高中数学知识点知识点分析北师大版必修2
新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)
第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。
高中数学第二章解析几何初步优化总结北师大版必修2
[解] 原方程可化为(x-2)2+y2=3,表示以点(2,0)为圆心,
3为半径的圆.
(1)设xy=k,即 y=kx,当直线 y=kx 与圆相切时,斜率 k 取得
最大值和最小值,
此时有 |2k-0| = k2+1
3,解得 k=± 3,
故xy的最大值是 3,最小值是- 3.
(2)设 y-x=b,即 y=x+b,当直线 y=x+b 与圆相切时 b 取
得最大值和最小值,此时|2-0+b|= 3, 2
解得 b=-2± 6,
故 y-x 的最大值为-2+ 6,最小值为-2- 6.
(3)x2+y2 表示圆上的点与原点距离的平方,由平面几何的知 识知,其在原点和圆心的连线与圆的两个交点处分别取得最 大值和最小值,又知圆心到原点的距离为 2,故 x2+y2 的最大 值为(2+ 3)2=7+4 3,最小值为(2- 3)2=7-4 3.
2.求过圆外一点的圆的切线过程 求过圆外一点的圆的切线方程,一般设为点斜式,运用待定
系数法或判别式法求出斜率k,但用点斜式表示直线方程的前
提是斜率必须存在.过圆外一点可以作圆的两条切线,如果 只有一解,那么一定有一条切线斜率不存在,这时可用数形 结合的方法把“丢掉”的切线方程找回来. 3.已知斜率求圆的切线
如图所示,在平面直角坐标系 xOy 中,已知圆 C1:(x +3)2+(y-1)2=4 和圆 C2:(x-4)2+(y-5)2=4. (1)若直线 l 过点 A(4,0), 且被圆 C1 截得的弦长为 2 3,求直线 l 的方程;
(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂直
的直线 l1 和 l2,它们分别与圆 C1 和圆 C2 相交,且直线 l1 被圆 C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相等,试求所有满 足条件的点 P 的坐标.
必修二北师大版数学知识点
必修二北师大版数学知识点必修二北师大版数学知识1.函数的奇偶性。
(1)若f(x)是偶函数,那么f(x)=f(-x)。
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
2.复合函数的有关问题。
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减〞判定。
3.函数图像(或方程曲线的对称性)。
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0.(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。
4.函数的周期性。
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数。
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。
数学北师大版高中必修2北师大版高中数学必修2第二章解析几何初步2.1.3两条直线的位置关系PPT课件
1 所求直线的斜率k 2 2
x 2 y 0.
例7 求证以A(-2,-3)、B(6,3)、C(-5,1) 为顶点的三角形是直角三角形. 证明:直线AB的斜率
k AB k AC
3 (3) 3 6 (2) 4 1 (3) 4 5 (2) 3
直线AC的斜率
1 4 l1 : y x 2 7
1 1 k1 , k 2 , k1 k 2 . ∴两直线不相交. 2 2
1 5 l2 : y x 2 2
7 5 b1 , b2 4 2
b1 b2 ∴两直线不重合,
∴
l1 // l 2
如果直线L1,L2的方程为
L1:A1x+B1y+C1=0, L2:A2x+B2y+C2=0
2 (D) 3
-1=0互相垂直,则( C )
A.a=2 B.a=-2 C.a=2或a=-2 D.a=2,0,-2
3.直线2x+y+m=0和x+2y+n=0的位置关系是( C )
(A)平行 (B)垂直 (C)相交但不垂直
(D)不能确定,与m,n取值有关
4.求与直线3x-2y+2=0垂直,纵截距为-2的直 线方程. 5.直线ax+4y-2=0垂直于2x-5y+b=0且交点为 M(1,c), 求a、b、c. 6.证明以A(3,1)、B(6,4)、C(5,8)、D(2,5) 为顶 点的四边形ABCD是平行四边形.
那么 l1 // l2 A1B2-A2 B1=0且B1C2-B2C1 0或A1C2-A2C1 0 A1 B1 C1 (A 2 B2C2 0) A2 B2 C2
l1与l2重合
北师大版高一数学必修2《1.6.1 垂直关系的判定》
1.6.1 垂直关系的判定知识点1:直线与平面垂直(1)直线与平面垂直的定义如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.(2)画法:当直线与平面垂直时,通常把表示直线的线段画成和表示平面的平行四边形的横边垂直.如图所示.(3)直线与平面垂直的判定定理①文字叙述:如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.②符号表示:若直线a⫋α,直线b⫋α,直线l⊥a,l⊥b,a∩b=A,则l⊥α.③图形表示:④作用:线线垂直⇒线面垂直。
【练习】垂直于梯形两腰的直线与梯形所在平面的位置关系是( )A.垂直B.斜交C.平行D.不能确定解析:梯形的两腰所在的直线相交,根据线面垂直的判定定理可知选项A正确.名师点拨理解线面垂直的判定定理注意以下几点:(1)定理可表述为“线线垂直,则线面垂直”.(2)“两条相交直线”是关键词,一定不要忽视这个条件,否则将导致结论错误,即“线不在多,相交就行”.(3)要证明一条直线与一个平面垂直,只需在平面内找到两条相交直线和该直线垂直即可,至于这两条相交直线是否和已知直线有公共点无关紧要.(4)线面垂直的判定定理与线面垂直的定义往往在证题过程中要反复交替使用.知识点2:二面角及其平面角(1)半平面的定义:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.(2)二面角的定义:从一条直线出发的两个半平面所组成的图形叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(3)二面角的记法:以直线AB为棱,半平面α,β为面的二面角,记作二面角α-AB-β.(4)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.(5)直二面角:平面角是直角的二面角叫作直二面角.【练习】给出下列命题:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是( )A.①③B.②④C.③④D.①②解析:由二面角的定义:从一条直线出发的两个半平面所组成的图形叫作二面角,可知①不对.画出图形,可知②正确.③中所作的射线不一定垂直于二面角的棱,故③不对.由定义知④正确.故选B.知识点3:平面与平面垂直(1)两个平面互相垂直的定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:在画两个垂直的平面时,通常把表示直立平面的平行四边形的竖边画成和表示水平平面的平行四边形的横边垂直.如图①②所示.(3)平面与平面垂直的判定定理①文字叙述:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②符号表示:③图形表示:④作用:线面垂直⇒面面垂直【练习】已知直线m,n与平面α,β,γ,下列可能使α⊥β成立的条件是( )A.α⊥γ,β⊥γB.α∩β=m,m⊥n,n⫋βC.m∥α,m∥βD.m∥α,m⊥β解析:选择适合条件的几何图形观察可得,A中α∥β或α与β相交,B中α,β相交,但不一定垂直,C中α∥β或α与β相交.名师点拨理解面面垂直的判定定理注意以下几点:(1)定理可简记为“线面垂直,则面面垂直”,因此要证明平面与平面垂直,只需在其中一个平面内找另一个平面的垂线,即证“线面垂直”.(2)两个平面垂直的判定定理,不仅仅是判定两个平面垂直的依据,而且是找出垂直于一个平面的另一个平面的依据.(3)要证α⊥β,可证α经过β的某一条垂线,也可证明β经过α的某一条垂线.思考辨析判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)若直线l垂直于平面α内无数条直线,则有l⊥α. ( ╳)(2)若直线l垂直于平面α内任意直线,则有l⊥α. ( √)(3)若直线l垂直于α内的一个凸五边形的两条边,则有l⊥α. ( √)(4)一个二面角的平面角有且只有一个. ( ╳)(5)若直线l与平面α交于点O,且l与α不垂直,l⫋β,则α与β一定不垂直. ( ╳)【例1】如图所示,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于点H.求证:AH⊥平面BCD.证明:取AB的中点F,连接CF,DF,因为AC=BC,所以CF⊥AB.同理可得,DF⊥AB.又CF∩DF=F,所以AB⊥平面CDF.因为CD⫋平面CDF,所以AB⊥CD.又BE⊥CD,且BE∩AB=B,所以CD⊥平面ABE.因为AH⫋平面ABE,所以CD⊥AH.又AH⊥BE,BE∩CD=E,所以AH⊥平面BCD.反思感悟证明线面垂直的关键是:分析几何图形,寻找隐含的和题目中推导出的线线垂直关系,进而证明线面垂直.三角形全等、等腰三角形底边上的中线、梯形的高、菱形和正方形的对角线、三角形中的勾股定理等都是找线线垂直的方法.变式训练1:如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上的点.求证:BC⊥平面PAC.分析:由AB是圆O的直径可知AC⊥BC,再结合PA⊥平面ABC,即可证明BC⊥平面PAC.证明:由AB是圆O的直径,得AC⊥BC.由PA⊥平面ABC,BC⫋平面ABC,得PA⊥BC.又PA∩AC=A,PA⫋平面PAC,AC⫋平面PAC,所以BC⊥平面PAC.2,E,F分别是AB,PD的中点.【例2】如图所示,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2求证:(1)AF∥平面PCE;(2)平面PCE⊥平面PCD.分析:(1)要证AF∥平面PCE,只需证明AF平行于平面PCE内的一条直线即可,取PC的中点G,则该直线为GE. (2)要证明平面PCE⊥平面PCD,只需证明GE⊥平面PCD,而由(1)知GE∥AF,故只需证明AF⊥平面PCD即可.反思感悟怎样证明平面与平面垂直:1.证明面面垂直的方法:(1)证明两个半平面构成的二面角的平面角为90°;(2)证明一个平面经过另一个平面的一条垂线,将证明面面垂直的问题转化为证明线面垂直的问题.2.利用判定定理证明两个平面垂直时,一般方法是先从现有的直线中寻找平面的垂线,若图形中不存在这样的垂线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明.变式训练2:已知正方形ABCD的边长为1,分别取边BC,CD的中点E,F,连接AE,EF,AF,以AE,EF,FA为折痕,折叠使点B,C,D重合于一点P.求证:(1)AP⊥EF;(2)平面APE⊥平面APF.题型三:对空间中线面关系理解不透彻而致误【典例】如图所示,在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,则截面ACB1与对角面BB1D1D垂直吗?纠错心得1.因为B1O与底面不垂直,就断定截面ACB1不可能与对角面BB1D1D垂直,这是毫无根据的.2.要克服上述错误,一定要将有关定理或性质的适用条件及内涵把握清楚,不能凭想当然进行毫无逻辑的论证.课后巩固练习:1.下列各种情况中,一条直线垂直于一个平面内的:①三角形的两条边;②梯形的两条边;③圆的两条直径;④正六边形的两条边.不能保证该直线与平面垂直的是( )A.①③B.②C.②④D.①②④解析:三角形的任何两边都相交;圆的任何两条直径都相交;但梯形中任意两边不一定相交,也可能平行;正六边形中也存在平行的两条边,因此不能保证该直线与平面垂直的是②④.故选C.答案:C2.在空间四边形ABCD中,若AD⊥BC,BD⊥AD,则( )A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC解析:如图所示,∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BDC.又AD⫋平面ADC,∴平面ADC⊥平面DBC.答案:D3.如图所示,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,(1)与PC垂直的直线有;(2)与AP垂直的直线有.解析:(1)因为PC⊥平面ABC,AB,AC,BC⫋平面ABC,所以与PC垂直的直线有AB,AC,BC.(2)∠BCA=90°,即BC⊥AC.又BC⊥PC,AC∩PC=C,所以BC⊥平面PAC,PA⫋平面PAC.所以BC⊥AP.答案:(1)AB,AC,BC (2)BC4.如图,已知正方体ABCD-A1B1C1D1,M,N分别为A1D1和AA1的中点,则下列说法正确的个数为( )①C1M∥AC; ②BD1⊥AC; ③BC1与AC所成的角为60°; ④CD与BN为异面直线.A.1B.2C.3D.45.如图所示,四边形ABCD是菱形,PC⊥平面ABCD,E是PA的中点求证:平面BDE⊥平面ABCD.。
北师大版高中数学必修2课件-垂直关系的性质
D.A1A
B [可证 BD⊥平面 AA1C1C,而 CE 平面 AA1C1C,故 BD⊥CE.]
2.若平面 α⊥β,直线 a∥α,则( )
A.a⊥β
B.a∥β 或 a β
C.a 与 β 相交
D.a β 或 a∥β 或 a 与 β 相交
D [a 与 β 三种位置关系都有可能.]
3.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该
第一章 立体几何初步
§6 垂直关系 6.2 垂直关系的性质
学习目标
核心素养
1.理解直线与平面、平面与平面垂 1.通过学习直线与平面、平面与平
直的性质定理.(重点) 面垂直的性质定理提升数学抽象、
2.理解并掌握空间“平行”与 直观想象素养.
“垂直”之间的相互转化.(难点、 2.通过应用线面与面面垂直的性
()
[解析] (3)×,α∥γ 或 α∩γ=l. [答案] (1)√ (2)√ (3)×
2.已知平面 α⊥平面 β,α∩β=l,点 P∈l,给出下面四个结论:
①过 P 与 l 垂直的直线在 α 内;
②过 P 与 β 垂直的直线在 α 内;
③过 P 与 l 垂直的直线必与 α 垂直;
④过 P 与 β 垂直的平面必与 l 垂直.
立体几何中的垂直关系有三类:线线垂直、线面垂直、面面垂 直.处理垂直问题时,要注意三者之间的内在联系.转化思想是立体 几何中解决垂直问题的重要思想.垂直关系的转化如下:
课堂 小结 提素 养
1.线面垂直的性质定理揭示了空间中“平行”与“垂直”关系 的内在联系,提供了“垂直”与“平行”关系相互转化的依据.
[解] (1)证明:设 G 为 AD 的中点,连接 PG,BG,
∵△PAD 为正三角形,∴PG⊥AD. 在菱形 ABCD 中,∠DAB=60°, G 为 AD 的中点,∴BG⊥AD. 又 BG∩PG=G,∴AD⊥平面 PGB. ∵PB 平面 PGB,∴AD⊥PB. (2)当 F 为 PC 的中点时,满足平面 DEF⊥平面 ABCD.
北师大版高中数学必修2:圆的标准方程
P={M||MC|=r}
y
M(x,y)
r
OC(0,0)
x
P1P2 x2 x1 2 y2 y1 2 .
已知圆的圆心C(a,b)及圆的半径r,在直角 坐标系下,如何表示圆的方程?
P={M||MC|=r}
y
MБайду номын сангаасx,y)
知识回顾
y形
数
M1(x1,y1)
l : Ax By C 0
M2(x2,y2)
o
x
什么是圆?
P={M||MC|=r}
确定圆的基本条件是什么?
圆心--确定圆的位置(定位) 半径--确定圆的大小(定形)
M
r
C
一石激起千层浪
福建土楼
M (x,y)
r
O (0,0)
P1P2 x2 x1 2 y2 y1 2 .
2. △ABC的三个顶点的坐标分别A(5, 1), B(7, -3), C(2, -8), 求它的外接圆的方程.
r
C(a,b)
O
x
根据两点间距离公式:P1P2 x2 x1 2 y2 y1 2 .
则点M、A间的距离为:MC (x a)2 ( y b)2 r
(x a)2 ( y b)2 r2
y M (x, y)
圆心A(a,b) 半径 r
r
特别的, x2+y2=r2
C (a,b) O
x
说明:1、特点:明确给出了圆心坐标和半径。 2、确定圆的方程必须具备三个独立条件。
(x a)2 ( y b)2 r2
北师大高中数学必修二知识点汇总
北师大高中数学必修二知识点汇总一•三角函数角度与弧度制一个圆,弧长和半径相等时所对应的角度是1弧度•弧度和角度的换算关系:弧度*180/(2*町=角度诱导公式常用的诱导公式有以下几组:公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin(2kn+a)=sinacos(2kn+a)=cosatan(2kn+a)=tanacot(2kn+a)=cota公式二:设a为任意角,n+a的三角函数值与a的三角函数值之间的关系:sin(n+a)=—sinacos(n+a)=—cosatan(n+a)=tanacot(n+a)=cota公式三:任意角a与-a的三角函数值之间的关系:sin(—a)=—sinacos(—a)=cosatan(—a)=—tanacot(—a)=—cota公式四:利用公式二和公式三可以得到n-a与a的三角函数值之间的关系:sin(n—a)=sinacos(n—a)=—cosatan(n—a)=—tanacot(n—a)=—cota公式五:利用公式一和公式三可以得到2n-a与a的三角函数值之间的关系:sin(2n—a)=—sin acos(2n—a)=cosatan(2n—a)=—tana3cot(2n—a)=—cota公式六:n/2士a及3n/2士a与a的三角函数值之间的关系:sin(n/2+a)=cosacos(n/2+a)=—sinatan(n/2+a)=—cotacot(n/2+a)=—tanasin(n/2—a)=cosa cos(n/2—a)=sina tan(n/2—a)=cota cot(n/2—a)=tanasin(3n/2+a)c os(3n/2+a)ta n(3n/2+a)cot (3n/2+a) =—cosa =s ina =—cota =—tanasin(3n/2—a) =—cosacos(3n/2—a) =—sinatan(3n/2—a) =cotacot(3n/2—a) =tana(以上k W Z)函数类型第一象限第二象限第三象限第四象限正弦++————余弦+————+正切+——+——余切+—+—三角函数的图像与性质1.正弦函数正弦函数的性质:解析式:y=sinx正弦函数的图像波形图像(由单位圆投影到坐标系得出)定义域:R(实数)值域:[-1,1]最值:①最大值:当x=(n/2)+2kn时,y(max)=l②最小值:当x=-(n/2)+2kn 时,y(min)=-l零值点:(kn,0)对称性:1)对称轴:关于直线x=(n/2)+kn对称2)中心对称:关于点(kn,O)对称周期:2n奇偶性:奇函数单调性:在[-(n/2)+2kn,(n/2)+2kn]上是增函数,在[(n/2)+2kn,(3n/2)+2kn]上是减函数2余弦函数余弦函数的性质:余弦函数图像:波形图像定义域:R值域:[-1,1]最值:1)当x=2kn时,y(max)=12)当x=2kn+n时,y(min)=-1零值点:(n/2+kn,0)对称性:1)对称轴:关于直线x=kn对称2)中心对称:关于点(n/2+kn,0)对称周期:2n奇偶性:偶函数单调性:在[2kn-n,2kn]上是增函数在[2kn,2kn+n]上是减函数3正切函数正切函数的性质:正切函数的图像:定义域:{x|x主(n/2)+kn,k^Z}值域:R最值:无最大值与最小值零值点:(kn,0)对称性:轴对称:无对称轴中心对称:关于点(kn,0)对称周期:n奇偶性:奇函数单调性:在(-n/2+kn,n/2+kn)上都是增函数二•平面向量向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
北师大版高中数学必修2第一章《立体几何初步》球的表面积与体积
3 6 R= , S = 54π ,V = 27 6π 2
13
作业: 作业: 练习: P28练习:1,2,3.
教学反思: 教学反思:
14
北师大版高中数学必修2第 北师大版高中数学必修 第 一章立体几何初步
1 法门高中姚连省制作
一、教学目标 知识与技能: 通过对球的体积和面积公式的推导, 1、知识与技能:⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基 本数学思想方法: 分割——求和 求和——化为准确和”,有利于同学们进一步学习 化为准确和” 本数学思想方法:“分割 求和 化为准确和 微积分和近代数学知识。⑵能运用球的面积和体积公式灵活解决实际问题。⑶培 微积分和近代数学知识。 能运用球的面积和体积公式灵活解决实际问题。 养学生的空间思维能力和空间想象能力。 过程与方法: 养学生的空间思维能力和空间想象能力。2、过程与方法:通过球的体积和面积公 4 式的推导,从而得到一种推导球体积公式V= 式的推导,从而得到一种推导球体积公式V= 和面积公式S= S=4 πR3和面积公式S=4πR2的 3 方法, 方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法, 分割求近似值,再由近似和转化为球的体积和面积”的方法, 体现了极限思想。 情感与价值观:通过学习, 体现了极限思想。3、情感与价值观:通过学习,使我们对球的体积和面积公式 的推导方法有了一定的了解,提高了空间思维能力和空间想象能力, 的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我 们探索问题和解决问题的信心。 们探索问题和解决问题的信心。 教学重点、 二、教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 难点:推导体积和面积公式中空间想象能力的形成。 难点:推导体积和面积公式中空间想象能力的形成。 三、学法和教学用具 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“ 1、学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割 求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 教法: 2、教法:探究交流法 四、教学过程
高中数学第4章三角恒等变换2两角和与差的三角函数公式 积化和差与和差化积公式课件北师大版必修第二册
§2 两角和与差的三角函数公式
2.4 积化和差与和差化积公式
课程标准
核心素养
通过证明及应用积化和差与和差化
能运用积化和差与和差化积公式进
积公式,提升数学抽象、逻辑推理、
行简单的恒等变换.
数学运算素养.
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
知识点1 积化和差公式
2255°°=__3_3__.
[解析]
35°+25° 35°-25°
ቤተ መጻሕፍቲ ባይዱ
原式=2sin35°+2 25°cos35°-2 25°=tan
30°=
3 3.
2cos 2 cos 2
4.cos512πsin1π2=_12_-___4_3_.
[解析] cos51π2sin1π2= 12sin51π2+1π2-sin51π2-1π2 =12sinπ2-sin3π =12- 43.
∵sinα-2 β≠0, ∴由①②得-tanα+2 β=-32, ∴tanα+2 β=32.
[归纳提升] (1)对于给值求值问题, 一般思路是先对条件化简,之后 看能否直接求结果;若不满足,再对所求式化简,直到找到两者的联系为 止.
(2)积化和差与和差化积公式中的“和差”与“积”都是指三角函数 值之间的关系,并不是指角的关系.
【对点练习】❷ 13
已知 sin(α+β)=23,sin(α-β)=15,则 sin αcos β=
__3_0__.
[解析] 因为 sin(α+β)=23,sin(α-β)=15,
所以 sin(α+β)+sin(α-β)
=2sin αcos β=23+15=1135,
所以 sin αcos β=1330.
新教材北师大版高中数学必修二 高中数学常用解题公式结论
数学公式一.三角函数1.三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:r =2.诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
3.和差公式:①sin()sin cos cos sin αβαβαβ±=±(伞科科伞,符号不反) ②cos()cos cos sin sin αβαβαβ±=(科科伞伞,符号相反) ③tan tan tan()1tan tan αβαβαβ±±=(上同下相反)4.二倍角公式:①sin 22sin cos ααα=②2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- ③22tan tan 21tan ααα=- 5.降幂公式:①.sin 2sin cos 2ααα=②.21cos 2sin 2αα-=③.21cos 2cos 2αα+=6.辅助角公式:sin cos ).(tan ,0)ba wxb wx wx a aϕϕ+=+=>7.正弦定理:2sin sin sin a b cR A B C ===8.余弦定理:①222222cos 2cos 2b c a A a b c bc A bc+-=⇔=+- ②222222cos 2cos 2a c b B b a c ac B ac +-=⇔=+- ③222222cos 2cos 2a b c C c a b ab C ab+-=⇔=+- 9.三角形最值原理:三角形中一个角及其对边已知时、另外两边或两角相等时周长取得最小值,面积取得最大值;二.平面向量1.向量加法的作图:上终下起,中间消去;AB BC AC +=2.向量减法的作图:起点相同,倒回来读;C C A -AB =B3.向量平行的判定:(1)向量法://=a b b a λ⇔; (2)向量法: 1221//0a b x y x y ⇔-=4.向量垂直的判定:(1)向量法: 0a b a b ⊥⇔=; (2)向量法: 12120a b x x y y ⊥⇔+=5.向量的数量积公式:(1)向量法: cos a b a b θ=; (2)向量法: 1212=a b x x y y +6.向量的夹角公式:(1)向量法: cos =a b a bθ; (2)向量法: cos θ7.a 方向上的单位向量: (1)向量法: a e a=; (2)向量法: 121=x a e a x ⎛⎫= +⎝ 8.证明A 、B 、C 三点共线两种方法:(1)两个向量,AB AC 共线且有一个公共点A ;(2)(1)PA xPB yPC x y =++=三.立体几何初步1.多面体的内切球半径:123nVr S S S =++⋅⋅⋅+2.长方体的外接球半径:2R =3.直棱锥的外接球半径:222()22sin h R r a r A ⎧=+⎪⎪⎨⎪=⎪⎩4.正棱锥的外接球半径:222()2sin Rr h R a r A ⎧=+-⎪⎨=⎪⎩5.正三角形的性质:高:h =,面积:2S = 6.正三角形与圆:内切圆半径:r =,外接圆半径:R =,且21R r =7.正四面体的高:斜高:h =斜,正高:h =正8.正四面体与球:内切球半径r ,外接球半径R ,且31R r=且r R h +=正。
北师大版高中数学必修2垂直关系的性质
(3)如图,取 PC 的中点 G,连接 FG, GD.
∵F,G 分别为 PB 和 PC 的中点, ∴FG∥BC,且 FG=12BC. ∵四边形 ABCD 为矩形,且 E 为 AD 的中点, ∴ED∥BC,DE=12BC,∴ED∥FG,且 ED=FG, ∴四边形 EFGD 为平行四边形,∴EF∥GD. 又 EF 平面 PCD,GD 平面 PCD,∴EF∥平面 PCD.
【证明】 (1)∵PA=PD,且 E 为 AD 的中点, ∴PE⊥AD. ∵底面 ABCD 为矩形,∴BC∥AD,∴PE⊥BC. (2)∵底面 ABCD 为矩形,∴AB⊥AD. ∵平面 PAD⊥平面 ABCD,∴AB⊥平面 PAD. ∴AB⊥PD.又 PA⊥PD,且 PA∩AB=A, ∴PD⊥平面 PAB,∴平面 PAB⊥平面 PCD.
∴A1E⊥BC1. 答案:C
知识点二 面面垂直的性质 4.如图,空间四边形 ABCD 中,平面 ABD⊥平面 BCD,∠ BAD=90°,且 AB=AD,则 AD 与平面 BCD 所成的角是________.
解析:过 A 作 AO⊥BD 于 O 点, ∵平面 ABD⊥平面 BCD, ∴AO⊥平面 BCD.则∠ADO 即为 AD 与平 面 BCD 所成的角. ∵∠BAD=90°,AB=AD. ∴∠ADO=45°. 答案:45°
又∵A1C1∩A1D=A1, ∴BD1⊥平面 A1C1D. ∵EF⊥AC,AC∥A1C1,∴EF⊥A1C1. 又∵EF⊥A1D 且 A1C1∩A1D=A1, ∴EF⊥平面 A1C1D,∴EF∥BD1. 【规律总结】 证明线线平行的方法主要有:(1)若 a∥b,b ∥c,则 a∥c.(2)线面平行的性质定理.(3)线面垂直的性质定理.
面 ABCD=AD,∴BF⊥平面 PAD. 又∵BF 平面 BEF,∴平面 BEF⊥平面 PAD.
新教材高中数学第2章平面向量及其应用3从速度的倍数到向量的数乘课件北师大版必修第二册
[归纳提升] 向量的线性运算类似于代数多项式的运算,实数运算中 去括号、移项、合并同类项、提取公因式等变形手段在向量线性运算中 也可以使用,但是在这里的“同类项”“公因式”指向量,实数看作是向 量的系数.
【对点练习】❶ (1)下列各式计算正确的有
( C)
①(-7)6a=-42a;②7(a+b)-8b=7a+15b;
A→P=tA→B表示过点 A,B 的直线 l,其中A→B称为直线 l 的方向向量. 思考 3:已知△ABC 的三个顶点 A,B,C 及平面内一点 P,且P→A+P→B +P→C=A→B,则 P 在△ABC 内部,外部,还是哪条边上? 提示:将条件变形为P→A+P→B+P→C=P→B-P→A,所以P→C=-2P→A,所以 P 在边 AC 上.
③a-2b+a+2b=2a;④4(2a+b)=8
D.4 个
(2)若 a=b+c,化简 3(a+2b)-2(3b+c)-2(a+b)的结果为 ( A )
A.-a
B.-4b
C.c
D.a-b
[解析] (1)①③④正确,②错,7(a+b)-8b=7a+7b-8b=7a-b. (2)3(a+2b)-2(3b+c)-2(a+b)=(3-2)a+(6-6-2)b-2c=a-2(b +c)=a-2a=-a.
基础自测
1.辨析记忆(对的打“√”,错的打“×”)
(1)若 λa=0,则 λ=0.
(×)
(2)3a 的方向与 a 的方向相同,且 3a 的模是 a 的模的 3 倍.( √ )
(3)-2a 的方向与 3a 的方向相反,且-2a 的模是 3a 的模的23倍.
(√ )
(4)-5a 与 5a 是一对相反向量.
(3)234a-3b+13b-146a-7b.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)垂直直线系垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=+-C y A x B (C 为常数)(三)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合(8)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB(9)点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2200BA C By Ax d +++=(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x 当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+-两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:主视图(光线从几何体的前面向后面正投影);左视图(从左向右)、 俯视图(从上向下)注:主视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;左视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台 '2211()()33V S S h r rR R h π=++=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
应用: 判断直线是否在平面内用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。
符号语言:,P A B A B l P l ∈⇒=∈公理3的作用:①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理4:平行于同一条直线的两条直线互相平行空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
求异面直线所成角步骤:A 、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。