2016年第21届天津华杯赛初赛初二组真题(扫描版,含答案)
18~22届华杯赛初二组决赛试题及参考答案
13.【第 20 届华杯赛决赛卷第 7 题】
设 a、b 为实数,那么 a2 ab b2 a b 的最小值是 ______ .
14.【第 20 届华杯赛决赛卷第 9 题】
已知 3
S
1 3S
3 ,求 S 3
1 3 S
的值.
15.【第 20 届华杯赛决赛卷第 11 题】
实数 a 满足 a5 a 1 0 ,求多项式 a3 a2 的值.
2.【第 22 届华杯赛决赛卷第 3 题】 在平面直角坐标系 xOy 中,一次函数 y kx b 的图象过点 A(1,1) ,与坐标轴围 成的三角形面积为 2,这样的一次函数有个 ______ .
-4-
第三章 计数
1.【第 18 届华杯赛决赛 A 卷第 2 题】 从1 ~ 2013 的自然数中,含有重复数字的自然数的个数等于 ______ . 2.【第 18 届华杯赛决赛 A 卷第 7 题】 已知在平面直角坐标系中有如下 36 条直线: y 18x 17, y 17x 16,, y x, y x, y 2x 1,, y 17x 16, y 18x 17, 那么由这些直线相交所构成的交点有 ______ 个. 3.【第 19 届华杯赛决赛卷第 8 题】 方程 x3 Ax2 Bx C 0 的系数, A、B、C 为整数, A 10, B 10, C 10 ,且 1 是方程的根,那么这种方程总共有 ______ 个. 4.【第 20 届华杯赛决赛卷第 8 题】 在右图的八个顶点处分别标上 1 和-1,共有 4 个 1 和 4 个-1,将每个四边形 4 个顶点处的数相乘,再将所得的所有的积相加,那么其和至多有 ______ 个不同 的数值.
已知二次三项式 ax2 bx c 当 x 2 时,取到最小值 1;且它的两根的立方和为
2016年全国初中数学联赛初二试卷
2016年全国初中数学联合竞赛(初二年级)试题 第一试(3月20日上午8:30 - 9:30) 考生注意:1.本试两个大题共10个小题,全卷满分70分. 2.用圆珠笔或钢笔作答. 3.解题书写不要超出装订线. 一、选择题(本题满分42分,每小题7分) 本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得分. *1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-,a 是t 的小数部分,b 是t -的小数部分,则112b a -= ( ) .A 12 .B 32 .C 1 .D 3 *2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ) .A 9种 .B 10种 .C 11种 .D 12种 3.如图,P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠= ( ) .A 085 .B 090 .C 095 .D 0100 4.记222222*********,1223(1)n S n n =++++++++++ 则20162016S =( ) .A20162017 .B 20172016 .C 20172018 .D 20182017 5.点D 、E 、F 分别在ABC ∆的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5,AB AC BE CF += 则AM MD = ( ) .A 72 .B 3 .C 52 .D 2 6.设,,,a b c d 都是正整数,且5234,,319,a b c d a c ==-= 则2b c a d -= ( ) 一试分 二试分 总 分 计分人 得分 评卷人 省 市 县 学校 姓名 性别 准考证号 (密封装订线内不要答题).A 15 .B 17 .C 18 .D 20二、填空题(本题满分28分,每小题7分)本题共有4个小题,要求直接将答案写在横线上.1.如图,已知四边形ABCD 的对角互补,且,15BAC DAC AB ∠=∠=,12.AD = 过顶点C 作CE AB ⊥于,E 则AE BE= .2.已知整数,,a b c 满足不等式22222112820,a b c ab b c +++<++则a b c +-= . *3.若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 .*4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .得分 评卷人2016年全国初中数学联合竞赛试题 第二试(3月20日上午9:50 — 11:20) 考生注意:本试共三个大题,第一题20分,第二25分,第三题25分,全卷满分70分. 分 一、(本题满分20分) 如图,ABCD 为平行四边形,E 为BC 的中点,DF AE ⊥于F ,H 为DF 的中点.证明:CH DF ⊥.题 号 一 二 三 合 计 得 分 评卷人 复核人 得分 评卷人 省 市 县 学校 姓名 性别 准考证号 (密封装订线内不要答题)二、(本题满分25分) 设互不相等的非零实数,,a b c 满足:222,a b c b c a+=+=+ 求22222a b c b c a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值.三、(本题满分25分) 已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数 值.。
(完整word版)年华杯赛初二试题(A)卷解析word版
总分第十八届华罗庚金杯少年邀请赛初赛试题A (初二组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
) 1.计算:()1-2127--2-3332+=( ). A .-1B .-1+2C .-3-2D .-7+2解析:原式=3-8-(-3)+(12+)= 1-2,选B 。
2. 如果关于x, y 的方程组 3x+4y=m+n-4的解满足0y x =+, 那么mn 的值等于( ). x-2y= 3m-2n+3 A.0B.1C.2D.3解析:根据根式的意义,可知道x=y=0,可将有关x, y 的方程组转化为m ,n 的方程,解得m=1,n=3,mn 的值等于3,选D 。
3. 如图, 在直角坐标系Oxy 中, A, B 分别是x 轴和y 轴上的点, 四边形OACB 是矩形, 别与AC, BC 交OA=7, OB=4. 已知反比例函数y=xk(k>0)在第一象限的图象分于F, E. 当△ECF 的面积等于732时, k 的值等于( ) A .8B .10C .12D .14解析:根据题意,F, E 在反比例函数y=x k 图象上, E 点坐标(4k ,4),E 点坐标(7,7k ),所以EC=7-4k ,CF=4-7k, S △ECF=732=(7-4k )(4-7k)÷2 化简的k 2-56k+528=0,配方得(k-28)2=256,所以k-28=16,k=12。
答案为C 。
4.如图, 正方形ABCD 中, M, N 是边AB 上的点, E, F 是边CD 上的点, 连接AF, BE, CM,DN 交成四边形PQRS. 若AM = NB = CF = DE = 1, MN = 4. 则四边形PQRS 的面积等于( ).A .53B .54 C .1 D .56 解析:由对称性,易知PS=SR=RQ=QP ,四边形PQRS 是菱形,不是正方形。
第21届华杯赛初赛试卷及答案解析(小高组)
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字0. A.2017B.2016C.2015D.2014【答案】C【解析】 201622016201620152015(101)(102)101999...998000 (001)-=-⨯+=个个2.已知A B ,两地相距300米.甲、乙两人同时分别从,A B 两地出发,相向而行,在距A 地140米处相遇;如果乙每秒多行1米,则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. A.325 B.425 C.3 D.135【答案】D【解析】设甲速1v 乙速2v121214073001408300180211803v v v v ⎧==⎪-⎪⎨-⎪==⎪+⎩解得12145165v v ⎧=⎪⎪⎨⎪=⎪⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】100111137=⨯⨯,ACD 前三位都不是11或13的倍数 9881376=⨯,8841368=⨯,8471177=⨯,4731143=⨯,7371167=⨯4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有( )种不同的排行.A.1152B.864C.576D.288 【答案】A【解析】123...728++++=,8的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356)四种分法共有244!3!1152⨯⨯⨯=种排法5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6,CD =14, AEC ∠是直角,CE CB =,则AE 2等于( )A.84B.80C.75D.64【答案】A【解析】AG BF h ==,10CG =,4CF =2222100AC AG CG h =+=+2222216CE BC BF CF h ==+=+22284AE AC CE =-=6.从自然数1,2,3,…,2015,2016中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5个数,它们的数字和相等.那么n 的最小值等于( )A.109B.110C.111D.112【答案】B【解析】1到2016中,数字和最大28。
第二十一届“华杯赛”初赛小中组b卷试题
总分第二十一届华罗庚金杯少年数学邀请赛初赛试卷 B(小学中年级组)(时间: 2015 年 12 月 12 日 15:00~16:00)一、选择题(每小题 10 分, 共 60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内. )1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用 1~10 这 40 张牌)任意抽取 4 张牌(称牌组), 用加、减、乘、除(可加括号)把牌面上的数算成 24. 每张牌必须用一次且只能用一次, 并不能用几张牌组成一个多位数 ,如抽出的牌是3, 8, 8, 9,那么算式为(9 - 8) ⨯8 ⨯ 3 或(9 -8 ÷8) ⨯3 等. 在下面 4 个选项中, 唯一无法凑出 24 点的是().(A)1, 2, 3, 3(B)1, 5, 5, 5(C)2, 2, 2, 2(D)3, 3, 3, 32.在右图的乘法算式中, 每个汉字代表 0 至 9 中的一个数字, 不同汉字代表不同数字, 当算式成立时, “好”字代表的数字是().(A)1(B)2(C)4(D)63.如右图, 边长分别为 10 厘米和 7 厘米的正方形部分重叠, 重叠部分的面积是 9 平方厘米. 图中两个阴影部分的面积相差()平方厘米.(A)51(B)60(C)42(D)94.库里是美国 NBA 勇士队当家球星, 在过去的 10 场比赛中已经得了 333 分的高分,他在第 11 场得()分就能使前11场的平均得分达到34分.(A)35(B)40(C)41(D)47咨询电话 4006500666 5. 如右图, 木板上有 10 根钉子, 任意相邻的两根钉子距离都相等. 以这些钉子为顶点, 用橡皮筋可套出()个正三角形. (A )6 (B )10(C )13(D )156. 在桌面上, 将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接, 要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为().(A )8(B )7(C )6(D )5二、填空题(每小题 10 分, 共 40 分)7. 计算:1987 ⨯ 2015 -1986 ⨯ 2016 =.8. 学校打算组织同学们去秋游. 每辆大巴车有 39 个座位, 每辆公交车有 27 个座位, 大巴车比公交车少 2 辆. 如果所有学生和老师都乘坐大巴, 每辆大巴车上有 2 位老师, 则多出 3 个座位; 如果都乘坐公交车, 每辆公交车都坐满并且各有 1 位老师, 则多出 3 位老师. 那么共有 位老师, 名同学参加这次秋游.9. 于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说: 我们家今年的年龄总和是你年龄的 7 倍, 如果明年给你添一个弟弟或者妹妹, 我们家 2020 年的年龄总和就是你那时年龄的 6 倍. 那么笑笑今年 岁.10. 教育部于 2015 年 9 月 21 日公布了全国青少年校园足球特色学校名单, 笑笑所在的学校榜上有名. 为了更好地备战明年市里举行的小学生足球联赛, 近期他们学校的球队将和另 3 支球队进行一次足球友谊赛. 比赛采用单循环制(即每两队比赛一场), 规定胜一场得 3 分, 负一场得 0 分, 平局两队各得 1 分; 以总得分高低确定名次, 若两支球队得分相同, 就参考净胜球、相互胜负关系等因素决定名次. 笑笑学校的球队要想稳获这次友谊赛的前两名, 至少 要得分.。
第二十一届华杯赛初赛试题及答案
)个数字 0. D. 2014
A. 2017 B. 2016 C. 2015 【知识点】计算模块——多位数计算 【解析】 999 9 999 9 10
2016 个 2016 个
2016
1 10 2016 1
230 270 500 350 500 500 350 350 .
【答案】A 2. 如右图所示,韩梅家的左右两侧各摆了两盆花. 每 次,韩梅按照以下规则往家中搬一盆花: 先选择左 侧还是右侧,然后搬该侧离家最近的. 要把所有花 搬到家里,共有( )种不同的搬花顺序. A. 4 B. 6 C. 8 D. 10 【知识点】 计数模块——加法原理 【解析】 将图中花从左往右依次编号 1,2,3,4. 根据题目要求,有下列搬花方式: 2-1-3-4,2-3-4-1,2-3-1-4,3-4-2-4,3-2-1-4,3-2-4-1 共 6 种不同的搬花顺序. 【答案】B 3. 在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无 重叠,且拼接的边完全重合,则得到的新图形的边数为( ). A. 8 B. 7 C. 6 D. 5 【知识点】 几何——平铺 【解析】如图所示,共有 5 个边.
10 2016 10 2016 2 10 2016 1
10 2016 ( 10 2016 2) 1
1000 0 999 98 1
2016 个 2015个
999 98000 01
A 选项中 998 显然不能被 11 整除,由 99+8 4=131,13+1 4=17,显然 17 不能 被 13 整除,从而 998 也不能被 13 整除. B 选项中 988 显然不能被 11 整除,由 98+8 4=130,显然 130 能被 13 整除,从而 988 能被 13 整除; 884 显然不能被 11 整除,由 88+4 4=104,10+4 4=26,显然 26 能被 13 整除,从而 884 能被 13 整除; 847 中,8+7-4=11,显然能被 11 整除; 473 中,4+3-7=0,显然能被 11 整除; 737 中,7+7-3=11,显然能被 11 整除. C 选项中 997 显然不能被 11 整除,由 99+7 4=127,12+7 4=30,显然 30 不能被 13 整除,从而 997 也不能被 13 整除. D 选项中 987 显然不能被 11 整除,由 98+7 4=126, 12+6 4=36,显然 36 不能被 13 整除,从而 987 也不能被 13 整除. 【答案】B 4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么 共有( A. 1152 )种不同的排法. B. 864 C. 576 D.288
18~22届华杯赛初二组初赛试题及参考答案
A. a b c
B. 2b a c
C. 3b a c
19.【第 22 届华杯赛初赛卷第 2 题】
D. 3b a c
已知实数 a、b 满足 a2 b2 1和ab 2a b 2 0 ,则 3 a 2b 的值等于 ______ .
A. 2 2
B.1 3
C. 2 2
D. 2
7
A.8
B.10
C.12
D.14
2.【第 18 届华杯赛初赛 B 卷第 2 题】
以 O(0,0), B(40,20),C(60,0) 为顶点的三角形的三边上,整点(横坐标和纵坐标都是整
数的点)的个数是 ______ .
A.81
B.90
C.100
D.103
3.【第 19 届华杯赛初赛卷第 7 题】
4
2
13.【第 20 届华杯赛初赛卷第 2 题】
已知实数 a、b、c 满足{a b} {b c} {c a} 1 ,其中的{x}定义为 x [x] ,[x] 表 3
示不大于 x 的最大整数,那么{a b c}有 ______ 种可能的取值.
A.1
B.2
C.3
D.4
14.【第 20 届华杯赛初赛卷第 5 题】
满足式子 x 5 y 2 10 的整数对 (x, y) 有 ______ 对.
A.40
B.42
C.43
D.45
12.【第 19 届华杯赛初赛卷第 6 题】
关于 x 的方程 x2 2 m x 有 3 个互不相同的解,则 m 的最大值是 ______ .
A. 9
B. 3
C. 9
D. 7
2
4
9.【第 18 届华杯赛初赛 B 卷第 9 题】
第二十一届华杯赛决赛B卷答案详解
H A 4 D
3 F 4
E 3 B 4 G C 3
7、如果 2 38 能表示成 k 个连续正整数的和, 【答案】108 【解析】 令 k 个连续正整数的首个为 N,有
则 k 的最大值为(
)
2 38 =n n 1 n 2 kn
的到:
n k 1
10、 商店春节促销, 顾客每次购物支付现金时, 每 100 元可得一张价值 50 元的 代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得 到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李 阿姨只有不超过 1550 元的现金, 她能买到价值 2300 元的商品吗? 如果能, 给 她设计一个购物方案; 如果不能, 说明理由。 【答案】能 【解析】制定一种最节省现金,最大化得到和使用代金券的方案即可。由于 1、 每 100 元可得一张价值 50 元的代金券, 2、 当次购物得到的代金券不能当次使 用,3、每次购物支付的现金不少于购买商品价值的一半。故每次最低消费 100 元现金即可,以此不停循环。 第一次, 付现 100 元,返券 50 元; 第二次, 付现 100 元,抵券 50 元,返券 50 元; 第三次, 付现 100 元,抵券 50 元,返券 50 元; · · · · · · (如此 15 次) 第十六次,付现 50 元,抵券 50 元。 共付现 1550 元,抵券 50 15=750 元,获得商品总价: 1550 750=2300 元 11、 如右图, 等腰直角三角形 ABC 与等腰直角三
9 5 圈,得出: = 14 14
5, E, F 为正方形
外两点,满足 AE CF 4 , BE DF 3 ,那么 EF 2 【答案】98 【解析】 补全成大正方形如图, EF 2 的平方即为大正方形面积的两倍,即:
2016初中数学联赛(初二组)初赛及答案
2016年全国初中数学联合竞赛(四川初二初赛)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、A2、B3、D4、C5、A6、D二、填空题(本题满分28分,每小题7分)7、1275 8、1 9、6 10、13三、解答题(本题共三小题,第11题20分,第12、13题各25分,共70分)11、若关于x 的方程01)32()23(=-++++x n x m x 有无数多个解,求n m ,的值.解:原方程整理得:0132)123(=-++++n m x n m , ………………5分由题意有:⎩⎨⎧=-+=++01320123n m n m ,………………………………………15分 解得⎩⎨⎧=-=11n m . ………………………………………………………20分12、已知实数a 、b 、c ,满足0≠abc 且0))((4)(2=----b a c b c a ,求b c a +的值. 解:因为222)())((2)()]()[(b a b a b c b c b a b c -+--+-=-+- (1)……5分222)())((2)()]()[(b a b a b c b c b a b c -+----=---(2)…………10分(1)-(2)得))((4)]()[()]()[(22b a b c b a b c b a b c --=-----+- 即:))((4)()2(22b a c b a c b c a ---=---+故0)2())((4)(22=-+=----b c a b a c b a c , …………………20分即02=-+b c a ,故2=+bc a . …………………………………………25分 13、已知如图,在△ABC 中,C B ∠=∠2,且BD AB AC +=,求证:AD 是BAC ∠的平分线.证明1:延长AB 至G ,使BD BG =,则AC BD AB BG AB AG =+=+=, 所以ACG AGC ∠=∠; ………………………………5分又BDG BGD ∠=∠,所以ACB ABC AGD ∠=∠=∠21, 故DCG ACB ACG BGD AGC CGD ∠=∠-∠=∠-∠=∠;所以DC DG =; …………………15分又AD 是公共边,所以△AGD ≌△ACD , …………………20分 所以CAD GAD ∠=∠,即AD 是BAC ∠的平分线.…………………25分证明2:作ABC ∠的平分线交AC 于E ,过D 作BE 的平行线交AC 于F ,交AB 的延长线于G ,则: 因为C ABC ∠=∠2,DF 平行BE ,所以FDC C EBC ∠=∠=∠,所以FD FC =,且ABC FDC C AFD ∠=∠+∠=∠…………5分 又BDG FDC C ABC ABE AGD ∠=∠=∠=∠=∠=∠21, 所以BG BD =,所以AC BD AB BG AB AG =+=+=, …………10分又ABC AFG C G ∠=∠∠=∠,,所以△AFG ≌△ABC , …………………15分所以AB AF =,DB FC DF ==, …………………20分所以△ABD ≌△AFD ,故FAD BAD ∠=∠,即AD 是BAC ∠的平分线.……25分。
第22届“华杯赛”初赛试卷初二组试卷
第二十二届华罗庚金杯少年数学邀请赛初赛试卷(初二组) 第二十二届华罗庚金杯少年数学邀请赛 初赛试卷(初二组) (时间: 2016年12月10日10:00—11:00) 一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 已知,,a b c 是ABC ∆的三边的长,则算式||a b c --的值等于(). (A )a b c ++(B )2b a c ++(C )3b a c ++(D )3b a c +- 2. 已知实数a ,b 满足221a b +=和220ab a b -+-≥,. (A)2B)1(C)2+D3. 如下图所示, AB AC =, AP BQ =, AO BO CO ==, 16AQO ︒∠=, 则CPO ∠等于()度. (A )16 (B )32 (C )45 (D )464. 两个同心圆的大圆周上有4个不同的点, 小圆周上有2个不同的点, 过每两个点画一条直线,那么过这些点可以画出的直线最少有()条.(A )4(B )6 (C )8(D )12A O CB P Q 装订线第二十二届华罗庚金杯少年数学邀请赛初赛试卷(初二组)5. 小强开车从北京去天津, 前半段路程的平均车速为120千米/小时, 后半段路程的平均车速为80千米/小时. 原路返回北京时, 他前半段路程的平均车速为84千米/ 小时, 那么他后半段路程的平均速度至少要达到()千米/小时才能保证返程所用时间不多于去程.(A )104(B )108 (C )110 (D )1126. 已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件() 可以得到结论: “四边形ABCD 是平行四边形”.(A )AB CD =(B )BAD BCD ∠=∠(C )ABC ADC ∠=∠(D )AC BD =二、填空题(每小题 10 分, 共40分)7. 右图是5个边长为1的正方形组成的 “L形”图. 过格点T 的直线交AB 于点E ,交BC 于点F . 如果三角形BFE 的面积为“L 形”图的面积的一半,则EF 的长度等于. 8. 围着一张圆桌给3名男生, 6名女生安排座位, 座位没有编号. 如果两名男生之间恰有两名女生, 共有种安排座位的方法.9. 如果两种化工产品接触会发生爆炸, 那么这两种化工产品就需用不同的储藏室来存放.否则, 这两种化工产品可以放在一个储藏室. 右图中的20个点表示20种不同的化工产品,两点之间用一条边连接表示两种化工产品接触会发生爆炸.为了保证这20种化工产品的安全, 至少要用个储藏室.10. 自然数,,a b c 满足1a b c >>>,2ac b =, 且111a b c ++=, 则满足条件的数组(,,)a b c 有个.。
2016年华杯赛初二组试题
1112373457=+++初二组练习卷(一)一、选择题(每小题10分,共40分)1.已知实数,x y 满足22422x y x xy y ++=++,则2xy 的值是( ) (A )2 (B )4 (C )6 (D )82.甲地在河的上游,乙地在河的下游,若船从甲地开往乙地的速度为1v ,从乙地开往甲地的速度为2v ,则甲乙两地往还一次的平均速度为( ) (A )122v v +(B )12122v v v v +(C )122v v +(D )12122v v v v + 3. 对如下的几个命题:命题1:边长为连续整数的直角三角形是存在的; 命题2:边长为连续整数的锐角三角形是存在的; 命题3:边长为连续整数的钝角三角形是存在的; 其中正确命题的个数是( )(A )0 (B )1 (C )2 (D )34.方程2242016x y -=的非负整数解的组数为( ) (A )6 (B )8 (C )12 (D )16二、填空题(每小题10分,共40分)5.已知一个钝角三角形中,较小的一个锐角大小记为0(345)x -,则x 的取值范围为.6. 试在下边方框中填入一个适当的整数,使等式成立,则这个整数为.7.将长为8,宽为6的长方形ABCD 纸片一组对角,B D 的顶点重合,压平,折出图形AEFC D ',则三角形AED 的面积为.8.一条一米长的纸条,在距离一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点,然后打开纸条从红点的地方把纸条剪断。
再把有黄点的一段对折起来。
再对准黄点的地方剪一刀,使纸条断成了三段。
四段纸条中最短的一段长度是 米.三、解答题(每小题15分,共60分)9. 解关于x 的不等式20ax x ++>。
10.已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同。
而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同。
2016年全国初中数学联赛(初二组)初赛试卷
2016年全国初中数学联赛(初二组)初赛试卷(考试时间:2016年3月4日下午3:00—5:00)班级:: 姓名: 成绩:一、选择题(本题满分42分,每小题7分)1、数轴上各点表示的数如图所示,那么a -的可能取值是( ) A 、2- B 、2- C 、2 D 、22、关于x 的方程42312=++-x x ,其所有解的和是( ) A 、1- B 、52-C 、53D 、1 3、若()b a a b bb a ≠-=43,则2222232b ab a b ab a +--+的值是( ) A 、3- B 、31- C 、51D 、54、如图所示,将一个长为a ,宽为b 的长方形()b a ,沿着虚线剪开,拼成缺一个小正方形角的大正方形,则小正方形的边长为( )A 、2bB 、2aC 、2ba -D 、b a - 5、一个等腰三角形一腰上的中线将三角形的周长分成15和9两个部分,则该三角形的底长所有可能值为( )A 、4B 、6C 、12D 、4或12 6、已知正数m ,满足01724=+-m m ,则mm 1+的值为( ) babbA 、2B 、5C 、7D 、3 二、填空题(本题满分28分,每小题7分)7、古希腊数学家毕达哥拉斯把“数”当作“形”来研究,他称下面一些数为“三角形数”(如下图),第1个“三角形数”是1,第2个是3,第3个是6,第4个是10,按照这个规律,第50个“三角形数”是 .8、若0132=+++x x x ,则20162015321x x x x x ++++++ 的值为 . 9、设|5||4||3||2||1|+++++++++=x x x x x m ,则m 的最小值为 .10、如图,在ABC ∆中,︒=∠90C ,D 点在BC 边上,满足:4=BD ,5=DC ,若28=+AD AB ,则AD 等于 .三、(本大题满分20分)11、若关于x 的方程()()013223=-++++x n x m x 有无数多个解,求实数m 、n 的值。
第二十一届华杯赛答案
第二十一届华杯赛答案【篇一:第二十一届华杯赛周周练(一—三)】=txt>周周练(一)一、填空题1、从2012年12月21日冬至起,每九天分为一段,依次称之为一九、二九、三九??九九,冬至那一天是一九的第一天,2013年2月10日是()九的第()天。
2、有一箱苹果,甲班分每人3个余10个,乙班分每人4个余11个,丙班分每人5个余12个,这箱苹果至少有()个。
3、用学和习代表不同的数字,四位数学学学学与习习习习的积是一个七位数,且个位与百万位数字与学代表的数字相同,那么学习所代表的两位数共有()个。
4、若干人完成了植树2013棵的任务,每人植树的棵数相同,如果有5人不参加植树,其余的人每人多植2棵完不成任务,而每人多植3棵超额完成任务,参加植树共有()人。
5、一个四位数,各位数字互不相同,所有数字之和等于6,并且这个数时11的倍数,则满足这种要求的四位数有()个。
二、解答题1、一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一,8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙爬到井口时所花的时间为多少分钟?2、钟面上3点多少分时,时针和分针在这2的两边,并且到2的距离相等。
3、某人参加了10场比赛,第6、7、8、9场比赛得分分别为23,20,11,14,已知前9场的平均分比前5场的平均分高,他第10场比赛至少得多少分,10场的平均分才能超过18分?4、一个棱长是10厘米的正方体,从侧面打通两个底面边长是4厘米的洞,从上面打通一个直径是4厘米的圆柱形洞,剩下图形的表面积和体积各是多少?5、由455个棱长1厘米的小正方体无缝隙组成一个长方体,从每条棱上去掉一行后,剩下图形的体积是371,原图形的长、宽、高各是多少?参考答案一、填空题(1)六九第七天(2)67 (3)3 (4)61 (5)6二、解答题8(1)22分钟(2)4 (3)29 (4)表面积785.12平方厘米,体积668.64立13方厘米(5)长13 宽7 高5周周练(二)一、填空题1、a、b两校的男女生人数比分别是8︰7和30︰31,两校合并后男女生人数比是27︰26,两校合并前人数比是()。
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组B卷).doc
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组B卷)2016 年第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小中组 B 卷)题一、选择题(每小题 10 分,共 60 分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
) 1.(10 分)凑 24 点游戏规则是:从一副扑克牌中抽去大小王剩下 52 张,(如果初练也可只用 1~10 这 40 张牌)任意抽取 4 张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成 24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是 3、8、8、9,那么算式为(9﹣8)83 或(9﹣88)3 等,在下面 4 个选项中,唯一无法凑出 24 点的是() A.1、2、3、3 B.1、5、5、5 C.2、2、2、2 D.3、3、3、3 2.(10 分)在如图的算式中,每个汉字代表 0 至 9 中的一个数字,不同汉字代表不同的数字.当算式成立时,好字代表的数字是() A.1 B.2 C.4 D.6 3.(10 分)如图,边长分别为 10 厘米和 7 厘米的正方形部分重叠,重叠部分的面积是 9 平方厘米,图中两个阴影部分的面积相差()平方厘米. A.51 B.60 C.42 D.9 4.(10 分)库里是美国 NBA 勇士队当家球星,在过去的 10 场比赛中已经得了333 分的高分.他在第 11 场得()分就能使前 11 场的平均分达到 34 分. A.35 B.40 C.41 D.47 5.(10 分)如图,木板上有 10 根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形. A.6 B.10 C.13 D.15 6.(10 分)在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为() A.8 B.7 C.6 D.5 二、填空题(每小题 10 分,共 40 分)7.(10 分)计算:19872015﹣19862016= . 8.(10 分)学校打算组织同学们去秋游,每辆大巴车有 39 个座位,每辆公交车有 27 个座位,大巴车比公交车少 2 辆,如果所有学生和老师都乘坐大巴,每辆大巴车上有 2 位老师,则多出 3 个座位;如果都乘坐公交车,每辆公交车都坐满并且各有 1 位老师,则多出 3 位老师,那么共有位老师,名同学参加这次秋游. 9.(10 分)于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说:我们家今年的年龄总和是你年龄的7 倍,如果明年给你添一个弟弟或者妹妹,我们家 2020 年的年龄总和就是你那时年龄的 6 倍,那么笑笑今年岁. 10.(10 分)教育部于 2015 年 9 月21 日公布了全国青少年校园足球特色学校名单,笑笑所在的学校榜上有名,为了更好地备战明年市里举行的小学生足球联赛.近期他们学校的球队将和另 3支球队进行一次足球友谊赛,比赛采用单循环制(即每两队比赛一场),规定胜一场得 3 分,负一场得 0 分,平局两队各得 1 分;以总得分高低确定名次,若两支球队得分相同,就参考净胜球、相互胜负关系等因素决定名次.笑笑学校的球队要想稳获这次友谊赛的前两名,至少要得分.2016 年第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小中组 B 卷)参考答案与试题解析题一、选择题(每小题 10 分,共 60 分。
小学第21届华杯赛试卷
小学第21届华杯赛试卷一、选择题(每题2分,共10分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数可能是:A. 4B. -4C. 3D. 23. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 20B. 25C. 30D. 354. 一个数的3倍加上4等于23,这个数是多少?A. 5B. 6C. 7D. 85. 一个班级有40名学生,其中1/5的学生是班长,那么班长有多少人?A. 8B. 10C. 12D. 15二、填空题(每题2分,共10分)6. 一个数的平方根是4,这个数是______。
7. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是______平方厘米。
8. 一个数除以5的商是20,余数是3,这个数是______。
9. 一个圆的半径是3厘米,它的周长是______厘米。
10. 如果一个数的1/4加上5等于10,那么这个数是______。
三、判断题(每题1分,共5分)11. 所有的质数都是奇数。
()12. 两个连续的自然数的和一定是奇数。
()13. 如果一个数的平方是25,那么这个数只能是5。
()14. 一个数的最小公倍数是它自己。
()15. 一个数的最小公倍数是它自己,这个数是1。
()四、简答题(每题5分,共10分)16. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求这个长方体的体积。
17. 如果一个圆的直径是14厘米,求这个圆的面积。
五、应用题(每题15分,共30分)18. 一个班级有45名学生,其中1/3的学生参加了数学竞赛,1/4的学生参加了英语竞赛。
如果参加数学竞赛的学生中有1/2也参加了英语竞赛,求没有参加任何竞赛的学生人数。
19. 一个水果店有苹果和橘子两种水果,苹果每斤5元,橘子每斤3元。
如果小明买了3斤苹果和2斤橘子,总共花费了多少钱?六、附加题(每题10分,共10分)20. 一个数列的前三项是1、2、3,从第四项开始,每一项都是前三项的和。
2016年21届华杯赛数学初二决赛答案
第二十一届华罗庚金杯少年数学邀请赛决赛试题参考答案(初二组)一、填空题(每小题10 分, 共80分)二、解答下列各题(每小题10 分, 共40分, 要求写出简要过程)9.【答案】【解答】令a=1a.设1x aa=+>,则442242114(2)2124x a a xa a=++++-=+,整理得4222412(6)(2)x x x x--=-+=,解得26x=,即x=10.【证明】延长中线BD到G,使得DG=BD,连结AG.在△BDC和△GAD中,因为AD = CD,BDC ADG∠=∠,BD =DG,所以△BDC≌△GAD.因此BC=AG,=FBE AGD∠∠,又已知AE=BC,所以AE= AG.所以AEG AGE∠=∠.因为BEF AEG∠=∠,所以BEF AEG AGD EBF∠=∠=∠=∠,因此BF=FE.11.【答案】18【解答】由已知得3333223a a abc a b ab b c b ⎧+++=⎪⎨+++=⎪⎩,整理得32200a ab c ab b c ⎧++=⎪⎨++=⎪⎩,两个方程作差得到()()()0a a b a b b a b +-+-=,又a ,b 互不相等,得到()b a a b =-+,即21111a b a a a-==--++,由a ,b ,c 为互不相等的非零整数,得=2a -,4b =,16c =,所以++=18a b c . 12. 【答案】8【解答】如右图由单位方格组成的33⨯的正方形中,以A ,B ,C ,D ,E ,F ,G ,H 八个点为圆心,以半径为1画八个圆可以覆盖住整个边长为3的正方形.下面来说明,当圆形卡片的数目少于等于7时,不能覆盖住边长为3的正方形.由于正方形的周长为12,因为圆心为格点,每个圆的直径为2,只能覆盖住正方形四条边的长度和为2,要想盖住正方形的4条边,至少需要6个圆.如果正方形的4条边上有6个圆心,只能是图中A ,B ,C ,D ,E ,F 的位置,或者除去图中A ,B ,C ,D ,E ,F 的6个点的位置.当6个圆心在图中A ,B ,C ,D ,E ,F 的位置时,此时G ,H并且G ,H1,因此要想盖住G ,H 两点至少还需要两个圆.当6个圆心是除去图中A ,B ,C ,D ,E ,F 的6个点的位置时,同样可以找到另外两个点.显然图中没有标号的8个点任意两个点之间的距离大于1.因此需要至少8个圆才能覆盖住整个正方形.三、解答下列各题(每题 15 分, 共30分, 要求写出详细过程)13. 【答案】12【解答】设正方形ABCD 的边长为a . 又在直角△ABG 中,易知30GAB ∠= ,于是12G Ba =,GA =,OA OB ==.设x GH =,y OH =,得2222223()411()22x a y y a x a ⎧+=⎪⎪⎨⎪+=+⎪⎩,这样12x a +=. 易证△AOF ≌△DOE ,所以OF =OE ,故△FOE是等腰直角三角形.又EF ≥12OE ≥.因为E 在边DC 上移动,当OE DC ⊥时,取最小值,此时1DC =,即正方形的边长为1,此时12x +=.综上,GH 的最小值为12.14. 【答案】12880. 【解答】由已知11353255[]1111k k k k k k S S S k k k k k k +-+++=-=--++++1(3)(2)(3)55(1)(1)1k k k k S k k k k k -+++⨯=--+++2(3)(2)15(3)55[](1)11(1)1k k k k k S k k k k k k k -++++⨯=---+--++2(3)(2)(3)(2)5(3)(2)5(3)(2)5(1)(1)(1)(2)(1)(3)(2)(1)k k k k k k k k k S k k k k k k k k k k k -++++⨯++⨯++⨯=----+-+++++=0(3)(2)(3)(2)5(3)(2)5(3)(2)5(3)(2)521321(1)(1)(2)(1)(3)(2)(1)k k k k k k k k k k Sk k k k k k k k k ++++⨯++⨯++⨯++⨯=-----⨯⨯⨯+-+++++ 111153(2{}2123234(3)(2)(1)k k k k k =++----⨯⨯⨯⨯+++ ())由于111123234(3)(2)(1)k k k +++⨯⨯⨯⨯+++1111111={()()()}212232334(2)(1)(3)(2)111()22(3)(2)k k k k k k -+-++-⨯⨯⨯⨯++++=-++ 所以,,)2)(3(1212)2)(3(5)2)(3(1212121)2)(3(51⎪⎪⎭⎫ ⎝⎛+++++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++--++=+k k k k k k k k S k当1100k +=时,求得10012880S =.。
历年华杯赛初赛真题合集(12年至17年)(小高组)
第二十二届华罗庚金杯少年数学邀请赛
初赛试卷(小学高年级组) (时间 2016 年 12 月 10 日 10:00-11:00)
一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的
英文字母写在每题的圆括号内.)
1. 两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取
同的排法.
A.1152
B.864
C.576
D.288
)种不
5. 在等腰梯形 ABCD 中,AB 平行于 CD,AB=6,CD=14,∠AEC 是直角,CE=CB,则 AE2 等于( )
A.84 B.80 C.75 D.64
A D
E B
C
6. 从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到 5
2016个9
2016个9
)个数字 0.
A.2017
B.2016
C.2015
D.2014
2. 已知 A,B 两地相距 300 米.甲、乙两人同时分别从 A、B 出发,相向而行,在距 A 地 140 米处相遇;
如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.
A. 2 2 5
个数,它们的数字和相等.那么 n 的最小值等于( ).
第十八届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 30 第十八届华罗庚金杯少年数学邀请赛答案 .....................................................................................................................31 第十八届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 32 第十七届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 33 第十七届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 34