超重和失重例题分析

合集下载

高中物理第一册超重和失重 例题解析

高中物理第一册超重和失重 例题解析

超重和失重 例题解析★夯实根底1.关于超重和失重,如下说法中正确的答案是A.超重就是物体受的重力增加了B.失重就是物体受的重力减小了C.完全失重就是物体一点重力都不受了D.不论超重或失重物体所受重力是不变的【答案】 D2.前苏联时期在空间建立了一座实验室,至今仍在地球上空运行.这座空间站中所有物体都处于完全失重状态,如此在其中可以完成如下哪个实验A.用天平称量物体的质量B.做托里拆利实验C.验证阿基米德定律D.用两个弹簧秤验证牛顿第三定律【答案】 D3.用一根细绳将一重物吊在电梯的天花板上.在如下四种情况中,绳的拉力最大的是A.电梯匀速上升B.电梯匀速下降C.电梯加速上升D.电梯加速下降【答案】 C4.升降机以0.2 m/s 2的加速度竖直加速上升,站在升降机里质量为60 kg 的人对升降机地板的压力为________N ;如果升降机以一样大小的加速度减速上升,人对地板的压力又为________N.〔g 取10 m/s 2)【解析】 升降机加速上升时,人受向上的支持力F 1和向下的重力mg ,根据牛顿第二定律知:F 1-mg =maF 1=mg +ma =612 N升降机减速上升时,力的方向不变,同理:mg -F 2=maF 2=mg -ma =588 N故两种情况下的压力分别是612 N 、588 N.【答案】 612;5885.某人在地面上最多能举起60 kg 的重物,当此人站在以5 m/s 2的加速度加速上升的升降机中,最多能举起kg 的重物.(g 取10 m/s 2)【解析】 在地面上某人最多能举起60 kg 的重物,如此他的最大举力F =600 N ,在加速上升的升降机中,该力不变,设最多能举起质量为m 的物体,由牛顿第二定律得F -mg =mam=510600+=+a g F kg =40 kg【答案】 406.如图3—7—4所示,升降机天花板上用轻弹簧悬挂一物体,升降机静止时弹簧伸长 10 cm ,运动时弹簧伸长5 cm ,如此升降机的运动状态可能是图3—7—4A.以a =1 m/s 2的加速度加速下降B.以a =1 m/s 2的加速度加速上升C.以a =4.9 m/s 2的加速度减速上升 D.以a =4.9 m/s 2的加速度加速下降【解析】 升降机运动时,弹簧伸长量变小,弹力减小,物体失重,具有向下的加速度.静止时F 1=mg ,F 2=21F 1=21mg 运动时,mg -F 2=ma ,所以a =g /2=4.9 m/s 2.【答案】 CD7.如图3—7—5所示,在原来匀速运动的升降机的水平地板上放一物体,受到一个伸长的弹簧的拉力作用,但仍能保持与升降机相对静止.现突然发现物体被弹簧拉动,如此可以判断升降机的运动状态可能是图3—7—5A.加速上升 B.加速下降 C.减速上升D.减速下降【解析】 当物体匀速时,分析其受力如下列图,因为物体被弹簧拉动,所以弹簧的弹力F 大于物体所受的最大静摩擦力,说明最大静摩擦力减小了,可得F N 减小了.故升降机在竖直方向上具有了向下的加速度.【答案】 BC★提升能力8.在空中竖直向上发射一枚小火箭,其v —t 图象如图3—7—6所示,火箭内的水平支承面上放有质量为0.2 kg 的物体,如此物体对支承面的最大压力为N ,物体对支承面的最小压力为 N 〔g =10 m/s 2〕.图3—7—6【解析】 前5 s火箭加速上升,物体对支承面的压力最大.由v —t 图象知,前5 s 火箭的加速度大小为a 1=5100=∆t v m/s 2=20 m/s 2 放在水平支承面上的物体受到重力mg 和支持力F N ,由牛顿第二定律得F N -mg =maF N =m 〔g +a 〕=0.2×30 N =6 N由牛顿第三定律得,物体对支承面的压力大小为6 N.5 s以后,火箭做竖直上抛运动,加速度为重力加速度,处于完全失重状态,物体对支承面的压力为零.【答案】 6;09.升降机中斜面的倾角为θ,上面放着质量为m 的物体,如图3—7—7所示,当升降机以a 向上加速运动时,物体在斜面上保持静止.求物体所受斜面作用的摩擦力和支持力分别为多大?【解析】 由于物体随升降机加速上升,物体处于超重状态,相当于静止系统内物体重〔mg +ma 〕,所以F f =m (g +a )sin θF N =m (g +a )cos θ 【答案】 F f =m (g +a )sin θF N =m (g +a )cos θ10.质量为M 的人站在地面上,用绳通过定滑轮将质量为m 的重物从高处放下,如图3—7—8所示,假设重物以加速度a 下降〔a <g =,如此人对地面的压力为图3—7—8A.(M +m )g -maB.M (g -a )-maC.(M -m )g +maD.Mg -ma【解析】 对物体受力分析如图,由牛顿第二定律有G -T =ma ①对人受力有F N +T =Mg ②由①②得 F N =Mg -T =Mg +ma -mg =(M -m)g +ma同一根绳上拉力处处相等.【答案】 C11.用力F 提拉用细绳连在一起的A 、B 两物体,如图3—7—9以 4.9 m/s 2的加速度匀加速竖直上升,A 、B 的质量分别为1 kg 和2 kg ,绳子所能承受的最大拉力是35 N ,如此〔1〕力F 的大小是多少?〔2〕为使绳不被拉断,加速上升的最大加速度是多少?【解析】 以AB 整体为研究对象,应用牛顿第二定律,F -(m 1+m 2)g =(m 1+m 2)a 得:F =44.1 N;再以B 为研究对象,为使绳子不被拉断,AB 间的拉力最多能达到F 1=35 N ,如此物体的加速度为a =221m g m F -=7.7 m/s 2图3—7—9图3—7—7【答案】〔1〕44.1 N (2)7.7 m/s2。

失重超重高中物理练习题及讲解

失重超重高中物理练习题及讲解

失重超重高中物理练习题及讲解# 失重超重现象的高中物理练习题及讲解## 练习题一:失重状态下的物体题目:在一次太空旅行中,宇航员在失重状态下将一个质量为2kg的物体从舱内抛出。

假设物体在抛出时的速度为5m/s,求物体在失重状态下的动能。

解答:失重状态下,物体不受重力影响,动能的计算公式为:\[ KE = \frac{1}{2}mv^2 \]其中,\( m \) 是物体的质量,\( v \) 是物体的速度。

将题目中的数据代入公式,得:\[ KE = \frac{1}{2} \times 2 \times 5^2 = 25 \, \text{J} \] 所以,物体在失重状态下的动能为25焦耳。

## 练习题二:超重状态下的电梯题目:一个质量为60kg的人站在电梯内,电梯以2m/s²的加速度向上加速。

求此时人所感受到的重力。

解答:在超重状态下,人所感受到的重力等于其真实重力加上由于加速度产生的额外力。

真实重力为:\[ F_{\text{real}} = mg \]其中,\( m \) 是人的质量,\( g \) 是重力加速度(约9.8m/s²)。

代入数据得:\[ F_{\text{real}} = 60 \times 9.8 = 588 \, \text{N} \]由于电梯向上加速,人会感受到额外的力,这个力的计算公式为:\[ F_{\text{extra}} = ma \]代入数据得:\[ F_{\text{extra}} = 60 \times 2 = 120 \, \text{N} \]所以,人所感受到的总重力为:\[ F_{\text{total}} = F_{\text{real}} + F_{\text{extra}} =588 + 120 = 708 \, \text{N} \]## 练习题三:失重与超重的转换题目:一个质量为50kg的物体在自由落体过程中,从10m的高度开始下落。

超重和失重的典型例题

超重和失重的典型例题

超重和失重 问题 超重和失重是两个很重要的物理现象。

当物体的加速度向上时,物体对支持物的压力大于物体的重力,这种现象叫做超重;当物体的加速度向下时,物体对支持物的压力小于物体的重力,这种现象叫做失重;当物体向下的加速度为g 时,物体对支持物的压力为零,这种现象叫做完全失重。

下面通过举例说明超重和失重的有关问题。

【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2):(1)当弹簧秤的示数T 1=40N ,且保持不变.(2)当弹簧秤的示数T 2=32N ,且保持不变.(3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向.当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,则 由此可见电梯处于静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,则式中的负号示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升.(3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,则加速度为正值表示电梯的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降.小结:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态.【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2)解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N ,(1)在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度对于重物:F -m 2g=m 2 a 1,则(2)当升降机以a 2=2.5m/s 2的加速度加速下降时,重物失重.对于重物, 点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变.【例3】如图3所示,是电梯上升的v ~t 图线,若电梯的质量为100kg ,则承受电梯的钢绳受到的拉力在0~2s 之间、2~6s 之间、6~9s 之间分别为多大?(g 取10m/s 2)解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v -t 图线可以确定电梯的加速度,由牛顿运动定律可列式求解对电梯的受力情况分析如图3所示:(1)由v -t 图线可知,0~2s 内电梯的速度从0均匀增加到6m/s ,其加速度a 1=(v t -v 0)/t =3m/s 2由牛顿第二定律可得F 1-mg =ma 1 解得钢绳拉力 F 1=m(g +a 1)=1300 N(2)在2~6s 内,电梯做匀速运动.F 2=mg =1000N(3)在6~9s 内,电梯作匀减速运动,v 0=6m/s ,v t =0,加速度a 2=(v t -v 0)/t =-2m/s 2由牛顿第二定律可得F 3-mg =ma 2,解得钢绳的拉力F 3=m (g +a 2)=800N .点拨:本题是已知物体的运动情况求物体的受力情况,而电梯的运动情况则由图象给出.要学会从已知的v ~t 图线中找出有关的已知条件.F mg图1 图3小结:从计算结果来看吊起电梯的钢绳的拉力与它的速度无关,而与它的加速度有关,即超失重的条件是看物体运动的加速度而不是看物体运动的速度。

超重失重、等时圆和动力学两类基本问题(解析版)

超重失重、等时圆和动力学两类基本问题(解析版)

超重失重、等时圆和动力学两类基本问题导练目标导练内容目标1超重失重目标2动力学两类基本问题目标3等时圆模型【知识导学与典例导练】一、超重失重1.判断超重和失重现象的三个角度(1)从受力的角度判断:当物体受到的向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态;等于零时处于完全失重状态。

(2)从加速度的角度判断:当物体具有向上的加速度时处于超重状态;具有向下的加速度时处于失重状态;向下的加速度恰好等于重力加速度时处于完全失重状态。

(3)从速度变化角度判断:物体向上加速或向下减速时,超重;物体向下加速或向上减速时,失重。

2.对超重和失重问题的三点提醒(1)发生超重或失重现象与物体的速度方向无关,只取决于加速度的方向。

(2)并非物体在竖直方向上运动时,才会出现超重或失重现象。

只要加速度具有竖直向上的分量,物体就处于超重状态;同理,只要加速度具有竖直向下的分量,物体就处于失重状态。

(3)发生超重或者失重时,物体的实际重力并没有发生变化,变化的只是物体的视重。

1如图所示,一个圆形水杯底部有一小孔,用手堵住小孔,往杯子里倒半杯水。

现使杯子做以下几种运动,不考虑杯子转动及空气阻力,下列说法正确的是()A.将杯子竖直向下抛出,小孔中有水漏出B.将杯子斜向上抛出,小孔中有水漏出C.用手握住杯子向下匀速运动,不堵住小孔也没有水漏出D.杯子做自由落体运动,小孔中没有水漏出【答案】D【详解】ABD.杯子跟水做斜抛运动、自由落体运动、下抛运动时都只受重力,处于完全失重状态,杯子与水相对静止,因此不会有水漏出,AB错误,D正确;C.杯子向下做匀速运动,处于平衡状态,水受重力,会漏出,C错误。

故选D。

2“笛音雷”是春节期间常放的一种鞭炮,其着火后一段时间内的速度-时间图像如图所示(取竖直向上为正方向),其中t0时刻为“笛音雷”起飞时刻、DE段是斜率大小为重力加速度g的直线。

不计空气阻力,则关于“笛音雷”的运动,下列说法正确的是()A.“笛音雷”在t 2时刻上升至最高点B.t 3~t 4时间内“笛音雷”做自由落体运动C.t 0~t 1时间内“笛音雷”的平均速度为v 12D.t 3~t 4时间内“笛音雷”处于失重状态【答案】D【详解】A 由图可知,t 0~t 4时间内“笛音雷”的速度一直为正值,表明其速度方向始终向上,可知,“笛音雷”在t 2时刻并没有上升至最高点,上升至最高点应该在t 4时刻之后,故A 错误;B .t 3~t 4时间内“笛音雷”速度方向向上,图像斜率为一恒定的负值,表明t 3~t 4时间内“笛音雷”实际上是在向上做竖直上抛运动,其加速度就是重力加速度g ,故B 错误;C .将A 、B 用直线连起来,该直线代表匀加速直线运动,其平均速度为v12,而AB 线段与横轴所围的面积大于AB 曲线与横轴所围的面积,该面积表示位移,根据v =ΔxΔt可知,直线代表的匀加速直线运动的平均速度大于AB 曲线代表的变加速直线运动的平均速度,即t 0~t 1时间内“笛音雷”的平均速度小于v12,故C 错误;D .根据上述,t 3~t 4时间内“笛音雷”做竖直上抛运动,加速度方向竖直向下,“笛音雷”处于失重状态,故D 正确。

第四讲 两类动力学问题 超重和失重(解析版)

第四讲  两类动力学问题   超重和失重(解析版)

第四讲两类动力学问题超重和失重【例1】在升降电梯内的地面上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是()A.晓敏同学所受的重力变小了B.晓敏对体重计的压力小于体重计对晓敏的支持力C.电梯一定在竖直向下运动D.电梯的加速度大小为g/5,方向一定竖直向下答案 D解析晓敏在这段时间内处于失重状态,是由于晓敏对体重计的压力变小了,而晓敏的重力没有改变,A选项错;晓敏对体重计的压力与体重计对晓敏的支持力是一对作用力与反作用力,大小一定相等,B选项错,以竖直向下为正方向,有:mg-F=ma,即50g-40g=50a,解得a=g/5,方向竖直向下,但速度方向可能是竖直向上,也可能是竖直向下,C选项错,D选项正确.【练习1】在箱式电梯里的台秤秤盘上放着一物体,在电梯运动过程中,某人在不同时刻拍了甲、乙和丙三张照片,如图所示,乙图为电梯匀速运动的照片。

从这三张照片可判定() A.拍摄甲照片时,电梯一定处于加速下降状态B.拍摄丙照片时,电梯一定处于减速上升状态C.拍摄丙照片时,电梯可能处于加速上升状态D.拍摄甲照片时,电梯可能处于减速下降状态答案 D解析根据已知条件可知,甲为超重,故加速度向上;丙为失重,加速度向下。

答案选D【练习2】如图所示,小球的密度小于杯中水的密度,弹簧两端分别固定在杯底和小球上.静止时弹簧伸长Δx.若全套装置自由下落,则在下落过程中弹簧的伸长量将( )A.仍为ΔxB.大于ΔxC.小于Δx,大于零D .等于零答案 D解析 当全套装置自由下落时,系统处于完全失重状态,弹簧与连接物之间无相互作用力,即弹簧恢复到原长,故D 选项正确.【例2】如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直方向θ=30°角,则F 应为多少?(g =10m /s 2)答案 48N解析 对小球由牛顿第二定律得:mgtgθ=ma ①对整体,由牛顿第二定律得:F -μ(M+m )g =(M+m )a ②由①②代入数据得:F =48N【练习3】同种材料的a 、b 两物体的质量分别为m 1、m 2,由轻质弹簧相连。

超重失重

超重失重

超重和失重问题N1、 静止或匀速直线N =mg视重=重力平衡 a = 02、 向上加速或向下减速,a 向上N -mg =ma a∴N =mg +ma视重>重力 超重3、 向下加速或向上减速,a 向下mg -N =ma∴N =mg -ma视重<重力 失重4、 如果a =g 向下,则N =0 台秤无示数完全失重注意:①、物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化;②、发生“超重”或“失重”现象与物体速度方向无关,只决定于物体的加速度方向;③、在完全失重状态,平常一切由重力产生的物理现象完全消失。

如单摆停摆、浸在水中的物体不受浮力等。

例题:升降机中人m =50kg ,a=2 m/s 向上或向下,求秤的示数【典型例题】一、超重失重【例1】为了研究超重与失重现象,某同学把一体重秤放在电梯的地板上,他站在体重秤上随电梯运动并观察体重秤示数的变化情况。

下表记录了几个特定时刻体重秤的示数。

(表内时间不表示先后顺序)时间 t 0 t 1 t 2 t 3体重秤示数(kg ) 45.0 50.0 40.0 45.0若已知t 0时刻电梯静止,则( )A .t 1和 t 2时刻该同学的质量并没有变化,但所受重力发生了变化B .t 1和 t 2时刻电梯的加速度方向一定相反C .t 1和 t 2时刻电梯运动的加速度方向相反、运动方向不一定相反D .t 3时刻电梯可能向上运动【例2】原来做匀速运动的升降机内,有一被伸长弹簧拉住的、具有一定质量的物体A 静止在地板上,如图3-7-1所示,现发现A 突然被弹簧拉动向右方。

由此可判断,此时升降机的运动可能是 ( )A. 加速上升B. 减速上升C. 加速下降AD. 减速下降【例3】某人在以a =2.5m/s 2的加速下降的电梯中最多可举起m 1=80kg 的物体,则此人在地面上最多可举起多少千克的物体?若此人在一匀加速上升的电梯中,最多能举起m 2=40kg 的物体,则此高速电梯的加速度多大?(g 取10m/s 2)二、牛顿第二定律应用【例1】 如图所示,如图所示,轻弹簧下端固定在水平面上。

高一物理超重失重试题答案及解析

高一物理超重失重试题答案及解析

高一物理超重失重试题答案及解析1. 在下面所介绍的各种情况中,哪种情况将出现超重现象? ①荡秋千经过最低点的小孩 ②汽车过凸形桥 ③汽车过凹形桥④在绕地球作匀速圆周运动的飞船中的仪器 A ①② B ①③ C ①④ D ③④ 【答案】B【解析】:①荡秋千经过最低点的小球,此时有向上的加速度,处于超重状态. ②汽车过凸形桥最高点,加速度向下,处于失重状态;③汽车过凹形桥最低点,此时有向上的加速度,处于超重状态. ④在绕地球做匀速圆周运动的飞船中的仪器,处于完全失重状态。

故B 正确。

【考点】考查了超重和失重2. 如图所示,质量一定的汽车驶过圆弧形桥面顶点时未脱离桥面,关于汽车所处的运动状态以及对桥面的压力,以下说法正确的是 ( )A .汽车处于超重状态,它对桥面的压力大于汽车的重力B .汽车处于超重状态,它对桥面的压力小于汽车的重力C .汽车处于失重状态,它对桥面的压力大于汽车的重力D .汽车处于失重状态,它对桥面的压力小于汽车的重力【答案】D【解析】试题解析:由于圆弧形桥面的圆心在下方,故汽车通过时的向心力竖直向下,设汽车受到的圆弧形桥面的支持力为F N ,则由牛顿第二定律可得:mg -F N =ma ,故F N =mg -ma ,根据力的相互性可知,汽车对桥面的压力小于汽车的重力,即汽车处于失重状态,故D 正确。

【考点】牛顿第二定律,圆周运动。

3. 王力乘坐电梯,突然感到背上的背包变轻了,电梯此时可能在 A .匀速上升 B .减速下降 C .加速上升 D .减速上升【答案】D【解析】背包变轻说明处于失重状态,当加速度向下时处于失重状态,即当物体加速下降或减速上升时,才处于失重状态,因此D 正确,ABC 错误。

【考点】超重与失重4. 2013年6月20日上午10时,中国首位“太空教师”王亚平在太空一号太空舱内做了如下两个实验:实验一,将两个细线悬挂的小球由静止释放,小球呈悬浮状。

实验二,拉紧细线给小球一个垂直于线的速度,小球以选点为圆做匀速圆周运动。

高中物理超重与失重例题解析 沪科版 必修1

高中物理超重与失重例题解析 沪科版 必修1

超重与失重-例题解析所谓超重和失重。

指的是当物体(或物体系的一部分)具有竖直方向上的加速度时,引起的物体对支持物的压力比其重力大或小.变化的是“视重”,物体本身的重力并没有发生变化.处理超重、失重的问题,实际上是牛顿运动定律的应用,与一般题目的处理方法是一样的,即首先确定研究对象,然后进行受力分析和运动状态分析,选择正方向列牛顿运动定律方程与运动规律方程,求解验证.【例1】升降机以5 m/s2的加速度匀加速上升,站在升降机里的人质量是50 kg,人对升降机地板的压力是多大?若此时人站在升降机里的测力计上,测力计的示数是多大?解析:人和升降机以共同的加速度上升,因而人的加速度是已知的,题中又给出了人的质量。

为了能够应用牛顿第二定律.应该把人作为研究对象.人在升降机中受到两个力:重力G和地板的支持力F.升降机地板对人的支持力和人对升降机地板的压力是一对作用力和反作用力。

根据牛顿第三定律。

只要求出前者就可知道后者.人在G和F的合力作用下,以0.5 m/s2加速度竖直向上运动.取竖直向上为正方向,根据牛顿第二定律得F-G=ma由此可得F=G+ma=m(g+a).代入数值得F=515 N.根据牛顿第三定律.人对地板的压力的大小也是515 N.方向与地板对人的支持力的方向相反,即竖直向下.测力计的示数表示的是测力计受到的压力,所以测力计的示数就是515 N.【例2】某人在地面上最多能举起60 kg的重物,当此人站在以5 m/s2的加速度加速上升的升降机中,最多能举起________kg的重物.(g取10 m/s2)解析:当人在地面上举起杠铃时,对杠铃分析,由牛顿第二定律得F-mg=0在升降机内举起杠铃时,由于升降机具有竖直向上的加速度,故杠铃也具有相同的竖自向上的加速度,而人对外提供的最大力是不变的,对杠铃由牛顿第二定律得F-m′g=m′a解得m′=40 kg.所以,在加速上升的升降机内,人能举起的杠铃的最大质量为40kg.【例】据报载,我国航天第一人杨利伟的质量为63 kg(装备质量不计).假如飞船以8.6 m/s2的加速度竖直上升,这是他对坐椅的压力多大?杨利伟训练时承受的压力可达到8个G,这表示什么意思?当飞船返回地面,减速下降时。

高考物理计算题复习《超重和失重》(解析版)

高考物理计算题复习《超重和失重》(解析版)

《超重和失重》一、计算题1.2003年,中国成为世界上第三个用飞船载人到太空的国家,并在2005年执行搭载两位宇航员的航天任务,图为飞船升空过程.在飞船加速过程中,宇航员处于超重状态.人们把这种状态下宇航员对座椅的压力与静止在地球表面时所受重力的比值,称为耐受力值,用k表示.在选拔宇航员时,要求其耐受力值为4≤k≤12.若某次宇宙飞船执行任务过程中,在飞船起飞阶段宇航员的耐受力值k1=4.2,而飞船重返大气层阶段飞船以a2=5.2m/s2的加速度竖直向下减速运动.设宇航员质量m= 75kg,求:(1)飞船起飞阶段加速度a1的大小;(2)返回大气层时宇航员的耐受力值k2.2.质量为50kg的人站在升降机中的体重计上,如图所示,求:(g取10m/s2)(1)当升降机以2m/s2的加速度匀加速下降时,通过计算分析人处于超重状态还是失重状态?(2)若该体重计能承受的最大压力为2000N,则升降机向上加速时的最大加速度多大?3.一个质量为50kg的人,站在竖直向上运动着的升降机底板上.他看到升降机上挂着一个带有重物的弹簧测力计,其示数为40N,如图所示,该重物的质量为5kg,这时人对升降机底板的压力是多大?(g取10m/s2)4.一个质量为70kg的人乘电梯竖直向上运行,如图为电梯的速度−时间图象。

(g取10m/s2)求:(1)电梯在0−6s内上升的高度。

(2)在0−2s,2s−5s,5s−6s三个阶段,人对电梯地板的压力分别为多大?5.一个质量是60kg的人站在升降机的地板上,升降机的顶部悬挂了一个弹簧秤,弹簧秤下面挂着一个质量为m=5kg的物体A,当升降机向上运动时,他看到弹簧秤的示数为40N,g取10m/s2,求:(1)此时升降机的加速度的大小;(2)此时人对地板的压力.6.在电梯中,把一重物置于台秤上,台秤与力的传感器相连,当电梯从静止加速上升,然后又匀速运动一段时间,最后停止运动;传感器的屏幕上显示出其受的压力与时间的关系(N−t)图象,如图所示,则(1)电梯在哪段时间内加速上升,此过程中重物处于超重状态还是失重状态?为什么?(2)电梯的最大加速度是多大?(取g=10m/s2)7.如图所示,质量M=60kg的人站在升降机的地板上,升降机的顶部悬挂了一只弹簧测力计(图中简画为弹簧),测力计下挂着一个质量m=1.0kg的物体A.在升降机运动的某段时间内,人看到弹簧测力计的示数为6.0N.取g=10m/s2。

超重和失重典例分析

超重和失重典例分析

超重和失重典例分析应用一:超失重情况物体摩擦力的变化【例1】如图1,一台升降机的底板上放着一个质量为m 的物体,它跟地面间的动摩擦力因数为μ,可以认为物体受到最大静摩擦力等于滑动摩擦力.一根弹性系数为k 的弹簧水平放置,左端跟物体相连,右端固定在竖直墙上.开始时弹簧伸长为△x ,弹簧对物体有水平向右的拉力,现实然发现物体被弹簧拉动,则升降机运动情况为( )A .匀加速向下运动a=g-k △x/μm .B .匀加速向下运动,a>g-k △x/μm .C .匀减速向上运动,a>g-k △x/μm .D .匀减速向下运动,a=g-k △x/μm .【解析】物体开始没有滑动是由于弹簧的拉力小于最大静摩擦力.因N F f μ=,只有减少地面对物体的正压力才能减少最大静摩擦力,当x k F f N ∆==μ时物体开始滑动.故物体必处于失重状态,具有向下的加速度a ,对物体受力分析列方程可得:m x k g m s k mg a μμ/)/(∆-=∆-=,故当升降机向下的加速度a>g-k△x/μm 时,物体可以在地面滑动.【答案】B 、C 正确.【点拨】此题分析稍为综合,但只要明确竖直方向的受力情况和运动情况和水平方向的受力情况,解题思路就显得清晰了。

应用二:超失重情况的有关仪器的测量效果和测量数据分析【例2】 下列四个实验,哪些不能在绕地球飞行的宇宙飞船中完成?( )A .用天平测量物体的质量.B .用弹簧测物体的重力.C .用密度计测物体密度.D .用水银气压计测舱内大气压强.【解析】宇宙飞船进入轨道绕地球飞行时,处于完全失重状态.由物体重力而产生的一些现象不复存在,故以上四个实验都不能完成.【答案】A 、B 、C 、D【点拨】注意弹簧称虽然不能测物体的重力,但是在宇宙中弹簧称还是能够测量力的。

比方说测量人对弹簧的拉力。

【例3】如图2,台秤上放着一个装有水的杯子,通过固定在台秤上的支架用细绳悬挂一个小球,球全部浸没在水中,平衡时台秤的示数为某一数值.今剪断悬绳,在球下落但还没到达杯底的过程中,若不计水的阻力,则台秤的示数将( )A .变大.B .变小.C .不变.D .无法判断.【解析】(1)等效法.剪断线后小球加速向下运动,而被小球排开的那部分“水球”则向上加速运动,二者加速度大小相同.小球失重a m 水,等效水球超重a m 水,因为水球m m 〉,失重大于超重.整体来看,系统处于失重状态,故台秤读数将变小,B 正确.(2)质心法.当剪断线后,小球加速下降时,水球加速上升,但系统的质心在下降,系统处于失重状态,故台秤的读数减少,B 正确.应用三、物体系中部分物体的超重和失重【例4】如图3所示:A 为电磁铁,C 为胶木秤盘,A 和C(包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点.当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小为( )A .F=MgB .Mg<F<(M+m)gC .F=(M+m)gD .F>(M+m)g解析一:当铁片被吸引上升时,对0点进行受力分析如图3—8—3,有1F Mg F += ①对铁片进行受力分析得ma mg F =-'1,即F'=mg+ma>mg ②则由①②知:g m M ma g m M ma mg Mg F mg F )()(1+>++=++=+=,所以选项D 正确.解析二:当电磁铁通电,铁板被吸引上升的过程中,铁片具有向上的加速度,导致整个装置的重心具有向上的加速度,处于超重状态,从而F>(M+m)g .答案:D点拨:灵活运用超重、失重知识、对一些动力学问题的解答更为简捷、准确.应用四、超重和失重液体对浸没在其中的物体的浮力【例5】一轻弹簧的一端固定在容器底部,另一端与密度小于水的木球相连.容器内盛水使木球浸没在水中,容器、木球都静止时,弹簧伸长量为x ,如图4.如果整个容器作自由落体运动,在运动过程中,弹簧的伸长量为x′.试比较x′与x 的大小.【分析】当容器木球都静止时,小球受到重力mg ,弹力kx 和浮力Vρg ,这三个力的合力为零,即mg + kx=ρVg当容器自由下落时,其加速度a = g ,液体对小球的浮力为:ρV (g-a )=0,只有重力和弹力使小球产生加速度,即kx′+mg = ma = mg,易得x′=0.还可以这样考虑:此时液体对木球的浮力为0,木球又完全失重,弹簧当然就不会有形变.。

超重和失重·典型例题解析

超重和失重·典型例题解析

超重和失重·典型例题解析【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2):(1)当弹簧秤的示数T 1=40N ,且保持不变.(2)当弹簧秤的示数T 2=32N ,且保持不变.(3)当弹簧秤的示数T 3=44N ,且保持不变.解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向.(1)当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,解得这时电梯的加速度=-=-×=,由此可见,电梯处于a 404104m /s 012T mg m 1 静止或匀速直线运动状态.(2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,解得这时电梯的加速度===-.式中的负号表a 2m /s 22T mg m m s 2232404--/ 示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升.(3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,解得这时电梯的加速度==-=.为正值表示电梯a 44404m /s 1m /s a 3223T mg m 3- 的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降.点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态.【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2)解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N ,在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度对于重物,-=,所以==-×=;F m g m a a 120010010100m /s 2m /s 221122F m g m -22当升降机以2.5m/s 2的加速度加速下降时,重物失重.对于重物,m g F m a m 120010 2.5kg 160kg 3323-=,得==-=.F g a -2 点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变.【例3】如图24-2所示,是电梯上升的v ~t 图线,若电梯的质量为100kg ,则承受电梯的钢绳受到的拉力在0~2s 之间、2~6s 之间、6~9s 之间分别为多大?(g 取10m/s 2)解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v -t 图线可以确定电梯的加速度,由牛顿运动定律可列式求解对电梯的受力情况分析如图24-2所示:(1)由v -t 图线可知,0~2s 内电梯的速度从0均匀增加到6m/s ,其加速度a 1=(v t -v 0)/t =3m/s 2由牛顿第二定律可得F 1-mg =ma 1解得钢绳拉力F1=m(g+a1)=1300 N(2)在2~6s内,电梯做匀速运动.F2=mg=1000N(3)在6~9s内,电梯作匀减速运动,v0=6m/s,v t=0,加速度a2=(v t-v0)/t=-2m/s2由牛顿第二定律可得F3-mg=ma2,解得钢绳的拉力F3=m(g+a2)=800N.点拨:本题是已知物体的运动情况求物体的受力情况,而电梯的运动情况则由图象给出.要学会从已知的v~t图线中找出有关的已知条件.【问题讨论】在0~2s内,电梯的速度在增大,电梯的加速度恒定,吊起电梯的钢绳拉力是变化的,还是恒定的?在2~6s内,电梯的速度始终为0~9s内的最大值,电梯的加速度却恒为零,吊起电梯的钢绳拉力又如何?在6~9s内,电梯的速度在不断减小,电梯的加速度又是恒定的,吊起电梯的钢绳拉力又如何?请你总结一下,吊起电梯的钢绳的拉力与它的速度有关,还是与它的加速度有关?【例4】如图24-3所示,在一升降机中,物体A置于斜面上,当升降机处于静止状态时,物体A恰好静止不动,若升降机以加速度g竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是[ ] A.物体仍然相对斜面静止,物体所受的各个力均不变B.因物体处于失重状态,所以物体不受任何力作用C.因物体处于失重状态,所以物体所受重力变为零,其它力不变D.物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用点拨:(1)当物体以加速度g向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.(2)处于完全失重状态的物体,地球对它的引力即重力依然存在.答案:D【例5】如图24-4所示,滑轮的质量不计,已知三个物体的质量关系是:m1=m2+m3,这时弹簧秤的读数为T.若把物体m2从右边移到左边的物体m1上,弹簧秤的读数T将[ ] A.增大B.减小C.不变D.无法判断点拨:(1)若仅需定性讨论弹簧秤读数T的变化情况,则当m2从右边移到左边后,左边的物体加速下降,右边的物体以大小相同的加速度加速上升,由于m1+m2>m3,故系统的重心加速下降,系统处于失重状态,因此T<(m1+m2+m3)g.而m2移至m1上后,由于左边物体m1、m2加速下降而失重,因此跨过滑轮的连线张力T0<(m1+m2)g;由于右边物体m3加速上升而超重,因此跨过滑轮的连线张力T0>m3g.(2)若需定量计算弹簧秤的读数,则将m1、m2、m3三个物体组成的连接体使用隔离法,求出其间的相互作用力T0,而弹簧秤读数T=2T0,即可求解.答案:B跟踪反馈1.金属小筒的下部有一个小孔A,当筒内盛水时,水会从小孔中流出,如果让装满水的小筒从高处自由下落,不计空气阻力,则在小筒自由下落的过程中[ ]A .水继续以相同的速度从小孔中喷出B .水不再从小孔中喷出C .水将以较小的速度从小孔中喷出D .水将以更大的速度从小孔中喷出2.一根竖直悬挂的绳子所能承受的最大拉力为T ,有一个体重为G 的运动员要沿这根绳子从高处竖直滑下.若G >T ,要使下滑时绳子不断,则运动员应该[ ]A .以较大的加速度加速下滑B .以较大的速度匀速下滑C .以较小的速度匀速下滑D .以较小的加速度减速下滑3.在以4m/s 2的加速度匀加速上升的电梯内,分别用天平和弹簧秤称量一个质量10kg 的物体(g 取10m/s 2),则[ ]A .天平的示数为10kgB .天平的示数为14kgC .弹簧秤的示数为100ND .弹簧秤的示数为140N4.如图24-5所示,质量为M 的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m 的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为[ ]A gB C 0 D ....()()M m g m M m g m-+参考答案:1.B 2.A 3.AD 4.D。

4-6超重与失重

4-6超重与失重

【例题】有一质量为60kg的人站在一放置于升
降机的底板上的台秤上,当升降机作如下运动 时,台秤的示数为多少? 1.升降机以v=5m/s的速度匀速上升时; 2.升降机以a=5m/s2的加速度加速上升时;
3.升降机以a=5m/s2的加速度减速上升时;
4.升降机以a=5m/s2的加速度加速下降时; 5.升降机以a=5m/s2的加速度减速下降时; 6.升降机以a=g的加速度加速下降时;
当测量的重力值大于物体实 际的重力时,称为超重现象;当 测量的重力值小于物体实际的重 力时,称为失重现象。
超重和失重的解释
【特别提醒】无论是超重还是失重,物体本身的重力 是不变的。只是测量出的重力变大或变小了。 体重计的称重原理
体重计是根据受到物体的压力大小来测量物体的 重力。
当物体静止时,压力等于重力,所以体重计的示 数等于物体本身的重力大小; 当物体加速向上或向下运动时,压力的大小不等 于重力,所以测量值不等于物体本身的重力。
日常生活中的超重和失重现象
【实验一】把物体挂在弹簧秤下,用手拉着弹簧秤:
1.静止 ——示数等于重力 2.向上加速运动 ——示数大于重力 3.向下加速运动 ——示数小于重力 观察弹簧秤的示数如何变化? 小 结:
用弹簧测力计测物体的重力时,应 保持静止;如果是向上加速或向下加速 运动,测出的结果会大于或小于物体本 身的重力。
减速上升或者是加速下降
N
T
G
G
例题1:课本P98-1 解题方法: 1、先确定加速度a的方向(向上 或向下); 2、分析竖直方向上的受力情况, 求出合力F合; 3、根据牛顿第二定律F合=ma进行
求解。

一个人站在体重计的测盘上,在人下蹲 的过程中,指针示数变化应是( ) A.先减小,后还原 B.先增加,后还原 C.始终不变 D.先减小,后增加,再还原

高中物理超重与失重例题解析 鲁科版 必修1

高中物理超重与失重例题解析 鲁科版 必修1

超重与失重-例题解析【例1】跳高运动员从地面起跳的瞬间,下列说法正确的是()A.运动员给地面的压力大于运动员受到的重力B.地面给运动员的支持力大于运动员受到的重力C.地面给运动员的支持力大于运动员对地面的压力D.地面给运动员的支持力等于运动员对地面的压力答案:ABD解析:地面给运动员的支持力和运动员对地面的压力是一对作用力和反作用力,永远大小相等,方向相反,作用在一条直线上,与运动员的运动状态无关.所以选项C错误,选项D正确.跳高运动员从地面起跳的瞬间,必有向上的加速度,这是因为地面给运动员的支持力大于运动员受到的重力,运动员所受合外力竖直向上的结果.所以选项B正确.依据牛顿第三定律可知,选项A正确.点评:本题着重考查对力的概念,牛顿第三定律以及超重失重的理解.【例2】质量是60kg的人站在升降机中的体重计上,当升降机做下列各种运动时,体重计的读数是多少?(g=10m/s2)图6—13(1)升降机匀速上升;(2)升降机以4m/s2的加速度加速上升;(3)升降机以5m/s2的加速度加速下降.解析:人站在升降机中的受力情况如图6—13所示.(1)当升降机匀速上升时,由牛顿第二定律得:F N—mg=0所以,人受到的支持力FN=mg=60×10N=600N.根据牛顿第三定律,人对体重计的压力即体重计的示数为600N.(2)当升降机以4m/s2的加速度加速上升时,根据牛顿第二定律得FN—mg=ma,FN=mg+ma=60×(10+4)=840N,此时体重计的示数为840N,人处于超重状态.(3)当升降机以5m/s2的加速度加速下降时,根据牛顿第二定律得mg—FN=ma,FN=mg—ma=60×(10—5)=300N,此时体重计的示数为300N,人处于失重状态.点评:当物体处于超重、失重状态时,其本身的重力保持不变,物体所受的拉力(或支持力)的大小,可根据牛顿第二定律计算出来,再根据牛顿第三定律可知物体对支持物的压力或对悬挂物的拉力大小.。

超重与失重(高考题及答案详解)

超重与失重(高考题及答案详解)

超重与失重1.(09广东8)某人在地面上用弹簧秤称得体重为490N。

他将弹簧秤移至电梯内称其体重,0t至3t时间段内,弹簧秤的示数如图5所示,电梯运行的v-t图可能是(取电梯向上运动的方向为正)2.(08山东19)直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示。

设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态。

在箱子下落过程中,下列说法正确的是A.箱内物体对箱子底部始终没有压力B.箱子刚从飞机上投下时,箱内物体受到的支持力最大C.箱子接近地面时,箱内物体受到的支持力比刚投下时大D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来”3.(11四川19)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则A.火箭开始喷气瞬间伞绳对返回舱的拉力变小B.返回舱在喷气过程中减速的住要原因是空气阻力C返回舱在喷气过程中所受合外力可能做正功D.返回舱在喷气过程中处于失重状态4.(10浙江14)如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。

下列说法正确的是A. 在上升和下降过程中A对B的压力一定为零B. 上升过程中A对B的压力大于A对物体受到的重力C. 下降过程中A对B的压力大于A物体受到的重力D. 在上升和下降过程中A对B的压力等于A物体受到的重力5.(10海南8)如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上。

若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为A.加速下降B.加速上升C.减速上升D.减速下降ABv答案:1.【答案】A。

【解析】由图5可知,在t0-t1时间内,弹簧秤的示数小于实际重量,则处于失重状态,此时具有向下的加速度,在t1-t2阶段弹簧秤示数等于实际重量,则既不超重也不失重,在t2-t3阶段,弹簧秤示数大于实际重量,则处于超重状态,具有向上的加速度,若电梯向下运动,则t0-t1时间内向下加速,t1-t2阶段匀速运动,t2-t3阶段减速下降,A正确;BD不能实现人进入电梯由静止开始运动,C项t0-t1内超重,不符合题意。

高一物理超重失重试题答案及解析

高一物理超重失重试题答案及解析

高一物理超重失重试题答案及解析1.宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上,用R表示地球的半径,g表示地球表面处的重力加速度,g' 表示宇宙飞船所在处的地球引力加速度,N表示人对秤的压力,下列关系式中正确的是()A.g'=g B.g'=0C.N= m g D.N=0【答案】D【解析】设地球质量为M,忽略地球自转,当人在地面时,万有引力可近似等于重力:,解得:,当宇宙飞船绕地心做半径为r的匀速圆周运动时,根据牛顿第二定律得:,解得:宇宙飞船所在处的地球引力加速度,所以,故A、B错误;当宇宙飞船绕地心做半径为r的匀速圆周运动时,万有引力全部用来提供向心力,飞船舱内物体处于完全失重状态,所以人对秤的压力为零,故C错误,D正确。

所以选D。

【考点】本题考查万有引力定律及其应用,意在考查考生对天体表面重力加速度的求解方法的掌握情况及对失重和超重现象的理解。

2.蹦极”是一项刺激的极限运动,质量为m的运动员将一端固定的长弹性绳绑在踝关节处,从几十米高处跳下。

在某次蹦极中,弹性绳弹力F的大小随时间t的变化图象如图所示。

将蹦极过程近似为在竖直方向的运动,弹性绳中弹力与伸长量的关系遵循胡克定律,空气阻力不计。

下列说法正确的是A.t1~t2时间内运动员处于超重状态B.t4时刻运动员具有向上的最大速度C.t3时刻运动员的加速度为零D.t3时刻弹性绳弹力F大于2mg 【答案】 BD【解析】试题分析:在t1~t2时间内,运动员合力向下,加速下降,失重,故A错误;t4时刻运动员受到的重力和拉力平衡,加速度为零,具有最大的向上的速度,故B正确;t3时刻弹力大于重力,合力方向向上,所以运动员的加速度不为零,所以C错;t3时刻是弹性绳伸得最长的时刻,速度为0,而弹性绳刚伸直时,速度不为0,由对称性可知,由t1~t2这段时间里弹性绳的形变量x 12小于t2~t3这段时间里弹性绳的形变量x23,由胡克定律可知 t2时kx12=mg,t3时F=k(x12+x23)>2kx12=2mg,所以D正确【考点】超重和失重3.如图所示,质量为50kg的小红同学站在升降机中的磅秤上,某一时刻她发现磅秤的示数为40kg,则在该时刻升降机可能是以下列哪种方式运动()A.匀速上升B.加速上升C.减速上升D.加速下降【答案】CD【解析】质量为50kg,这是人的真实的质量,发现磅秤的示数是40kg,说明人的重力小了,是处于失重状态,所以应该有向下的加速度,那么此时的运动可能是向下加速运动,也可能是向上减速运动,所以CD正确.【考点】考查了超重失重4.高层住宅与写字楼已成为城市中的亮丽风景,电梯是高层住宅与写字楼必配的设施。

超重和失重典型题型及答案分析

超重和失重典型题型及答案分析

超重和失重典型例题1、竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m=4kg的物体,试分析下列情况下电梯的运动情况(g取10m/s2):(1)当弹簧秤的示数T1=40N,且保持不变.(2)当弹簧秤的示数T2=32N,且保持不变.(3)当弹簧秤的示数T3=44N,且保持不变.2、举重运动员在地面上能举起120kg的重物,而在运动着的升降机中却只能举起100kg的重物,求升降机运动的加速度.若在以2.5m/s2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g取10m/s2)3、如图24-2所示,是电梯上升的v~t图线,若电梯的质量为100kg,则承受电梯的钢绳受到的拉力在0~2s之间、2~6s之间、6~9s之间分别为多大?(g取10m/s2)【问题讨论】在0~2s内,电梯的速度在增大,电梯的加速度恒定,吊起电梯的钢绳拉力是变化的,还是恒定的?在2~6s内,电梯的速度始终为0~9s内的最大值,电梯的加速度却恒为零,吊起电梯的钢绳拉力又如何?在6~9s内,电梯的速度在不断减小,电梯的加速度又是恒定的,吊起电梯的钢绳拉力又如何?请你总结一下,吊起电梯的钢绳的拉力与它的速度有关,还是与它的加速度有关?4、如图24-3所示,在一升降机中,物体A置于斜面上,当升降机处于静止状态时,物体A恰好静止不动,若升降机以加速度g竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是[ ] A.物体仍然相对斜面静止,物体所受的各个力均不变B.因物体处于失重状态,所以物体不受任何力作用C.因物体处于失重状态,所以物体所受重力变为零,其它力不变D.物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用5、如图24-4所示,滑轮的质量不计,已知三个物体的质量关系是:m1=m2+m3,这时弹簧秤的读数为T.若把物体m2从右边移到左边的物体m1上,弹簧秤的读数T将[ ] A.增大B.减小C.不变D.无法判断跟踪反馈1.金属小筒的下部有一个小孔A,当筒内盛水时,水会从小孔中流出,如果让装满水的小筒从高处自由下落,不计空气阻力,则在小筒自由下落的过程中[ ]A .水继续以相同的速度从小孔中喷出B .水不再从小孔中喷出C .水将以较小的速度从小孔中喷出D .水将以更大的速度从小孔中喷出2.一根竖直悬挂的绳子所能承受的最大拉力为T ,有一个体重为G 的运动员要沿这根绳子从高处竖直滑下.若G >T ,要使下滑时绳子不断,则运动员应该[ ]A .以较大的加速度加速下滑B .以较大的速度匀速下滑C .以较小的速度匀速下滑D .以较小的加速度减速下滑3.在以4m/s 2的加速度匀加速上升的电梯内,分别用天平和弹簧秤称量一个质量10kg 的物体(g 取10m/s 2),则[ ]A .天平的示数为10kgB .天平的示数为14kgC .弹簧秤的示数为100ND .弹簧秤的示数为140N4.如图24-5所示,质量为M 的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m 的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为[ ]A gB C 0 D ....()()M m g m M m g m-+ 答案分析1、解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向.(1)当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,解得这时电梯的加速度=-=-×=,由此可见,电梯处于a 404104m /s 012T mg m 1 静止或匀速直线运动状态.(2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,解得这时电梯的加速度===-.式中的负号表a 2m /s 22T mg m m s 2232404--/ 示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升.(3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,解得这时电梯的加速度==-=.为正值表示电梯a 44404m /s 1m /s a 3223T mg m 3- 的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降.点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态.2、解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N ,在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度对于重物,-=,所以==-×=;F m g m a a 120010010100m /s 2m /s 221122F m g m -22当升降机以2.5m/s 2的加速度加速下降时,重物失重.对于重物,m g F m a m 120010 2.5kg 160kg 3323-=,得==-=.F g a -2 点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变.3、解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v -t 图线可以确定电梯的加速度,由牛顿运动定律可列式求解对电梯的受力情况分析如图24-2所示:(1)由v-t图线可知,0~2s内电梯的速度从0均匀增加到6m/s,其加速度a1=(v t-v0)/t=3m/s2由牛顿第二定律可得F1-mg=ma1解得钢绳拉力 F1=m(g+a1)=1300 N(2)在2~6s内,电梯做匀速运动.F2=mg=1000N(3)在6~9s内,电梯作匀减速运动,v0=6m/s,v t=0,加速度a2=(v t-v0)/t=-2m/s2由牛顿第二定律可得F3-mg=ma2,解得钢绳的拉力F3=m(g+a2)=800N.点拨:本题是已知物体的运动情况求物体的受力情况,而电梯的运动情况则由图象给出.要学会从已知的v~t图线中找出有关的已知条件.4、点拨:(1)当物体以加速度g向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.(2)处于完全失重状态的物体,地球对它的引力即重力依然存在.答案:D5、点拨:(1)若仅需定性讨论弹簧秤读数T的变化情况,则当m2从右边移到左边后,左边的物体加速下降,右边的物体以大小相同的加速度加速上升,由于m1+m2>m3,故系统的重心加速下降,系统处于失重状态,因此T <(m1+m2+m3)g.而m2移至m1上后,由于左边物体m1、m2加速下降而失重,因此跨过滑轮的连线张力T0<(m1+m2)g;由于右边物体m3加速上升而超重,因此跨过滑轮的连线张力T0>m3g.(2)若需定量计算弹簧秤的读数,则将m1、m2、m3三个物体组成的连接体使用隔离法,求出其间的相互作用力T0,而弹簧秤读数T=2T0,即可求解.答案:B跟踪反馈参考答案:1.B 2.A 3.AD 4.D。

牛顿运动定律解决实际问题(二)超重与失重

牛顿运动定律解决实际问题(二)超重与失重
弹簧秤下挂一重物G保持静止时,观 察到弹簧秤示数 F’=G
如果弹簧秤和物体一起加速上升呢? 观察到弹簧秤示数大于物体的重力,即: F’>G
思考: 物体加速上升时,好象物体的重力变大 了,物体的重力真的变大了吗? F a G
一、超重现象
以一个站在升降机里的测力计上的人 为例分析:设人的质量为50kg,升降机以 加速度a=2m/s2加速上升。 分析:对人受力分析如图 由牛顿第二定律得 F合 = N — G = m a 故:N = G + m a 人受到的支持力N大于人受到的重力G
1.关于超重和失重,下列说法中正确的是: ( )D A. 超重就是物体受的重力增加了; B. 失重就是物体受的重力减少了; C. 完全失重就是物体一点重力都不受了; D. 不论超重、失重还是完全失重,物体所受 重力是不变的.
2.某人站在一台秤上,当他猛地下蹲到停 止的过程中,台秤的读数将:(不考虑台 秤的惯性) ( B ) A.先变大后变小,最后等于人的重力; B.先变小后变大,最后等于人的重力; C.一直增大; D.一直减小.
N v a
G
总结:物体对支持物的压力(或对悬挂物的拉力) 小于物体所受重力的现象称为失重现象。
二、完全失重
极速电梯
以站在升降机里的测力计上的人为例分 析,设人的质量为50Kg,升降机以10m/s2的 加速度加速下降。(g=10m/s2) 分析:对人受力分析如图 由牛顿第二定律得 F合 = G — N = m a 故:N=G — F合 = m g — m g = 0 人受到的支持力为零
a
6、下列四个试验中,不能在绕地球飞行 的太空舱中完成的是:
A.用天平测物体的质量。 B.用弹簧秤测物体的重力。 C.用温度计测舱内的温度。 D.用水银气压计测舱内气体的压强。

超重与失重现象

超重与失重现象
由牛顿第三定律可知: 物体对弹簧秤的拉力
F′ = F > G
F
α
F′ mg
总结:物体对悬挂物的拉力(或对支持物的压力)大 于物体所受重力的现象称为超重现象。
(二)失重现象
设重物的质量为m,弹簧秤和重物有向 下的加速度α时,重物受力如图:
F ′ F合 = G - F = m α
a F
mg
故:F = G - m α < G
B、先小于G,后大于G,最后等于G
C、大于G
D、小于G
过程分析:人下蹲是由静止开始向下运动,速度
增加,具有向下的加速度(失重);蹲下后最终
速度变为零,故还有一个向下减速的过程,加速
度向上(超重)。
思考
人在站起过程,情况又是怎样 ?
练习3、原来做匀速运动的升降机内,有一 被拉长弹簧拉住的,具有一定质量的物体A 静止在底板上,如图,现发现A突然被弹簧 拉向右方,由此可以判断,此升降机的运
F′
平 衡 时G
F′
a G
F′
a G
1、弹簧秤挂一重物G保持静止时,弹簧秤示数 F′=G
2、弹簧秤和物体一起加速上升,弹簧秤示数大于 物体的重力,即:F′ > G
3、弹簧秤和物体一起加速下降,弹簧秤示数小于 物体的重力,即: F′ < G
F′
平 衡 时G
F′
a G
F′
a G
1、弹簧秤挂一重物G保持静止时,弹簧秤示数 F′=G
当重物向下的加速度 α = ɡ时,F合=mɡ-0 该物体对悬挂物的拉力(或对支持物的压力)为
零,这就是“完全失重”现象。
练习1、一个人在地面上最多能举起300N的重物,在沿 竖直方向以某一加速度做匀变速运动的电梯中,他只能举 起250N的重物。求电梯的加速度。(g = 10m/s2)(设同 一个人能提供的最大举力一定)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超重和失重
例题分析
例1 关于电梯的几种运动中,支持力的变化情况如何?
分析:
速度方向加速度方向支持力与重力静止:无无=
上升:匀速↑无=
加速↑↑>
减速↑↓<
下降:匀速↓无=
加减↓↓<
减速↓↑>
例2:一台升降机的地板上放着一个质量为m的物体,它跟地面间的动摩擦因数为μ,可以认为物体受到的最大静摩擦力等于滑动摩擦力。

一根劲度系数为k的弹簧水平放置,左端跟物体相连,右端固定在竖直墙上,如图3-21(甲)所示。

开始时弹簧的伸长为Δx,弹簧对物体有水平向右的拉力,求:升降机怎样运动时,物体才能被弹簧拉动?
分析:物体开始没有滑动是由于弹簧的拉力小于最大静摩擦力。

这里f=μN,只减小地面对物体的压力才能减少最大静摩擦力。

当f=μN=kΔx时物体开始滑动。

取物体为研究对象,受力如图3-21(乙)所示,当物体做向下的加速运动或向上的减速运动时,才能使地面对物体的压力减小,即G-N=ma。

联解两式得:a=(G-N)/m=(mg-kΔx/μ)/ m=g-kΔx/μm
即升降机做a > g kΔx/μm的向下的匀加速运动或向上的匀减速运动时,物体可以在地面上滑动。

相关文档
最新文档