 、小于或等于0 13、下列各式计算正确的是( )A 、238310=-B 、94)9)(4(-⋅-=--第6题第7题C 、a a a 2528821=+ D 、51351322-=- 14、下面四个命题;① 相邻的两个角都互补的四边形是平行四边形 ② 对角线相等的四边形是矩形③ 一组对边平行,另一组对边相等的四边形是平行四边形 ④ 对角线互相垂直平分的四边形是菱形。
其中正确的是( )A 、①④B 、②④C 、②③D 、①③15、如图,DE // FG // BC ,且DE 、FG 把△ABC 的面积三等份,若BC =12cm ,则FG 的长( )A 、6cmB 、8cmC 、34cmD 、 64cmG F E D CBA16 下列叙述错误的是 ( )A 、被开方数不同的二次根式,一定不是同类二次根式;B 、同类二次根式不一定是最简二次根式;C 、判别同类二次根式,首先要把二次根式化成最简二次根式;D 、同类二次根式化成最简二次根式后被开方数一定相同;17、在图形 ①线段;②角;③等腰三角形;④平行四边形;⑤菱形;⑥矩形中,既是轴对称图形又是中心对称图形的是( )A 、①③⑤B 、②③⑥C 、①⑤⑥D 、②④⑤ 三、计算或化简(每小题5分,共25分) 18、计算233)34(271912216-+-⨯+- 19、计算2)322223324(÷+-20、化简:222272)3121(y x y x x y ⋅-; 21、计算:323326226-+-22、已知:1031-=x ,1031+=y 求22y xy x +-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级质量检测数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 已知,化简二次根式的正确结果为()
A.B.C.D.
2 . 一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()
A.11B.11或13C.13D.以上选项都不正确
3 . 若一个三角形的三边长的平方分别为,,且此三角形是直角三角形,则的值是()A.B.C.7D.或7
4 . 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()
A.5B.6C.8D.12
5 . 下列函数中,自变量x的取值范围是的函数是()
A.
B.C.
D.
6 . 菱形具有而矩形不具有的性质是()
A.内角和为B.对角相等C.对角线相等D.对角线互相垂直
7 . 若一个五边形的四个内角都是,那么第五个内角的度数为()
A.B.C.D.
8 . 解一元二次方程3(7x+4)2=5(7x+4)的最适当的方法是()
A.直接开平方法B.配方法C.公式法D.因式分解法
9 . 如图,已知中,,,是高和的交点,则线段的长度为()
A.2B.4C.5D.不能确定
10 . 端午节当天某班同学向全班其他同学各送一份小礼品,全班共送1560份小礼品,如果全班有x名同学,根据题意,列出方程为()
A.x(x+1)=1560B.x(x﹣1)=1560×2
C.x(x﹣1)=1560D.2x(x+1)=1560
二、填空题
11 . 若,则________.
12 . 已知如图,正方形ABCD边长为1,以AB为边在正方形内作正三角形ABE,则⊿ACE的面积为
____.
13 . 已知关于的方程,当______时,是一元二次方程;当______时,是一元一次方程.
三、解答题
14 . 解方程:
15 . 如图,▱ABCD中,AB=2cm,AC=5cm,S▱ABCD=8cm2,E点从B点出发,以1cm每秒的速度,在AB延长线上向右运动,同时,点F从D点出发,以同样的速度在CD延长线上向左运动,运动时间为t秒.(1)在运动过程中,四边形AECF的形状是____;
(2)t=____时,四边形AECF是矩形;
(3)求当t等于多少时,四边形AECF是菱形.
16 . 已知:如图,四边形ABCD是平行四边形,△ADE和△BCF都是等边三角形.求证:BD和EF互相平分.
17 . 计算题:
(1)
(2)()﹣()
(3)(2)(2)
(4)(4)÷2
18 . 某校学生准备购买标价为50元的《现代汉语词典》,现有甲、乙两书店出售此书,甲店按如下方法促销:若只购1本,则按原价销售;若一次性购买多于1本,但不多于30本时,每多购一本,售价在标价的基础上优惠2%(例如买2本,每本售价优惠2%;买三本,每本售价优惠4%,以此类推);若多于30本,每本售价20元.乙书店一律按标价的6折销售.
(1)分别写出在两书店购买此书总价y甲、y乙与购书本数x之间的函数关系式;
(2)若这些学生一次性购买多于30本时,那么去哪家书店购买更划算,为什么?若要一次性购买不多于30本时,先写出y(y=y甲﹣y乙)与购买本数x之间的函数式,画出其图象,再利用函数图象分析去哪家书店购买
更划算.
19 . 如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:四边形ADCF为平行四边形.
(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.
20 . 先化简,再求值:,其中满足方程.
21 . 某汽车销售公司2月份销售新上市一种新型低能耗汽车20辆,由于该型汽车的优越的经济适用性,销量快速上升,4月份该公司销售该型汽车达到45辆,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售该型汽车每次的增长率;
(2)若该型汽车每辆的盈利为2万元,则平均每天可售10辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利14万元,每辆车需降价多少?
22 . 已知关于的方程
(1)若方程有两相等实数根,求的取值;
(2)若方程其中-根为 ,求其另一根及的值.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
三、解答题
1、
2、
3、
4、
5、
6、
7、
8、
9、。