七年级下册数学《平面直角坐标系》坐标系知识点整理

合集下载

平面直角坐标系知识点总结归纳

平面直角坐标系知识点总结归纳

平面直角坐标系知识点总结归纳平面直角坐标系是分析平面上点的位置和运动的基本工具之一、它由两条相互垂直的数轴(通常称为x轴和y轴)组成,在规定的单位长度上构成一个矩形坐标系。

该坐标系可以用来描述平面内的点的位置以及它们之间的关系。

以下是平面直角坐标系的一些重要知识点:1.坐标轴:平面直角坐标系包括两条垂直于彼此的直线,称为坐标轴。

其中一条被标记为x轴,另一条被标记为y轴。

2.原点:平面直角坐标系的交点称为原点,通常标记为O。

3.坐标:平面直角坐标系中的每个点都可以用一对有序实数(x,y)来表示,其中x表示在x轴上的位置,y表示在y轴上的位置。

这对实数称为坐标。

例如,点(3,4)表示位于x轴上3个单位和y轴上4个单位的点。

4.象限:平面直角坐标系将平面分为四个象限。

第一象限位于x轴和y轴的正方向上,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向上,第四象限位于x轴的正方向和y轴的负方向。

象限用于确定坐标点的相对位置和符号。

5.距离:在平面直角坐标系中,可以使用勾股定理计算两点之间的距离。

两点之间的距离公式为:d=√((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)是两点的坐标。

6.斜率:斜率用于描述直线的倾斜程度。

在平面直角坐标系中,可以使用两点间的坐标来计算斜率。

斜率公式为:m=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两点。

7. 截距:截距是指直线与y轴的交点。

在平面直角坐标系中,斜率截距公式为:y = mx + b,其中m是斜率,b是截距。

8.正交性:平面直角坐标系的x轴和y轴相互垂直,也就是说它们的夹角为90度。

这种相互垂直的性质被称为正交性。

9.平移:平面直角坐标系中的点可以通过平移来改变它们的位置。

平移是指沿着x轴和y轴移动一定的距离,而不改变它们之间的相对位置。

10.缩放:可以通过缩放来改变坐标系的单位长度。

七年级下册平面直角坐标系知识点

七年级下册平面直角坐标系知识点

七年级下册平面直角坐标系知识点一、平面直角坐标系的概念1.定义:在平面内,以一个点为原点,以一条直线为轴,用有序数对表示物体的位置的坐标系称为平面直角坐标系。

2.坐标轴:在平面直角坐标系中,通过原点的一条直线称为x 轴,另一条直线称为y轴。

原点称为坐标原点,两轴的交点称为坐标原点。

3.象限:在平面直角坐标系中,两条坐标轴将平面分为四个象限,每个象限内的点的坐标符号分别为(+,+)、(-,+)、(-,-)、(+,-)。

4.坐标:在平面直角坐标系中,对于一个点P,我们可以用一对有序数对(x,y)来表示它的位置。

其中x称为横坐标,y称为纵坐标。

二、平面直角坐标系的建立1.选择一个点作为原点,确定横轴和纵轴的方向。

2.建立坐标系,将选择的点与横轴和纵轴上的点对应起来。

3.根据需要绘制网格线,以便更清晰地表示点的位置。

三、平面直角坐标系的应用1.确定点的位置:通过坐标可以确定一个点的具体位置。

2.表示形状和大小:在平面直角坐标系中,可以通过坐标表示形状和大小。

例如,一个矩形的四个顶点可以通过给出它们的坐标来描述。

3.计算距离和面积:在平面直角坐标系中,可以通过坐标计算两点之间的距离以及矩形的面积。

4.函数图像:函数图像可以在平面直角坐标系中绘制出来,以便更好地理解函数的性质和变化趋势。

四、平面直角坐标系的扩展1.三维坐标系:通过增加一个维度,我们可以扩展平面直角坐标系为三维坐标系。

在三维空间中,一个点可以用三个坐标(x,y,z)来表示。

2.极坐标系:另一种表示位置的方式是使用极坐标系。

在极坐标系中,一个点的位置由它到极点的距离和它相对于极轴的方向来确定。

七年级数学第七章__平面直角坐标系__知识点归纳

七年级数学第七章__平面直角坐标系__知识点归纳

平面直角坐标系是平面上用来描述点位置的一种特定的坐标系。

它由两个互相垂直的坐标轴x轴和y轴所构成,x轴和y轴的交点称为原点O。

在平面直角坐标系中,每一个点都可以唯一确定两个坐标值(x,y),其中x称为横坐标,y称为纵坐标。

我们可以通过绘制点在坐标系上的位置来表示点的坐标。

当x轴取正方向为右侧,y轴取正方向为上方时,点在坐标系中的位置可以称为一个有序数对(x,y)。

在平面直角坐标系中,我们可以根据两点之间的距离、两点之间的斜率等概念来进行计算。

1.距离公式:设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点之间的距离d:d=√[(x₂-x₁)²+(y₂-y₁)²]2.斜率的概念:斜率是用来描述两点之间直线的倾斜程度的概念。

设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点确定的直线的斜率k:k=(y₂-y₁)/(x₂-x₁)斜率k可以用来判断直线的方向:当k>0时,直线是向上倾斜的;当k<0时,直线是向下倾斜的;当k=0时,直线是水平的;当x₂-x₁=0时,直线是竖直的。

3.点和直线的位置关系:在平面直角坐标系中,我们可以通过比较点到直线的距离来判断点和直线的位置关系。

当点在直线上时,点与直线的距离为0;当点在直线上方时,点与直线的距离为正数;当点在直线下方时,点与直线的距离为负数。

4.点的对称性:在平面直角坐标系中,我们可以通过对称中心来判断点的对称位置。

设平面上有点A(x,y),如果将点A关于原点O对称,则新的点A'的坐标为(-x,-y)。

同样地,我们还可以将点A关于x轴、y轴以及其他直线进行对称。

5.坐标系的变换:可以通过平移、旋转、镜像、缩放等变换对平面直角坐标系进行改变。

平移是指将坐标系沿着平行于x轴或y轴的方向移动一定距离。

旋转是指将坐标系绕原点O或其他点旋转一定角度。

镜像是指将所有点关于条直线、一些点或一些平面进行对称。

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。

记做。

2.有序数对的应用:利用有序数对可以表示物体的位置。

表示方法有:定位法;定位法;定位法;定位法。

【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。

七年级下册数学《平面直角坐标系》坐标点 知识点整理

七年级下册数学《平面直角坐标系》坐标点 知识点整理

七年级下册数学《平面直角坐标系》坐标
点知识点整理
七年级下册数学《平面直角坐标系》坐标点知识点整理
一、坐标点的定义和表示方法
- 坐标点是指平面上的一个点,由x和y两个数值表示。

- 常用的表示方法是将x值和y值以括号的形式写在一起,如(3, 5)。

二、确定坐标点的方法
1. 线段法
- 通过线段在坐标轴上的位置确定坐标点。

- 在x轴上移动x个单位,在y轴上移动y个单位。

2. 有向线段法
- 在坐标轴上画出有向线段,确定起点和终点的坐标。

- 起点坐标和终点坐标分别表示为(x1, y1)和(x2, y2)。

3. 分量法
- 将向量的水平和垂直分量分别表示为x和y的值,得到坐标点的坐标。

三、坐标点的位置关系
1. 同一象限
- 如果两个坐标点的x和y的值都具有相同的符号,则这两个点在同一象限。

2. 不同象限
- 如果两个坐标点的x和y的值具有不同的符号,则这两个点在不同象限。

3. 坐标点的位置关系
- 坐标点A(x1, y1)与坐标点B(x2, y2)的x和y的值的比较结果决定了点A和点B的位置关系,
如A在B的左边、右边、上面或下面。

四、坐标点的运算
1. 坐标点之间的加法运算
- 将两个坐标点的x和y值分别相加,得到新的坐标点。

2. 坐标点的相反数
- 一个坐标点的x和y值分别取相反数得到的坐标点与原坐标点关于原点对称。

以上是关于七年级下册数学《平面直角坐标系》坐标点的知识点整理,希望对学生们的研究有所帮助。

七年级数学下册第七章平面直角坐标系知识点归纳

七年级数学下册第七章平面直角坐标系知识点归纳

平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对a,b一一对应;其中a为横坐标, b为纵坐标;Y3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;坐标轴上的点不属于任何象限; b Pa,b4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:1点 P x,y所在的象限横、纵坐标x、y的取值的正负性;2点 Px,y所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P a,b ,则a; b P a,b1 点 P 到x轴的距离为b; 2点 P 到y轴的距离为ab3 点 P 到原点 O 的距离为 PO=a2b2O a x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上, 所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P m , n 关于 x 轴的对称点为 P 1 m ,n , 即横坐标丌变,纵坐标互为相反数; b) 点 P m , n 关于 y 轴的对称点为 P 2 m , n , 即纵坐标丌变,横坐标互为相反数; c) 点 P m , n 关于原点的对称点为 P 3 m ,n ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mXmmmXOm X OnP 1 nP 3关于 x 轴对称 关于 y 轴对称关于原点对称d 点 Pa , b 关于点 Q m , n 的对称点是 M2m-a,2n-b ;8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P m , n 在第一、三象限的角平分线上,则 m n ,即横、纵坐标相等;b) 若点 P m , n 在第二、四象限的角平分线上,则 m n ,即横、纵坐标互为相反数;yynPP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移1点的平移将点x , y 向右或向左平移 a 个单位,可得对应点x+a , y {或x-a , y },可记为“右加左减,纵不变”;将点x , y 向上或向下平移 b 个单位,可得对应点x , y+b {或x , y-b },可记为“上加下减,横不变”;2图形的平移把一个图形各个点的横坐标都加上或减去一个正数 a,相应的新图像就是把原图形向右或向左平移 a 个单元得到的;如果把图形各个点的纵坐标都加上或减去一个正数 a, 相应的新图像就是把原图形向上或向下平移 a 个单元得到的;。

七年级下册数学平面直角坐标系的知识点归纳

七年级下册数学平面直角坐标系的知识点归纳

七年级下册数学平面直角坐标系的知识点归纳在学习平面直角坐标系的过程中,我们将一步步掌握如何识别坐标点、平移图形、计算长度、以及求解线性系统方程等基础知识,为深入学习统计分析和解析几何奠定坚实的理论基础。

七年级下册数学中的平面直角坐标系是一个非常重要的知识点,其重要性可见一斑,以下是对这部分知识的归纳:
一、认识坐标系
1. 坐标系是数学中用来表示一个点在一个平面上的方式,是一个由两个数学量(x, y)表示的点的坐标。

2. 坐标系中的x轴和y轴是相互垂直,而原点(0, 0)则是两者交汇的点。

二、用坐标系表示点
1. 一条线可能由无数个点组成,而每个点都可以用坐标系来表示。

2. 点的坐标是确定一个点的方式,可以让学生学习把一个点的位置表现出来。

三、画出坐标平面上的线
1. 通过给定的几点用坐标来表示,就可以画出平面上一条完整的线。

2. 学生要学会分析这几个点之间的位置关系,然后根据直角坐标系的概念画出一条符合要求的完整的线。

四、使用直角坐标系求解几何问题
1. 利用坐标系可以让学生对于几何图形识别和分析更加直观,从而更快更有效地解决问题。

2. 用坐标系去求解几何问题,需要学生做的是理解 num之间的概念,用坐标系来分析,然后解答问题。

总之,七年级下册数学中的平面直角坐标系是一部分十分重要的知识点,要掌握其相关的知识并熟练应用,可以帮助学生理解几何图形,也可以帮助学生解决相关的几何问题。

平面直角坐标系的13个知识点

平面直角坐标系的13个知识点

平面直角坐标系的13个核心知识点哎,说起平面直角坐标系,那可是数学里头相当重要的一个板块儿。

咱们今天就来摆一摆它的13个核心知识点。

首先呢,平面直角坐标系就是由两条互相垂直的数轴组成,水平方向的叫x轴,垂直方向的叫y轴,它们交在一块儿的那个点叫原点。

然后啊,平面上的每个点都可以用一对有序实数来表示,比如(x,y),x就是横坐标,y就是纵坐标。

再说说象限,根据点的坐标的正负,平面被分成了四个部分,叫象限。

第一象限的点坐标都是正数,第二象限的x坐标为负,y坐标为正,第三象限的点坐标都是负数,第四象限的x坐标为正,y坐标为负。

还有啊,关于x轴、y轴、原点对称的点的坐标,都是有规律的。

比如关于x轴对称的点,横坐标不变,纵坐标变相反数。

另外,平面直角坐标系里头还可以搞平移、缩放这些变换。

平移的时候,点的坐标会跟着变,比如向右平移,横坐标就变大,向左平移,横坐标就变小。

缩放的时候,比如横坐标变为原来的k倍,那图形就跟着放大或缩小了。

再来说说直线、圆这些图形,它们都可以用方程来表示。

比如直线y=2x+3,圆的方程是(x-h)^2+(y-k)^2=r^2。

最后啊,还有中点公式、斜率公式、距离公式这些工具,它们可以用来求线段的中点、直线的斜率和两点间的距离。

总之啊,平面直角坐标系的知识点虽然多,但只要掌握了规律,学起来也就不那么难了。

七年级下数学第七章_平面直角坐标系知识点总结

七年级下数学第七章_平面直角坐标系知识点总结

七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。

象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。

7.1.2 平面直角坐标系 七年级数学下册(人教版)

7.1.2 平面直角坐标系 七年级数学下册(人教版)
2
D(____,____)
0
-3
例如,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y
轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫
做点A的坐标,记作A(3,4).
自学导航
原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
原点O的坐标为(0,0);x轴上的点的纵
所以三角形ABC的边AB=9,边AB上的高为4,
1
所以三角形ABC的面积为 ×9×4=18.
2
迁移应用
1三角形OAB的面积为
( C )
A.1
B.2
C.3
D.4
2. 若三角形ABC的三个顶点的坐标分别为A (-3,-1),B (2,-1),C(1,3),则三角
所以点C与点B的纵坐标相同,点C与点D的横坐标
相同,所以点C( 3,-5).
迁移应用
1.已知点A (m+1,-2)和点B(3,m-1),若直线AB// x轴,则m的值为( C )
A.2
B.-4
C.-1
D.3
2.平面直角坐标系中,直线a经过点A(-2,3),B (4,3),则直线a还经过点( C )
A.(-5,4)
B.(3,-8)
C.(0,3)
D.(3,-3)
3.在平面直角坐标系中,AB//y轴,AB=5,点A的坐标为(-5,3),则点B的坐标
为( C )
A.(-5,8)
B.(0,3)
C.(-5,8)或(-5,-2)
D.(0,3)或(-10,3)
迁移应用
4.在平面直角坐标系中,已知点A(-3,2),B(1,4),经过点A 的直线l//x轴,C

平面直角坐标系知识点口诀

平面直角坐标系知识点口诀

平面直角坐标系知识点口诀一、平面直角坐标系基本概念口诀。

1. 坐标轴。

- 平面直角坐标系,横轴纵轴要牢记。

- 横轴名叫x轴,向右为正方向齐。

- 纵轴名叫y轴,向上为正方向立。

- 原点坐标是(0,0),两条数轴交点集。

2. 象限。

- 坐标平面分象限,一、二、三、四按序排。

- 右上象限是第一,符号为(+, +)真开怀。

- 左上象限第二家,符号是(-, +)不奇怪。

- 左下象限第三处,(-, -)符号记心怀。

- 右下象限第四域,(+, -)符号要明白。

3. 点的坐标。

- 点在平面有坐标,先横后纵顺序好。

- 横坐标x把位标,纵坐标y来相靠。

- 例如点A(x,y),x在前来y在后。

二、坐标的平移口诀。

1. 左右平移。

- 点沿x轴左右移,左右平移x变起。

- 向左平移减数值,向右平移加无疑。

- 例如点P(x,y),向左平移a单位,新坐标为(x - a,y)。

- 向右平移a单位,新坐标就成(x+a,y)。

2. 上下平移。

- 点沿y轴上下移,上下平移y变易。

- 向下平移减数值,向上平移加进去。

- 若点Q(x,y),向上平移b单位,新坐标为(x,y + b)。

- 向下平移b单位,新坐标就是(x,y - b)。

三、对称点坐标口诀。

1. 关于x轴对称。

- 关于x轴来对称,横坐标x不变更。

- 纵坐标y变符号,正负相反记心中。

- 点M(x,y)对称点,x轴对称M'(x, - y)。

2. 关于y轴对称。

- 关于y轴的对称,纵坐标y不折腾。

- 横坐标x变符号,正负互换要记清。

- 若点N(x,y)对称,y轴对称N'(-x,y)。

3. 关于原点对称。

- 原点对称有特点,横纵坐标都要变。

- 横坐标x变符号,纵坐标y也换脸。

- 点P(x,y)对称点,原点对称P'(-x, - y)。

初中数学平面直角坐标系知识点

初中数学平面直角坐标系知识点

初中数学平面直角坐标系知识点平面直角坐标系是数学中的一个重要概念,通过它可以方便地描述和研究平面内点的位置关系和运动规律。

了解平面直角坐标系的知识点对于初中数学的学习非常重要,下面将介绍一些平面直角坐标系的基本知识点。

一、平面直角坐标系的概念及建立平面直角坐标系是由两个相互垂直的数轴组成的,这两个数轴分别叫做x轴和y轴。

x轴和y轴的交点称为坐标原点O,x轴的正方向称为正半轴,负方向称为负半轴;y轴的正方向也是正半轴,负方向是负半轴。

所有的点在平面中都可以用坐标表示,一个点的坐标就是它到x轴和y轴的距离表示的有序数对。

二、坐标的表示方法对于一个点P,我们可以用(x,y)来表示它的坐标,x是点P在x轴上的坐标值,y是点P在y轴上的坐标值。

例如,点A的坐标为(3,4),表示它到x轴的距离为3,到y轴的距离为4三、坐标的表示及性质1.坐标的图示表示:在平面直角坐标系中,一般使用平行于坐标轴的线段来表示坐标,例如,点A的坐标为(3,4),我们可以在x轴上向右边移动3个单位,然后在y轴上向上移动4个单位,将这两个点连接起来,就得到了点A的位置。

2.坐标的唯一性:对于平面上的每个点,它的坐标值是唯一确定的,即不同的点不可能有相同的坐标。

3.单位长度和比例关系:在平面直角坐标系中,单位长度是可以任意确定的,通常我们用等长的单位长度来表示x轴和y轴。

这样,两个单位长度的线段的数量关系就可以表示为1:1的比例关系。

四、点的位置关系在平面直角坐标系中,可以通过坐标的大小和正负来判断点的位置关系。

1.同一点的位置:在平面直角坐标系中,原点O的坐标是(0,0),即到x轴和y轴的距离都是0,因此原点是唯一的。

2.直线与坐标轴的交点:一个点的y坐标为0,表示它在x轴上,这样的点叫做x轴的交点;一个点的x坐标为0,表示它在y轴上,这样的点叫做y轴的交点。

3.点的位置比较:对于两个不同的点,可以通过比较它们的x坐标和y坐标的大小来判断它们的位置关系。

初一下册数学平面直角坐标系的知识点

初一下册数学平面直角坐标系的知识点

初一下册数学平面直角坐标系的知识点一、引言数学是一门抽象而又实用的学科,平面直角坐标系是数学中的一个基本概念,也是进一步学习代数和几何的基础。

本文将介绍初一下册数学中关于平面直角坐标系的知识点,帮助同学们更好地理解和应用这一概念。

二、平面直角坐标系的定义平面直角坐标系是由两个相互垂直的数轴(横轴和纵轴)组成,通常被称为x轴和y轴。

每个点在平面上都可以用一个有序数对(x, y)来表示,其中x表示横坐标,y表示纵坐标。

三、平面直角坐标系中的四个象限根据坐标系的定义,我们可以将平面分为四个象限。

第一象限是指所有x和y都大于0的区域;第二象限是指所有x小于0,y大于0的区域;第三象限是指所有x和y都小于0的区域;第四象限是指所有x 大于0,y小于0的区域。

四、直角坐标系上的点和有序数对在直角坐标系中,每个点都可以用一个有序数对(x, y)来表示。

x轴上的点都满足y=0,y轴上的点都满足x=0。

例如,点A(3, 4)表示x轴上到原点的距离为3,y轴上到原点的距离为4的点。

五、平面直角坐标系中的距离在直角坐标系中,我们可以通过勾股定理计算两个点之间的距离。

设点A(x1, y1)和点B(x2, y2)是直角坐标系上的两个点,它们之间的距离d可以用以下公式计算:d = √((x2-x1)² + (y2-y1)²)。

六、平面直角坐标系中的图形在平面直角坐标系中,我们可以用数学语言和符号来描述和表示不同的图形。

例如,直线可以用方程y = mx + b来表示,其中m是斜率,b是截距。

圆可以用方程(x-a)² + (y-b)² = r²来表示,其中(a, b)是圆心的坐标,r是半径的长度。

七、平面直角坐标系中的对称性在平面直角坐标系中,我们可以通过对称性来找到图形的特殊性质。

例如,关于x轴对称指的是将图形绕x轴翻转180度后能够重合;关于y轴对称指的是将图形绕y轴翻转180度后能够重合;关于原点对称指的是将图形绕原点翻转180度后能够重合。

初一下册数学平面直角坐标系的知识点

初一下册数学平面直角坐标系的知识点

初一下册数学平面直角坐标系的知识点初一下册数学平面直角坐标系的知识点在日复一日的学习中,大家最不陌生的就是知识点吧!知识点就是学习的重点。

为了帮助大家掌握重要知识点,下面是店铺为大家收集的初一下册数学平面直角坐标系的知识点,欢迎大家分享。

初一下册数学平面直角坐标系的知识点篇11、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。

2、平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或纵轴,X 轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

6、特殊位置的点的坐标的特点(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

(4)点到轴及原点的距离。

点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;7、在平面直角坐标系中对称点的特点(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
的方向上,距离是50 n mile)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.

平面直角坐标系知识点总结

平面直角坐标系知识点总结

平面直角坐标系知识点总结一、引言平面直角坐标系是数学中一个重要的概念,也是解析几何的基础。

它在代数课程中广泛应用,对于理解和解决各种几何问题有着重要的作用。

本文将对平面直角坐标系的相关知识进行总结和介绍。

二、平面直角坐标系的定义平面直角坐标系是由两条相互垂直的坐标轴组成的,其中一条称为x轴,另一条称为y轴。

x轴和y轴的交点称为原点O,它的坐标为(0, 0)。

平面直角坐标系中的每一个点可以表示为一个有序数对 (x, y),其中 x 表示该点在 x 轴上的投影,y 表示该点在 y 轴上的投影。

三、平面直角坐标系的四象限在平面直角坐标系中,将x轴和y轴的正负方向分别延长,将整个平面分为四个象限。

第一象限为x轴和y轴的正方向区域,第二象限为x轴负方向和y轴正方向区域,第三象限为x轴和y轴的负方向区域,第四象限为x轴正方向和y轴负方向区域。

四、坐标的表示方法在平面直角坐标系中,点的坐标可以用两种方式表示:直角坐标和极坐标。

直角坐标用有序数对 (x, y) 表示,x 表示点在 x 轴上的投影,y 表示点在 y 轴上的投影。

极坐标则用极径和极角来表示,极径表示点到原点的距离,极角表示点与x轴正半轴的夹角。

五、距离的计算平面直角坐标系中,两点之间的距离可以通过勾股定理来计算。

若两点的坐标分别为(x1, y1)和(x2, y2),则这两点之间的距离d可以计算为:d = √((x2-x1)^2 + (y2-y1)^2)。

六、图形的表示与运算在平面直角坐标系中,各种图形都可以通过方程进行表示。

例如,直线可以用一次方程y = kx + b来表示,其中k为斜率,b为截距。

圆可以用二次方程表示,例如(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径。

七、平面直角坐标系的应用平面直角坐标系在几何学和物理学中有着广泛的应用。

在几何学中,通过直角坐标系可以方便地解决几何形状的性质和关系问题。

在物理学中,直角坐标系可以用来描述物体的运动轨迹和受力情况。

平面直角坐标系知识点

平面直角坐标系知识点

平面直角坐标系知识点平面直角坐标系是解析几何中非常重要的一个概念,它是二维空间中经常用到的坐标系之一。

它的出现使得在平面上的点可以用有序的数字对来表示,从而方便进行计算和表示几何图形。

下面我们将详细介绍平面直角坐标系的定义、性质和应用。

一、平面直角坐标系的定义平面直角坐标系是由两个互相垂直的坐标轴构成的。

通常情况下,我们把水平的坐标轴称为x轴,竖直的坐标轴称为y轴。

这两个轴的交点称为坐标原点O。

每个点P都可以由与x轴的距离和与y轴的距离分别表示,记作P(x, y),其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。

二、平面直角坐标系的性质1. 坐标轴的正向和负向:平面直角坐标系中,x轴从左向右延伸,正方向为右方,负方向为左方;y轴从下向上延伸,正方向为上方,负方向为下方。

2. 坐标轴的单调性:在平面直角坐标系中,随着x坐标的增大,点的位置会向右移动;随着y坐标的增大,点的位置会向上移动。

3. 坐标轴的交点:坐标原点O是各个坐标轴的交点,它的坐标为O(0,0)。

4. 坐标轴的单位长度:在实际应用中,我们通常将单位长度在x轴和y轴上分别表示为Δx和Δy。

两个单位长度的比值称为坐标轴的比例尺。

5. 相关性:平面直角坐标系中,两个点P(x1,y1)和Q(x2,y2)之间的距离d可以用勾股定理表示:d = √[(x2-x1)² + (y2-y1)²]。

6. 坐标轴的划分:我们可以将x轴和y轴分别划分为若干个等分点,以方便表示坐标。

三、平面直角坐标系的应用平面直角坐标系广泛应用于解析几何、物理学、工程学等领域,具有重要的实际应用意义。

1. 几何图形的表示:平面直角坐标系可以方便地表示各种几何图形,如点、线段、直线、圆等。

通过坐标系可以计算图形的属性,如长度、角度、面积等。

2. 位置关系的描述:通过平面直角坐标系,我们可以方便地描述点与点、点与线、线与线之间的位置关系。

例如,通过坐标系可以判断两个点是否重合、两条线是否相交等。

平面直角坐标系知识点

平面直角坐标系知识点

平面直角坐标系知识点1.坐标轴:-x轴:水平方向的直线,与y轴垂直。

-y轴:竖直方向的直线,与x轴垂直。

-坐标原点:x轴与y轴的交点,坐标为(0,0)。

2.坐标表示:-一点的坐标表示为(x,y),其中x为该点在x轴上的坐标值,y为该点在y轴上的坐标值。

-向右移动x个单位,向上移动y个单位,可以到达坐标点(x,y)。

3.象限:-平面直角坐标系被分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。

-第一象限:x轴与y轴的正方向所在的象限,x轴和y轴上的坐标值都为正数。

-第二象限:x轴的负方向与y轴的正方向所在的象限,x轴上的坐标值为负数,y轴上的坐标值为正数。

-第三象限:x轴与y轴的负方向所在的象限,x轴和y轴上的坐标值都为负数。

-第四象限:x轴的正方向与y轴的负方向所在的象限,x轴上的坐标值为正数,y轴上的坐标值为负数。

4.距离公式:-两点之间的距离可以使用勾股定理计算。

设A(x1,y1)和B(x2,y2)是两个点,在平面上划出一个三角形,其底边为x轴上的线段,高为y轴上的线段。

-这时,AB的距离d可以使用勾股定理表示:d=√((x2-x1)²+(y2-y1)²)。

5.直线和斜率:- 平面上的直线可以用方程表示,通常形式为y = kx + b,其中k 是斜率,表示直线与x轴的夹角的正切值;b是该直线与y轴交点的纵坐标。

-平行于y轴的直线的斜率为无穷大,与y轴相交的点无x坐标,方程为x=a,其中a是与y轴相交的点的横坐标。

6.对称性:-平面上的点关于x轴对称:设点A的坐标为(x,y),则点A'的坐标为(x,-y)。

-平面上的点关于y轴对称:设点A的坐标为(x,y),则点A'的坐标为(-x,y)。

-平面上的点关于原点对称:设点A的坐标为(x,y),则点A'的坐标为(-x,-y)。

7.坐标变换:-平面上的点可通过平移、旋转、缩放等方式进行坐标变换。

-平移:将点A(x,y)平移h个单位到点A'(x+h,y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系
一、本节学习指导
本节把重点放在几个象限内点的表示方法上,把四个象限里点的的符号牢牢的记在脑子里。

然后做一些相关练习题就可以掌握,这一节属于比较简单的章节。

二、知识要点
1、坐标
数轴:规定了原点、正方向、单位长度的直线叫数轴。

注意:1、数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。

2、数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个实数与之对应。

平面直角坐标系:由互相垂直、且原点重合的两条数轴组成。

横向的是x轴,纵向的是y轴。

说明:平面直角坐标系上的任一点,都可用一对有序实数对来表示,这对有序实数对就叫这点的坐标,如上图点A的坐标用(2,2)这有序实数来表示,(即是用有顺序的两个数来表示,注:x在前,y在后,不能更改),坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。

【重点】
2、象限及坐标平面内点的特点
四个象限:如图,平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限、第二象限、第三象限和第四象限。

【重点】
注:1、坐标轴(x轴、y轴)上的点不属于任何一个象限。

如上图,点B(4,0)和点C(0,-2)不在任何象限。

坐标平面内点的位置特点:
①、坐标原点的坐标为(0,0);
②、第一象限内的点,x、y同号,均为正;
③、第二象限内的点,x、y异号,x为负,y为正;
④、第三象限内的点,x、y同号,均为负;
⑤、第四象限内的点,x、y异号,x为正,y为负;
⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表示一条直线)【重点】
⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)【重点】
例:若P(x,y),已知xy>0,则P点在第______象限;已知xy<0,则P点在第_____象限。

分析:xy>0说明x,y同号,所以是在第一或第三象限,xy<0说明x,y异号,所以是在第二或第四象限
点到坐标轴的距离:坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。

【重点】
例:点A(-3,7)表示到x轴的距离为7,到纵轴的距离为3;点B(-9,0)表示到横轴的距离为0,到纵轴的距离为9.
注:已知点的坐标求距离,只有一个结果,距离必须是正的。

但已知距离求坐标,则因为点的坐标有正有负,可能有多个解的情况,应注意不要丢解。

例1:点P(x,y)到x轴的距离是3,到y轴的距离是7,求点P的坐标为(±7,±3),有四个有序数对(7,3),(7,-3),(-7,3),(-7,-3)。

4、坐标平面内对称点坐标的特点
①、一个点A(a,b)关于x轴对称的点的坐标为A‘(a,-b),特点为:x不变,y 相反;例:A(-3,5)关于x轴对称的点的坐标为A’(____,____)
②、一个点A(a,b)关于y轴对称的点的坐标为A‘(-a,b),特点为:y不变,x 相反;例:A(-3,5)关于y轴对称的点的坐标为A’(____,____)
③、一个点A(a,b)关于原点对称的点的坐标为A‘(-a,-b),特点为:x、y均相反。

例:A(-3,5)关于原点对称的点的坐标为A’(____,____)
5、平行于坐标轴的直线的表示
①、平行于横轴(x轴)的直线上的任意一点,其横坐标不同,纵坐标均相等,所以,可表示为:y=a(a为纵坐标)的形式,a的绝对值表示这条直线到x轴的距离,直
线上两点之间的距离等于这两点横坐标之差的绝对值;
②、平行于纵轴(y轴)的直线上的任意一点,其纵坐标不同,横坐标均相等,所以,可表示为:x=b(b为横坐标)的形式,b的绝对值表示这条直线到y轴的距离,直线上两点之间的距离等于这两点纵坐标之差的绝对值。

例如:直线y=-5上与点A(-3,-5)距离为8的点P坐标为:________________________;
直线x=6上与点B(6,7)距离为9的点K坐标为:_________________________.
6、象限角平分线的特点
①、第一、三象限的角平分线可表示为y=x的形式,即角平分线上的点的纵坐标与横坐标相等(同号);例:A(3,____)和B(-5,____)均在第一、三象限的角平分线上。

②、第二、四象限的角平分线可表示为y=-x的形式,即角平分线的点的纵坐标与横坐标互为相反数(异号)。

例A(-3,____)和B(5,____)均在第二、四象限的角平分线上。

三、经验之谈:
这一节是比较重要的小节,一定要掌握好坐标中点的表示方法,其次不要被到x,y 轴的距离搅浑了头,到y轴的距离表示的是横坐标,到x轴的距离表示的纵坐标。

遇到这一小节题目的时候一定要画图出来观察,看上去很简单,但是千万不能大意。

本文由索罗学院整理。

相关文档
最新文档