06 甲基化检测原理及步骤

合集下载

甲基化测序原理

甲基化测序原理

甲基化测序原理甲基化测序是一种用于检测DNA甲基化的方法。

DNA甲基化是一种重要的表观遗传修饰方式,在多种生物过程中发挥重要作用,如基因表达调控、细胞分化、基因组稳定性维持等。

甲基化测序已经成为研究癌症、神经退行性疾病等疾病的重要手段之一。

甲基化测序原理是基于DNA甲基化后所形成的5-甲基脱氧胞嘧啶(5-mC)与未甲基化的脱氧胞嘧啶(dC)在化学和物理性质上的不同之处。

甲基化测序主要分为两种类型:全基因组甲基化测序和目标区域甲基化测序。

全基因组甲基化测序是指将整个基因组的所有区域进行甲基化测序,而目标区域甲基化测序是指仅测序已知某些基因的甲基化状态。

在全基因组甲基化测序中,首先需要将DNA样品进行加样性处理,以消除非特异性结果。

接着通过酶切将整个基因组的DNA进行裂解,然后使用甲基化特异性的抗体来富集甲基化的DNA片段。

然后,将富集后的DNA片段进行二代测序,以获得所有DNA片段的甲基化情况。

在目标区域甲基化测序中,采用PCR扩增或捕获技术,只测序目标区域的甲基化状态。

在PCR扩增的情况下,可以设计特定的引物,使PCR仅扩增目标区域的DNA片段。

在捕获技术中,通常使用探针来捕获目标区域的DNA,然后进行二代测序,以获得目标区域的甲基化情况。

通过这些甲基化测序技术,可以获得DNA甲基化的高分辨率图谱,并进一步了解甲基化在基因表达调控和基因组可塑性等方面的功能和作用。

甲基化测序技术还可以用于诊断和治疗风险评估,以及个体化医疗。

DNA甲基化是一种非常重要的表观遗传修饰方式,甲基化测序技术可以帮助我们更深入地理解甲基化在基因表达调控和基因组可塑性等方面的功能和作用。

随着技术的不断更新和完善,相信甲基化测序技术将会在疾病预防、基因治疗和精准医疗等领域发挥越来越重要的作用。

甲基化测序技术的应用癌症:DNA甲基化调节基因活性,已经成为许多癌症的发病机制之一。

甲基化测序技术已被广泛应用于癌症研究中,以识别癌症相关的甲基化变化,并作为新型癌症治疗的候选靶点。

DNA甲基化检测

DNA甲基化检测

Bis预处理 DNA
与原序列做 比对并分析
PCR扩增 测序
DNA纯化与 回收
T/A克隆
不应包含CG二核苷酸 长度在25-30bp较为合适 扩增产物要尽可能的包含较多的CpG位点
F1
F2
R2
R1
利用Taq酶能够在PCR 产物的3’末端加上一 个非模板依赖的A,而 T载体是一种带有3’T
甲基化的概念 甲基化的作用 甲基化检测方法
甲基化在表观遗传学中的意义 甲基化原理
概念: 基因的DNA序列不发生改变的情况下,基因的表达水 平与功能发生改变,并产生可遗传的表型。
表观遗传学的现象(基因表达的调控方式): ◦ DNA甲基化---最初始的调控方式
◦ 组蛋白修饰 ◦ MicroRNA ◦ Genomic imprinting
哺乳动物中,CpG序列在基因组中出现 的频率仅有1%
健康人基因组中,CpG岛中的CpG位点 通常是处于非甲基化状态,而在CpG岛 外的CpG位点则通常是甲基化的。
在发育和分化中调控基因的表达 转录抑制 特征性表型基因的表达(肤色、毛发) X染色体的失活(X-inactivation ) 基因印记 碱基突变 肿瘤代谢
预处理方法 特异性位点分析
凝胶分析
阵列分析
基于NGS分析
甲基化敏感 • HpaII-PCR 性内切酶
亲和富集 • MeDIP-PCR
• Southern blot • RLGS • MS-AP-PCR • AIMS
• DMH • MCAM • HELP • MethylScope • CHARM • MMASS
不同层次表达调控
RNA碱基机制
组蛋白翻译后修饰

甲基化原理及方法

甲基化原理及方法

甲基化检测方法(亚硫酸氢盐修饰测序法)基本原理在于:样本经亚硫氢酸盐处理后,甲基化的胞嘧啶(C)保持不变,但非甲基化的胞嘧啶被转化成脲嘧啶,因此在利用该处理产物作为模板的PCR产物中,甲基化的胞嘧啶还是胞嘧啶,但非甲基化胞嘧啶变成了脲嘧啶(胸腺嘧啶),此时检测到的胞嘧啶(C)即是样品中本身的甲基化位点.第一部分基因组DNA的提取。

DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以。

DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA应该是完整的。

此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要。

因此在提取过程中需使用蛋白酶K及RNA酶以去除两者。

使用两者的细节:1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml;2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml。

否则可能的后果是不仅没有RNA,连DNA也被消化了。

两者均于-20度保存。

验证提取DNA的纯度的方法有二:1:紫外分光光度计计算OD比值;2:1%-1.5%的琼脂糖凝胶电泳。

我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰。

第二部分亚硫酸氢钠修饰基因组DNA如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌。

1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul;2:加5.5ul新鲜配制的3M NaOH;3:42℃水浴30min;水浴期间配制:4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色)5:3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml。

这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心。

PH一定要准确为5.0。

加520ul至上述水浴后溶液中。

甲基化测序原理

甲基化测序原理

甲基化测序原理甲基化测序是一种广泛应用于DNA研究中的技术,用于检测DNA分子上的甲基化修饰。

甲基化是一种常见的DNA修饰形式,可以对基因表达和染色质结构产生重要影响。

通过了解DNA序列的甲基化状态,人们能够更深入地研究生物学过程以及疾病的发生机制。

甲基化测序的原理是基于DNA序列中C(胞嘧啶)碱基的甲基化状态。

在正常情况下,DNA中的C碱基会被一个甲基分子修饰,形成5-甲基胞嘧啶(5-mC)。

然而,在一些情况下,这种甲基化修饰可能会发生异常,导致基因沉默或功能改变。

因此,分析DNA分子中的甲基化状态对于理解基因组功能和疾病机制非常重要。

甲基化测序的方法主要分为两种:全基因组甲基化测序和特定位点甲基化测序。

全基因组甲基化测序是指对整个基因组进行甲基化的分析,可以提供全面的甲基化图谱。

特定位点甲基化测序则是选取特定的DNA区域进行检测,可以更加深入地研究某些关键基因或区域的甲基化状态。

甲基化测序的过程首先需要将DNA样本进行处理,包括DNA提取和断裂。

接着,通过特定的化学反应将5-mC转化为甲基化敏感的测序标记物。

然后,使用高通量测序技术对DNA样本进行测序,得到包含甲基化信息的DNA序列。

最后,通过对测序结果进行分析和比对,可以确定DNA序列中每个碱基的甲基化状态。

甲基化测序技术的发展为研究者提供了一个非常有力的工具,可以帮助他们深入了解DNA的甲基化修饰和相关生物学过程。

这种技术在癌症研究、遗传学研究以及表观遗传学研究中具有重要的应用价值。

随着技术的不断进步,甲基化测序将进一步发展,为科学家解开生命奥秘提供更多帮助。

甲基化检测原理

甲基化检测原理

甲基化检测原理
甲基化检测是一种用于研究DNA甲基化状态的技术。

DNA甲基化是一种重要的表观遗传学修饰方式,通过在DNA分子中加入一个甲基基团来调节基因的表达。

因此,甲基化检测对于研究基因表达和疾病的发生机制具有重要的意义。

甲基化检测的原理通常基于DNA甲基化与非甲基化区域的化学或物理性质的不同,利用这些差异来区分甲基化和非甲基化的DNA序列。

其中最常用的甲基化检测方法包括甲基化特异性PCR(MSP)、限制性内切酶消化(MSRE)、甲基化敏感性高分辨率毛细管电泳(MCE)等。

甲基化特异性PCR(MSP)是一种基于PCR扩增的方法,它利用甲基化的DNA序列和非甲基化的DNA序列在酶切后长度不同的特点实现检测。

MSRE是一种利用限制酶切割甲基化和非甲基化DNA序列的方法。

甲基化敏感性高分辨率毛细管电泳(MCE)是一种高效的甲基化检测方法,它可以通过检测DNA序列中的单个碱基来区分甲基化和非甲基化的DNA序列。

总之,甲基化检测是一种重要的技术,可以帮助我们深入了解基因表达和疾病的发生机制,同时促进了临床诊断和治疗方法的发展。

甲基化检测参考值 -回复

甲基化检测参考值 -回复

甲基化检测参考值-回复甲基化检测参考值标准甲基化检测是一种用于评估DNA序列中的碱基甲基化程度的方法。

它通过测量DNA中甲基基团的数量来确定甲基化水平。

甲基化在调控基因表达、细胞发育和疾病发生中起着重要的作用。

因此,甲基化检测对于研究基因组学、表观遗传学和疾病诊断具有重要意义。

本文将详细介绍甲基化检测的参考值标准,并逐步解释其背后的原理和应用。

第一步:甲基化检测的原理甲基化是一种表观遗传修饰方式,指的是DNA序列中的甲基基团与碱基结合。

在DNA甲基化过程中,甲基转移酶将甲基基团添加到DNA 分子上,从而改变了DNA的结构和功能。

甲基化主要发生在CpG二聚体(在DNA中的C和G之间有一个磷酸束缚)的C位点,形成5-甲基-胞嘧啶(5mC)。

甲基化的主要作用是调控基因的活性。

第二步:甲基化检测的方法甲基化检测的方法多种多样。

其中,最常用的方法是甲基化特异性PCR (MSP)和甲基化特异性酶切反应(MSRE)。

甲基化特异性PCR基于CpG 岛(一段DNA序列中大量含有CpG二聚体的区域)的甲基化状态进行扩增,然后通过凝胶电泳来评估甲基化水平。

甲基化特异性酶切反应则通过酶切酶识别DNA甲基化的区域,然后通过PCR扩增来检测DNA甲基化水平。

第三步:甲基化检测的参考值标准甲基化检测的结果通常以甲基化百分比来表示。

甲基化百分比是甲基化的C位点与总C位点的比例。

参考值标准是根据大量的样本数据进行统计分析得出的。

一般来说,参考值标准会根据不同的组织类型、生理状态和年龄等因素进行调整。

例如,在正常组织样本中,甲基化百分比可能在5到20之间。

第四步:甲基化检测的应用甲基化检测在许多研究领域和医学中有广泛的应用。

首先,在基因组学研究中,甲基化检测可以帮助鉴定关键的CpG岛,从而了解其在基因调控中的作用。

其次,在表观遗传学研究中,甲基化检测可以揭示基因组中甲基化调控的模式和机制。

最后,在疾病诊断中,甲基化检测可以作为一种潜在的生物标志物,帮助早期检测和预测疾病风险。

甲基化原理及步骤

甲基化原理及步骤

二、DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。

中等温度碱性pH下使DNA变性成为单链形式暴露出碱基。

试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。

然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。

向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。

DNA最终在TE缓冲液中通过加热从载体上洗脱下来。

第一步:试剂准备(1)3 M NaOH原料(用前现配)把1g干NaOH片剂溶解在8.3mL水中。

使用此类腐蚀性碱,注意小心谨慎和实验操作。

(2)20 mM NaOH/90% EtOH(用前现配)配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。

(3)溶解试剂Ⅰ(用前现配)打开前将试剂瓶加温至室温。

对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。

充分涡旋振荡混合。

使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。

用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。

试剂Ⅰ避光保存以免分解。

为了最佳效果,试剂应在配置后立即使用。

(4)溶解试剂Ⅱ打开前将试剂瓶加温至室温。

将1μl β-巯基乙醇加入20mL去离子水中。

每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。

充分混合确保完全溶解。

过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。

第二步:DNA修饰程序1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。

注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA 修饰试剂Ⅳ并加水至总体积100μl。

甲基化的检测方法

甲基化的检测方法

甲基化的检测方法
甲基化是指DNA分子上的一种化学修饰,可以影响基因的转录和表达。

因此,检测DNA甲基化状态对于研究基因表达、发育和疾病具有重要意义。

常见的甲基化检测方法包括:
1. 甲基化特异性PCR(MSP):利用甲基化和非甲基化DNA序列的区别,设计特异性引物进行PCR扩增,通过条带图谱或定量PCR分析甲基化水平。

2. 甲基化敏感限制酶消化:利用甲基化与非甲基化DNA序列对限制酶的敏感性不同,进行消化后进行凝胶电泳或定量PCR分析。

3. 甲基化特异性测序:利用甲基化和非甲基化DNA序列的差别,通过测序技术分析DNA甲基化状态。

4. 甲基化特异性抗体免疫沉淀(MeDIP):利用甲基化特异性抗体将甲基化DNA 片段富集后进行测序或PCR分析。

这些方法能够快速准确地检测DNA甲基化状态,为研究和诊断提供重要的数据支持。

全基因组甲基化测序的具体方法及步骤

全基因组甲基化测序的具体方法及步骤

全基因组甲基化测序的具体方法及步骤全基因组甲基化测序(whole-genome bisulfite sequencing)是一种高通量的测序技术,可以用来检测DNA上的甲基化状态。

甲基化是一种常见的DNA化学修饰形式,对基因表达和细胞分化等过程具有重要影响。

全基因组甲基化测序可以精确地测定基因组DNA的甲基化位点和水平,为研究基因组表观遗传变异和疾病发生机制提供了有力的工具。

以下是全基因组甲基化测序的具体方法和步骤:1.DNA提取:从研究对象的细胞或组织中提取总DNA。

常用的DNA提取方法有酚-氯仿法、磁珠法等。

2. DNA酶切:使用专门的酶(如MspI)对DNA进行切割,得到平衡的DNA片段。

3. 甲基化处理:将DNA暴露于亚硫酸盐(sodium bisulfite)的甲基硫湿气中。

亚硫酸盐可以将未甲基化的胞嘧啶(C)转化为尿嘧啶(T),而甲基化的胞嘧啶不受影响。

这样,通过对比未经处理和经过处理的DNA序列,就可以确定甲基化位点的位置。

4.DNA纯化:使用一系列的纯化步骤,包括酚酸萃取、氯仿萃取和乙醇沉淀等,来去除杂质,使DNA适合进一步的测序分析。

5. 碱基浏览:将经过甲基化处理的DNA片段扩增,并进行高通量测序。

最常用的测序方法是Illumina测序技术。

6. 数据分析:对测序产生的原始数据进行质量控制、序列比对和甲基化位点检测等分析。

这些分析可以使用专门的软件包,如Bismark、Bisulfite-Seq等进行。

7.数据解释:统计和分析甲基化的结果,包括甲基化位点的数量、分布和甲基化水平等信息。

可以使用一系列统计方法和可视化工具,如R语言和基因组浏览器等,进行数据解释和结果展示。

以上就是全基因组甲基化测序的主要方法和步骤。

这种技术的主要优点是可以全面、高通量地测定整个基因组的甲基化状态,为基因组表观遗传变异和疾病发生机制的研究提供了重要的信息。

但是,全基因组甲基化测序也存在一些技术难题,比如DNA片段的扩增偏差和测序误差等,需要在实验设计和数据分析过程中加以考虑和解决。

甲基化pcr原理

甲基化pcr原理

甲基化pcr原理甲基化PCR是一种通过特殊处理方法检测DNA中是否存在DNA甲基化修饰的方法。

DNA 甲基化是指在DNA链中某些处存在甲基基团,它一般会改变DNA的结构和功能,并且通过遗传方式传递给后代。

DNA甲基化在许多生物过程中都扮演着重要角色,例如细胞分化、基因表达等,同时它还与人类疾病如肿瘤等有关。

甲基化PCR是遵循PCR(聚合酶链式反应)原理进行的,基于该方法,可以在PCR体系中分析DNA样本的甲基化状态。

该方法基本流程如下:第一步:DNA样品输入将待检测的DNA样品输入反应管中,通常DNA需要通过钠离子的作用,而变性为单链状态,使得甲基化酶在不同的节点上完成甲基化操作。

这样的操作能够确保反应体系到位的甲基化修饰,从而使得后续PCR步骤能够够准确地分析。

第二步:甲基化修饰在这一步,样品DNA和甲基转移酶一起反应,甲基化酶通过将甲基基团连接到DNA的胞嘧啶残基上进行修饰。

此时,DNA样品将发生一些化学变化,其中DNA的骨架结构保持不变。

在此过程中,甲基化酶不能在已经有甲基化修饰的位点上起作用,其功能仅限于未被甲基化的胞嘧啶残基上。

第三步:反转在这一步,样品DNA被反转为双链结构,这使得PCR反应得以进行。

这个步骤通过热循环反应,在高温下熔解DNA,而在低温下恢复其结构,使其形成一些连续的双链DNA。

第四步:PCR反应在此步骤中,DNA的一系列选择性PCR反应被实现,从而能够定向扩增特定的DNA片段或者基因。

通过PCR反应,我们可以检测DNA是否被甲基化,并且这种检测方法不需要特殊的测序化学方法。

该步骤基于聚合酶链式反应(PCR)机制,它可以扩增DNA分子的数量,并且能够在扩增过程中进行其他的DNA标记,常常使用荧光标记物。

该步骤将扩增样品DNA,并对样品进行迅速检测,以来判断样品是否有甲基化修饰。

如果DNA样品在这个过程中扩增,我们就可以得到一个清晰的甲基化PCR条带图,从而准确地分析与检测样品中的甲基化DNA片段。

DNA甲基化检测技术全攻略

DNA甲基化检测技术全攻略

DNA甲基化检测技术全攻略DNA甲基化是指DNA分子中的碱基Cytosine(胞嘧啶)在其C5位点上与甲基基团结合形成5-甲基胞嘧啶的化学反应。

DNA甲基化是一种重要的表观遗传修饰方式,被认为在基因组的稳定性和调控中起着关键的作用。

DNA甲基化异常与多种疾病的发生和发展密切相关,包括癌症、心血管疾病、神经系统疾病等。

因此,开发DNA甲基化检测技术,对于深入研究疾病的发生机制、早期诊断、疾病分型和治疗方案的制定具有重要意义。

一、DNA甲基化检测方法1.甲基特异性PCR(MSP)甲基特异性PCR是一种将DNA甲基化水平转化为PCR信号的方法。

该方法针对DNA甲基化位点进行甲基化特异性的酶切反应,然后利用PCR扩增技术对甲基化和非甲基化的DNA片段进行分离和测定。

2.甲基化特异性限制酶切(MSRE)甲基化特异性限制酶切方法依赖于特定甲基化位点上的酶切敏感性。

该方法先通过限制酶切鉴定DNA甲基化位点的状态,然后通过聚合酶链反应(PCR)或更高通量的测序技术进行测定。

3.甲基化特异性测序甲基特异性测序技术是一种通过测序方法直接确定DNA甲基化位点的状态。

这种方法依赖于高通量测序技术,可以同时测定数百万个甲基化位点。

4.甲基化敏感扩增多态性(MS-AFLP)甲基化敏感扩增多态性方法是一种将甲基化位点转化为特定扩增片段的方法。

该方法利用比较性PCR和限制酶切结合的方法,挑选与DNA甲基化状态相关的扩增产物,从而实现对DNA甲基化状态的测定。

二、DNA甲基化检测技术的应用1.疾病早期诊断2.疾病分型不同疾病的DNA甲基化模式存在差异,通过检测DNA甲基化状态可以将疾病进行分型,从而有针对性地制定治疗方案。

3.肿瘤治疗效果评估针对肿瘤治疗过程中的DNA甲基化变化,可以通过检测DNA甲基化状态来评估治疗效果。

如果治疗有效,DNA甲基化状态会发生改变。

4.基因组稳定性分析三、DNA甲基化检测技术的优势和挑战优势:1.高灵敏度和特异性:DNA甲基化检测技术具有高灵敏度和特异性,可以测量DNA甲基化的水平和位点。

(完整版)基因甲基化检测

(完整版)基因甲基化检测

基因甲基化检测甲基化是在DNA甲基转移酶(DNA Methyltransferase, DNMT)催化作用下, 利用S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)提供甲基,在CpG二核苷酸中胞嘧啶嘧啶环的五号碳原子上加上甲基的共价修饰过程.DNA甲基化是表观遗传修饰的主要方式,它不改变DNA的一级结构,却在细胞的发育、基因的表达、及基因组的稳定性中起着重要的作用。

CpG岛的高甲基化是肿瘤中存在的普遍现象,而启动子CpG 岛的高甲基化是除突变和缺失外肿瘤中抑癌基因失活的第三种机制。

因此,基因启动子甲基化检测在临床诊断(如甲基化检测与低剂量CT相结合)、药物敏感性检测等方面具有很高的应用价值。

目前甲基化特异性PCR(Methylmion Specific PCR,MSP)及其改进方法是检测基因甲基化的经典方法.MSP法的原理是首先用亚硫酸氢钠修饰处理基因组DNA,所有未发生甲基化的胞嘧啶都被转化为尿嘧啶,而甲基化的胞嘧啶则不变。

然后设计针对甲基化和非甲基化序列的引物并进行聚合酶链反应(PCR)扩增,最后通过琼脂糖凝胶电泳分析,确定与引物互补的DNA 序列的甲基化状态。

MSP法灵敏度较高,应用范围广。

一. MSP实验流程:1.基因组抽提;2.基因组DNA定量;3.重亚硫酸盐转化(C转化为U),本步实验至关重要,转化效率高低直接影响实验结果,所以,需要实验者在实验过程中不断摸索合适的实验条件以确保较高的转化效率;4.引物设计(每个基因设计两对引物,分别为:甲基化引物M,非基因化引物U,对应扩增甲基化和非甲基化的目的片段),有时需设计巢式引物;5.PCR扩增:对甲基化和非甲基化的目的片段分别扩增,此时尽可能使用梯度PCR仪,可以同时使用不同的退火温度,以筛选合适的退火温度;6.PCR产物电泳;7.电泳结果分析(定性即有无甲基化,半定量即甲基化程度高低)。

图1:MSP PCR产物电泳图二. qMSP实验流程:1.基因组抽提;2.基因组DNA定量;3.重亚硫酸盐转化(C转化为U),本步实验至关重要,转化效率高低直接影响实验结果,所以,需要实验者在实验过程中不断摸索合适的实验条件以确保较高的转化效率;4.引物和探针设计(每个基因设计一对引物和两条条探针),定量引物和探针的设计难度是比较大的,设计好的引物和探针既需要理论上的分析验证(软件),又需要通过实验验证和筛选,所以一个目的基因有时需设计几对不同引物和探针以供筛选;5.标准品制备:1.完全非甲基化DNA的制备:筛选合适的基因组DNA,确保其完全没有甲基化,作为阴性对照;2.完全甲基化DNA的制备:用甲基转移酶对完全非甲基化的DNA进行甲基化修饰,目的是把DNA中所有的CG中的C甲基化,修饰后的DNA是完全甲基化的,作为阳性对照;3.把A作为0%甲基化,B作为100%甲基化,对A和B进行不同比例的混合,形成梯度甲基化的标准品;4.对C步的系列标准品进行Realtime PCR扩增,制备多个不同的标准曲线;5.根据标准曲线的相关系数,对D步的标准曲线进行筛选,选择合适的标准曲线用于后续的实验.6. PCR扩增:对实验样本进行PCR扩增,此时尽可能使用梯度PCR仪,可以同时使用不同的退火温度,以筛选合适的退火温度.7. Realtime PCR扩增:对实验样品进行定量PCR扩增,同时扩增标准曲线;8. 结果分析:通过PCR结果可以直观的看出每个样本的甲基化程度(百分比)。

肝癌甲基化检测原理

肝癌甲基化检测原理

肝癌甲基化检测原理
甲基化检测的原理通常包括以下几个步骤:
1. 样本采集,通常采用肿瘤组织、血液或其他体液样本作为检测样本。

2. DNA提取,从样本中提取DNA,保证后续检测的准确性和可靠性。

3. 甲基化位点筛查,利用特定的技术(如甲基化特异性PCR、甲基化特异性酶切等)筛查DNA中的甲基化位点,确定哪些基因的甲基化发生了变化。

4. 数据分析,对甲基化位点进行定量或定性分析,得出甲基化程度的信息。

5. 结果解读,根据甲基化程度的信息,判断肝癌的风险程度或预后情况。

甲基化检测原理的关键在于利用DNA甲基化的特异性来区分肝
癌细胞和正常细胞中的DNA甲基化模式的差异。

通过这种差异,可
以实现对肝癌的早期诊断和预后评估,为临床治疗提供重要依据。

同时,甲基化检测也为个体化治疗提供了新的思路,可以根据患者
的甲基化特征制定个性化的治疗方案。

总的来说,甲基化检测原理
在肝癌的诊断和治疗中具有重要的意义,并且随着技术的不断进步,甲基化检测将在肝癌的精准医疗中发挥越来越重要的作用。

DNA甲基化检测技术全攻略

DNA甲基化检测技术全攻略

DNA甲基化检测技术全攻略DNA甲基化是指DNA分子上的甲基基团与DNA碱基结合,从而调节基因的转录活性。

甲基化的变化在许多疾病和发育过程中起着重要作用。

因此,DNA甲基化检测技术成为了研究和诊断领域中的关键工具之一、本文将介绍DNA甲基化检测技术的全攻略,包括常用的方法和关键步骤。

一、DNA甲基化检测技术的基本原理全基因组的甲基化检测通常使用甲基化敏感的限制酶来区分甲基化和非甲基化的DNA。

通过将DNA与限制酶一起处理,只有非甲基化的DNA会被酶切割。

然后可以使用聚合酶链反应(PCR)或基因芯片等方法来扩增和检测特定的DNA片段。

位点特异性的甲基化检测主要通过甲基化特异性的PCR或测序方法来实现。

首先需要设计特异性的引物,这些引物能够在甲基化和非甲基化的DNA片段上扩增。

接着,通过PCR扩增或测序分析来确定甲基化位点的状态。

二、DNA甲基化检测技术的常用方法1.甲基化敏感的限制酶消化法:通过将DNA与甲基化敏感的限制酶一起处理,只有非甲基化的DNA会被酶切割。

然后可以使用PCR或基因芯片等方法来扩增和检测特定的DNA片段。

2.甲基化特异性的PCR:通过设计甲基化特异性的引物,来扩增甲基化和非甲基化的DNA片段。

这种方法可以用于位点特异性的甲基化检测。

3.甲基化特异性的测序方法:通过测序分析来确定DNA片段上的甲基化状态。

这种方法可以用于全基因组的甲基化检测。

三、DNA甲基化检测技术的关键步骤1.样本的准备:样本可以是基因组DNA或特定的DNA片段。

对于全基因组的甲基化检测,需要提取和纯化高质量的基因组DNA。

对于位点特异性的甲基化检测,可能需要对DNA进行限制酶切割或甲基化特异性的PCR 前处理。

2.甲基化敏感的限制酶消化或甲基化特异性的PCR:根据实验设计,选择合适的方法来检测甲基化状态。

对于甲基化敏感的限制酶消化法,将DNA和甲基化敏感的限制酶一起处理,然后使用PCR或基因芯片等检测方法来扩增和检测特定的DNA片段。

基因甲基化检测流程

基因甲基化检测流程

基因甲基化检测流程基因甲基化检测呀,最开始得有样本的采集。

这个样本来源可就多啦,有可能是血液,就像咱们去医院抽血那样,小小的一针扎下去,就能取到检测需要的血液样本啦。

还有可能是组织,这就稍微复杂点,得从身体里取出一点点组织来。

比如说要是检测某个器官的基因甲基化,医生或者研究人员就得用很专业的手段,从这个器官上取那么一丁点儿组织,当然这个过程都是很安全的啦。

另外呢,还有可能是体液,像唾液也是可以作为样本的呢。

采集样本的时候大家可不要害怕,就像打个小怪兽,这是检测的第一步,很关键的哦。

采集好样本之后,就是样本的处理环节啦。

这个时候呀,样本就像是要被打扮的小娃娃一样。

要对样本进行各种处理,比如说提纯之类的。

把那些不需要的东西都去掉,只留下对检测有用的部分。

这个过程就像是给样本做了一个精致的清洁和整理,让它能够更好地进入下一个环节。

而且呀,处理样本的环境要求可严格啦,得在特别干净、温度湿度都合适的地方进行,就像给样本安排了一个五星级的待遇呢。

接下来就是检测技术上场的时候啦。

有好多不同的检测技术可以用哦,像甲基化特异性的PCR技术。

这个技术就像是一个很厉害的小侦探,能够准确地找到那些发生了甲基化的基因。

它的原理呢,就是根据甲基化和非甲基化基因的不同特点来进行区分的。

还有亚硫酸盐测序法,这个方法也很牛呢。

它可以把样本中的DNA进行一些化学处理,然后再通过测序的方式,把甲基化的情况给弄清楚。

这就好比给基因拍了一张超清晰的照片,每个细节都能看到,甲基化的位置啊、程度啊,都能知道得清清楚楚。

检测完之后,可不能就这么完事儿啦,还得对检测结果进行分析呢。

这个分析结果就像是一份特殊的报告。

研究人员要看看哪些基因发生了甲基化,这些甲基化又意味着什么。

是身体可能有什么疾病风险呢,还是说这是正常的生理现象。

这就需要研究人员有很深厚的专业知识啦,就像解读一个神秘的密码一样。

他们要根据之前的研究成果,还有各种参考数据,来判断这个检测结果到底是怎么回事。

检测基因甲基化表达水平的 实验方法

检测基因甲基化表达水平的 实验方法

检测基因甲基化表达水平的实验方法基因甲基化表达水平检测在生命科学研究中具有极为重要的意义。

在医学研究领域,最初发现很多疾病的发生发展难以用传统的基因表达变化来解释。

例如癌症,医生们发现一些患者的基因序列并没有发生改变,但却患上了癌症,这让人十分困惑。

在遗传学领域,科学家们也在苦苦寻找除了基因序列改变之外影响基因表达的因素。

当时面临的巨大需求就是要找到一种能够解释这种基因表达调控异常的机制,于是基因甲基化逐渐进入人们的视野。

基因甲基化被认为可能是这种调控异常的关键因素,所以检测基因甲基化表达水平就变得非常重要。

基因甲基化的核心理论依据其实并不复杂。

我们可以把基因想象成一个工厂的生产指令,而甲基化就像是在这个指令上贴的小标签。

这个小标签不会改变指令本身的内容(基因序列),但是会影响这个指令是否被执行(基因表达)。

如果一个基因被高度甲基化,就好像这个指令被贴上了很多标签,那么这个基因可能就不会被表达或者表达量很低。

相反,如果甲基化程度低,这个基因就可能大量表达。

这就是基因甲基化影响基因表达水平的基本原理。

下面来说检测基因甲基化表达水平的实验方法。

第一步是样本采集。

这一步非常关键,样本的质量直接决定了实验结果的准确性。

如果是检测人体的基因甲基化,可能采集血液、组织等样本。

比如在检测胃癌患者的基因甲基化时,要采集胃部病变组织。

这里需要注意的是,样本采集过程要严格遵循无菌操作原则,采集的样本要尽快处理或者保存。

如果样本被污染或者处理不及时,可能会导致细胞死亡或者基因发生降解,那后续的实验就全完了,这可太糟糕了。

第二步是DNA提取。

提取DNA的方法有很多种,像酚 - 氯仿抽提法等。

在这个过程中,要确保DNA的纯度和完整性。

有一次在一个实验室里,因为操作人员在提取DNA时没有注意试剂的用量,导致提取出来的DNA纯度不够,结果在后面检测甲基化的时候,数据乱得一塌糊涂,这可把大家急坏了。

所以操作时一定要严格按照试剂说明书的要求来做,准确控制试剂的用量和反应条件。

06 甲基化检测原理及步骤

06 甲基化检测原理及步骤

DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。

中等温度碱性pH 下使DNA变性成为单链形式暴露出碱基。

试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。

然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。

向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。

DNA最终在TE缓冲液中通过加热从载体上洗脱下来。

第一步:试剂准备(1)3 M NaOH原料(用前现配)把1g干NaOH片剂溶解在8.3mL水中。

使用此类腐蚀性碱,注意小心谨慎和实验操作。

(2)20 mM NaOH/90% EtOH(用前现配)配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。

(3)溶解试剂Ⅰ(用前现配)打开前将试剂瓶加温至室温。

对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。

充分涡旋振荡混合。

使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。

用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。

试剂Ⅰ避光保存以免分解。

为了最佳效果,试剂应在配置后立即使用。

(4)溶解试剂Ⅱ打开前将试剂瓶加温至室温。

将1μl β-巯基乙醇加入20mL去离子水中。

每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。

充分混合确保完全溶解。

过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。

第二步:DNA修饰程序1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。

注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA修饰试剂Ⅳ并加水至总体积100μl。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。

中等温度碱性pH下使DNA变性成为单链形式暴露出碱基。

试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。

然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。

向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。

DNA最终在TE缓冲液中通过加热从载体上洗脱下来。

第一步:试剂准备
(1)3 M NaOH原料(用前现配)
把1g干NaOH片剂溶解在8.3mL水中。

使用此类腐蚀性碱,注意小心谨慎和实验操作。

(2)20 mM NaOH/90% EtOH(用前现配)
配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。

(3)溶解试剂Ⅰ(用前现配)
打开前将试剂瓶加温至室温。

对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。

充分涡旋振荡混合。

使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。

用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。

试剂Ⅰ避光保存以免分解。

为了最佳效果,试剂应在配置后立即使用。

(4)溶解试剂Ⅱ
打开前将试剂瓶加温至室温。

将1μl β-巯基乙醇加入20mL去离子水中。

每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。

充分混合确保完全溶解。

过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。

第二步:DNA修饰程序
1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。

注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA修饰试剂Ⅳ并加水至总体积100μl。

再加入7.0μl 3M NaOH并混匀。

2、50℃ DNA孵育10分钟(加热块或水浴)
3、加入550 μl新鲜配制的DNA修饰试剂Ⅰ并涡旋振荡。

4、加热块或水浴50℃避光孵育4-16小时。

第三步:初步脱盐
1、强力涡旋振荡悬浮DNA修饰Ⅲ。

用10x的1mL塑料移液管枪头来回吸排悬液以分散仍存在的凝块。

2、向含DNA溶液的管中加入5μl充分悬浮的DNA修饰试剂Ⅲ。

3、加入750μl DNA修饰试剂Ⅱ并充分混匀。

4、室温孵育5-10分钟。

5、5000 X g离心10秒使DNA试剂Ⅲ成颗粒状。

(应出现一种白色的小颗粒。

)弃去上清。

6、加入1.0mL 70%的乙醇,涡旋振荡,5000 X g离心10秒,弃去上清。

该步骤重复进行,共3次。

7、将第三次上清弃去后,离心管高速离心2分钟,用塑料移液管枪头移去剩余上清。

第四步:完成DNA修饰(脱磺酸基作用),再次脱盐,并洗脱。

1、适量样本加入50μl 20 mM NaOH/90% EtOH溶液。

2、充分涡旋振荡悬浮颗粒,再室温孵育5分钟。

3、5000 X g离心以移除管顶所有成分。

加入1.0mL 90%的乙醇并涡旋振荡洗脱颗粒。

再旋转,除去上清。

再次重复该步骤。

4、第二次洗脱除去上清后,高速离心样本3分钟。

5、用塑料移液管头除去所有剩余上清。

试管室温晾干10-20分钟(必须除去酒精气味)。

6、加入TE缓冲液。

注意:加入TE的量取决于起始DNA的量和目的用途所需的加入浓度。

例如,如果加入25μl TE,基于完全恢复1μg DNA的最终浓度应为40ng/μl。

快速强力涡旋振荡直到颗粒完全悬浮。

用手轻打或轻敲内容物至管顶(但是不要离心)。

7、50-60℃下样本孵育15分钟以洗脱DNA。

8、高速离心2-3分钟并用塑料移液管头转移样本(上清)到新管。

9、进行MSP或测序,或-15~-25℃可保存达2个月,-80℃可保存6个月。

避免重复融化和解冻;可分量储存。

不要将DNA存储在自动除霜冰箱。

10、当从一管中转移已解冻的DNA以备用时,避免将试剂Ⅲ转移到PCR反应管中。

通常首先将管充分离心,使残留的试剂Ⅲ固体成颗粒状。

三、MSP
(1)引物合成
运用特别设计的针对甲基化和非甲基化序列的引物,引物由上海生物工程有限公司合成。


表1
表1 甲基化引物序列及扩增条件
hMLH1引物引物序列(5’~3’)产物长度温度甲基化(M) 正义ACGTAGACGTTTTATTAGGGTCGC 115 bp 55℃甲基化(M) 反义CCTCATCGTAACTACCCGCG 115 bp 55℃非甲基化(U) 正义TTTTGATGTAGATGTTTTATTAGGGTTGT 124 bp 55℃非甲基化(U) 反义ACCACCTCATCATAACTACCCACA 124 bp 55℃(2)PCR反应条件
a 反应体系:10×PCR缓冲液5μl,2.5mmol/LdNTP4μl,甲基化上下游引物和去甲
基化上下游引物分别为1μl,甲基化模板DNA5μl,Taq酶0.25μl,加水至总体积50μl。

b 循环条件:
共35个循环
(3)PCR产物结果判定:琼脂糖凝胶电泳
a 甲基化阳性:甲基化特异性引物扩增出相应长度的片断,但非甲基化特异性引物未
扩增出相应长度的片断,则判断基因启动子区5’CpG岛甲基化阳性。

b 甲基化阴性:非甲基化特异性引物扩增出相应长度的片断,但甲基化特异性引物未扩增出相应长度的片断。

则判断基因启动子区5’CpG岛甲基化阴性。

相关文档
最新文档