有限元法课后习题答案
有限元习题及答案
有限元习题及答案有限元习题及答案有限元方法是一种常用的数值计算方法,用于求解各种工程和科学问题。
在学习有限元方法的过程中,练习习题是非常重要的,可以帮助学生巩固所学的知识,并提高解决实际问题的能力。
本文将介绍一些有限元习题及其答案,希望对学习有限元方法的同学有所帮助。
习题一:一维热传导问题考虑一个长度为L的一维杆,其两端固定,杆上的温度满足以下热传导方程:∂²T/∂x² = 0,其中T为温度,x为位置。
已知杆的两端温度分别为T1和T2,求解杆上的温度分布。
解答一:根据热传导方程,可以得到温度分布的一般解为T(x) = Ax + B,其中A和B为常数。
根据边界条件,可以得到方程组:T(0) = B = T1T(L) = AL + B = T2解方程组可得A = (T2 - T1) / L,B = T1。
因此,温度分布为T(x) = ((T2 - T1) / L) * x + T1。
习题二:二维弹性问题考虑一个矩形薄板,其长为L,宽为W,材料的弹性模量为E,泊松比为ν。
已知薄板的边界上施加了一定的边界条件,求解薄板上的位移场。
解答二:对于二维弹性问题,可以使用平面应力假设,即假设薄板内部的应力只有两个分量σx和σy,并且与z轴无关。
根据平面应力假设和胡克定律,可以得到位移场的偏微分方程:∂²u/∂x² + ν * (∂²u/∂y²) + (1 - ν) * (∂²v/∂x∂y) = 0∂²v/∂y² + ν * (∂²v/∂x²) + (1 - ν) * (∂²u/∂x∂y) = 0其中u和v分别为位移场在x和y方向上的分量。
边界条件根据具体情况给定。
通过数值方法,如有限元方法,可以求解位移场的近似解。
习题三:三维流体力学问题考虑一个三维流体力学问题,流体在一个封闭容器内流动,容器的形状为一个长方体,已知流体的速度场和压力场的初始条件,求解流体的运动状态。
有限元分析及应用习题答案
有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。
在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。
本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。
1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。
其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。
2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。
- 可以考虑材料非线性、几何非线性等复杂情况。
- 可以对结构进行优化设计,提高结构的性能。
- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。
3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。
常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。
- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。
- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。
4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。
一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。
此外,还需要根据具体问题的要求和计算资源的限制进行选择。
5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。
- 力边界条件:施加在结构上的外力或力矩。
- 约束边界条件:限制某些节点的位移或位移的导数为零。
6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。
有限元法理论及应用参考答案(推荐文档)
有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。
2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。
题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。
有限元划分网格的基本原则:1.拓扑正确性原则。
即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。
即网络划分后,单元的集合为原结构近似3.特性一致原则。
即材料相同,厚度相同4.单元形状优良原则。
单元边、角相差尽可能小5.密度可控原则。
即在保证一定精度的前提下,网格尽可能的稀疏一些。
(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。
(c)中没有考虑对称性,单元边差很大。
3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。
(b )划分为平面梁单元,8个节点,15个自由度。
(c )平面四节点四边形单元,8个节点,13个自由度。
(d )平面三角形单元,29个节点,38个自由度。
4、什么是等参数单元?。
答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。
5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。
有限元方法例题解答
2023《有限元技术》习题一参考答案1、用欧拉方程求泛函()1022[()]'2(0)0,(1)0J y x y y xy dx y y ⎧=--⎪⎨⎪==⎩⎰的极值曲线。
解:22'2F y y xy =--,代入欧拉方程'0y y dF F dx-=, 得:''++0y y x =,解微分方程得通解:12sin cos y C x C x x =+-,代入边界条件(0)0,(1)0y y ==,解得sin sin1xy x =-。
2、如图所示,一长度为L 质量为M 的项链悬挂在跨度为2a 的A 和B 两点,项链在重力场中自然下垂,试求该链悬在稳定状态时的曲线方程。
(重力加速度为g )解: (方法一)将原坐标系(),x y 向下平移1C 个单位(),x y ,拟采用1cosh y C t =代换求解 在新坐标系中,悬链在稳定状态时能量处于最小值。
悬链线质量密度MLλ=, 长度为dl 的势能为:()Mgy dW dmgy dl gy dl L λ====,悬链总势能泛函:(a a a a Mg W dW dx dx L --===⎰⎰⎰,约束条件为:悬链线长度aL -=⎰,泛函的被积函数:(),F y y '=,势能泛函取极小值时的欧拉方程为:'1'y F y F C -=, 即:21C -=,化简得:y C =于是:dx =x =,令1cosh y C t =(在新坐标系下才能作此代换),得:1sinh sinh dy C tdt t =⎧=,代入x =,得112x C dt C t C ==+⎰所以,21x C t C -=,21cosh cosh x C t C ⎛⎫-= ⎪⎝⎭回代1cosh y C t =得:211cosh x C y C C ⎛⎫-= ⎪⎝⎭,曲线关于y 轴对称得20C =,1C由悬链线长度112sinhaaL C C -==⎰给出, 故新坐标系下所求曲线方程为11cosh x y C C ⎛⎫=⎪⎝⎭, 1C 由11sinh 2L aC C =确定。
有限元法基础习题答案
有限元法基础习题答案有限元法是一种常用的工程分析方法,广泛应用于结构力学、热传导、流体力学等领域。
它通过将复杂的物理问题离散化为一系列简单的子问题,并利用数值方法求解这些子问题,从而得到整体问题的近似解。
在学习有限元法的过程中,习题是必不可少的一环。
本文将给出一些有限元法基础习题的答案,希望能够帮助读者更好地理解和掌握这一方法。
习题一:一维线性弹性力学问题考虑一根长度为L的弹性杆,杆的截面积为A,杨氏模量为E。
在杆的一端施加一个沿杆轴向的拉力F,另一端固定。
假设杆轴向变形u(x)满足以下方程:EAu''(x) = -F,0 < x < Lu(0) = 0, u(L) = 0其中,u''(x)表示u(x)对x的二阶导数。
解答:根据上述方程,我们可以得到杆的位移函数u(x)的表达式。
首先,对方程两边进行积分,得到:EAu'(x) = -Fx + C1其中,C1为积分常数。
再次对方程两边进行积分,得到:EAu(x) = -F/2*x^2 + C1*x + C2其中,C2为积分常数。
根据边界条件u(0) = 0,可得C2 = 0。
代入边界条件u(L) = 0,可得:EAu(L) = -F/2*L^2 + C1*L = 0由此可得C1 = F/2*L。
将C1代入上式,可得:EAu(x) = -F/2*x^2 + F/2*L*x最终得到杆的位移函数u(x)的表达式为:u(x) = (-F/2*E)*(x^2 - L*x),0 < x < L习题二:二维平面弹性力学问题考虑一个正方形薄板,边长为L,板的厚度为h。
假设薄板的杨氏模量为E,泊松比为ν。
在薄板的一侧施加一个沿法向的均匀表面压力P,另一侧固定。
求薄板的位移和应力分布。
解答:根据平面弹性力学理论,我们可以得到薄板的位移和应力分布。
首先,根据杨氏模量E、泊松比ν和薄板的厚度h,可以计算出薄板的弹性模量D:D = E*h^3 / (12*(1-ν^2))接下来,根据薄板的边界条件和平衡方程,可以得到薄板的位移和应力分布。
《有限单元法》1-5章课后习题答案
δδ∏00且或∏,泛函极值性对于判断解的近似性质有意义,利用它可以对解的上下界做出估计。
思考题1.9什么是里兹法?通过它建立的求解方法有什么特点?里兹方法收敛性的定义是
什么?收敛条件是什么?
里兹法:在某一函数空间寻找试探函数,利用加权值的独立变分性将该函数的驻值问题转化
为该函数关于权值的极值问题。其特点是:试探函数是全域的,解的精度依赖于试探函数的
5qL L 5qL
wx L x当x , w
5 4
120EI + kl 2 480EI + 4kL
4
L 5qL
精确解w ???,应该是三角级数更接近精确解。因为是最小位能原理建立的
2 384EI
泛函,因此近似解比精确解要偏小。因此只要比较三角函数和幂函数的结果,就可以知道哪
个更精确了。另外,取不同的阶数,逼近速度不同,三角函数更快。
可得最终结果(略)。3 2 2 2 w ww ww
δδw n ds?+ n dsδ dxdy?
xx?∫∫3 2∫2 2
ΓΓ?x xx ?x ?x? 2 2 2 3? ww ?
+δ dxdy?+δδ n ds w n ds? y y
∫22∫2∫2ΓΓ
?y ?x ?y ?x y xD?
0
2 2 2 3 ww ?
12
23
L LL
3
x
上式中的最后一项前面没有待定系数,这是由于使用了在xL处φ1的强制边界条件。
3
L
从物理意义上说,相当于给定边界条件的解为齐次方程的通解加一个特解的缘故。将(1 )
式代入教材(1.2.26 )式,得到残量:
x 66 xx
R x a ?6 + a 2? + + Qx
有限元课后第三章习题答案
有限元课后第三章习题答案有限元课后第三章习题答案第一题:根据题目给出的信息,我们可以得出以下结论:1. 题目中提到了一个平面问题,即只考虑二维情况。
2. 材料的弹性模量为E = 210 GPa。
3. 材料的泊松比为ν = 0.3。
4. 材料的厚度为t = 10 mm。
5. 材料的长度为L = 100 mm。
6. 材料的宽度为W = 50 mm。
7. 材料的边界条件为固定边界。
根据以上信息,我们可以开始解题。
首先,我们需要确定有限元模型的几何形状和单元类型。
由于题目给出的是一个平面问题,我们可以选择使用二维平面应力单元来建模。
根据题目给出的材料尺寸,我们可以选择一个矩形区域作为有限元模型的几何形状。
接下来,我们需要确定有限元模型的单元划分。
由于题目没有给出具体的单元划分要求,我们可以根据经验选择适当的单元尺寸和划分密度。
在这里,我们可以将矩形区域划分为若干个等大小的四边形单元。
然后,我们需要确定有限元模型的边界条件。
根据题目给出的信息,材料的边界条件为固定边界。
这意味着模型的边界上的节点在计算过程中将保持固定位置,不发生位移。
因此,我们需要将边界上的节点固定。
接下来,我们可以开始进行有限元计算。
首先,我们需要确定有限元模型的节点和单元编号。
然后,我们可以根据材料的弹性模量和泊松比,以及节点和单元的位置信息,计算出每个节点和单元的刚度矩阵。
然后,我们可以根据边界条件,将固定边界上的节点的位移设置为0。
这样,我们就可以得到一个由位移未知数构成的线性方程组。
通过求解这个线性方程组,我们可以得到模型中每个节点的位移。
最后,我们可以根据节点的位移和单元的刚度矩阵,计算出每个单元的应力和应变。
根据题目给出的材料厚度,我们可以得到每个单元的应力和应变的平均值。
综上所述,根据题目给出的信息,我们可以使用有限元方法来求解这个平面问题。
通过建立有限元模型,确定边界条件,进行有限元计算,我们可以得到模型中每个节点的位移和每个单元的应力和应变。
高等有限元课后题答案 (1)
2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。
2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。
2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。
而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。
2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。
矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。
矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。
因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。
2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。
计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。
2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。
在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。
若形状相差过大,使结构应力分析困难加大,误差同时也加大。
2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。
有限单元法参考答案
有限单元法参考答案有限单元法参考答案有限单元法是一种常用的数值计算方法,广泛应用于工程领域中的结构分析、流体力学、电磁场等问题的求解。
在有限单元法中,将连续的物体或区域离散成有限个单元,通过对单元进行逐一求解,最终得到整个问题的解。
本文将介绍有限单元法的基本原理和应用,并给出一些参考答案。
一、有限单元法的基本原理有限单元法的基本原理是将一个连续的物体或区域离散成有限个单元,通过对单元进行逐一求解,最终得到整个问题的解。
在离散的过程中,通常需要选择合适的单元形状和节点布局。
常见的单元形状有三角形、四边形、六边形等,节点则是单元的顶点。
在有限单元法中,通过建立单元之间的关系,可以将整个问题转化为一个线性方程组的求解问题。
这个线性方程组通常由结构的刚度矩阵和载荷向量组成。
刚度矩阵描述了单元之间的刚度关系,而载荷向量则描述了外部施加在结构上的力。
通过求解这个线性方程组,可以得到结构的位移和应力分布。
二、有限单元法的应用有限单元法广泛应用于工程领域中的结构分析、流体力学、电磁场等问题的求解。
下面将介绍有限单元法在结构分析中的应用。
1. 结构分析有限单元法在结构分析中的应用非常广泛。
通过将结构离散成有限个单元,可以得到结构的位移、应力分布等重要参数。
这些参数对于结构的设计和优化非常重要。
有限单元法可以用于分析各种类型的结构,包括梁、板、壳、桁架等。
2. 流体力学有限单元法在流体力学中的应用主要包括流体流动、热传导、传质等问题的求解。
通过将流体区域离散成有限个单元,可以得到流体的速度、压力分布等参数。
这些参数对于流体力学问题的分析和设计非常重要。
3. 电磁场有限单元法在电磁场中的应用主要包括电场、磁场、电磁波等问题的求解。
通过将电磁场区域离散成有限个单元,可以得到电场、磁场分布等参数。
这些参数对于电磁场问题的分析和设计非常重要。
三、有限单元法参考答案下面给出一些有限单元法问题的参考答案,以供参考。
1. 结构分析问题假设有一根悬臂梁,长度为L,截面为矩形,宽度为b,高度为h,杨氏模量为E。
有限单元法部分课后题答案
1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?(1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。
(2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。
因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。
(3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。
1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。
整体刚度矩阵的性质:对称性、奇异性、稀疏性。
单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。
整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。
2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?(1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。
(2)外力势能就是外力功的负值。
(3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零δ∏p=δ Uε+δV=0此即变分方程。
对于线性弹性体,势能取最小值,即δ2∏P=δ2Uε+δ2V≥0此时的势能变分原理就是著名的最小势能原理。
完整版有限元法课后习题答案
1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为假设干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下横截面上的内力有轴力、剪力、弯矩.5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角 .7、在弹性和小变形下,节点力和节点位移关系是线性关系.8、弹性力学问题的方程个数有15个,未知量个数有15个.9、弹性力学平面问题方程个数有8,未知数8个.10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值 ,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是三角形单元内部坐标的线性函数他反映了单元的位移状态16、在进行节点编号时,同一单元的相邻节点的号差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为双线性位移模式19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何各向同性20、单元刚度矩阵描述了节点力和节点位移之间的关系21、矩形单元边界上位移是连续变化的1.诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2.有限元法的根本思想是什么答:首先,将表示结构的连续离散为假设干个子域,单元之间通过其边界上的节点连接成组合体.其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量.3.有限元法的分类和根本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移.4.有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便, 对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点.缺点:有限元计算,尤其是复杂问题的分析计算, 所消耗的计算时间、内存和磁盘空间等计算资源是相当惊人的. 对无限求解域问题没有较好的处理方法. 尽管现有的有限元软件多数使用了网络自适应技术, 但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验.5.梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6.简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量.7.有限元法根本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵〔外载荷、约束力〕;整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵.8.位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解.9.简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正.10简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系.11.简述平面钢架问题有限元法的根本过程答:1〕力学模型确实定,2〕结构的离散化,3〕计算载荷的等效节点力,4〕计算各单元的刚度矩阵,5〕组集整体刚度矩阵,6〕施加边界约束条件,7〕求解降价的有限元根本方程, 8〕求解单元应力,9〕计算结果的输出.12.弹性力学的根本假设是什么.答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定.13.弹性力学和材料力学相比,其研究方法和对象有什么不同.答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移.弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等.因此,弹性力学的研究对象要广泛得多.研究方法:弹性力学和材料力学既有相似之外,又有一定区别.弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答.而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题. 14.简述圣维南原理. 答;把物体一小局部上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量, 而不影响远处的应力.“局部影响原理〞15.平面应力问题和平面应变问题的特点和区别各是什么试各举出一个典型平面应力和平面应变的问题的实例.答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后外表上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化.区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零.举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的外表无荷载作用.平面应变问题一一水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法.16.三角形常应变单元的特点是什么矩形单元的特点是什么写出它们的位移模式.答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活.其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想.矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高, 形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限.17.写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关.答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵.18.如何由单元刚度矩阵组建整体刚度矩阵〔叠加法〕答:〔1〕把单元刚度矩阵扩展成单元奉献矩阵 ,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列, 空白处用零子块填充.〔2〕把单元的奉献矩阵的对应列的子块相叠加, 即可得出整体刚度矩阵 .19.整体刚度矩阵的性质.答:〔1〕整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;〔2〕整体刚度矩阵中的主对角元素总是正的;〔3〕整体刚度矩阵是一个对称阵;〔4〕整体刚度矩阵式一个呈带状分布的稀疏性矩阵.〔5〕整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵.20.简述形函数的概念和性质.答:形函数的性质有:〔1〕形函数单元节点上的值,具有“本点为一、他点为零〞的性质;〔2〕在单元的任一节点上,三角函数之和等于1; 〔3〕三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;〔4〕型函数的值在0〜1之间变换.21.结构的网格划分应注意哪些问题 .如何对其进行节点编号.才能使半带宽最小.P50, P8相邻节点的号差最小答:一般首选三角形单元或等参元.对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元.一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号差尽可能最小才能使半带宽最小22.为了保证解答的收敛性,单元位数模式必须满足什么条件答:〔1〕位移模式必须包含单元刚体位移;〔2〕位移模式必须包含单元的常应变;〔3〕位移模式在单元内要连续,且唯一在相邻单元之间要协调.在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元.23有限元分析求得的位移解收敛于真实解得下界的条件.答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调.24.简述等参数单元的概念.答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元.25.有限元法中等参数单元的主要优点是什么答:1〕应用范围广.在平面或空间连续体,杆系结构和板壳问题中都可应用.2〕将不规那么的单元变化为规那么的单元后,易于构造位移模式.3〕在原结构中可以采用不规那么单元,易于适用边界的形状和改变单元的大小.4〕可以灵活的增减节点,容易构造各种过度单元.5〕推导过程具有通用性.一维,二维三维的推导过程根本相同.26.简述四节点四边形等参数单元的平面问题分析过程.答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵〔4〕用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成.27.为什么等参数单元要采用自然坐标来表示形函数为什么要引入雅可比矩阵答:简化计算得到形函数的偏导关系.28. ANSYS软件主要包括哪些局部各局部的作用是什么答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型.2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析水平.3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出.29. ANSYS软件提供的分析类型有哪些答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析.30.简述ANSYS软件分析静力学问题的根本流程.答:1.前处理器:1〕定义单元类型,2〕定义实常数,3〕定义材料属性,4〕创立实体几何模型,5〕划分网络;2.求解器:1〕定义分析类型,2〕施加载荷和位移约束条件,3〕求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变.矩形单元的边界上,位移是线性变化的,显然,在两个相邻矩形单元的公共边界上,其位移是连续的.节点的选用原那么:一般说,集中力、集中力偶、分布载荷强度的突变点、分布载荷与自由边界的分界点、支承点都能赢取为节点.单元的划分原那么:〔1〕划分单元的数目,视要求的计算精度和计算机的性能而定.〔2〕单元的大小,可根据部位的不同而有所不同.1、试述街节点力和节点载荷的区别.节点力是单元与节点之间的作用力;如果取整个结构为研究对象,节点力为内力,节点载荷是作用在节点上的外载荷.2、试述求整体刚度矩阵的两种方法.分别建立各节点的平衡方程式,写成矩阵形式,可求得整体刚度矩阵;将各单元刚度矩阵按规律叠加,也可得整体刚度矩阵.3、平面问题中划分单元的数目是否越多越好不是越多越好.划分单元的数目,视要求的计算精度和计算机的性能而定.随着单元数目的接连多,有限元解逐步逼近于真实解,但是,单元数目接连加,刚求解的有限元线性方程组的数目接连多, 需要占用更多的计算机内存资源,求解时间接连长,所以,在计算机上进行有限元分析时,还要考虑计算机的性能.单元数过多并不经济.4、写出单元刚度矩阵的表达式,并说明单元刚度与那些因素有关[B]-单元应变矩阵,[D]-弹性矩阵,t-厚度〕单元刚度矩阵取决于单元的大小、方向、和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平移而改变.5、选择多项式为单元的位移模式时,除了要满足单元的完备性和协调性要求,还须考虑什么因素还须考虑两个因素:1、所选的位移模式应该与局部坐标系的方位无关,即几何各向同性. 2、多项式位移模式中的项数必须等于或稍大于单元边界上的外节点的自由度数,通常取多项式的项数与单元的外节点的自由度数想等.。
有限元习题及答案
(a)
(b)
(c)
(a)单元间没有考虑节点相联 (b)网格形状太差,单元边长相差太大 (c)没有考虑对称性,单元边长相差太大
3、分别指出图示平面结构划分为什么 单元?有多少个节点?多少个自由度?
(a)桁架结构模型
• 划分为杆单元, 8个节点,12个自由度
(b)钢架结构模型
划分为平面梁单元,8个 节点,15个自由度
所以
F B B EAl
T
K
(2)
故
K B B EAl
T
将[B]值代入(2)式得
1 1 1 K 1 l 1 l
1 EAl
完毕
EA l
1 1
1 1
11
(c)混凝土梁结构
平面四节点,四边形单 元,8个节点,13个自由 度
(d)水坝模型
平面三角形单元,29个 节点,38个自由度
4、什么是平面应力问题?什么是平面应变 问题?举例说明
平面应力问题: 若物体的某一方向的尺寸较另外两个方向的小得多, 即为一等厚平板,且在平板的边界有平行于平面切沿 厚度方向均匀分布的面力,则此类问题可简化为平面 应力问题。 y 如一方形薄板边 y 上作用有分 布面力: b z x 连杆 a
2
1
x )
2
u1 )
2
(u 1 u
2
u
1
2
x
2
1 l
(x x
)u 1 )
1 l
( x1 x )u
2
1 (x x l
2
1
u1 ( x1 x ) l u 2
高等有限元法智慧树知到课后章节答案2023年下长安大学
高等有限元法智慧树知到课后章节答案2023年下长安大学长安大学第一章测试1.有限元各单元是通过什么连接在一起的()。
答案:相邻节点2.有限元分析中通常用什么作为未知量来进行求解()。
答案:节点位移3.第一次提出并使用“有限元方法”的名称时间是()。
答案:1960年4.结构整体刚度矩阵是一个奇异矩阵,不能求逆矩阵。
()答案:对5.建立单元刚度矩阵可利用虚位移原理或最小势能原理。
()答案:对第二章测试1.有关形状函数的说法,下列哪些是正确的?()答案:单元上所有节点的形函数之和等于1;形状函数矩阵本质是内插函数矩阵,实现了有限单元法在数学模型上的离散化;Ni在节点i等于1,在其它点等于0;形状函数矩阵建立了单元内位移与单元结点位移之间的相互关系2.有限元法中,单元分析的目的主要是为了()。
答案:计算单元刚度矩阵3.局部坐标系下,若一杆单元的刚度矩阵为,则材料相同,杆长为其两倍的杆单元的刚度矩阵是()答案:4.平面自由式梁单元的单元刚度矩阵大小是()。
答案:6×65.如果单元上作用有分布弯矩,在计算等效结点集中载荷时,所采用的形状函数矩阵为()。
答案:转角的内插函数矩阵第三章测试1.十节点三角形单元位移函数中包含有多少个待定系数()。
答案:20个2.为了使位移解答收敛,位移函数应该满足下面哪些准则()。
答案:多项式位移函数中包含常数项;位移函数应反映单元的常应变;位移函数必须保证在相邻单元在接触面上的应变是有限的;位移函数中须含有反映刚体运动的项数3.在插值函数多项式的阶次时,必须考虑下列因素是()。
答案:多项式描述的位移形式与局部坐标系无关;a i的数目应等于单元结点自由度的数目;在不同局部坐标系中位移函数表达式满足几何等向性;插值多项式应当尽可能满足收敛性要求4.有限元的基本思想是分段逼近。
()答案:对5.用多项式形式的插值函数来建立和计算有限元方程比较容易,特别是易于积分和微分()答案:对第四章测试1.有一向下作用的集中力p作用在常应变三角形单元ijm的节点i处,则()。
中南大学有限元习题与答案(Word最新版)
中南大学有限元习题与答案通过整理的中南大学有限元习题与答案相关文档,希望对大家有所帮助,谢谢观看!中南大学有限元习题与答案习题 2.1 解释如下的概念:应力、应变,几何方程、物理方程、虚位移原理。
解应力是某截面上的应力在该处的集度。
应变是指单元体在某一个方向上有一个ΔU的伸长量,其相对变化量就是应变。
表示在x轴的方向上的正应变,其包括正应变和剪应变。
几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下:物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下:虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。
2.2说明弹性体力学中的几个基本假设。
连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。
完全弹性假设:就是假定物体服从虎克定律。
各向同性假设:就是假定整个物体是由同意材料组成的。
小变形和小位移假设:就是指物体各点的位移都远远小于物体原来的尺寸,并且其应变和转角都小于1。
2.3简述线应变与剪应变的几何含义。
线应变:应变和刚体转动与位移导数的关系,剪应变表示单元体棱边之间夹角的变化。
2.4 推到平面应变平衡微分方程。
解:对于单元体而言其平衡方程:在平面中有代入上式的2.5 如题图2.1所示,被三个表面隔离出来平面应力状态中的一点,求和的值。
解:x方向上:联立二式得:2.6相对于xyz坐标系,一点的应力如下某表面的外法线方向余弦值为,,求该表面的法相和切向应力。
解:该平面的正应力全应力该平面的切应力2.7一点的应力如下MP 求主应力和每一个主应力方向的方向余弦;球该店的最大剪应力。
解:设主平面方向余弦为,由题知将代入得即,。
最大剪应力(1)当时代入式(2.21)(2)当时代入式(2.21)且2.8已知一点P的位移场为,求该点p(1,0,2)的应变分量。
《结构分析中的有限元法》2015-有限元习题-参考答案
,
lk
(
1) 4
16x2
64 3
x
16 3
,
34 3
lk
(1)
2x2
7 6
x
1 6
根据拉格朗日插值多项式:
pn (x)
n
lk (x) f (xk )或pn (x)
k 0
nn
(
k0 j0
x xj )f xk x j
(xk ) 。
jk
将
n
2
带入:
p2
(x)
-38x2
349 6
x
35 3
2015 年 3 月 24 日作业
2、简述结构离散(或有限元建模)的内容和要求。 有限元建模的内容: 1)网格划分---即把结构按一定规则分割成有限单元 2)边界处理---即把作用于结构边界上约束和载荷处理为结点约束和结点载
荷 有限元建模的要求: 1)离散结构必须与原始结构保形---单元的几何特性 2)一个单元内的物理特性必须相同---单元的物理特性
4、说明用有限单元法解题的主要步骤。 答:研究问题的力学建模;结构离散;单元分析;整体分析与求解;结果分析及 后处理。
5、推导基于变分原理的总势能泛函极值条件。 解:有积分形式确立的标量泛函有
Π
F
u,
u x
,
dΩ
E
u,
u x
,
d
其中 u 是未知函数, F 和 E 是特定的算子, 是求解域, 是 的边界。 Π 称 为未知函数 u 的泛函,随函数 u 的变化而变化。连续介质问题的解 u 使泛函 Π 对 于微小的变化u 取驻值,即泛函的“变分”等于零 Π 0 ,此为变分法。
来待求场函数的无穷自由度问题转换为求解场函数结点值的有限自由度问题。 (3)有限元法是通过和原问题数学模型(基本方程、边界条件)等效的变分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 .5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。
7、在弹性和小变形下,节点力和节点位移关系是线性关系。
8、弹性力学问题的方程个数有15个,未知量个数有15个。
9、弹性力学平面问题方程个数有8,未知数8个。
10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为__双线性位移模式_19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
4. 有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。
缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。
对无限求解域问题没有较好的处理办法。
尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。
5. 梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6. 简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。
7. 有限元法基本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵(外载荷、约束力);整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵。
8. 位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解。
9. 简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正。
10 简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系。
11. 简述平面钢架问题有限元法的基本过程答:1)力学模型的确定,2)结构的离散化,3)计算载荷的等效节点力,4)计算各单元的刚度矩阵,5)组集整体刚度矩阵,6)施加边界约束条件,7)求解降价的有限元基本方程,8)求解单元应力,9)计算结果的输出。
12. 弹性力学的基本假设是什么。
答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。
13.弹性力学和材料力学相比,其研究方法和对象有什么不同。
答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。
弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。
因此,弹性力学的研究对象要广泛得多。
研究方法:弹性力学和材料力学既有相似之外,又有一定区别。
弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。
而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题。
14. 简述圣维南原理。
答;把物体一小部分上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量,而不影响远处的应力。
“局部影响原理”15.平面应力问题和平面应变问题的特点和区别各是什么?试各举出一个典型平面应力和平面应变的问题的实例。
答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后表面上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化。
区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零。
举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的表面无荷载作用。
平面应变问题——水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法。
16. 三角形常应变单元的特点是什么?矩形单元的特点是什么?写出它们的位移模式。
答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活。
其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想。
矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高,形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限。
17. 写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关。
答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵。
18. 如何由单元刚度矩阵组建整体刚度矩阵(叠加法)?答:(1)把单元刚度矩阵扩展成单元贡献矩阵,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列,空白处用零子块填充。
(2)把单元的贡献矩阵的对应列的子块相叠加,即可得出整体刚度矩阵。
19. 整体刚度矩阵的性质。
答:(1)整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;(2)整体刚度矩阵中的主对角元素总是正的;(3)整体刚度矩阵是一个对称阵;(4)整体刚度矩阵式一个呈带状分布的稀疏性矩阵。
(5)整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵。
20. 简述形函数的概念和性质。
答:形函数的性质有:(1)形函数单元节点上的值,具有“本点为一、他点为零”的性质;(2)在单元的任一节点上,三角函数之和等于1;(3)三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;(4)型函数的值在0~1之间变换。
21. 结构的网格划分应注意哪些问题.如何对其进行节点编号。
才能使半带宽最小。
P50,P8相邻节点的号码差最小答:一般首选三角形单元或等参元。
对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元。
一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号码差尽可能最小才能使半带宽最小22. 为了保证解答的收敛性,单元位数模式必须满足什么条件?答:(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。
在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元。
23 有限元分析求得的位移解收敛于真实解得下界的条件。
答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调。
24. 简述等参数单元的概念。
答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元。
25. 有限元法中等参数单元的主要优点是什么?答:1)应用范围广。
在平面或空间连续体,杆系结构和板壳问题中都可应用。
2)将不规则的单元变化为规则的单元后,易于构造位移模式。
3)在原结构中可以采用不规则单元,易于适用边界的形状和改变单元的大小。
4)可以灵活的增减节点,容易构造各种过度单元。
5)推导过程具有通用性。
一维,二维三维的推导过程基本相同。
26. 简述四节点四边形等参数单元的平面问题分析过程。
答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵(4)用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成。
27. 为什么等参数单元要采用自然坐标来表示形函数?为什么要引入雅可比矩阵?答:简化计算得到形函数的偏导关系。
28.ANSYS软件主要包括哪些部分?各部分的作用是什么?答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型。
2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。
3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出。
29.ANSYS软件提供的分析类型有哪些?答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析。
30.简述ANSYS软件分析静力学问题的基本流程。
答:1.前处理器:1)定义单元类型,2)定义实常数,3)定义材料属性,4)创建实体几何模型,5)划分网络;2.求解器:1)定义分析类型,2)施加载荷和位移约束条件,3)求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变。