高一数学 子集、真子集教案
2013版高考数学 1.2 第1课时 子集、真子集课件 苏教版必修1
第1课时 子集、真子集
1、理解子集、真子集的概念,并会判断和证明两个集合 的包含关系.(重点) 2、会判断和证明简单集合的相等关系.(难点) 3、能写出不超过四个元素的集合的子集、真子集.
1、集合的表示方法有哪些? 解答:列举法,描述法,Venn图法. 2、根据集合中元素的多少可将集合分成几类?他们分别 是什么? 解答:两类,分别是:有限集、无限集.
用Venn图表示两个集合
间的“包含”关系
B
A
1、你能判断下列集合之间的关系吗?
(1)A={1,2,3},B={1,2,3,4,5};
(2)A={正方形},B={四边形};
(3)A={直角三角形},B={三角形};
(4)A={a,b },B={a,b,c,d,e}.
【解析】集合A均是集合B的子集,即A B
两种情况来进行讨论,这一点,必须要重视。
二、集合相等 探究:集合A={x|(x+1)(x+2)=0}与集合B={-1,-2}之间具 有怎样的关系? 【解析】可以看出集合A与集合B的元素完全相同,只是表
达形式不同.
一般地,如果集合A的每一个元素都是集合B的元素,反过 来,集合B的每一个 元素也都是集合A的元素,那么我们就 说集合A等于集合B, 记作A=B.
A B
B A
AB
三、真子集 探究:对于一个集合A,在它的所有子集中,去掉集合A本 身, 剩下的子集与集合A的关系属于“真正的包含关系”, 这种包含关系我们该怎样来更精确地描述呢? 【解析】可以引入“真子集”的概念来描述这种“真包含” 关系.
真子集 : 如果 A B , 并且 A B , 那么集合 A 称为集合 B的真子集 (proper set) .
子集、全集、补集(1)教案 苏教版必修1
子集、全集、补集(1)教案苏教版必修1本资料为woRD文档,请点击下载地址下载全文下载地址1.2 子集、全集、补集(1)教学目标:.使学生进一步理解集合的含义,了解集合之间的包含关系,理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系,能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境.情境.将下列用描述法表示的集合改为用列举法表示:A={x|x2≤0},B={x|x=n+n+1,nÎZ};c={x|x2-x-2=0},D={x|-1≤x≤2,xÎZ} 2.问题.集合A与B有什么关系?集合c与D有什么关系?二、学生活动.列举出与c与D之间具有相类似关系的两个集合;2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定.三、数学建构.子集的含义:一般地,如果集合A的任一个元素都是集合B的元素,(即若a∈A则a∈B),则称集合A为集合B的子集,记为AB或BA.读作集合A包含于集合B或集合B包含集合A.用数学符号表示为:若a∈A都有a∈B,则有AB 或BA.(1)注意子集的符号与元素与集合之间的关系符号的区别:元素与集合的关系及符号表示:属于∈,不属于;集合与集合的关系及符号表示:包含于.(2)注意关于子集的一个规定:规定空集是任何集合的子集.理解规定的合理性.(3)思考:AB和BA能否同时成立?(4)集合A与A之间是否有子集关系?2.真子集的定义:(1)AB包含两层含义:即A=B或A是B的真子集.(2)真子集的wenn图表示(3)A=B的判定(4)A是B的真子集的判定四、数学运用例1 (1)写出集合{a,b}的所有子集;(2)写出集合{1,2,3}的所有子集;{1,3}{1,2,3},{3}{1,2,3},小结:对于一个有限集而言,写出它的子集时,每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n个时,子集的个数为2n.例2 写出N,Z,Q,R的包含关系,并用Venn图表示.例3 设集合A={-1,1},集合B={x|x2-2ax+b =0},若B≠,BA,求a,b的值.小结:集合中的分类讨论.练习:1.用适当的符号填空.(1)a_{a};(2)d_{a,b,c};(3){a}_{a,b,c};(4){a,b}_{b,a};(5){3,5}_{1,3,5,7};(6){2,4,6,8}_{2,8};(7)Æ_{1,2,3},(8){x|-1<x<4}__{x|x-5<0}2.写出满足条件{a}m{a,b,c,d}的集合m.3.已知集合P={x|x2+x-6=0},集合Q={x|ax+1=0},满足QP,求a所取的一切值.4.已知集合A={x|x=k+,kZ},集合B={x|x=+1,kZ},集合c={x|x=,kZ},试判断集合A、B、c的关系.五、回顾小结.子集、真子集及对概念的理解;2.会用Venn图示及数轴来解决集合问题.六、作业教材P10习题1,2,5.。
苏教版高中数学必修第一册第1章1.2第1课时子集、真子集【授课课件】
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
由 1 个元素构成的子集为:{-4},{-1},{4}; 由 2 个元素构成的子集为:{-4,-1},{-4,4},{-1,4}; 由 3 个元素构成的子集为:{-4,-1,4}; 故集合 A 的子集为:∅,{-4},{-1},{4},{-4,-1},{- 4,4},{-1,4},{-4,-1,4}共 8 个子集. 真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{- 1,4}共 7 个.
∴P=Q.
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
(4)A={x|x 是等边三角形},B={x|x 是三角形}; [解] 等边三角形是三边相等的三角形,故 A B.
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
3 [集合 A={0,1},其真子集分别为∅,{0},{1},共 3 个.]
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
02
关键能力·合作探究释疑难
类型1 类型2 类型3
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
1.1.2子集、全集、补集
1.1.2子集、全集、补集教学目标:1.了解集合之间包含关系的意义.2.理解子集、真子集的概念3.了解全集的意义,理解补集的概念.教学重点:子集,真子集,全集的概念教学难点:补集的概念教学过程:一、问题情境观察下列各组集合,A 与B 之间具有怎样的关系?如何用语言来表述这种关系?(1){1,1}A =-,{1,0,1,2}A =-;(2),A N B R ==;(3){}A x x =是北京人,{}A x x =是中国人(4)本班所有姓王的同学组成的集合A 与本班所有同学组成的集合B 间的关系.三、建构数学1.上述每组中的集合A,B 具有的关系可以用子集的概念来表述.如果集合A 中的任意一个元素都是集合B 中的元素(若a A ∈,则a B ∈),那么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇,读作“集合A 包含于集合B ”或“集合B 包含集合A ”.B A ⊆还可以用Venn 图表示.2.由定义易知A A ⊆,即:任何一个集合是它本身的子集.不含有任何元素的集合称为空集(empty set ),记作:∅对于∅,我们规定:A ∅⊆.即空集是任何集合的子集.3.如果B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =.4.如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ).记作:A B (或B A )读作:A 真包含于B (或B 真包含A ).规定:空集是任何非空集合的真子集.四、数学应用1.例题例题1写出集合{,}a b 的所有子集.例题2下列合组的三个集合中,哪两个集合之间具有包含关系?(1){2,1,1,2}S =--,{1,1}A =-,{2,2}B =-;(2),{|0,}S R A x x x R ==≤∈,{|0,}B x x x R =>∈;(3){|}S x x =为地球人,{|}A x x =中国人,{|}A x x =外国人;问题思考:例题2中每一组的三个集合,它们之间还有一种什么关系?设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集(complementary set ), 记作:S A ð(读作A 在S 中的补集),即{,}.S A x x S x A =∈∉且ð 补集的Venn 图表示:如果集合S, 全集通常记作U.例题3不等式组210360x x ->⎧⎨-≤⎩的解集为A,U=R,试求A 及U A ð,并把它们分别表示在数轴上. 2.练习第9页1—2--3--4五、回顾小结这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴表示数集. 六、课外作业第10页2.3.4.提高作业:(1)已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围.(2)设集合{},{},{}A B C ===四边形平行四边形矩形,}{正方形=D ,试用Venn 图表示它们之间的关系.七、教学反思注意学生的自主探索,多让学生犯错误,不要怕学生犯错.。
高中数学必修一高一数学第一章(第四课时)子集全集补集公开课教案课件课时训练练习教案课件
课 题:1.2子集 全集 补集(2)教学目的:(1)使学生进一步了解集合的包含、相等关系的意义;(2)使学生进一步理解子集、真子集(,)的概念;(3)使学生理解补集的概念;(4)使学生了解全集的意义教学重点:补集的概念教学难点:弄清全集的意义授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析本节讲全集与补集的概念本节重点是巩固子集的概念,弄清元素与子集、属于与包含之间的区别的基础上讲授全集与补集教学过程:一、复习引入:上节所学知识点(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}={0},Φ∈{0}(7)含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n2,所有真 子集的个数是n 2-1,非空真子集数为2-n二、讲解新课:全集与补集1 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且2、性质:C S (C S A )=A ,C S S=φ,C S φ=S3、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示三讲解范例:例1(1)若S={1,2,3,4,5,6},A={1,3,5},求C S A(2)若A={0},求证:C N A=N *(3)求证:C R Q 是无理数集解(1)∵S={1,2,3,4,5,6},A={1,3,5},∴由补集的定义得C S A={2,4,6}证明(2)∵A={0},N={0,1,2,3,4,…},N *={1,2,3,4,…}∴由补集的定义得C N A=N *证明(3)∵ Q 是有理数集合,R 是实数集合∴由补集的定义得C R Q 是无理数集合例2已知全集U =R ,集合A ={x |1≤2x +1<9},求C U A R∴C U A ={x |x <0,或x ≥4}例3 已知S ={x |-1≤x +2<8},A ={x |-2<1-x ≤1},B ={x |5<2x -1<11},讨论A 与C S B 的关系解:∵S ={x|-3≤x <6},A ={x|0≤x <3}, B ={x|3≤x <6}∴C S B ={x|-3≤x <3}∴A ⊆C S B四、练习:1、已知全集U ={x |-1<x <9},A ={x |1<x <a },若A ≠φ,则a 的取值范围是 (D )(A )a <9 (B )a ≤9 (C )a ≥9 (D )1<a ≤92、已知全集U ={2,4,1-a },A ={2,a 2-a +2}如果C U A ={-1},那么a 的值为 23、已知全集U ,A 是U 的子集,φ是空集,B =C U A ,求C U B ,C U φ,C U U (C U B= C U (C U A ,C U φ=U ,C U U =φ)4、设U={梯形},A={等腰梯形},求C U A .解:C U A={不等腰梯形}.5、已知U=R ,A={x |x 2+3x+2<0}, 求C U A .解:C U A={x |x ≤-2,或x ≥-1}.6、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} ,A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求C U A .解:C U A={(1,1),(2,2)}.7、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=C U N ,N=C U P ,则M 与P 的关系是( )(A ) M=C U P ,(B )M=P ,(C )M ⊇P ,(D )M ⊆P .解:选B.8、设全集U={2,3,322-+a a },A={b,2},A C U ={b,2},求实数a 和b 的值. (a=2、-4,b=3)210-14B A 五、小结:本节课学习了以下内容:补集、全集及性质C S (C S A )=A六、作业:1.已知S ={a ,b },A ⊆S ,则A 与C S A 的所有组对共有的个数为(A )1 (B )2 (C )3 (D )4 (D )2.设全集U (U ≠φ),已知集合M 、N 、P ,且M =C U N ,N =C U P ,则M 与P 的关系是 M =P3.已知U=﹛(x ,y )︱x ∈﹛1,2﹜,y ∈﹛1,2﹜﹜,A=﹛(x ,y )︱x-y=0﹜,求U A (U A=﹛(1,2),(2,1)﹜)4.设全集U=﹛1,2,3,4,5﹜,A=﹛2,5﹜,求U A 的真子集的个数5. 若S={三角形},B={锐角三角形},则C S B= .C S B={直角三角形或钝角三角形}6. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 利用文恩图,B={1,4}7. 已知全集U={1,2,3,4},A={x|x 2-5x+m=0,x ∈U},求C U A 、m. 解:将x=1、2、3、4代入x 2-5x+m=0中,m=4、6.当m=4时,A={1,4}; m=6时,A={2,3}. 故满足题条件:C U A={2,3},m=4;C U A={1,4},m=6.七、板书设计(略)八、课后记:下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
2024年高一数学北师大版新教材新北师大版高一数学教案优质
2024年高一数学北师大版新教材新北师大版高一数学教案优质一、教学目标1.让学生理解集合的基本概念和表示方法。
2.培养学生运用集合思想解决实际问题的能力。
3.提高学生的逻辑思维和推理能力。
二、教学重难点重点:集合的概念、表示方法和运算。
难点:集合的运算和集合关系的判断。
三、教学过程1.导入新课(1)引导学生回顾初中阶段学习的数学知识,如算术平方根、立方根等。
(2)提出问题:初中阶段我们学习了数的分类,那么高中阶段我们将学习一种新的数学研究对象——集合,大家知道集合是什么吗?2.授课内容(1)集合的概念集合是一种由明确且互不相同的对象组成的整体。
例如:自然数集合、整数集合、实数集合等。
(2)集合的表示方法集合可以用列举法、描述法和图示法表示。
列举法:将集合中的元素一一列举出来,如{1,2,3,4}。
描述法:用文字或符号描述集合中的元素特征,如{x|x为自然数}。
图示法:用图形表示集合,如用圆圈表示集合A。
(3)集合的运算并集:两个集合中所有元素组成的集合,用符号“∪”表示。
如A∪B表示A和B的并集。
交集:两个集合中共同元素组成的集合,用符号“∩”表示。
如A∩B表示A和B的交集。
补集:全集减去某个集合得到的集合,用符号“C”表示。
如C(A)表示A的补集。
(4)集合关系的判断子集:如果一个集合中的所有元素都属于另一个集合,那么这个集合称为另一个集合的子集。
如A⊆B表示A是B的子集。
真子集:如果一个集合是另一个集合的子集,但两个集合不相等,那么这个集合称为另一个集合的真子集。
如A⊊B表示A是B的真子集。
相等:如果两个集合中的元素完全相同,那么这两个集合相等。
如A=B表示A和B相等。
3.课堂练习(1)判断下列各题中,集合A与集合B的关系。
A={1,2,3},B={1,2,3,4}A={x|x为自然数},B={x|x为整数}A={x|x²=4},B={-2,2}(2)求下列各题中,集合A与集合B的并集、交集、补集。
集合之间的关系(子集
集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。
第一章 第二节子集、全集、补集二教案示例 人教版 教案
第一章第二节子集、全集、补集二教案示例●课题§子集、全集、补集(二)●教学目标(一)教学知识点1.了解全集的意义.2.理解补集的概念.(二)能力训练要求1.通过概念教学,提高学生逻辑思维能力.2.通过教学,提高学生分析、解决问题能力.(三)德育渗透目标渗透相对的观点.●教学重点补集的概念.●教学难点补集的有关运算.●教学方法发现式教学法通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.●教具准备第一X:(记作§1.2.2 A)看下面例子A={班上所有参加足球队同学}B={班上没有参加足球队同学}S={全班同学}那么S、A、B三集合关系如何?第二X:(记作§ B)一般地,设S是一个集合,A是S的一个子集(即A⊆S),由S中所有不属于A的元素组成的集合,叫做S中集合A的补集(或余集).记作S A,即S A={x|x∈3且x∉A}第三X:(记作§1. C)举例,请填充(1)若3={2,3,4},A={4,3},则S A=____________.(2)若S={三角形},B={锐角三角形},则S B=___________.(3)若S={1,2,4,8},A=∅,则S A=_____________.(4)若U={1,3,a2+2a+1},A={1,3},U A={5},则a=_______.(5)已知A={0,2,4},U A={-1,1},U B={-1,0,2},求B=_______.(6)设全集U={2,3,m2+2m-3},A={|m+1|,2},U A={5},求m.(7)设全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求U A、m.●教学过程Ⅰ.复习回顾1.集合的子集、真子集如何寻求?其个数分别是多少?2.两个集合相等应满足的条件是什么?Ⅱ.讲授新课[师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.请同学们由下面的例子回答问题:幻灯片:(§1.2.2 A)看下面例子A={班上所有参加足球队同学}B={班上没有参加足球队同学}S={全班同学}那么S、A、B三集合关系如何?[生]集合B就是集合S中除去集合A之后余下来的集合.即为如图阴影部分由此借助上图总结规律如下:幻灯片:(§ B)一般地,设S是一个集合,A是S的一个子集(即A⊆S),由S中所有不属于A的元素组成的集合,叫做S中集合A的补集(或余集).记作S A,即S A={x|x∈3且x∉a}上图中阴影部分即表示A在S中补集S A如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.[师]解决某些数学问题时,就可以把实数集看作全集U,那么有理数集1的补集U Q就是全体无理数的集合.举例如下:请同学们思考其结果.幻灯片:(§1. C)举例,请填充(1)若S={2,3,4},A={4,3},则S A=____________.(2)若S={三角形},B={锐角三角形},则S B=___________.(3)若S={1,2,4,8},A= ,则S A=_______.(4)若U={1,3,a2+2a+1},A={1,3},U A={5},则a=_______(5)已知A={0,2,4},U A={-1,1},U B={-1,0,2},求B=_______(6)设全集U={2,3,m2+2m-3},a={|m+1|,2},U A={5},求m.(7)设全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求U A、m.师生共同完成上述题目,解题的依据是定义例(1)解:S A={2}评述:主要是比较A及S的区别.例(2)解:S B={直角三角形或钝角三角形}评述:注意三角形分类.例(3)解:S A=3评述:空集的定义运用.例(4)解:a2+2a+1=5,a=-1±5评述:利用集合元素的特征.例(5)解:利用文恩图由A及U A先求U={-1,0,1,2,4},再求B={1,4}.例(6)解:由题m2+2m-3=5且|m+1|=3解之m=-4或m=2例(7)解:将x=1、2、3、4代入x2-5x+m=0中,m=4或m=6当m=4时,x2-5x+4=0,即A={1,4}又当m=6时,x2-5x+6=0,即A={2,3}故满足题条件:U A={1,4},m=4;U B={2,3},m=6.评述:此题解决过程中渗透分类讨论思想.Ⅲ.课堂练习课本P10练习 1,21.填空:如果S={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},那么S A=_________,S B=_______.解:先找S中的元素∵S={x|x是小于9的正整数}∴S={1,2,3,4,5,6,7,8},而A={1,2,3},B={3,4,5,6}那么S A={4,5,6,7,8},S B={1,2,7,8}2.填空:(1)如果全集U=Z,那么N的补集U N=_______;(2)如果全集U=R,那么U Q的补集U(U Q)=____________.解:(1)因全集是全体整数,其中N U N={x∈Z|x<0=(2)因全集U=R,则有理数集Q的补集U Q就是无理数集,而无理数集的补集就是Q.故U(U Q)=Q.Ⅳ.课时小结1.能熟练求解一个给定集合的补集.2.注意一些特殊结论在以后解题中的应用.Ⅴ.课后作业(一)课本P10习题1.2 4,5S={x|x是至少有一组对边平行的四边形},A={x|x是平行四边形},求S A.S集合是由梯形、平行四边形构成,而A={x|x是平行四边形},那么S A={x|x是梯形}.U=Z,A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},求U A,U B.解:因集合A中元素是偶数,集合B中元素是奇数.而由偶数集及奇数集构成整数集,即全集U,那么U A=B,U B=A(二)1.预习内容:课本P10~P112.预习提纲:(1)交集与并集的含义是什么?能否说明?(2)求两个集合交集或并集时如何借助图形.●板书设计。
2021-2022学年第二学期人教版必修一数学第2课《集合的基本关系》教案
2021-2022学年第二学期人教版必修一数学第2课《集合的基本关系》教案第一章集合与常用逻辑用语(1.2集合的基本关系教案)*课程数学 *课题集合的基本关系*教材人教版 *授课对象高一(18)班 *课时 2一、课标要求1.理解集合的之间的包含与相等关系。
2.能识别给定集合的子集和真子集。
3.在具体情境中了解空集的含义并会应用。
二、学情分析知识储备熟练掌握集合的相关概念及表示。
能力目标养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力。
素养目标感受数学与现实生活的密切联系,增强学生的数学应用意识。
落实学科养成学会分析问题、解决问题的良好习惯。
四、教学重难点教学重点:集合间的包含与相等关系,子集与其子集的概念.教学难点:集合间的包含与相等关系,子集与其子集的概念.五、教学策略教法案例教学、情境教学法、启发式教学。
教学策略以解决现实问题为导向,分小组进行探究,并将结果分享交流,激发学生学习兴趣。
学习过程全程渗透职业教育理念,融入思政元素。
六、教学准备教学环境借助信息技术制作课件进行多媒体教学。
教学资源导学案、PPT、相关案例素材。
七、教学过程教学思路如图一图一教学思路课前体验导学教学内容:阅读课本7-8页,思考以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?教师活动准备教学用到的素材。
学生活动设计意图培养学生的自学能力可有利于学生数学抽象思维能力的提高。
课中导入与分析(引入新课)教师活动问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗? (1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设C={x|x 是两边相等的三角形},D={x|x 是等腰三角形}; (4){2,4,6},{6,4,2}E F ==;学生活动学生分小组讨论后自由发言。
高中数学子集教案范例
高中数学子集教案范例
主题:函数的性质
教学目标:
1. 了解函数的定义和性质;
2. 掌握函数的奇偶性、单调性和周期性;
3. 能够应用函数的性质解决实际问题。
教学重点:
1. 函数的奇偶性;
2. 函数的单调性;
3. 函数的周期性。
教学难点:
1. 如何判断函数的奇偶性;
2. 如何判断函数的周期性。
教学准备:
1. 教师准备教学课件;
2. 学生准备笔记和教材。
教学过程:
1. 引入:通过举例引入函数的定义和性质;
2. 讲解:逐一介绍函数的奇偶性、单调性和周期性;
3. 练习:让学生完成相关练习题,巩固所学知识;
4. 拓展:提出一些拓展问题,让学生思考更多的应用场景;
5. 总结:总结本节课的重点内容,并提出问题让学生自主思考。
教学评估:
1. 课堂练习:收集学生完成的练习题,检查他们对函数性质的理解程度;
2. 课堂表现:观察学生在课堂上的积极与否,评价他们的参与程度。
教学反馈:
1. 反馈课程内容:总结学生在课堂上的表现,针对性地指出他们可能存在的问题;
2. 个性指导:在课后答疑环节,针对学生个别弱点进行针对性指导。
教学延伸:
1. 引导学生阅读更多相关资料,增强对函数性质的理解;
2. 提出更多实际问题,让学生能够运用所学知识解决实际问题。
教学反思:
通过本节课的教学实践,发现了学生对函数性质的理解不够深入,需要在后续课程中增加更多的练习和拓展,提高学生的理解能力和应用能力。
高一数学教案:1.2集合间的基本关系
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2)2 Q ;(3)-1.5 R2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A ⊆练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
第二高一数学 子集真子集教案
城东蜊市阳光实验学校第二中学高一数学
教案子集、真子集
一、复习引入
1、答复以下概念: 集合、元素、有限集、无限集、空集、列举法、描绘法、文氏图
2、用列举法表示以下集合:
①32{|220}x x x x --+=②{〔x ,y 〕|x∈{1,2},y∈{1,2}}
3、用描绘法表示集合:1111{1,,,,}2345
4、用两种方法表示:“与2相差3的所有整数所组成的集合〞
5、用自己的语言表述以下两个集合有什么样的关系?
(1)A={-1,1},B={-1,0,1,2}
(2)A=N ,B=R
(3)A={x|x 为人},B={x|x 为中国人}
6、模拟5中两个集合的关系,试举再出两个这样的例子
①②
二、概念生成
通过5、6两个例子讨论生成子集的概念
子集:
理解为a∈A ⇒a∈B A
B
Venn 图来表示
真子集:,记为,读作
理解为:假设A ⊆B ,且,称A 是B 的真子集.
规定①φ⊆A ,即空集是任何集合的子集空集是任何非空集合的真子集②A ⊆A 小组讨论:①A ⊆B 与B ⊆A 能否同时成立②A ⊆B ,B ⊆C ,那么CA
例1、写出N ,Z ,Q ,R 的包含关系,并用文氏图表示
例2、写出集合{a,b}的所有子集
变式:①写出集合{1,2,3}的所有子集
②写出满足∅A ⊆},,,{d c b a 的集合A 有多少个
例3、A ={x |x <-2或者者x >3},B ={x |4x +m <0},当A ⊇B 时,务实数m 的取值范围.
三、小结
四、作业。
高一 第2讲 必修一 子集和真子集
精锐教育学科教师辅导讲义学员姓名: 辅导科目:数学 学科教师: 授课 类型T (集合与集合的关系) C (子集和真子集) T (子集与真子集综合)授课日期时段教学内容子集与真子集一、同步知识梳理 1、子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素, 我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A 读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合2、集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素, 同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B3、真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A4、子集与真子集符号的方向不同与同义;与如B A B A A B B A ⊇⊆⊇⊆5、空集是任何集合的子集Φ⊆A空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆6、易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合 如 Φ⊆{0}不能写成Φ={0},Φ∈{0}7、含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n2,所有真子集的个数是n 2-1,非空真子集数为22-n子集和真子集的运算一、例题精讲例1、在下列各组中的集合M 与N 中, 使M N =的是( D ) A .{(1,3)},{(3,1)}M N =-=- B .,{0}M N =∅= C .22{|1,},{(,)|1,}M y y x x R N x y y x x R ==+∈==+∈ D .22{|1,},{|(1)1,}M y y x x R N t t y y R ==+∈==-+∈例2、设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是(A )A .{a |a ≥2}B .{a |a ≤1} C.{a |a ≥1}. D.{a |a ≤2}.例3、满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是(C )A .8B .7C .6D .5例4、集合A={x |x =2n +1,n ∈Z}, B={y |y =4k ±1,k ∈Z},则A 与B 的关系为 ( C )A .A ≠⊂B B .A ≠⊃B C .A=B D .A ≠B例5、满足{}0,1,2{0,1,2,3,4,5}A ⊆的集合A 的个数是____答案:7例6、已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,试求集合A 的所有子集. 解析:由题意可知6x -是8的正约数,所以 6x -可以是1,2,4,8;相应的x 为2,4,5,即{}2,4,5A =.∴A 的所有子集为,{2},{4},{5},{2,4},{2,5},{4,5}{2,4,5}φ.例7、P ={x|x2-2x -3=0},S ={x|ax +2=0},S ⊆P ,求a 取值?解:a =0,S =∅,∅⊆P 成立 a ≠0,S ≠∅,由S ⊆P ,P ={3,-1}得3a +2=0,a =-23或-a +2=0,a =2; ∴a 值为0或-23或2.例8、A ={-2≤x ≤5},B ={x|m +1≤x ≤2m -1},B ⊆A,求m 。
集合的运算(全集、补集)-沪教版必修1教案
集合的运算(全集、补集)-沪教版必修1教案篇一:高中数学《子集、全集、补集》教案(1)子集、全集、补集教学目标:理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系.教学重点:子集的概念,真子集的概念.教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算.课型:新授课教学手段:讲、议结合法教学过程:一、创设情境在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集二、活动尝试12.用列举法表示下列集合:①{x|x3?2x2?x?2?0} {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}11111{1,,,,{x|x?,n?N*且n?5}n3.用描述法表示集合:23454.用列举法表示:“与2相差3的所有整数所组成的集合”{x?Z||x?2|?3}={-1,5}5.问题:观察下列两组集合,说出集合A与集合B的关系(共性)(1)A={-1,1},B={-1,0,1,2}(2)A=N,B=R(3)A={xx为北京人},B= {xx为中国人}(4)A=?,B={0}(集合A中的任何一个元素都是集合B的元素)三、师生探究通过观察上述集合间具有如下特殊性(1)集合A的元素-1,1同时是集合B的元素.(2)集合A中所有元素,都是集合B的元素.(3)集合A中所有元素都是集合B的元素.(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素. 由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.四、数学理论1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A.记作A?B(或B?A),这时我们也说集合A是集合B的子集.请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.2.真子集:对于两个集合A与B,如果A?B,并且A?B,我们就说集合A是集合B的真子集,记作:A或B读作A真包含于B或B真包含这应理解为:若A?B,且存在b∈B,但b?A,称A是B的真子集. 3.当集合A不包含于集合B,或集合B 不包含集合A时,则记作AB(或BA).如:A={2,4},B={3,5,7},则AB.4.说明(1?A(2若A≠Φ,则Φ(3A?A(4)易混符号①“?”与“?”:元素与集合之间是属于关系;1?N,?1?N,N?R,Φ?R,{1}?{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ如Φ?Φ={0},Φ∈{0}五、巩固运用例1(1)写出N,Z,Q,R(2)判断下列写法是否正确①Φ?A ②Φ③A?A ④A 解(1):N?Z?Q?R(2)①正确;②错误,因为A可能是空集;③正确;④错误;思考1:A?B与B?A能否同时成立?结论:如果A?B,同时B?A,那么A=B.如:{a,b,c,d}与{b,c,d,a}相等;{2,3,4}与{3,4,2}相等;{2,3}与{3,2}相等. 问:A={x|x=2m+1,m∈Z},B={x|x=2n-1,n∈Z}.(A=B)稍微复杂的式子特别是用描述法给出的要认真分辨.思考2:若AB,BC,则AC?真子集关系也具有传递性若AB,BC,则AC.例2写出{a、b}的所有子集,并指出其中哪些是它的真子集.分析:寻求子集、真子集主要依据是定义.解:依定义:{a,b}的所有子集是?、{a}、{b}、{a,b},其中真子集有?、{a}、{b}. 变式:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(2?16)(2)集合4?a1,a2?,an?的所有子集的个数是多少?(2n)注:如果一个集合的元素有n个,那么这个集合的子集有2n个,真子集有2n -1个.六、回顾反思1.概念:子集、集合相等、真子集2.性质:(1?A(2(A≠Φ)(3A?A(4)含n个元素的集合的子集数为2;非空子集数为2?1;真子集数为2?1;非空真子集数为2?nnnn七、课外练习1.下列各题中,指出关系式A?B、A?B、AB、AB、A=B中哪些成立:(1)A={1,3,5,7},B={3,5,7}.解:因B中每一个元素都是A的元素,而A中每一个元素不一定都是B的元素,故A?B及AB成立.(2)A={1,2,4,8},B={x|x是8的约数}.解:因x是8的约数,则x:1,2,4,8那么集合A的元素都是集合B的元素,集合B的元素也都是集合A的元素,故A=B. 式子A?B、A?B、A=B成立.2.判断下列式子是否正确,并说明理由.(1)2?{x|x≤10}解:不正确.因数2不是集合,也就不会是{x|x≤10}的子集.(2)2∈{x|x≤10}解:正确.因数2是集合{x|x≤10}中数.故可用“∈”.(3){2}{x|x≤10}解:正确.因{2}是{x|x≤10}的真子集.(4) ?∈{x|x≤10}解:不正确.因为?是集合,不是集合{x|x≤10}的元素.(5) ?{x|x≤10}解:不正确.因为?是任何非空集合的真子集.(6) ?{x|x≤10}解:正确.因为?是任何非空集合的真子集.(7){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中4,6不是{2,3,5,7,11}的元素.(8){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中不含{2,3,5,7,11}中的2,3,11.3.设集合A={四边形},B={平行四边形},C={矩形} D={正方形},试用Venn 图表示它们之间的关系。
集合间的基本关系教案
集合间的基本关系教案教学目标:1. 了解并理解集合间的基本关系,包括子集、真子集、超集、幂集的概念。
2. 能够判断集合之间的包含关系,并能运用集合间的基本关系解决实际问题。
3. 提高逻辑思维能力和数学表达能力。
教学内容:1. 集合间的基本关系2. 子集、真子集、超集的概念及判断3. 幂集的概念及判断4. 集合间的基本运算5. 实际问题中的应用教学重点:1. 集合间的基本关系的理解2. 子集、真子集、超集、幂集的判断3. 集合间的基本运算的应用教学难点:1. 幂集的概念及判断2. 集合间的基本运算的运用教学准备:1. 教学课件或黑板2. 教学素材(如集合卡片、实例等)教学过程:一、导入(5分钟)1. 引入集合的概念,复习集合的基本运算(并集、交集、补集)。
2. 提问:我们已经学习了集合的基本运算,集合之间还有哪些基本关系呢?二、子集、真子集、超集(10分钟)1. 介绍子集的概念,讲解子集的定义及判断方法。
2. 举例说明如何判断一个集合是否是另一个集合的子集。
3. 引入真子集的概念,讲解真子集的定义及判断方法。
4. 举例说明如何判断一个集合是否是另一个集合的真子集。
5. 介绍超集的概念,讲解超集的定义及判断方法。
6. 举例说明如何判断一个集合是否是另一个集合的超集。
三、幂集(10分钟)1. 介绍幂集的概念,讲解幂集的定义及判断方法。
2. 举例说明如何求一个集合的幂集。
3. 讲解幂集的性质及运算规律。
四、集合间的基本运算(10分钟)1. 复习集合的基本运算(并集、交集、补集)。
2. 讲解集合间的基本运算的运用,如求集合的并集、交集、补集等。
3. 举例说明如何运用集合间的基本运算解决实际问题。
五、实际问题中的应用(10分钟)1. 给出几个实际问题,让学生运用集合间的基本关系和基本运算解决。
2. 引导学生思考如何将实际问题转化为集合间的基本关系和基本运算问题。
3. 讲解解题思路和方法,并进行解答。
教学反思:本节课通过讲解集合间的基本关系,让学生了解并理解子集、真子集、超集、幂集的概念及判断方法,能够判断集合之间的包含关系,并能运用集合间的基本关系解决实际问题。
集合间的基本关系教案
集合间的基本关系教案教学目标:1. 了解并掌握集合间的四种基本关系:子集、真子集、非子集、相等。
2. 能够运用集合间的四种基本关系解决实际问题。
3. 理解集合间的基本关系在数学及其它领域的重要性。
教学内容:一、集合间的基本关系概述1. 引入集合的概念,引导学生回顾集合的基本定义。
2. 介绍集合间的四种基本关系:子集、真子集、非子集、相等。
二、子集与真子集1. 讲解子集的定义,举例说明子集的概念。
2. 引导学生理解真子集的概念,即除去集合本身外的子集。
3. 通过例题,让学生掌握判断子集和真子集的方法。
三、非子集1. 讲解非子集的定义,即一个集合不是另一个集合的子集。
2. 通过例题,让学生理解非子集的概念,并掌握判断非子集的方法。
四、相等1. 讲解集合相等的定义,即两个集合包含的元素完全相同。
2. 通过例题,让学生理解集合相等的概念,并掌握判断集合相等的方法。
五、集合间基本关系的应用1. 引导学生运用集合间的四种基本关系解决实际问题。
2. 通过例题,让学生学会运用集合间的基本关系分析问题和解决问题。
教学方法:1. 采用讲解法,明确集合间基本关系的定义和概念。
2. 运用例题,让学生通过实践掌握集合间基本关系的判断方法。
3. 引导学生进行小组讨论,培养学生的合作能力和解决问题的能力。
教学评价:1. 通过课堂提问,检查学生对集合间基本关系的理解和掌握程度。
2. 通过课后作业,检验学生运用集合间基本关系解决问题的能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习效果进行综合评价。
六、集合的幂集1. 引入幂集的概念,讲解幂集的定义。
2. 通过图示和例题,让学生理解幂集的概念,并掌握求解幂集的方法。
七、集合的笛卡尔积1. 讲解笛卡尔积的概念,引导学生理解笛卡尔积的定义。
2. 通过例题,让学生掌握求解集合的笛卡尔积的方法。
3. 引导学生运用笛卡尔积解决实际问题,如排列组合问题。
八、集合的包含关系与维恩图1. 讲解集合的包含关系的概念,引导学生理解包含关系的含义。
高一数学子集真子集的教学
高一数学子集真子集的教学一、教学任务及对象1、教学任务本节课的教学任务是以高一数学课程内容为基础,对子集和真子集的概念进行深入讲解。
重点使学生理解集合论中子集和真子集的基本性质,掌握子集和真子集的表示方法及其运算规律。
此外,通过实例分析,让学生能够运用子集和真子集的知识解决实际问题,提高学生的逻辑思维能力和数学应用能力。
2、教学对象本次教学对象为高中一年级学生,他们在先前的学习中已经掌握了集合的基本概念,具备一定的数学基础和逻辑思维能力。
但由于子集和真子集的概念较为抽象,学生可能在学习过程中遇到理解上的困难。
因此,在教学过程中,需要关注学生的个体差异,采用适当的教学策略,帮助他们顺利掌握子集和真子集的知识。
二、教学目标1、知识与技能(1)理解子集和真子集的定义,掌握子集和真子集的表示方法;(2)学会运用子集和真子集的性质进行集合的运算,如并集、交集、补集等;(3)能够利用子集和真子集的知识解决实际问题,提高数学应用能力;(4)培养学生运用数学符号进行逻辑推理的能力。
2、过程与方法(1)通过实例引入子集和真子集的概念,让学生在具体情境中感受和理解抽象的数学知识;(2)采用问题驱动的教学方法,引导学生主动探究、发现和总结子集和真子集的性质及运算规律;(3)组织小组讨论,培养学生合作学习和交流表达的能力;(4)设计丰富的课堂练习,巩固所学知识,提高学生的解题技巧。
3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养他们的学习主动性和积极性;(2)引导学生认识到数学知识在实际生活中的应用价值,增强学生的数学意识;(3)培养学生严谨、细致的学术态度,提高他们面对困难、解决问题的信心;(4)通过小组合作学习,培养学生团结协作、互相帮助的精神;(5)教育学生尊重客观事实,遵循逻辑规律,树立正确的价值观。
在本节课的教学过程中,教师应关注学生在知识与技能、过程与方法、情感,态度与价值观等方面的全面发展。
通过多样化的教学手段和策略,使学生在掌握子集和真子集知识的基础上,提高数学素养,培养良好的学习习惯和团队合作精神。
高中数学教案《集合间的基本关系》
《集合间的基本关系》一、教学目标1.知识与技能:学生能够理解集合间的基本关系(子集、真子集、相等)的概念,掌握判断集合间关系的方法,并能准确描述集合间的这些关系。
2.过程与方法:通过具体实例分析,引导学生从直观感受出发,逐步抽象出集合间关系的数学定义,培养学生的抽象思维能力和逻辑推理能力。
同时,通过小组讨论和合作探究,提升学生的团队协作能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养严谨的数学态度和实事求是的科学精神。
通过解决实际问题,让学生感受到数学的实用价值,增强学好数学的信心。
二、教学重点和难点●重点:子集、真子集、相等三种集合间关系的定义及判断方法。
●难点:理解并准确区分子集与真子集的概念,以及在复杂情境下判断集合间的关系。
三、教学过程1. 引入新课(5分钟)●生活实例:以班级中的男生集合、女生集合及全班学生集合为例,引导学生思考这些集合之间的关系,初步感受集合间的包含与被包含关系。
●提出问题:如何用数学语言描述这些集合之间的关系?引出子集、真子集、相等等概念。
●明确目标:告知学生本节课将要学习集合间的基本关系,并简要介绍学习目标。
2. 概念讲解(10分钟)●子集定义:详细讲解子集的定义,强调“所有元素都属于另一个集合”的含义,并通过实例说明。
●真子集与相等:在子集的基础上,进一步讲解真子集的概念(即子集且不等于原集合),以及两个集合相等的条件(即互相为子集)。
●比较区分:通过图表或对比表格的形式,帮助学生直观区分子集、真子集和相等三种关系。
3. 例题解析(15分钟)●典型例题:选取几个具有代表性的例题,分别涉及子集、真子集和相等的判断。
教师边讲边练,逐步展示解题过程。
●思路引导:在解题过程中,注重引导学生分析题目中的关键信息,明确判断集合间关系的依据。
●学生尝试:让学生尝试解答几个类似的题目,教师巡回指导,及时纠正学生的错误思路。
4. 小组讨论与合作探究(15分钟)●分组任务:将学生分成若干小组,每组分配一个实际问题或情境,要求将其转化为集合间关系的判断问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省泰州市第二中学高一数学教案子集、真子集一、复习引入1、回答以下概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图2、用列举法表示下列集合:①32{|220}x x x x--+=②{(x,y)|x∈{1,2},y∈{1,2}}3、用描述法表示集合:1111 {1,,,,} 23454、用两种方法表示:“与2相差3的所有整数所组成的集合”5、用自己的语言表述下列两个集合有什么样的关系?(1)A={-1, 1},B={-1, 0, 1, 2}(2)A=N,B=R(3)A={x|x为北京人},B={x|x为中国人}6、模仿5中两个集合的关系,试举再出两个这样的例子①②二、概念生成通过5、6两个例子讨论生成子集的概念子集:理解为 a∈A⇒a∈BVenn图来表示真子集:,记为,读作理解为:若A⊆B,且,称A是B的真子集.规定①φ⊆A,即空集是任何集合的子集空集是任何非空集合的真子集②A⊆A 小组讨论:① A⊆B与B⊆A能否同时成立②A⊆B,B⊆C,则C A例1、写出N,Z,Q,R的包含关系,并用文氏图表示例2 、写出集合{a, b}的所有子集变式: ①写出集合{1,2,3}的所有子集②写出满足∅A ⊆},,,{d c b a 的集合A 有多少个?例3、已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.三、小结四、作业第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
)3、书写教学“杏花春雨江南”6个字。
杏:上大下小,上面要写得大,大在哪里?(大在撇捺)写的时候撇捺要舒展,象燕子张开的翅膀;下面的“口”要写得小,左右两竖要内斜,稍扁;“木”的竖写在竖中线上。
花:也是上下结构,草字头两竖要内斜;下面单人旁起笔对准上面的左竖,竖弯钩起笔对准上面的右竖;竖弯钩要舒展,(用红笔描竖弯钩,并在旁边书写一个大的竖弯钩)要求弯处圆转,不能僵硬(书写僵硬的竖弯钩,并在旁边打×)。
春:上部三横都是短横,收笔处不要顿;撇画最长,捺画从哪里起笔?从第三横下面起笔,不能碰到撇;下面“日”的两竖要竖直,不能斜。
雨:旁边两竖要内斜,上横短,中竖写在竖中线上;从下面看,哪一笔最低?钩最低,中竖最短;四个点都是斜点。
江:左右结构,左窄右宽左边三点水第二点略向外展;右边“工”字上横是短横,下横是长横;中竖略斜。
南:上横短;下边两竖内斜;框架中两横都是短的,中间一竖悬针;三个竖画左、中差不多长,右竖钩最低;横折钩要写出弯势。
4、学生练习,教师巡回指导。
三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。
板书设计:书写练习1、杏花春雨江南我的思考:进一步加强写字姿势训练,这是根本。
在了解字结构的基础上更好的把握每个字的书写。
及时对书写情况进行反馈,同时通过奖励激发学生兴趣。
课后反思:通过字形的比较,学生基本上学会了笔画位置的比较,但是还需要不断的引导。
第(3)课时课题:书写练习2课型:新授课教学目标:1、掌握车字旁写法,并能把“轻”字写端正。
2、完成书写练习。
重点:正确地书写“轻”字难点:“车”字旁的书写。
教学过程:一、讲评上一课作业情况。
1、表扬书写优秀者,展示其作业。
2、指出存在的主要缺点并进行针对性的练习。
二、指导“车”字旁写法:1、出示范字,观察“车”字旁写法。
2、讨论明确其书写要领:“车”字旁分四笔完成,整个偏旁左重右轻,不超过竖中线。
第一笔横稍短。
第二笔撇折收笔于横中线。
第三笔垂露竖,应在第一笔横下的正中位置起笔。
最后一笔,比第一横长一些,离折笔稍近一些。
3、练写“车”字旁。
三、指导临写“轻”字。
1、观察范字。
2、明确写法。
“轻”字的写法:“轻”字左窄右宽,右边的第一笔起笔与左边的第一笔短横相齐平,底部大体相齐,右边上下两部分基本相等。
四、课后延伸书写:斩、转板书设计:书写练习2、轻、斩、转我的思考:以复习巩固导入,并有针对地进行纠正。
明确字的重心及每个笔画在田字格中分布的位置,使学生初步掌握字的结构特点。
在练习书写“车”字旁的基础上,更好的把握整个字的字形。
课后及时巩固,拓展。
课后反思:学生基本上能把握好字在田字格中的位置,处理好左右的布局。
第(4)课时课题:结构特点(六)课型:新授课教学目标: 1、懂得以宝盖头、穴字头等作为字头的字宜上大而下小。
2、通过练习,写好课文中的例字。
重点:掌握以宝盖头、穴字头等作为字头的字宜上大而下小难点:把握好字的结构。
教学过程:一、复习巩固二、教学新课1.讲解以宝盖头、穴字头等作为字头的字(1)教师讲解字头的书写。
(2)学生练习书写,教师指导书写。
(3教师根据实际情况小结,提出要求。
2.指导书写例字(1)出示例字:“宝”:首先要控制好字头,摆正位置,下面的“玉”字占格子的一半以上,特别是最后一横宜稍长,使整个字立正。
“穷”:下面的力字宜正,不宜写得太小。
(其余字略)(2)学生练习,师巡回指导。
3、提出注意点三、讲评:收上学生的作业,进行批改和评比,对写得好的进行表扬,并加盖☆符号章,然后贴在展示板上,向学生展示。
板书设计:结构特点(6)宝、穷、写、会、奔我的思考:使学生更好的把握好字的结构,同时在教师的指导下提高学生辨别能力。
激励学生更好的书写。
第(5)课时课题:怎样写好字课型:复习课教学目标:1、让学生能够正确认识,端正态度。
教学过程:一、正确的学书之路1.临帖临帖是学习书法的最根本的方法。
古往今来,没有一个书法家是不经临习而成功的,没有一个字写得好的人是不经过临帖的。
只有临帖,取法唐楷、晋行、汉隶、秦篆等传统的东西,才会有所获。
2.专一学书首先应师承一家,建立根据地,然后再发展。
这就有一个选帖的问题,选帖的标准:①好帖;②喜欢。
选定帖后专心致志,认真临习,坚持不懈,直至形同神似。
这个时期检验你学习得怎样,首先看临得像不像,再看笔法笔意。
3.博采众长当对一本帖或一家书体临习达到形同神似之后,就要广涉其他好帖,取其营养加以吸收消化,融会贯通。
4.字外功夫练字的同时经常要多读书,多掌握方方面面的知识,加强自身修养。
总之一句话,加强字外功夫的训练。
在此基础上,逐步形成自己的风格,便自成一家。
综上所述,我们可以把正确的学书之路概括为:二、科学的学书方法明确了正确的学书之路之后,我们还要掌握科学的学习方法,有了科学的学习方法,就可得到较好的学习效果。
1.临帖和摹帖这既是正确学书之路的开端,又是正确学书方法中的根本点,必须坚信不疑,坚定不移。
摹帖和临帖各有优点,效果各异。
姜夔《续书谱》中说:“临书易失占人位置,而多得古人笔意,摹书易得古人位置,而多失古人笔意,临书易进,摹书易忘。
”其中的“笔意”即指笔法、笔势及线条意趣。
“临”的方法就是看着字帖,照着写。
只要仔细地临,便容易掌握笔法笔意.从而把范本的精髓学到手。
“摹”的方法,就是用薄纸蒙在帖上,直接地描画。
所以字形基本上不会走样,多摹几遍,有利于把握结构。
但摹书看不清笔法,“易失笔意”,虽然间架不错.但没有笔法,字就僵化。
所以,初学者可以临摹并用,相互补充。
2.每天定量事实证明,任何事情都有一个由量变到质变的过程,练字也一样,写得太少,练习量跟不上,就谈不上进步;当然盲目机械地多写,疲倦了效果也不好。
一定的量才能达到的一定的效果,较佳的量才能达到较佳的效果。
3.循序渐进学习书法,在勤学苦练的基础上,还应该懂得它是一个循序渐进的过程:第一,先正楷,后行草。
苏轼说:“真生行,行生草。
真如立,行如行,草如走。
”就是说楷、行、草书三者如同人的立、走、跑,如果人连站都不能站,怎么能走和跑呢?如果没有楷书基础,直接写行书、草书,就会疏于法度,流于轻滑飘浮。
行书、草书是楷书的流、便、疏、散,学好楷书之后,加强用笔的流动呼应,行草就容易上手。
等到楷法熟练,再写行草时.便可悟到两者相通之处,可相辅相成,互相促进,相得益彰。
第三,先点画,后结构,再章法。
书法是线条的艺术,也就是以基本点画为基础的艺术。
基本点画不好,整字或整篇的艺术性就无从谈起。
由于钢笔尖性硬,在线条变化上相对简单得多,故钢笔书法学习在结构上花的时间多,而在用笔、点画上相对较少。
但这并不是说点画用笔不重要,相反,它是钢笔书法的基本功,只有在点画书写的基本功扎实之后,才可能去把握结构。
在结构上有了一定的基础后,整幅字的章法就容易把握了。
第(6)课时课题:结构特点(七)课型:新授课教学目标:1、了解“皿”、“土”等做字底的字的结构特点,学习这类字的写法。
2、通过练习,写好课文中的例字。
重点:掌握字的结构,学习写法。
教学过程:一、观察例字,进行讨论:(1)这些字是什么结构?(2)它们分别是什么字底?(3)书写上有什么特点?二、教师示范小结三、指导要点盘:上半部分宜瘦长,下面要宽扁。