2012年天津高考文科数学试题(word解析版)
【专家解析】2012年高考数学(文)真题精校精析(天津卷)(纯word书稿)
2012·天津卷(数学文科)1.[2012·天津卷] i是虚数单位,复数=( )A.1-i B.-1+iC.1+i D.-1-i1.C [解析] ===1+i.2.[2012·天津卷] 设变量x,y满足约束条件则目标函数z=3x-2y的最小值为( )A.-5 B.-4C.-2 D.32.B [解析] 概括题意画出可行域如图.当目标函数线过可行域内点A(0,2)时,目标函数有最小值z=0×3-2×2=-4.图1-13.[2012·天津卷] 阅读如图1-1所示的程序框图,运行相应的程序,则输出S的值为( )A.8 B.18C.26 D.803.C [解析] 当n=1时,S=2;当n=2时,S=2+32-3=8;当n=3时,S=8+33-32=26;当n=4时输出S=26.4.[2012·天津卷] 已知a=21.2,b-0.8,c=2 log52,则a,b,c的大小关系为( )A.c<b<a B.c<a<bC.b<a<c D.b<c<a4.A [解析] ∵a=21.2>2,1=0<b=-0.8<-1=2,c=2log52=log54<1,∴c<b<a.5.[2012·天津卷] 设x∈,则“x>”是“2x2+x-1>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.A [解析] 当x>时,2x2+x-1>0成立;但当2x2+x-1>0时,x>或x<-1.∴“x>”是“2x2+x-1>0”充分不必要条件.6.[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A.y=cos2x,x∈B.y=log2|x|,x∈且x≠0C.y=,x∈D.y=x3+1,x∈6.B [解析] 法一:由偶函数的定义可排除CD,又∵y=cos2x为偶函数,但在(1,2)内不单调递增,故选 B.法二:由偶函数定义知y=log2|x|为偶函数,以2为底的对数函数在(1,2)内单调递增.7.[2012·天津卷] 将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是( )A. B.1C. D.27.D [解析] 法一:将函数f(x)=sinωx的图象向右平移个单位,得到g(x)=sin的图象,又∵其图象过点,∴g=sin=sinω=0,∴ω最小取取2.法二:函数f(x)=sinωx的图象向右平移个单位后过点,∴函数f(x)=sinωx的图象过点,即f=sinω=0,∴ω最小值取 2.8.[2012·天津卷] 在△ABC中,∠A=90°,AB=1,AC=2,设点P,Q满足=λ,=(1-λ),λ∈.若·=-2,则λ=( )A. B.C. D.28.B [解析] ·=(-)·(-)=[(1-λ)-]·(λ-)=-(1-λ)2-λ2=3λ-4=-2,解得λ=.9.[2012·天津卷] 集合A=中的最小整数为________.9.-3 [解析] 将|x-2|≤5去绝对值得-5≤x-2≤5,解之得-3≤x≤7,∴x的最小整数为- 3.10.[2012·天津卷] 一个几何体的三视图如图1-2所示(单位:m),则该几何体的体积为________m3.图1-210.30 [解析] 由三视图可得该几何体为两个直四棱柱的组合体,其体积V =3×4×2+(1+2)×1×4=30.11.[2012·天津卷] 已知双曲线C1:-=1(a>0,b>0)与双曲线C2:-=1有相同的渐近线,且C1的右焦点为F(,0),则a=________,b=________.11.1 2 [解析] ∵双曲线C1与C2有共同的渐近线,∴b2=4a2.①又∵a2+b2=5, ②联立①②得,a=1,b=2.12.[2012·天津卷] 设m,n∈,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为________.12.3 [解析] 直线mx+ny-1=0与两坐标轴的交点坐标分为,,又∵直线l被圆x2+y2=4截得弦长为 2 ,由垂径定理得,2+12=22,即=3,∴S△OAB=××≥=3.图1-313.[2012·天津卷] 如图1-3所示,已知AB和AC是圆的两条弦,过点B 作圆的切线与AC的延长线相交于点 D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为________.13. [解析] 由相交弦的性质可得AF×FB=EF×FC,∴FC===2,又∵FC∥BD,∴===,即BD=,由切割定理得BD2=DA×DC=4DC2,解之得DC=.14.[2012·天津卷] 已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是________.14.(0,1)∪(1,2)[解析] y==在同一坐标系内画出y=kx与y=的图象如图,结合图象当直线y=kx斜率从0增到1时,与y=在x轴下方的图象有两公共点;当斜率从1增到2时,与y=的图象在x轴上下方各有一个公共点.15.[2012·天津卷] 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学中学大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.15.解:(1)从小学中学大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)==.16.[2012·天津卷] 在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=,cosA=-.(1)求sinC和b的值;(2)求cos的值.16.解:(1)在△ABC中,由cosA=-,可得sinA=,又由=及a=2,c=,可得sinC=.由a2=b2+c2-2bc cosA,得b2+b-2=0,因为b>0,故解得b=1.所以sinC=,b=1.(2)由cosA=-,sinA=,得cos2A=2cos2A-1=-,sin2A=2sinAcosA=-.所以,cos=cos2Acos-sin2Asin=.图1-417.[2012·天津卷] 如图1-4,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.(1)求异面直线PA与BC所成角的正切值;(2)证明平面PDC⊥平面ABCD;(3)求直线PB与平面ABCD所成角的正弦值.17.解:(1)如图所示,在四棱锥P-ABCD中,因为底面ABCD是矩形,所以AD=BC且AD∥BC,又因为AD⊥PD,故∠PAD为异面直线PA与BC所成的角.在Rt△PDA中,tan∠PAD==2.所以,异面直线PA与BC所成角的正切值为 2.(2)证明:由于底面ABCD是矩形,故AD⊥CD,又由于AD⊥PD,CD∩PD=D,因此AD⊥平面PDC,而AD?平面ABCD,所以平面PDC⊥平面ABCD.(3)在平面PDC内,过点P作PE⊥CD交直线CD于点E,连接EB.由于平面PDC⊥平面ABCD,而直线CD是平面PDC与平面ABCD的交线,故PE⊥平面ABCD.由此得∠PBE为直线PB与平面ABCD所成的角.在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°.在Rt△PEC中,PE=PCsin30°=.由AD∥BC,AD⊥平面PDC,得BC⊥平面PDC,因此BC⊥PC.在Rt△PCB中,PB==.在Rt△PEB中,sin∠PBE==.所以直线PB与平面ABCD所成角的正弦值为.18.[2012·天津卷] 已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(1)求数列{an}与{bn}的通项公式;(2)记Tn=a1b1+a2b2+…+anbn,n∈,证明Tn-8=an-1bn+1(n∈,n>2).18.解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d,由条件,得方程组解得所以an=3n-1,bn=2n,n∈*.(2)证明:由(1)得Tn=2×2+5×22+8×23+…+(3n-1)×2n,①2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1.②由①-②,得-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1=-(3n-1)×2n+1-2=-(3n-4)×2n+1-8,即Tn-8=(3n-4)×2n+1,而当n>2时,an-1bn+1=(3n-4)×2n+1,所以,Tn-8=an-1bn+1,n∈,n>2.19.[2012·天津卷] 已知椭圆+=1(a>b>0),点P在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.19.解:(1)因为点P在椭圆上,故+=1,可得=,于是e2==1-=,所以椭圆的离心率e=.(2)设直线OQ的斜率为k,则其方程为y=kx.设点Q的坐标为(x0,y0).由条件得消去y0并整理得x=.①由|AQ|=|AO|,A(-a,0)及y0=kx0,得(x0+a)2+k2x=a2.整理得,(1+k2)x+2ax0=0.而x0≠0,故x0=,代入①,整理得(1+k2)2=4k2·+4.由(1)知=,故(1+k2)2=k2+4,即5k4-22k2-15=0,可得k2=5.所以直线OQ的斜率k=±.20.[2012·天津卷] 已知函数f(x)=x3+x2-ax-a,x∈,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.20.解:(1)f′(x)=x2+(1-a)x-a=(x+1)(x-a).由f′(x)=0,得x1=-1,x2=a>0.当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,-1) -1 (-1,a) a (a,+∞)f′(x)+0 -0 +f(x) 极大值极小值故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).(2)由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰有两个零点当且仅当解得0<a<.所以,a的取值范围是.(3)a=1时,f(x)=x3-x-1.由(1)知f(x)在[-3,-1]上单调递增,在[-1,1]上单调递减,在[1,2]上单调递增.①当t∈[-3,-2]时,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上单调递增,在[-1,t+3]上单调递减.因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)=-,而最小值m(t)为f(t)与f(t+3)中的较小者.由f(t+3)-f(t)=3(t+1)(t+2)知,当t∈[-3,-2]时,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上单调递增,因此f(t)≤f(-2)=-,所以g(t)在[-3,-2]上的最小值为g(-2)=--=.②当t∈[-2,-1]时,t+3∈[1,2],且-1,1∈[t,t+3].下面比较f(-1),f(1),f(t),f(t+3)的大小.由f(x)在[-2,-1],[1,2]上单调递增,有f(-2)≤f(t)≤f(-1).f(1)≤f(t+3)≤f(2).又由f(1)=f(-2)=-,f(-1)=f(2)=-,从而M(t)=f(-1)=-,m(t)=f(1)=-,所以g(t)=M(t)-m(t)=.综上,函数g(t)在区间[-3,-1]上的最小值为.。
2012年高考真题——文科数学(天津卷)-含答案
20XX 年一般高等学校招生全国一致考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试用时 120 分钟。
第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页。
答卷前,考生务势必自己的姓名、准考据号填写在答题卡上,并在规定地点粘贴考试用条形码。
答卷时,考生务势必答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
2.本卷共 8 小题,每题 5 分,共 40 分。
参照公式:﹒假如事件A,B 胡斥,那么P(AUB)=P(A)+P(B).﹒棱柱的体积公式V=Sh.此中 S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式1 V=Sh 3此中 S 表示圆锥的底面面积,H表示圆锥的高。
一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
(1)i 是虚数单位,复数5 3 i= 4i(A ) 1-i( B) -1+I(C) 1+I(D ) -1-i2x+y-20,(2)设变量 x,y 知足拘束条件x-2y+40,则目标函数z=3x-2y 的最小值为x-1 0,(A )-5( B)-4( C)-2( D)3(3)阅读右侧的程序框图,运转相应的程序,则输出S 的值为(A )8(B)18(C) 26(D)80(4)1-0.2, c=2log 52,则 a, b, c 的大小关系为已知 a=21.2, b=2(A )c<b<a(B )c<a<b C)b<a<c( D)b<c<a(5)设 x R,则“ x>1”是“ 2x2+x-1>0 ”的2(A ) 充足而不用要条件 (B ) 必需而不充足条件 (C ) 充足必需条件(D ) 既不充足也不用要条件( 6) 以下函数中,既是偶函数,又在区间(1,2)内是增函数的为(A )y=cos2x , x R(B ) y=log 2|x|, xR 且 x ≠ 0exxe, x R(C ) y=2(D ) y=x3+1 , x R(7)将函数 f(x)=sinx (此中>0)的图像向右平移个单位长度,所得图像经过点4(3的最小值是, 0),则41 (B )1C )5(A )(D )23 3rrrr(8)在△ ABC 中,A=90 °, AB=1 ,设点 P ,Q 知足 AP =AB ,AQ=(1-)AC ,rrR 。
天津2012年高考数学(文)试题及参考答案-中大网校
天津2012年高考数学(文)试题及参考答案总分:150分及格:90分考试时间:120分本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)<p>(2)</p><p>(3)</p><p></p><p>(4)</p><p>(5)</p><p>(6)</p><p>(7)</p><p>(8)</p><p></p>本大题共6小题,每小题5分,共30分,把答案填在答题卡的相应位置。
(1)<p>(2)</p><p></p><p>(3)</p><p>(4)</p><p>(5)</p><p>(6)</p><p></p>本大题共6小题,共80分。
解答应写出文字说明、证明过程或演算步骤。
(1)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I)求应从小学、中学、大学中分别抽取的学校数目。
(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率。
(2)(3)(4)(5)(6)答案和解析本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) :C(2) :B(3) :C(4) :A(5) :A(6) :B(7) :D(8) :B本大题共6小题,每小题5分,共30分,把答案填在答题卡的相应位置。
(1) :-3(2) :30(3) :1,2(4) :3(5) :4/3(6) :(0,1)∪(1,2)本大题共6小题,共80分。
2012年高考数学天津文解析版
2012年天津高考数学(文)一.选择题1.【答案】C.【命题透析】本题考查了复数的四则运算.以商的形式给出,意在考查考生对复数的乘除法的基本运算能力.【思路点拨】解题的基本思路是复数分母的实数化,即给分式上下同乘以分母的共轭复数,并化简即可..1)4)(4()4)(35(435i i i i i i i +=+-++=-+故正确答案为C ,在运算过程中要注意正负符号与12-=i ,否则会出现选A 、B 、D 项的错误答案.2.【答案】B.【命题透析】本题考查了线性规则的最优解.意在考查考生的数形结合的解题能力. 【思路点拨】经解可行域对应的三交点坐标分别为(1,0),(1,25),(0,2),分别代入目标函数得4,2,3--=z ,故y x z 23-=的最小值为-4.所以正确答案为B.A 、C 、D 项是将目标函数取最值的位置选错了.【技巧点拨】因最小值一般取之线与线的交点处,故先求线与线的三个交点,再代入到目标函数中,最后判断其最小者即为所求答案.3.【答案】C.【命题透析】本题考查了循环结构的程序框图,意在考查考生的识图,析图,用图的能力. 【思路点拨】由题可知进行如下的过程:2,2==n S ;3,8==n S ;4,26==n S ;,4≥n 成立,∴循环结束,则输出26=S ,故正确答案为C ;而D 项是把控制次数量误认为是0=n ,多循环一次;A ,B 项是把累加量没累加而出错.4.【答案】A.【命题透析】本题考查了对数函数与指数函数,以及数值的大小排序问题,考查考生分析与处理问题的能力.【思路点拨】b a ,用指数函数的单调性比较大小,即8.08.02.12122-⎪⎭⎫ ⎝⎛=> ,b a >∴,故排除B ;c b ,用中介值比较大小,即14log ,122158.08.0<>=⎪⎭⎫⎝⎛- ,c b >∴,故排除C 、D ,所以正确答案为A.5.【答案】A.【命题透析】本题考查了充分必要条件.以不等式为载体,意在考查考生对基础知识的理解及基本技能的掌握.【思路点拨】先解出不等式的解集, 再以集合与充分必要条件的关系(即小充分大必要)为原则确定答案.因为0122>-+x x 的解集为1-<x 或21>x ,所以由21>x 可推得0122>-+x x 成立,故充分性成立,故排除B 、D 项,而由0122>-+x x 不一定推出21>x ,故必要性不成立,排除C 项,所以正确答案为A. 【总结归纳】此类问题的解答分两步骤:一判断充分性,二判断必要性,要明确题中哪个作条件,哪个做结论,若q p ⇒,则p 是q 的充分条件,q 是p 的心要条件.6.【答案】B【命题透析】本题考查了各类函数的奇偶性与单调性及函数的图象,意在考查考生对基本知识的掌握与基本方法运用能力. 【思路点拨】因为)2,1(π内是减函数,)2,2(π内是增函数,所以A 项错误;因为)(2)(x f e e x f xx -=-=--,所以C 项错误;因为13+=x y 即不是偶函数又不是奇函数,所以D 项错误,所以正确答案为B.7.【答案】D【命题透析】本题考查了三角函数的图象变换及求函数的值、参数的最小值.意在考查考生的综合思维能力.【思路点拨】先以平移来得函数的表达式,代点,求对应角,得ω用k 表示的表达式,再由k 确定ω的最小值.平移后的函数表达式为)),4(sin()(πω-=x x f 将点坐标代入得k 2=ω,Z k ∈>,0ω ,2min =∴ω故正确答案为D.而B 项是因向右平移,给自变量加4π而错;A 、C 项是因把4π加减给ωπ而出错. 8. 【答案】B【命题透析】本题考查了向量的数量积、向量的基本定理.命题以求参数的形式给出,意在考查考生的方程思想的掌握,逆向思维的解题能力.【思路点拨】先用向量的基本定理将,用,分解,然后以2-=⋅,列关于参数λ的方程,解即之即可.因为AB AC AB AQ BQ --=-=)1(λ,AC AB AC AP CP -=-=λ,且2-=⋅CP BQ ,2,1==AC AB ,所以得023=-λ,解得32=λ.故正确答案为B. 二.填空题 9.【答案】3-【命题透析】本题考查了集合的概念、含有绝对值的不等式的解法,求最小整数值.意在考查考生对基本知识点的综合处理能力.【思路点拨】先求不等式的解集,后从解集中确定最小整数值.不等式的解集为73≤≤-x ,所以x 的最小整数为-3,则集合中的最小整数为-3.10.【答案】30【命题透析】本题考查了三视图,空间几何体的体积.意在考查考生的空间想象能力与基本运算能力.【思路点拨】先由三视图还原几何体,后求其体积.由题可知此几何体下面是柱体,上面放一棱台体,其体积为30)141242(21243=⨯⨯-⨯⨯+⨯⨯. 11.【答案】1,2 【命题透析】本题考查了双曲线的方程与性质,意在考查学生的方程思想下解题的基本能力. 【思路点拨】由共渐近线可得2=ab,由焦点为得522=+b a ,解得2,1==b a . 12.【答案】3【命题透析】本题考查了直线的方程,直线与圆的位置关系,三角形的面积,.意在考查考生基础知识的掌握,综合运算的能力. 【思路点拨】先由直线与圆相交弦长为2,得3122=+n m ,即得3122=+n m ,所以61≤mn ,再由直线与轴的交点得三角形的面积为mnS 121⋅=,当61=mn ,面积取得最小值3.13.【答案】34 【命题透析】本题考查了平面几何知识,以圆为载体,涉及到圆的切线定理,相交弦定理,相似三角形等知识,考查考生的综合思维能力与运算能力.【思路点拨】由相交弦定理得FC EF FB AF ⨯=⨯,得2=FC ,其次由AFC ABD ∆∆相似于得38=⨯=AF CF AB BD ,DC DA 4=,再由切线定理得9642=⨯=DC DA BD ,最后求得34=DC .14.【答案】(0,1)或(1,2)【命题透析】本题考查了函数的图象,以两图象相交于两点为载体,求实数k 的取值范围,意在考杳考生的数形结合思想与综合分析问题的能力.【思路点拨】先简化函数为⎩⎨⎧>+<+-=,1,11,1x x x x y ,再在同一直角坐标系下画出两函数的图象,(略),在1>x 时,有两交点的实数k 的取值范围为(1,2),当1<x 时,有两交点的实数k 的取值范围为,所以实数实数k 的取值范围为(0,1)或(1,2). 【技巧点拨】画图寻找两图象有两交点的位置是解题的关键,其次以平行线为依据或以个别特殊点对就的斜率值作为解题的基本点. 三.解答题15.【命题透析】【思路点拨】【总结归纳】概率的应用题特点是表述多,要能从中提取考查的数学问题,准确破解命题者的意图,方能快速解题,而统计与概率的结合是文科的一大特点,其所求的概率问题一般需用列举法加以解答.16.【命题透析】【思路点拨】【总结归纳】解三角中,经常有正弦、余弦定理化边为角,或是化角为边的解题过程,具体选择要依题情而确定,但用正弦定理一般有个基本要求,就是式子的两边是关于边c b a ,,的齐次式,这时直接把边换成对应角的正弦即可,(2)解三角时,需要挖掘题三角的一些隐含条件,这些条件往往是解题的关键点.17.【命题透析】【思路点拨】【总结归纳】立几解答题,一般在传统与向量法中找平衡点.在传统证明线面位置关系时,需要明确要证什么,得需证什么的思维线索;直线与平面所成角,从传统上解需找角、证角、算角,而向量法首先建系,然后写相关向量的坐标,最后进行代数解答,思维单一,公式化强,但运算易错.考生一般遵循先传统后向量的方法选择,也就是在传统法难做下去时,不防换用向量法.18.【命题透析】【思路点拨】【考场雷区】一等差数列与一等比数列的积数列求和,一般用到错位相减法,在两边同乘以等比的公比后,两式的相减上易出现错误,经常出现于不知如何相减,保留项弄丢,正负号弄错,需考生仔细、认真对待.19.【命题透析】【思路点拨】【总结归纳】求离心率的方法有:一是求c a ,的值,二是求关于c b a ,,的齐次方程;求参数的值,一般以寻找关于参数的等式关系,有时需要探挖试题条件,方可得到等式关系.同时解析几何的主观型题强调“设而不求”的思想与“多思少算”的原则.20.【命题透析】【思路点拨】【思维拓展】函数与导数的综合作为高考的重头戏,多以能力为立意,计算为基础,主要考查函数的单调性、切线、极(最)值、零点分布、参数(值)范围、不等式恒成立证明等知识,此类问题解答时,运用导数这把有利工具,探索函数的有关性质,突破解题思维防线.函数中引参变量是命题的焦点,使得试题增加了宽度与深度,通常需对参变量进行分类讨论.。
高考复习资料——2012天津高考文科数学真题解析版
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟. 第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码. 答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效. 考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷 注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.2. 本卷共8小题,每小题5分,共40分. 参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高.﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积, H 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+I (C )1+I (D )-1-i【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B.【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C. 【答案】C(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a,b,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y =cos2x,x ∈R (B ) y =log 2|x|,x ∈R 且x ≠0(C ) y =2xxe e --,x ∈R(D ) y =x3+1,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.【答案】B(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P,Q 满足AP r =AB λr ,AQ r =(1-λ)AC r,λ ∈R. 若BQ r•CPr=-2,则λ=(A )13(B )23C )43(D )2【解析】如图,设c AC b AB ==, ,则0,2,1=•==c b c b ,又c b AQ BA BQ )1(λ-+-=+=,b c AP CA CP λ+-=+=,由2-=•CP BQ 得2)1(4)1()(])1([22-=--=--=+-•-+-λλλλλλb c b c c b ,即32,23==λλ,选B. 【答案】B第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二.填空题:本答题共6小题,每小题5分,共30分. (9)集合{}|25A x R x =∈-≤中最小整数位 .【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-. 【答案】3-(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m.【解析】由三视图可知这是一个下面是个长方体,上面是个平躺着的五棱柱构成的组合体. 长方体的体积为24243=⨯⨯,五棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30.【答案】30(11)已知双曲线)0,0(1:22221>>=-b a by a x C与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为(5,0)F ,则a = b =【解析】双曲线的116422=-y x 渐近线为x y 2±=,而12222=-b y a x 的渐近线为x a by ±=,所以有2=a b,a b 2=,又双曲线12222=-b y a x 的右焦点为)0,5(,所以5=c ,又222b a c +=,即222545a a a =+=,所以2,1,12===b a a .【答案】1,2(12)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 .【解析】直线与两坐标轴的交点坐标为)0,1(),1,0(mB n A ,直线与圆相交所得的弦长为2,圆心到直线的距离d 满足3141222=-=-=r d ,所以3=d ,即圆心到直线的距离3122=+-=n m d ,所以3122=+n m . 三角形的面积为mnn m S 211121=⋅=,又312122=+≥=n m mn S ,当且仅当61==n m 时取等号,所以最小值为3. 【答案】3(13)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于D .过点C 作BD 的平行线与圆交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为 .【解析】如图连结BC,BE,则∠1=∠2,∠2=∠A1A ∠=∠∴,又∠B=∠B,CBF ∆∴∽AB C ∆,AC CFAB CB BC BF AB CB ==∴,,代入数值得BC=2,AC=4,又由平行线等分线段定理得FB AF CD AC =,解得CD=34. 【答案】34(14)已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是 . 【解析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y ,综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,,做出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,则此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数的取值范围是10<<k 或21<<k .【答案】10<<k 或21<<k .三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (15题)(本小题满分13分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I )求应从小学、中学、大学中分别抽取的学校数目.(II )若从抽取的6所学校中随机抽取2所学校做进一步数据分析, (1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.、(16)(本小题满分13分)在△ABC 中,内角A,B,C 所对的分别是a,b,c. 已知a=2.c=2,cosA=2-4. (I )求sinC 和b 的值; (II )求cos (2A+3д)的值.17.(本小题满分13分)如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,AD ⊥PD,BC=1,PC=23,PD=CD=2.(I )求异面直线PA 与BC 所成角的正切值; (II )证明平面PDC ⊥平面ABCD ;(III )求直线PB 与平面ABCD 所成角的正弦值.(18)(本题满分13分)已知{}是等差数列,其前n 项和为n S ,{}是等比数列,且==2,2744=+b a ,-=10(I)求数列{}与{}的通项公式;(II)记=+,(n,n>2).(19)(本小题满分14分)已知椭圆(a>b>0),点P(,)在椭圆上.(I)求椭圆的离心率.(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|求直线OQ的斜率的值.(20)(本小题满分14分) 已知函数a ax x a x x f ---+=232131)(,x 其中a>0.(I )求函数)(x f 的单调区间;(II )若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围;(III )当a=1时,设函数)(x f 在区间]3,[+t t 上的最大值为M (t ),最小值为m (t ),记g(t)=M(t)-m(t),求函数g(t)在区间]1,3[--上的最小值.。
全国高考文科数学试题及答案天津卷
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积, H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534ii+-= (A )1i - (B )1i -+ (C )1i +(D )1i --【解读】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解读】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B.【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解读】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C.【答案】C(4) 已知120.2512,(),2log 22a b c -===,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解读】因为122.02.022)21(<==-b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解读】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) cos 2y x =,x ∈R (B ) x y 2log =,x ∈R 且x ≠0(C ) 2x xe e y --=,x ∈R(D ) 31y x =+,x ∈R【解读】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.【答案】B(7) 将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点)0,43(π,则ω的最小值是 (A )13(B )1 C )53(D )2【解读】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ∈R 。
2012年天津卷(文科数学)
2012年普通高等学校招生全国统一考试文科数学(天津卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则534i i+=- A.1i - B.1i -+ C.1i + D.1i --2.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为A .5-B .4-C .2-D .33.阅读右边的程序框图,运行相应的程序,则输出S 的值为A .8B .18C .26D .804.已知122a =,0.21()2b -=,52log 2c =,则a ,b ,c 的大小关系为 A .c b a << B .c a b << C .b a c << D .b c a <<5.设x R ∈,则“12x >”是“2210x x +->”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2y x =,x R ∈B .x y 2log =,x R ∈且0x ≠C .2x xe e y --=,x R ∈ D .31y x =+,x R ∈ 7.将函数()sinf x x ω=(其中0ω>)的图像向右平移4π个单位长度,所得图像经过点3(0)4π,,则ω的最小值是 A .13 B .1 C .53 D .2 8.在ABC ∆中,90A ∠=o ,1AB =,设点P ,Q 满足AP AB λ=u u u r u u u r ,(1)AQ AC λ=-u u u r u u u r,R λ∈,若2BQ CP ⋅=-u u u r u u u r ,则λ=A .13B .23C .43D .2二、填空题:本答题共6小题,每小题5分,共30分.9.集合{|25}A x R x =∈-≤中最小整数位 . 10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积 2m .11.已知双曲线1C :22221x y a b -=(0a >,0b >)与双曲线2C :221416x y -=有相同的渐近线,且1C 的右焦点为(5,0)F ,则a = ,b = .12.设m ,n R ∈,若直线l :10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 .13.如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为 .14.已知函数2|1|1x y x -=-的图象与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.A B CD F E15.(本小题满分13分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(Ⅰ)求应从小学、中学、大学中分别抽取的学校数目。
2012年天津高考文科数学试题和答案word版
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)第Ⅰ卷注意事项:1. 每小题选出答案后.用铅笔将答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后.再选涂其他答案标号。
2. 本卷共8小题.每小题5分.共40分。
参考公式:﹒如果事件A,B 胡斥.那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积.h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积. H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中.只有一项是符合题目要求的。
(1) i 是虚数单位.复数534ii+-= (A )1i - (B )1i -+ (C )1i + (D )1i --【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435.选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图.由y x z 23-=得223z x y -=.由图象可知当直线223z x y -=经过点)2,0(C 时.直线223zx y -=的截距最大.而此时y x z 23-=最小为423-=-=y x z .选B. 【答案】B(3) 阅读右边的程序框图.运行相应的程序.则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S .第二次循环3,83322==-+=n S .第三次循环4,2633823==-+=n S .第四次循环满足条件输出26=S .选C.【答案】C(4) 已知120.2512,(),2log 22a b c -===.则a.b.c 的大小关系为(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b .所以a b <<1.14log 2log 2log 25255<===c .所以a b c <<.选A.【答案】A(5) 设x ∈R.则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x .所以“21>x ”是“0122>-+x x ”成立的充分不必要条件.选A.【答案】A(6) 下列函数中.既是偶函数.又在区间(1,2)内是增函数的为(A ) cos 2y x =.x ∈R (B ) x y 2log =.x ∈R 且x ≠0(C ) 2x xe e y --=.x ∈R(D ) 31y x =+.x ∈R【解析】函数x y 2log =为偶函数.且当0>x 时.函数x x y 22log log ==为增函数.所以在)2,1(上也为增函数.选B.【答案】B(7) 将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度.所得图像经过点)0,43(π.则ω的最小值是 (A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g .因为此时函数过点)0,43(π.所以0)443(sin =-ππω.即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2.选D.【答案】D(8) 在△ABC 中.∠ A=90°.AB=1.设点P.Q 满足AP =AB λ.AQ =(1-λ)AC .λ ∈R 。
2012年天津高考文科数学试题
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+I (C )1+I (D )-1-i 2x+y-2≥0,(2) 设变量x,y 满足约束条件 x-2y+4≥0,则目标函数z=3x-2y的最小值为x-1≤0,(A )-5 (B )-4 (C )-2 (D )3 (3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80 (4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a (5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y=cos2x ,x ∈R(B ) y=log 2|x|,x ∈R 且x ≠0(C ) y=2xxe e --,x ∈R(D ) y=x3+1,x ∈R(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ ,AQ =(1-λ)AC,λ ∈R 。
若BQ ∙CP=-2,则λ=(A )13(B )23C )43(D )2第Ⅱ卷二.填空题:本答题共6小题,每小题5分,共30分。
(9)集合{}|25A x R x =∈-≤中最小整数位 . (10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m.(11)已知双曲线222211(0,0)a b yx C a b-=>>:与双曲线2221416yx C -=:有相同的渐近线,且1C 的右焦点为(5,0)F ,则a = b = (12)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 。
2012年天津高考文科数学试题及答案(Word版)
2012年天津市高考数学试卷(文科)一、选择题(共8小题,每小题5分,共40分)1.(2012•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.1+i D.﹣1﹣i2.(2012•天津)设变量x,y满足约束条件则目标函数z=3x﹣2y的最小值为()A.﹣5B.﹣4C.﹣2D.33.(2012•天津)阅读右边的程序框图,运行相应的程序,则输出s的值为()A.8B.18C.26D.804.(2012•天津)已知a=21.2,b=()﹣0.8,c=2log52,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.b<a<c D.b<c<a5.(2012•天津)设x∈R,则“x>”是“2x2+x﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x,x∈R B.y=log2|x|,x∈R且x≠0C.y=D.y=x3+1,x∈R7.(2012•天津)将函数y=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是()A.B.1C.D.28.(2012•天津)在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=2,则λ=()A.B.C.D.2二、填空题(共6小题,每小题5分,共30分)9.(2012•天津)集合A={x∈R||x﹣2|≤5}中的最小整数为_________.10.(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________m3.11.(2012•天津)已知双曲线C1:与双曲线C:(a>0,b>0)有相同的渐近线,且C1的右焦点为F(,0).则a=_________,b=_________.12.(2012•天津)设m,n∈R,若直线l:mx+ny﹣1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为_________.13.(2012•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为_________.14.(2012•天津)已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是_________.三、解答题(本大题共6小题,共80分)15.(2012•天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.(ⅰ)列出所有可能的抽取结果;(ⅱ)求抽取的2所学校均为小学的概率.16.(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=,cosA=﹣.(1)求sinC和b的值;(2)求cos(2A+)的值.17.(2012•天津)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.(1)求异面直线PA与BC所成角的正切值;(2)证明:平面PDC⊥平面ABCD;(3)求直线PB与平面ABCD所成角的正弦值.18.(2012•天津)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n﹣8=a n﹣1b n+1(n∈N*,n≥2).19.(2012•天津)已知椭圆,点P()在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.20.(2012•天津)已知函数f(x)=x3+x2﹣ax﹣a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(﹣2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g(t)=M(t)﹣m(t),求函数g(t)在区间[﹣3,﹣1]上的最小值.2012年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分)1.(2012•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.1+i D.﹣1﹣i考点:复数代数形式的乘除运算。
2012年天津高考文科数学试题word版含答案
2012年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B胡斥,那么P(AUB)=P(A)+P(B).﹒棱柱的体积公式V=Sh.其中S表示棱柱的底面面积,h表示棱柱的高。
﹒圆锥的体积公式V=1Sh3其中S表示圆锥的底面面积,H表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534ii +-=(A )1-i (B )-1+I(C )1+I (D )-1-i2x+y-2≥0,(2) 设变量x,y 满足约束条件 x-2y+4≥0,则目标函数z=3x-2y的最小值为x-1≤0,(A )-5 (B )-4 (C )-2 (D )3(A )13 (B )1 C )53(D )2 (8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ ,AQ =(1-λ)AC,λ ∈R 。
若BQ∙CP =-2,则λ= (A )13 (B )23 C )43 (D )2第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二.填空题:本答题共6小题,每小题5分,共30分。
(9)集合{}|25A x R x =∈-≤中最小整数位 .轴于点F ,3AF =,1FB =,2EF =,则线段CD 的长为 .(2)求抽取的2所学校均为小学的概率。
2012年天津高考试题(文数,word解析版)
2012年普通高等学校招生全国统一考试(天津卷)数学(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积, H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+I (C )1+I (D )-1-i【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223zx y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B.【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C. 【答案】C(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以ab <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y=cos2x ,x ∈R(B ) y=log 2|x|,x ∈R 且x ≠0(C ) y=2xxe e --,x ∈R(D ) y=x3+1,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B. 【答案】B(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ∈R 。
2012年全国高考文科数学试题及答案-天津卷
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积, H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534ii+-= (A )1i - (B )1i -+ (C )1i + (D )1i --【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B. 【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C.【答案】C(4) 已知120.2512,(),2log 22a b c -===,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) cos 2y x =,x ∈R (B ) x y 2log =,x ∈R 且x ≠0(C ) 2x xe e y --=,x ∈R(D ) 31y x =+,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.【答案】B(7) 将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点)0,43(π,则ω的最小值是 (A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ ∈R 。
2012年高考真题——文科数学(天津卷)解析版(1)
2012年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh其中S 表示圆锥的底面面积, H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+I (C )1+I (D )-1-i【解析】复数i i i i i i ii +=+=+-++=-+1171717)4)(4()4)(35(435,选C.【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223z x y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B. 【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C.【答案】C(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以a b <<1,14log2log2log25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y=cos2x ,x ∈R(B ) y=log 2|x|,x ∈R 且x ≠0(C ) y=2xxee --,x ∈R(D ) y=x3+1,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22loglog ==为增函数,所以在)2,1(上也为增函数,选B. 【答案】B(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(s i n =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D. 【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ ,A Q =(1-λ)A C,λ∈R 。
2012年普通高等学校招生全国统一考试(天津卷)文科数学及答案
2012年普通高等学校招生全国统一考试(天津卷)数 学(供文科考生使用)如果事件,A B 互斥,那么()()()P A B P A P B =+U .棱柱的体积公式V Sh =.其中S 表示棱柱的底面面积,h 表示棱柱的高.锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,复数534ii+=-( )A.1i -B.1i -+C.1i +D.1i --2.设变量,x y 满足约束条件220240,10x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则目标函数32z x y =-的最小值为( )A.5-B.4-C.2-D.2 3.阅读右边的程序框图,运行相应的程序,则输出S 的值为( )A.8B.18C.26D.804.已知 1.20.8512,(),2log 22a b c -===,则,,a b c 的大小关系为( )A.c b a <<B.c a b <<C.b a c <<D.b c a <<5.设x R ∈,则1""2x >是2"210"x x +->的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.下列函数中,既是偶函数,又在区间()1,2内是增函数的为( )A.cos 2,y x x R =∈B.2log ||,0y x x R x =∈≠且C.,2x xe e y x R --=∈D.31,y x x R =+∈7.将函数()sin f x x ω=(其中0ω>)的图象向右平移π4个单位长度,所得图象经过点3(π,0)4,则ω的最小值是( )A.13B.1C.53D.2 8.在ABC ∆中,90,1,2A AB AC ∠=︒==.设点,P Q 满足(),1,.A P A B A Q A C Rλλλ==-∈u uu r u uu r u u u ru u u r 若2BQ CP ⋅=-u u u r u u r,则λ=( )A.13B.23C.43D.2二、填空题(本大题共6小题,每小题5分,共30分)9.集合{}||2|5A x R x =∈-≤中的最小整数为_________10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 311.已知双曲线()22122:10,0x y C a b a b -=>>与双曲线222:1416x y C -=有相同的渐近线,且1C 的右焦点为)F ,则a =____,b =____12.设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆的面积的最小值为________13.如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,33,1,2AF FB EF ===,则线段CD 的长为________ 14.已知函数2|1|1x y x -=-的图象与函数y kx =的图象恰有两个交点,则实数k 的取值范围是________三、解答题(本大题共6小题,共80分.解答题应写出文字说明,证明过程或演算步骤.)15.(本小题13分)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学,中学,大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(i)列出所有可能的抽取结果;(ii)求抽取的2所学校均为小学的概率.16.(本小题13分)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知2,a c A ===(1)求sin C 和b 的值;(2)求πcos(2)3A +的值.俯视图侧视图正视图4111421321FD C BA17.(本小题13分)如图,在四棱锥P ABCD -中,底面A B C 是矩形,,1,2AD PD BC PC PD CD ⊥====(1)求异面直线PA 与BC 所成角的正切值; (2)证明平面PDC ⊥平面ABCD ;(3)求直线PB 与平面ABCD 所成角的正弦值.18.(本小题13分)已知{}n a 是等差数列,其前n 项和为n S .{}n b 是等比数列,且1144442,27,10a b a b S b ==+=-=.(1)求数列{}n a 与{}n b 的通项公式;(2)记1122,n n n T a b a b a b n N *=++⋅⋅⋅+∈,证明()118,2n n n T a b n N n *-+-=∈>.19.(本小题14分)已知椭圆()222210x y a b a b+=>>,点)P 在椭圆上. (1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足||||AQ AO =,求直线OQ 的斜率的值.20.(本小题14分)已知函数()3211,32a f x x x ax a x R -=+--∈,其中0a >(1)求函数()f x 的单调区间;(2)若函数()f x 在区间()2,0-内恰有两个零点,求a 的取值范围;(3)当1a =时,设函数()f x 在区间[],3t t +上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间[]3,1--上的最小值.P D C B A值为43一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
2012年普通高等学校招生全国统一考试数学(天津卷)文
天津文科1.(2012天津,文1)i 是虚数单位,复数53i 4i+-=( ).A.1-iB.-1+iC.1+iD.-1-iC 53i 4i +-=(53i)(4i)(4i)(4i)++-+=22205i 12i 3i 16i +++-=1717i 17+=1+i. 2.(2012天津,文2)设变量x ,y 满足约束条件220,240,10,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则目标函数z =3x -2y 的最小值为( ).A.-5B.-4C.-2D.3B 由约束条件可得可行域:对于目标函数z =3x -2y , 可化为y =32x -12z ,要使z 取最小值,可知过A 点时取得. 由220,240x y x y +-=⎧⎨-+=⎩得0,2,x y =⎧⎨=⎩即A (0,2), ∴z =3×0-2×2=-4.3.(2012天津,文3)阅读右边的程序框图,运行相应的程序,则输出S 的值为( ). A.8 B.18 C.26D.80C n =1,S =0+31-30=2,n =2;n =2<4,S =2+32-31=8,n =3; n =3<4,S =8+33-32=26,n =4; 4≥4,输出S =26. 4.(2012天津,文4)已知a =21.2,b =0.812-⎛⎫⎪⎝⎭,c =2log 52,则a ,b ,c 的大小关系为().A.c <b <aB.c <a <bC.b <a <cD.b <c <a Aa =21.2,b =0.812-⎛⎫⎪⎝⎭=20.8,∵21.2>20.8>1,∴a >b >1,c =2log 52=log 54<1. ∴c <b <a .5.(2012天津,文5)设x ∈R,则“x >12”是“2x 2+x -1>0”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A 由2x 2+x-1>0,可得x<-1或x>12,∴“x>12”是“2x 2+x-1>0”的充分而不必要条件.6.(2012天津,文6)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ). A .y=cos 2x,x ∈R B .y=log 2|x|,x ∈R 且x ≠0C .y=x x2e e --,x ∈RD .y=x 3+1,x ∈RB 对于A ,y=cos 2x 是偶函数,但在区间1,2π⎛⎫ ⎪⎝⎭内是减函数,在区间,22π⎛⎫ ⎪⎝⎭内是增函数,不满足题意. 对于B ,log 2|-x|=log 2|x|,是偶函数,当x ∈(1,2)时,y=log 2x 是增函数,满足题意.对于C ,f(-x)=x -(-x)2e e --=x x2e e --=-f (x ),∴y=x x2e e --是奇函数,不满足题意.对于D ,y=x 3+1是非奇非偶函数,不满足题意.7.(2012天津,文7)将函数f(x)=sin ωx(其中ω>0)的图象向右平移4π个单位长度,所得图象经过点3,04π⎛⎫ ⎪⎝⎭,则ω的最小值是( ). A .13B .1C .53D .2D f(x)=sin ωx 的图象向右平移4π个单位长度得:y =sin ωx 4π⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦. 又所得图象过点3,04π⎛⎫ ⎪⎝⎭,∴sin 3ω44ππ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦=0.∴sin ω2π=0.∴ω2π=k π(k ∈Z ).∴ω=2k (k ∈Z).∵ω>0,∴ω的最小值为2.8.(2012天津,文8)在△ABC 中,∠A=90°,AB=1,AC=2.设点P,Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R .若BQ ·CP =-2,则λ=( ). A .13B .23C .43D .2B 设AB =a,AC =b,∴|a |=1,|b |=2,且a ·b =0. BQ ·CP =(AQ -AB )·(AP -AC ) =[(1-λ)b -a ]·(λa -b )=-λa 2-(1-λ)b 2=-λ-4(1-λ)=3λ-4=-2, ∴λ=23.9.(2012天津,文9)集合A ={x ||x 2|5}R ∈-≤中的最小整数为 . -3 ∵|x-2|≤5,∴-5≤x-2≤5,∴-3≤x ≤7,∴集合A 中的最小整数为-3.10.(2012天津,文10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 m 3.30 由几何体的三视图可知:该几何体的顶部为平放的直四棱柱,底部为长、宽、高分别为4 m ,3 m ,2 m 的长方体.∴几何体的体积V=V 棱柱+V 长方体=(12)12+⨯×4+4×3×2=6+24=30 m 3.11.(2012天津,文11)已知双曲线C 1:22x a -22y b =1(a>0,b>0)与双曲线C 2:2x 4-2y 16=1有相同的渐近线,且C 1的右焦点为则a= ,b= . 1 2 ∵C 1与C 2的渐近线相同,∴b a=2.又C 1的右焦点为∴即a 2+b 2=5.∴a 2=1,b 2=4,∴a=1,b=2.12.(2012天津,文12)设m ,n ∈R,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为 .3 ∵l 与圆相交所得弦的长为2,∴m 2+n 2=13≥2|mn|,∴|mn|≤16.l 与x 轴交点A 1,0m ⎛⎫ ⎪⎝⎭,与y 轴交点B 10,n⎛⎫ ⎪⎝⎭, ∴S △AOB =12·11m n =12·11|mn |2≥×6=3.13.(2012天津,文13)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D.过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F,AF=3,FB=1,EF=32,则线段CD 的长为 .43由相交弦定理得 AF·FB=EF·FC, ∴FC=AF?FB EF=2.由△AFC ∽△ABD,可知FC BD=AF AB,∴BD=FC?AB AF=83.由切割弦定理得DB 2=DC·DA,又DA=4CD, ∴4DC 2=DB 2=649,∴DC=43.14.(2012天津,文14)已知函数y=2|x 1|x 1--的图象与函数y=kx 的图象恰有两个交点,则实数k 的取值范围是 .(0,1)∪(1,2) y=2|x 1|x 1--=|x 1||x 1|x 1+--=x 1,x 1,-|x 1|,x 1,+>⎧⎨+<⎩函数y=kx 过定点(0,0). 由数形结合可知: 0<k<1或1<k<k OC , ∴0<k<1或1<k<2.15.(2012天津,文15)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.(1)解:从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①解:在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②解:从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P(B)=315=15.16.(2012天津,文16)在△ABC 中,内角A,B,C 所对的边分别是a,b,c.已知cos (1)求sin C 和b 的值; (2)求cos 2A 3π⎛⎫+ ⎪⎝⎭的值.(1)解:在△ABC 中,由cos 可得sin .又由a Asin =c Csin 及a =2,c 可得sin 由a 2=b 2+c 2-2bc cos A,得b 2+b-2=0.因为b>0,故解得b=1.所以sin(2)解:由cos sin ,得cos 2A=2cos 2A-1=-34,sin 2A=2sin A cos所以,cos 2A 3π⎛⎫+ ⎪⎝⎭=cos 2A cos 3π-sin 2A sin 3π.17.(2012天津,文17)如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,AD ⊥(1)求异面直线PA 与BC 所成角的正切值; (2)证明平面PDC ⊥平面ABCD;(3)求直线PB 与平面ABCD 所成角的正弦值.(1)解:如图,在四棱锥P-ABCD 中,因为底面ABCD 是矩形,所以AD=BC 且AD ∥BC.又因为AD ⊥PD,故∠PAD 为异面直线PA 与BC 所成的角.在Rt △PDA 中,tan ∠PAD=PD AD=2.所以,异面直线PA 与BC 所成角的正切值为2.(2)证明:由于底面ABCD 是矩形,故AD ⊥CD,又由于AD ⊥PD,CD ∩PD=D,因此AD ⊥平面PDC,而AD ⊂平面ABCD,所以平面PDC ⊥平面ABCD.(3)解:在平面PDC 内,过点P 作PE ⊥CD 交直线CD 于点E,连接EB.由于平面PDC ⊥平面ABCD,而直线CD 是平面PDC 与平面ABCD 的交线. 故PE ⊥平面ABCD,由此得∠PBE 为直线PB 与平面ABCD 所成的角.在△PDC 中,由于可得∠PCD=30°.在Rt △PEC 中,PE=PC sin 30°由AD ∥BC,AD ⊥平面PDC,得BC ⊥平面PDC,因此BC ⊥PC.在Rt △PCB 中在Rt △PEB 中,sin ∠PBE=PE PB所以直线PB 与平面ABCD 18.(2012天津,文18)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10. (1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n >2).(1)解:设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由a 1=b 1=2,得a 4=2+3d,b 4=2q 3,S 4=8+6d.由条件,得方程组3323d 2q 27,86d 2q 10.⎧++=⎨+-=⎩解得d 3,q 2.=⎧⎨=⎩ 所以a n =3n -1,b n =2n ,n ∈N *. (2)证明:由(1)得T n =2×2+5×22+8×23+…+(3n-1)×2n ,① 2T n =2×22+5×23+…+(3n-4)×2n +(3n-1)×2n+1.② 由①-②,得-T n =2×2+3×22+3×23+…+3×2n -(3n-1)×2n+1=n6(12)12⨯---(3n-1)×2n+1-2=-(3n-4)×2n+1-8,即T n -8=(3n-4)×2n+1,而当n>2时,a n-1b n+1=(3n-4)×2n+1. 所以,T n -8=a n -1b n +1,n ∈N *,n >2.19.(2012天津,文19)已知椭圆22x a+22y b=1(a>b>0),点P ⎫⎪⎪⎝⎭在椭圆上. (1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ|=|AO|,求直线OQ 的斜率的值.(1)解:因为点P ⎫⎪⎪⎝⎭在椭圆上,故22a 5a +22a 2b =1,可得22b a =58. 于是e 2=222a b a -=1-22b a =38,所以椭圆的离心率(2)解:设直线OQ 的斜率为k,则其方程为y=kx,设点Q 的坐标为(x 0,y 0).由条件得00220022y kx ,x y 1,ab =⎧⎪⎨+=⎪⎩消去y 0并整理得 2x =22222a b k a b +.① 由|AQ|=|AO|,A(-a,0)及y 0=kx 0,得(x 0+a)2+k 220x =a 2,整理得(1+k 2)20x +2ax 0=0,而x 0≠0,故x 0=22a 1k -+,代入①,整理得(1+k 2)2=4k 2·22a b+4. 由(1)知22a b =85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k=20.(2012天津,文20)已知函数f (x )=13x 3+1a 2-x 2-ax -a ,x ∈R,其中a >0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a 的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.(1)解:f'(x)=x 2+(1-a)x-a=(x+1)(x-a).由f'(x)=0,得x 1=-1,x 2=a>0.当x 变化时,f'(x),f(x)的变化情况如下表:故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).(2)解:由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰有两个零点当且仅当f(-2)0,f(-1)0,f (0)0,<⎧⎪>⎨⎪<⎩解得0<a<13.所以,a 的取值范围是10,3⎛⎫ ⎪⎝⎭.(3)解:a=1时,f(x)=13x 3-x-1.由(1)知f(x)在[-3,-1]上单调递增,在[-1,1]上单调递减,在[1,2]上单调递增.①当t ∈[-3,-2]时,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上单调递增,在[-1,t+3]上单调递减.因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)=-13,而最小值m(t)为f(t)与f(t+3)中的较小者.由f(t+3)-f(t)=3(t+1)(t+2)知,当t ∈[-3,-2]时,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上单调递增,因此f(t)≤f(-2)=-53,所以g(t)在[-3,-2]上的最小值为g(-2)=-13-53⎛⎫- ⎪⎝⎭=43.②当t ∈[-2,-1]时,t+3∈[1,2],且-1,1∈[t,t+3]. 下面比较f(-1),f(1),f(t),f(t+3)的大小. 由f(x)在[-2,-1],[1,2]上单调递增,有 f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).又由f(1)=f(-2)=-53,f(-1)=f(2)=-13,从而M(t)=f(-1)=-13,m(t)=f(1)=-53.所以g(t)=M(t)-m(t)=43.综上,函数g(t)在区间[-3,-1]上的最小值为43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(天津卷)数学(文科)注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷 参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B). ﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh[来源:] 其中S 表示圆锥的底面面积, H 表示圆锥的高。
[来源:学科网]一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534i i+-=(A )1-i (B )-1+i (C )1+I (D )-1-i【解析】复数i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,选C. 【答案】C(2) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223z x y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B.【答案】B(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C. 【答案】C(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a【解析】因为122.02.022)21(<==-b ,所以ab <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.【答案】A(5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件(D ) 既不充分也不必要条件【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.【答案】A(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y=cos2x ,x ∈R(B ) y=log 2|x|,x ∈R 且x ≠0(C ) y=2x xe e --,x ∈R(D ) y=x3+1,x ∈R【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B. 【答案】B(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(s i n =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ∈R 。
若BQ∙CP=-2,则λ=(A )13(B )23C )43(D )2【解析】如图,设==, 0,21=∙==,又)1(λ-+-=+=,λ+-=+=,由2-=∙得2)1(41()(])1([-=--=--=+-∙-+-λλλλλ,即32,23==λλ,选B.【答案】B二.填空题:本答题共6小题,每小题5分,共30分。
(9)集合{}|25A x R x =∈-≤中最小整数位 .【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-。
【答案】3-(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m.【解析】由三视图可知这是一个下面是个长方体,上面是个平躺着的五棱柱构成的组合体。
长方体的体积为24243=⨯⨯,五棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30。
【答案】30(11)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b =【解析】双曲线的116422=-y x 渐近线为x y 2±=,而12222=-b y a x 的渐近线为x a by ±=,所以有2=a b,a b 2=,又双曲线12222=-b y a x 的右焦点为)0,5(,所以5=c ,又222b a c +=,即222545a a a =+=,所以2,1,12===b a a 。
【答案】1,2(12)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 。
【解析】直线与两坐标轴的交点坐标为)0,1(),1,0(mB n A ,直线与圆相交所得的弦长为2,圆心到直线的距离d 满足3141222=-=-=r d ,所以3=d ,即圆心到直线的距离3122=+-=n m d ,所以3122=+n m 。
三角形的面积为mnn m S 211121=⋅=,又312122=+≥=n m mn S ,当且仅当61==n m 时取等号,所以最小值为3。
【答案】3(13)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于D .过点C 作BD 的平行线与圆交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为 .【解析】如图连结BC ,BE ,则∠1=∠2,∠2=∠A1A ∠=∠∴,又∠B=∠B ,CBF ∆∴∽ABC ∆,ACCFAB CB BC BF AB CB ==∴,,代入数值得BC=2,AC=4,又由平行线等分线段定理得FB AF CD AC =,解得CD=34. 【答案】34(14)已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是 . 【解析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y ,综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,,做出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,则此时当直线经过黄色区域时)2,1(B ,k满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数的取值范围是10<<k 或21<<k 。
【答案】10<<k 或21<<k 。
三.解答题:本大题共6小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
(15题)(本小题满分13分)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I )求应从小学、中学、大学中分别抽取的学校数目。
(II )若从抽取的6所学校中随机抽取2所学校做进一步数据分析, (1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率。
【解析】(1)从小学、中学、大学中分别抽取的学校数目之比为21:14:73:2:1= 得:从小学、中学、大学中分别抽取的学校数目为3,2,1 (2)(i )设抽取的6所学校中小学为123,,A A A ,中学为45,A A ,大学为6A ; 抽取2所学校的结果为:1213141516{,},{,},{,},{,},{,}A A A A A A A A A A ,23242526343536{,},{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A A A454656{,},{,},{,}A A A A A A 共15种;(ii )抽取的2所学校均为小学的结果为:121323{,},{,},{,}A A A A A A 共3种 抽取的2所学校均为小学的概率为31155=在ABC ∆中,内角,,A B C 所对的分别是,,a b c ;已知2,a c A ===; (I )求sin C 和b 的值; (II )求cos(2)3A π+的值。
【解析】(I )cos (0,)sin 44A A A π=-∈⇒=sin sin sin sin a c c A C A C a =⇔==22222cos 201a b c bc A b b b =+-⇔+-=⇔=(II )23sin 22sin cos 22cos 14A A A A A ===-=-3cos(2)cos 2cos sin 2sin 3338A A A πππ-+=-=17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,,1,2AD PD BC PC PD CD ⊥====(I )求异面直线PA 与BC 所成角的正切值; (II )证明:平面PDC ⊥平面ABCD ;(III )求直线PB 与平面ABCD 所成角的正弦值。
【解析】(I )//AD BC ⇒PAD ∠是PA 与BC 所成角 在ADP ∆中,,1,2AD PD AD BC PD ⊥===tan 2PDPAD AD∠== 异面直线PA 与BC 所成角的正切值为2(II ),,AD PD AD DC PDDC D AD ⊥⊥=⇒⊥面PDCAD ⊂面ABCD ∴平面PDC ⊥平面ABCD (III )过点P 作PE CD ⊥于点E ,连接BE平面PDC ⊥平面ABCD PE ⇒⊥面ABCD PBE ⇒∠是直线PB 与平面ABCD 所成角2,1201CD PD PC PDC PE DE ︒===∠=⇒==在Rt BCE ∆中,BE PB ==⇒==在Rt BPE ∆中,sin 13PE PBE PB ∠==得:直线PB 与平面ABCD已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,112a b ==44+=27a b ,44=10S b -.(Ⅰ) 求数列}{n a 与{}n b 的通项公式 (Ⅱ)记112233n n n T a b a b a b a b =++++;证明:*118(,2)n n n T a b n N n -+-=∈≥【解析】(Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为q ;则 34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩ 得:31,2n n n a n b =-=(Ⅱ)1*1(31)2(34)2(37)2()k k k k k k k a b k k k c c k N ++=-⨯=-⨯--⨯=-∈ 12132111()()()(34)28n n n nnT c c c c c c c c n +++=-+-++-=-=-⨯+当2n ≥时,118n n n T a b -+-=(19)(本小题满分14分)已知椭圆22221(0)x y a b a b +=>>,点)P 在椭圆上;(I )求椭圆的离心率;(II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足AQ AO =求直线OQ的斜率的值。