北师大版数学八下期中考试卷及答案

合集下载

北师大版数学八年级下册《期中考试卷》附答案

北师大版数学八年级下册《期中考试卷》附答案
(2)判断△PEC 形状;
(3)求△PEC 面积.
答案与解析
一、选择题
1.西柏坡是我国著名的红色旅游胜地,如果用统计图表示2018年“十一”黄金周期间西柏坡地区的气温变化情况,应利用()
A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图
[答案]C
[解析]
[分析]
条形统计图很容易看出数据的多少;折线统计图不仅容易看出数据的多少还能反映数据的增减变化情况;扇形统计图能反映部分与整体的关系;据此进一步判断得出答案即可.
C. 为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查
D. 对某市的出租车司机进行体检,以此反映该市市民的健康状况
[答案]B
[解析]
试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;
B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;
D.企业在给职工做工作服前进行的尺寸大小的调查.
[答案]D
[解析]
[分析]
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
[详解]A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.
B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.
7.下列各曲线表示的y与x的关系中,y不是x的函数的是()
A. B. C. D.
8.在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为()
A. 15B. 7.5C. 6D. 3
9.嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率()

北师大八年级数学下册期中测试试卷(附含答案)

北师大八年级数学下册期中测试试卷(附含答案)

北师大八年级数学下册期中测试试卷(附含答案)(本试卷满分120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运动形式属于旋转的是( )A .飞驰的动车B .匀速转动的摩天轮C .运动员投掷标枪D .乘坐升降电梯2.下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A B C D3.用反证法证明命题“若|a|<3,则a 2<9”时,应先假设( )A .a >3B .a≥3C .a 2≥9D .a 2>94.如图1,在等边三角形ABC 中,AB=4,D 是边BC 上一点,且∠BAD=30°,则CD 的长为( )A .1B .23C .2D .3① ②图1 图25.已知△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,F 为线段AC 上一点,且∠DFA =80°,则( )A.DE <DFB.DE >DFC.DE =DFD.不能确定DE ,DF 大小关系6.不等式组⎩⎨⎧+≤+-4332,1<2x x x 的解集在数轴上表示正确的是()A BC D7. 已知图2-②是由图2-①经过平移得到的,图2-②还可以看作是由图2-①经过怎样的变换得到的?现给出两种变换方式:①2次旋转;②2次轴对称.下面说法正确的是( )A .①②都不可行B .①②都可行C .只有①可行D .只有②可行8.某种商品的进价为1000元,商场将商品进价涨价35%后标价出售,后来由于该商品积压较多,商场准备进行打折销售,但要保证所获利润不低于8%,则至多可打( )A .9折B .8折C .7折D .6折 9.一次函数y =kx 和y =-x +3的图象如图3所示,则关于x 的不等式组kx <-x +3<3的解集是( ) A .1<x <3 B .0<x <2C .0<x <3D .0<x <1图3 图4 10.如图4,在△ABC 中,AB =AC ,∠A =72°,CD 是∠ACB 的平分线,点E 在AC 上,且DE ∥BC ,连接BE ,则∠DEB 的度数为( )A .20°B .25°C .27°D .30°二、填空题(本大题共6小题,每小题4分,共24分)11.若等腰三角形的一个内角为40°,则该等腰三角形的顶角是 .12.如图5,点A (2,1),将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A 的对应点A′的坐标是 .图5 图6 13.如图6,在△ABC 中,∠ACB =90°,AC =5 cm ,DE 垂直平分AB ,交BC 于点E .若BE =13 cm ,则EC 的长是 cm .14.若关于x 的不等式组⎩⎨⎧---3<,1<25a x x x 的无解,则a 的取值范围是 . 15.如图7,已知∠MAN =60°,点B ,E 在边AM 上,点C 在边AN 上,AB =4,AC =8,连接EC ,以点E 为圆心,CE 的长为半径画弧,交AC 于点D .若BE =6,则AD 的长为 .图7 图816.如图8,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B ,C 分别与点D ,E 对应,如果B ,D ,C 三点恰好在同一直线上,下列结论:①△ACE 是等腰三角形;②∠DAC =∠DEC ;③AD =CE ;④∠ABC =∠ACE ;⑤∠EDC =∠BAD .其中正确的是 .(填序号)三、解答题(本大题共8小题,共66分) 17.(每小题4分,共8分)解下列不等式:(1)2x+1>3(2-x ); (2)21143x x +--≤. 18.(6分)解不等式组⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 并把解集在数轴上表示出来.19.(7分)如图9,在△ABC 中,AB=AC ,∠BAC=120°,点D ,E 在BC 上,AD ⊥AC ,AE ⊥AB . 求证:△AED 为等边三角形.图920.(7分)如图10,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A (5,2),B (5,5),C (1,1)均在格点上.(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)将△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2,请画出△A 2B 2C 2,并写出点A 2的坐标. E BD C NMA图1021.(8分)小明和同学想利用暑假去植物园参加青少年社会实践项目,到植物园了解那里的土壤、水系、植被,以及与之依存的昆虫世界.小明在网上了解到该植物园的票价是每人10元,20人及以上按团体票,可8折优惠.(1)如果有18人去植物园,请通过计算说明,小明怎样购票更省钱?(2)小明现有500元的活动经费,且每人往返车费共3元,则至多可以去多少人?22.(8分)如图11,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长.图1123.(10分)如图12,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过点B作BE⊥CD,分别交AC,CD于点E,F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和BD的数量关系,并证明你的猜想.图1224.(12分)【问题原型】如图13-①,在等腰直角三角形ABC 中,∠ACB =90°,BC =8.将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作△BCD 的BC 边上的高DE ,易证△ABC ≌△BDE ,从而得到△BCD 的面积为 ;【初步探究】如图13-②,在Rt △ABC 中,∠ACB =90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .用含a 的代数式表示△BCD 的面积,并说明理由;【简单应用】如图13-③,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,求△BCD 的面积(用含a 的代数式表示).① ② ③图13参考答案三、17.(1)x >1.(2)x ≥-2. 18.解:⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 解不等式①,得x ≤1.解不等式②,得x <4.所以不等式组的解集为 x ≤1.解集在数轴上表示略.① ② 答案速览 一、1.B 2.B 3.C 4.C 5.A 6.B 7.B 8.B 9.D 10.C 二、11.40°或100° 12.(-1,3) 13.12 14.a ≤-1 15.2 16.①②④⑤19.证明:因为AB=AC ,∠BAC=120°,所以∠B=∠C=21(180°-∠BAC )=30°. 因为AD ⊥AC ,AE ⊥AB ,所以∠EAB=∠DAC=90°.所以∠AEB=90°-∠B=60°,∠ADC=90°-∠C=60°.所以∠DAE=180°-∠AEB-∠ADC=60°.所以∠ADE=∠AED=∠DAE=60°.所以△AED 为等边三角形. 20.解:(1)如图1,△A 1B 1C 1为所求作,点B 1的坐标为(5,-5).(2)如图1,△A 2B 2C 2为所求作,点A 2的坐标为(-2,5).图121.解:(1)因为10×18=180(元),10×0.8×20=160(元),所以小明购团体票更省钱;(2)设可以去m 人,依题意,得(10×0.8+3)m ≤500,解得m ≤45. 因为m 为正整数,所以m 的最大值为45.答:至多可以去45人.22.解:(1)因为AD ⊥BC ,BD =DE ,所以AD 是BE 的垂直平分线,所以AB =AE . 因为∠BAE =40°,所以∠B =∠AEB =(180°-∠BAE )=70°.所以∠C +∠EAC =∠AEB =70°.因为EF 垂直平分AC ,所以EA =EC .所以∠C =∠EAC =35°.所以∠C 的度数为35°.(2)因为△ABC 的周长为14 cm ,AC =6 cm所以AB +BC =14-6=8(cm ).所以AB +BD +DC =8.所以AE +DE +DC =8.所以EC +DE +DC =8.所以2DC =8.所以DC =4.所以DC 的长为4.23.(1)证明:因为BE ⊥CD ,所以∠BFC =90°.所以∠EBC +∠BCF =90°.因为∠ACB =∠BCF +∠ACD =90°,所以∠EBC =∠ACD .因为AD =CD ,所以∠A =∠ACD .所以∠A =∠EBC .(2)解:BE =BD .证明:如图2,过点D 作DG ⊥AC 于点G .因为DA =DC ,DG ⊥AC ,所以AC =2CG .因为AC =2BC ,所以CG =BC .因为∠DGC =90°,∠ECB =90°,所以∠DGC =∠ECB .在△DGC 和△ECB 中,∠DGC =∠ECB ,CG =BC ,∠DCG =∠EBC ,所以△DCG ≌△EBC . 所以CD =BE .因为BD =CD ,所以BE =BD .24.解:【问题原型】由作图可知所以∠BED =∠ACB =90°.因为AB 绕点B 顺时针旋转90°得到BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =8.所以S △BCD =21BC •DE =32. 【初步探究】△BCD 的面积为21a 2.理由: 如图3,过点D 作BC 的垂线,与CB 的延长线交于点E .所以∠BED =∠ACB =90°.因为线段AB 绕点B 顺时针旋转90°得到线段BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =a .所以S △BCD =21BC •DE =21a 2.图3 图4【简单应用】如图4,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥BC ,交CB 的延长线于点E . 所以∠AFB =∠E =90°,BF =21BC =21a . 所以∠F AB +∠ABF =90°.因为∠ABD =90°,所以∠ABF +∠DBE =90°.所以∠F AB =∠EBD .图2因为线段BD 是由线段AB 旋转得到的,所以AB =BD .在△AFB 和△BED 中,∠AFB =∠E ,∠F AB =∠EBD ,AB=BD ,所以△AFB ≌△BED . 所以BF =DE =21a . 所以S △BCD =21BC •DE =21•a •21a =41a 2.。

【北师大版】八年级数学下期中模拟试卷带答案(1)

【北师大版】八年级数学下期中模拟试卷带答案(1)
23.计算:
(1) ;
(2)(x﹣2y+3)(x+2y+3).
24.计算: .
25.如图, 中, 是 边上的高,将 沿 所在的直线翻折,使点 落在 边上的点 处.
若 ,求 的面积;
求证: .
26.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”
12.C
解析:C
【分析】
根据勾股定理的逆定理对四个选项进行逐一分析即可.
【详解】
A. B. C. D.
二、填空题
13.三角形的三边长分别为 , , ,则该三角形最长边上的中线长为____.
14.已知梯形的上底长是 ,中位线长是 ,那么下底长是_____ .
15.如图,在钝角 中,已知 为钝角,边 , 的垂直平分线分别交 于点 , ,若 ,则 的度数为________.
16. ______.
由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;
根据三角形的特点及面积公式求出△FGC的面积,即可求证④.
【详解】
∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴∠FAC=∠FCA= ∠CFE=15°,
∴∠ACE=∠ACF+∠ECF=15°+60°=75°,
∴∠ACB=105°,

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。

压轴题训练(三)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(北师大版)

压轴题训练(三)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(北师大版)

2021年八下期中考试金牌压轴题训练(三)(时间:60分钟总分:100)班级姓名得分一、单选题1.将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为()A.16B.24C.30D.40【答案】D【分析】设1号正方形的边长为x,2号正方形的边长为y,则3号正方形的边长为x+y,4号正方形的边长为2x+y,5号长方形的长为3x+y,宽为y-x,根据图1中长方形的周长为32,求得x+y=4,根据图2中长方形的周长为48,求得AB=24-3x-4y,根据平移得:没有覆盖的阴影部分的周长为四边形ABCD的周长=2(AB+AD),计算即可得到答案.【详解】设1号正方形的边长为x,2号正方形的边长为y,则3号正方形的边长为x+y,4号正方形的边长为2x+y,5号长方形的长为3x+y,宽为y-x,由图1中长方形的周长为32,可得,y+2(x+y)+(2x+y)=16,解得:x+y=4,如图,∵图2中长方形的周长为48,∵AB+2(x+y)+2x+y+y-x=24,∵AB=24-3x-4y,根据平移得:没有覆盖的阴影部分的周长为四边形ABCD的周长,∵2(AB+AD)=2(24-3x-4y+x+y+2x+y+y-x)=2(24-x-y)=48-2(x+y)=48-8=40,故选:D..【点睛】此题考查整式加减的应用,平移的性质,利用平移的性质将不规则图形变化为规则图形进而求解,解题的关键是设出未知数,列代数式表示各线段进而解决问题.2.如图,已知∠MON=30°,点123......A A A 、、在射线ON 上,点123......B B B 、、在射线OM 上,111OA A B =,12B A OM ⊥,222OA A B =,23B A OM ⊥,以此类推,若11OA =,则66A B 的长为( )A .6B .152C .32D .72964【答案】C【分析】 根据等腰三角形的性质以及平行线的性质,=30MON ∠︒,111OA A B =,得到1=30∠︒,由12B A OM ⊥,得到1OA 的长度,进而得到22122A B B A =,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而得出答案.【详解】∵=30MON ∠︒,111OA A B =,12B A OM ⊥∵1=30∠︒,∵===60︒∠3∠4∠12,∵11OA =,∵111A B =,∵21121A B A A ==,∵22OA =,∵222OA A B =,∵22122A B B A =∵23B A OM ⊥,∵122334////B A B A B A∵1===30︒∠∠6∠7,==90︒∠5∠8∵3323324A B B A OA ===,∵331244A B B A ==,441288A B B A ==,55121616A B B A ==,以此类推:66123232A B B A ==.故选:C .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而发现规律是解题关键.3.若不等式组213x x a->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( ) A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤【答案】A首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x -1>3,得:x >2,∵不等式组整数解共有三个,∵不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题4.如图,在正方形ABCD 中,3AB =,P 为平面内任意一点,1CP =,连接PD ,将线段PD 绕着点D 顺时针旋转90︒,得到线段DQ ,连接CQ ,则3DQ CQ +的最小值为_________.【分析】根据正方形的性质证明()△△QDA PDCSAS ≅,得出点Q 在以点A 为圆心,1为半径的圆上运动,根据题意判断计算即可;由题意可知DQ DP =,90QDP ∠=︒,∵四边形ABCD 是正方形,∵DA DC =,90ADC ∠=︒,∵ADC ADP QDP ADP ∠-∠=∠-∠,即QDA PDC ∠=∠,∵()△△QDA PDCSAS ≅, ∵1QA PC ==,∵点Q 在以点A 为圆心,1为半径的圆上运动,如图所示,在AD 上取一点E ,使13AE =,则13AE AQ AQ AD ==, ∵△QAE△DAQ , ∵13QE QD =,13DQ CQ CQ QE +=+>CE , 当Q 位于Q '的位置时,13DQ CQ +取得最小值CE ,13CE ===∵1333DQ CQ DQ CQ ⎛⎫+=+⎪⎝⎭【点睛】本题主要考查了四边形综合,准确利用相似三角形和全等三角形性质求解是解题的关键. 5.如图,在等边ABC 中,6AC =,点O 在AC 上,且2AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 恰好落在BC 上,则AP 的长是___.【答案】4【分析】根据题意得OP =OD ,∵POD =60°,又∵ABC 是等边三角形,所以∵A =∵B =∵C =60°,∵AOP +∵APO =120°,∵AOP +∵COD =120°,所以∵APO =∵COD 从而∵APO ∵∵COD ,则AP =CO ;又AO =2,AC =6,则AP =4.【详解】解:根据题意得,OP =OD ,∵POD =60°,∵∵ABC 是等边三角形,∵∵A =∵B =∵C =60°,又∵∵AOP +∵APO =120°,∵AOP +∵COD =120°,∵∵APO =∵COD ,∵在∵APO 和∵COD 中,==A C APO COD OP OD ∠∠⎧⎪∠∠⎨⎪=⎩,∵∵APO ∵∵COD (AAS ),∵AP =CO ,又∵AO =2,AC =6,即CO =4,∵AP =4;故答案为:4.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质及旋转的性质,掌握其判定及性质,得出∵APO ∵∵COD 是正确解答本题的基础.6.如图,在ABC 中,30B ,90BAC ︒∠=,点P 是BC 的动点(不与点B ,C 重合),AI 、CI 分别是PAC ∠和PCA ∠的角平分线,AIC ∠的取值范围为m AIC n <∠<,则m =_______,n =________.【答案】105° 150°【分析】根据三角形内角和等于180°及角平分线定义即可表示出∵AIC ,从而得到m ,n 的值即可.【详解】解:设∵BAP=α,则∵APC=α+30°,∵∵BAC=90°,∵∵PCA=60°,∵PAC=90°-α,∵AI 、CI 分别平分∵PAC ,∵PCA , ∵∵IAC=12∵PAC ,∵ICA=12∵PCA , ∵∵AIC=180°-(∵IAC+∵ICA )=180°-12(∵PAC+∵PCA ) =180°-12(90°-α+60°) =12α+105°, ∵0<α<90°,∵105°<12α+105°<150°,即105°<∵AIC <150°, ∵m=105°,n=150°.故答案为:105°,150°.【点睛】本题考查了角平分线的定义,不等式的性质,熟练掌握角平分线的定义是解题的关键.三、解答题7.在平面直角坐标系中,已知A (a ,0),B (0,b ).已知a ,b ()240b -=. (1)∠求出A ,B 两点的坐标;∠如图1,点P 为∠AOB 三个内角角平分线的交点,且AB=5,求点P 的坐标;(2)如图2.若点C 为点A 关于y 轴对称的点,∠DBE 是将∠ABC 绕点B 顺时针旋转后所得图形,连接AD 、CE 交于点F .求证:BF 平分∠CFD .(3)在(2)的基础上继续绕点B 旋转使得D 、B 、C 三点共线,若ABO α∠=,求∠CFD 的度数(用含α的式子表示).【答案】(1)∵A(-3,0),B(0,4);∵(-1,1);(2)∵证明见解析;∵90-α︒【分析】(1)∵根据非负性可求出a 和b ,即可得到A 、B 的坐标;∵从P 点分别向AB 、BO 、AO 作垂线,分别交D 、E 、F ,先证明∵BDP ∵∵BEP ,同理可证∵PFO ∵∵PEO ,∵PDA ∵∵PF A ,设PF =x ,则DP =PE =x ,可得到PAB POB PAO ABO S S S S ++=△△△△,即可求得PF ,进而得到P 点坐标;(2)∵根据∵DBE 是将∵ABC 绕点B 顺时针旋转后所得图形,点C 为点A 关于y 轴对称的点,可证得∵DBE ∵∵ABC ,进而可证得∵BDA ∵∵BCE ,得到∵BAF =∵BEC ,进而得到∵EFB ∵∵AFB ,即可证得BF 平分∵CFD ;∵连接BF ,可得∵BFC =∵ECA ,根据∵BFC =180°-∵FBC -∵BCF 即可求解.【详解】解:(1)()240b -=,∵a +3=0,b -4=0,∵a =-3,b =4,∵A (-3,0),B (0,4);∵∵点P 为∵AOB 三个内角角平分线的交点,且AB =5,∵∵DBP =∵EBP ,∵FOP =∵EOP ,∵DAP =∵F AP ,从P 点分别向AB 、BO 、AO 作垂线,分别交D 、E 、F ,如下图所示,∵DP =PE =PF ,在∵BDP 和∵BEP 中,BP BP DP DE BDP BEP =⎧⎪=⎨⎪∠=∠⎩,∵∵BDP ∵∵BEP ,同理可得∵PFO ∵∵PEO ,∵PDA ∵∵PF A ,设PF =x ,则DP =PE =x ,∵PAB POB PAO ABO S S S S ++=△△△△, 即()115433422x x x ++=⨯⨯, 解得:x =1,又∵点P 在第二象限,∵P点坐标为:(-1,1);(2)∵∵点C为点A关于y轴对称的点,∵AB=BC,在∵BDA和∵BCE中,∵∵DBE是将∵ABC绕点B顺时针旋转后所得图形,∵∵DBE∵∵ABC,∵BD=AB=BE=BC,∵DBE=∵ABC,∵∵DBE+∵EBA=∵ABC+∵EBA,即∵DBA=∵EBC,∵∵BDA∵∵BCE,∵∵BAF=∵BEC,在∵EFB和∵AFB中,AB=EB,BF=BF,∵BAF=∵BEC,∵∵EFB∵∵AFB,∵BF平分∵CFD;∵如图,连接BF,由题可知,∵BFC=∵ECA,∵∵BFC=180°-∵FBC-∵BCF=180°-(∵ABC+∵FBA)-∵BCF=180°-∵ABC-(∵BCF+∵FBA)=180°-∵ABC-(∵BCF+∵FCA)=180°-2α-(90°-α)=90-α︒,∵∵CFD=90-α︒.【点睛】本题考查全等三角形的判定与性质、几何变换-旋转,解题的关键是综合运用相关知识.8.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以a cm/s的速度运动,动点E也同时从原点O出发在y轴上以b cm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒.(1)求a,b的值;(2)当t为何值时,∠BAD∠∠OAE;(3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP.【答案】(1)a=2,b=1;(2)t=83或t=8;(3)∵ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;(2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论.(3)先判断出∵OAP∵∵BAQ(SAS),得出OP=BQ,∵ABQ=∵AOP=30°,∵AQB=∵APO =15°,再求出∵OAP=135°,进而判断出∵OAQ∵∵BAQ(SAS),得出∵OQA=∵BQA=15°,OQ=BQ,再判断出∵OPQ是等边三角形,得出∵OQP=60°,进而求出∵BQP=30°,再求出∵PBQ=75°,即可得出结论.【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0,∵(a﹣2)2+(b﹣1)2=0,∵a﹣2=0,b﹣1=0,∵a=2,b=1;(2)由(1)知,a=2,b=1,由运动知,OD=2t,OE=t,∵OB=8,∵DB=|8﹣2t|∵∵BAD∵∵OAE,∵DB=OE,∵|8﹣2t|=t,解得,t=83(如图1)或t=8(如图2);(3)如图3,过点A作AQ∵AP,使AQ=AP,连接OQ,BQ,PQ,则∵APQ=45°,∵P AQ=90°,∵∵OAB=90°,∵∵P AQ=∵OAB,∵∵OAB+∵BAP=∵P AQ+∵BAP,即:∵OAP=∵BAQ,∵OA=AB,AD=AD,∵∵OAP∵∵BAQ(SAS),∵OP=BQ,∵ABQ=∵AOP=30°,∵AQB=∵APO=15°,在∵AOP中,∵AOP=30°,∵APO=15°,∵∵OAP=180°﹣∵AOP﹣∵APO=135°,∵∵OAQ=360°﹣∵OAP﹣∵P AQ=135°﹣90°=135°=∵OAP,∵OA=AB,AD=AD,∵∵OAQ∵∵BAQ(SAS),∵∵OQA=∵BQA=15°,OQ=BQ,∵OP=BQ,∵OQ =OP ,∵∵APQ =45°,∵APO =15°,∵∵OPQ =∵APO +∵APQ =60°,∵∵OPQ 是等边三角形,∵∵OQP =60°,∵∵BQP =∵OQP ﹣∵OQA ﹣∵BQA =60°﹣15°﹣15°=30°,∵BQ =PQ ,∵∵PBQ =12(180°﹣∵BQP )=75°, ∵∵ABP =∵ABQ +∵PBQ =30°+75°=105°.【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键.9.在平面直角坐标系xOy 中,点P 和图形W 的中间点的定义如下:Q 是图形W 上一点,若M 为线段PQ 的中点,则称M 为点P 和图形W 的中间点.(2,3)C -,(1,3)D ,(1,0)E ,(2,0)F -.(1)点(2,0)A ,∠点A 和原点的中间点的坐标为________;∠求点A 和线段CD 的中间点的横坐标m 的取值范围;(2)点B 为直线2y x =上一点,在四边形CDEF 的边上存在点B 和四边形CDEF 的中间点,直接写出点B 的横坐标n 的取值范围.【答案】(1)∵(1,0);∵0≤m≤32;(2)32-≤n≤0或1≤n≤3. 【分析】(1)∵由题意根据点A ,O 的坐标,利用中点坐标公式即可求出结论;∵根据题意先依据题意画出图形,观察图形可知点A 和线段CD 的中间点所组成的图形是线段C′D′,根据点A ,C ,D 的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出m 的取值范围;(2)根据题意利用一次函数图象上点的坐标特征可得出点B 的坐标为(n ,2n ),进而依据题意画出图形,观察图形可知:点B 和四边形CDEF 的中间点只能在边EF 和DE 上,当点B 和四边形CDEF 的中间点在边EF 上时,利用四边形CDEF 的纵坐标的范围,可得出关于n 的一元一次不等式组,解之即可得出n 的取值范围;当点B 和四边形CDEF 的中间点在边DE 上时,由四边形CDEF 的横、纵坐标的范围,可得出关于n 的一元一次不等式组,解之即可得出n 的取值范围.【详解】解:(1)∵∵点A 的坐标为(2,0),∵点A 和原点的中间点的坐标为()002202++,,即(1,0). 故答案为:(1,0); ∵如图1,点A 和线段CD 的中间点所组成的图形是线段C′D′.由题意可知:点C′为线段AC 的中点,点D′为线段AD 的中点.∵点A 的坐标为(2,0),点C 的坐标为(-2,3),点D 的坐标为(1,3),∵点C′的坐标为(0,32),点D′的坐标为(32,32), ∵点A 和线段CD 的中间点的横坐标m 的取值范围为0≤m≤32. (2)∵点B 的横坐标为n ,∵点B 的坐标为(n ,2n ),当点B 和四边形CDEF 的中间点在边EF 上时,有023020n n ⎧⎨⎩-≤-≥, 解得:32-≤n≤0;当点B和四边形CDEF的中间点在边DE上时,有121 3220nn⎧⎨⎩⨯-≤⨯-≥,解得:1≤n≤3.综上所述,点B的横坐标n的取值范围为32-≤n≤0或1≤n≤3.【点睛】本题考查中点坐标公式和一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是(1)∵利用中点坐标公式求出结论;∵通过画图找出点A和线段CD的中间点所组成的图形是线段C′D′;(2)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF 的中间点在边DE上两种情况,找出关于n的一元一次不等式组.。

北师大版2024—2025学年八年级上册数学期中考试模拟试卷(测试范围第一章~第四章)

北师大版2024—2025学年八年级上册数学期中考试模拟试卷(测试范围第一章~第四章)

北师大版2024—2025学年八年级上册数学期中考试模拟试卷(测试范围:第一章~第四章)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、学号、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,将答案填写在答题卡上对应题目的序号上,答案写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第一章~第四章(北师大版)。

5.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列四个数中,是无理数的是()A.3.14B.C.D.2、在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限3、下列表示的图象,y不是x的函数的是()A.B.C.D.4、估算的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间5、已知3m=a,3n=b,那么32m+n等于()A.2ab B.a2+b C.a2b D.a﹣b6、以下列各组数为边长的三角形中,是直角三角形的是()A.0.3,0.4,0.5B.5,6,11C.2,,D.4,5,67、一次函数y=7x﹣3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8、在Rt△ABC中,∠C=90°,AC=2,BC=4,则点C到斜边AB的距离是()A.B.2C.D.9、在同一坐标系中,函数y=kx与y=2x﹣k的大致图象是()A.B.C.D.10、已知点和点是直线y=(k﹣2)x+b(0<k<2)上的两个点,则m,n的大小关系是()A.m<n B.m>n C.m=n D.不能确定二、填空题(每小题3分,满分18分)11、在平面直角坐标系内,点M(﹣9,12)到y轴的距离是.12、若二次根式有意义,则a的取值范围是.13、一个直角三角形的两边长是3和4,那么第三边的长是.14、比较大小:(填“>、<、或=”).15、已知函数y=(k﹣3)x|k|﹣2+6是一次函数,则k=.16、如图,正方形ABCD的边长是12,E,F,G分别是BC,CD,BD上的点,已知BE=8,DF=9,求三角形EFG周长的最小值.第II卷北师大版2024—2025学年八年级上册数学期中考试模拟试卷(答题卡)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:﹣+(﹣1)+2.18、已知:x﹣6和3x+14是a的两个不同的平方根,2y+2是a的立方根.(1)求x,y,a的值;(2)求1﹣4x的算术平方根.19、已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式.20、已知.(1)求a的值;(2)若a、b分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.21、平面直角坐标系中,已知点M(m+2,m﹣5).(1)若点M在x轴上,求点M坐标;(2)若点M在第二、四象限的角平分线上,求点M坐标;(3)在同一平面直角坐标系中,点A(4,6),且AM∥y轴,求点M坐标.22、如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,D与G重合,若长方形的长BC为8,宽AB为4,求:(1)DE的长;(2)求阴影部分△GED的面积.23、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式(不需要写出自变量取值范围);(2)根据市场调研发现,甲产品需求量吨数范围是1000≤x≤1200.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24、如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC、AD于E、F.(1)如图1,AB=12,BC=8,求AF的长度;(2)如图2,取BF中点G,若BF2+EF2=CG2,求证:AF=BC;(3)如图3,在(2)的条件下,过点D作DN⊥AC于点N,并延长ND交AB延长线于点M,请直接写出的值.25、如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(2,0).(1)求线段AB的长;(2)点M是坐标轴上的一个点,若以AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,OC﹣OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要求写解题过程).。

北师大版数学八年级下册《期中测试题》及答案

北师大版数学八年级下册《期中测试题》及答案
(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;
故正确的有3个,
故选B.
二、填空题(本大题7小题,每小题4分,共28分)
11.若二次根式 有意义,则 的取值范围是_____.
[答案]a≥2
[解析]
[分析]
根据二次根式有意义的条件列出不等式并求解即可.
根据两组对角分别相等的四边形是平行四边形进行判断即可.
[详解]由两组对角分别相等的四边形是平行四边形易知,
要使四边形ABCD是平行四边形需满足∠A=∠C,∠B=∠D,
因此∠A与∠C,∠B与∠D所占的份数分别相等
故选C.
4.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()
A. B. C. D.
A.5cmB.4.8cmC.4.6cmD.4cm
[答案]A
[解析]
[分析]
作AR⊥BC于R,AS⊥CD于S边形ABCD是菱形,再根据根据勾股定理求出AB即可.
[详解]解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
[答案]A
[解析]
[分析]
先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
6.如图,函数 和 图象相交于A(m,3),则不等式 的解集为()

北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考

北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考

2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n22.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.12.(3分)已知关于x的不等式组无解,则a的取值范围是.13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为.14.(3分)不等式组有5个整数解,则a的取范围是15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.2.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【解答】解:△A′B′O如图所示,点B′(2,1).故选A.【点评】本题考查了坐标与图形变化,是基础题,熟练掌握网格结构,作出图形是解题的关键.4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=4cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=4cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=8cm,故选:B.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0【分析】利用函数图象,写出在x轴上方,直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:结合图象,当﹣1<x<0时,k1x+b>k2x>0,所以k1x+b>k2x>0的解集为﹣1<x<0.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.12.(3分)已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为18.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=3,∴B′C=BC﹣BB′=6.由平移性质,可知A′B′=AB=6,∠A′B′C=∠B=60°,∴A′B′=B′C且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=18.故答案为:18.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.14.(3分)不等式组有5个整数解,则a的取范围是﹣4<a≤﹣3【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到a的范围.【解答】解:由不等式x﹣a≥0,得:x≥a,∵不等式组有5个整数解,∴这5个整数解为1、0、﹣1、﹣2、﹣3,则﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×4﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.【分析】首先作射线AO,并在AO上取线段AB=a,再分别以A、B为圆心,a为半径画弧,两弧交于点C,然后连接AC、BC,即可得到△ABC.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,关键是掌握做一条线段等于已知线段的方法.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.【点评】考查不等式(组)的解法;求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【解答】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF,∵OP⊥EF,∴OP平分∠EOF.【点评】本题主要考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.【分析】证明Rt△AED≌Rt△AFD(HL),得出∠ADE=∠ADF,证明Rt△BED≌△Rt △CFD(HL),得出∠BDE=∠CDF,则可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,∵点D是BC的中点,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌△Rt△CFD(HL),∴∠BDE=∠CDF,∴∠ADB=∠ADC,即AD⊥BC,∴AD是BC的垂直平分线.【点评】本题考查全等三角形的判定与性质、角平分线的性质、垂直平分线的判定,解答本题的关键是熟练掌握全等三角形的判定与性质.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.【分析】(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90°即可得到△A2B2C2;(2)对称中心就是对称点连线的交点,据此即可作出.【解答】解:(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90度即可得到△A2B2C2.(2)把△A1B1C1绕点C1逆时针旋转90度即可得到△A2B2C2成中心对称的位置,对称中心为P.【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.【分析】本题中去甲商场购买所花的费用=餐桌的单价×购买的餐桌的数量+餐椅的单价×实际购买的餐椅的数量(注意要减去赠送的椅子的数量).去乙商场购买所花的费用=(购买的餐桌花的钱+购买餐椅花的钱)×8.5折.如果设餐椅的数量为x,那么可用x 表示出到甲、乙两商场购买所需要费用.然后根据“甲商场购买更优惠”,让甲的费用小于乙的费用,得出不等式求出x的取值范围,然后得出符合条件的值.【解答】解:设学校计划购买x把餐椅,到甲、乙两商场购买所需要费用分别为y甲、y,乙y甲=200×12+50(x﹣12),即:y甲=1800+50x;y乙=(200×12+50x)×85%,即y乙=2040+x;当y甲<y乙时,1800+50x<2040+x,∴x<32,又根据题意可得:x≥12,∴12≤x<32,综上所述,当购买的餐椅大于等于12少于32把时,到甲商场购买更优惠.【点评】本题考查了一元一次方程的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出不等式,求出所要求的值.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【解答】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.【分析】(1)问题的转化:根据旋转的性质证明△APP'是等边三角形,则PP'=P A,可得结论;(2)问题的解决:运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;(3)问题的延伸:如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键.。

2020-2021学年度(北师大版)八年级数学下册期中考试试卷及答案

2020-2021学年度(北师大版)八年级数学下册期中考试试卷及答案

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)2.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF3.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;<1;③若a>b,则ba④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个4.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A. ①②③B. ①②④C. ①③④D. ①②③④6.在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是()A. a=3,b=3,c=4B. a∶b∶c=2∶3∶4C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)8.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个9.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤210.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.11.如图,点P是∠AOB的平分线上一点,PC⊥OA于点C,PD⊥OB于点D,连接CD交OP于点E,下列结论不一定正确的是()A. PC=PDB. OC=ODC. OP垂直平分CDD. OE=CD12.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A. ④B. ②③C. ①②③D. ①②③④13.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=√3时,△APO是直角三角形;⑤当AP=√5时,△APO是直角三角形.其中正确的是()A. ①④⑤B. ②③⑤C. ②④⑤D. ③④⑤14.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 1415.如图,已知P(3,2),B(−2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q 移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A. (0,12)B. (0,23)C. (0,43)D. (0,45)卷Ⅱ二、填空题(本大题共5小题,共25.0分) 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =________°.17. 由不等式a >b 得到am <bm ,则m 应满足的条件是 . 18. 在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是 .19. 若关于x 的不等式(a +1)x >a +1的解集为x >1,则a 的取值范围是 .20. 图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是 .三、解答题(本大题共7小题,共80.0分) 21. (8分)(1)计算:(−3)2−√4+(12)0;(2)解不等式组:{x −2<32x +1>7.22. (8分)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点距离相等. (1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =40°,求∠CAD 的度数.23.(12分)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?24.(10分)如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.25.(12分)王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65700第二次37710第三次78693(1)王老师是第_____________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?26.(14分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE//OA交OB于点E.判断△CED的形状,并说明理由.27.(16分)如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2√2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.答案1.C2.D3.B4.B5.D6.B7.D8.B9.A10.A11.D12.D13.C14.D15.A16.4617.m<018.50°19.a>−120.方块521.(1)解:原式=9−2+1=8.(2)解:{x−2<3 ①2x+1>7 ②,由①得,x<5;由②得,x>3.∴不等式组的解为3<x<5.22.解:(1)如图,点D为所作;(2)△ABC中,∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD=BD,∴∠B=∠BAD=40°,∴∠CAD=∠BAC−∠BAD=10°.23.解:(1)S通道=b(2a+3b)+b(4a+3b)−b2 =2ab+3b2+4ab+3b2−b2=(6ab+5b2)(平方米).答:通道的面积共有(6ab+5b2)平方米;=(4a+3b)(2a+3b)−(6ab+5b2)(2)S草坪=8a2+6ab+12ab+9b2−(2ab+3b2+4ab+3b2−b2)=8a2+18ab+9b2−6ab−5b2=(8a2+12ab+4b2)(平方米).答:剩余草坪的面积是(8a2+12ab+4b2)平方米;=(4a+3b)(2a+3b)−[2b(2a+3b)+b(4a+3b)−2b2] (3)S草坪=8a2+18ab+9b2−(4ab+6b2+4ab+3b2−2b2)=8a2+18ab+9b2−8ab−7b2=8a2+10ab+2b2, ∵a=2b,∴32b2+20b2+2b2=54b2=216,∴b2=4,∴b=2(米).答:通道的宽度是2米.24.解:(1)作AD⊥BC于D,在Rt△ADC中,AC=2,∠ACB=30∘,AC=1,∴AD=12∴DC=√AC2−AD2=√22−12=√3,∵AB=AC,∠ADC=90∘,∴BC=2DC=2√3.(2)∵A′B=BC=2√3,∠ACB=30∘,∴∠2=∠ACB=30∘,∴∠1+∠3=180∘−30∘−30∘=120∘,∵AB=AC,∠ACB=30∘,∴∠1=∠ACB=30∘,∴∠3=90∘.在Rt△ABA′中,∠2=30∘,AB=2,∴AA′=4.即平移的距离是4.25.解:(1)三(2)足球的标价为50元,篮球的标价为80元.(3)最多可以购买38个篮球.26.解:△CED是等边三角形,理由如下:∵OC平分∠AOB,∠AOB=60°,∴∠AOC=∠COE=30°.∵CE//OA,∴∠AOB=∠CED=60°.∵CD⊥OC,∴∠OCD=90°.∴∠EDC=60°.∴△CED是等边三角形.27.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE=√(2√2)2+(2√2)2=4,∴AD=√42−12=√15.∴AB=AD+BD=√15+1;(3)如图,过C作CG⊥AB于G,则AG=12AB,∵∠ACB=90°,AC=BC,∴CG=12AB,即CGAB=12,∵点F为AD的中点,∴FA=12AD,∴FG=AG−AF=12AB−12AD=12(AB−AD)=12BD,由(1)可得:BD=AE,∴FG=12AE,即FGAE=12,∴CGAB =FGAE,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

八年级数学下册期中考试卷及答案(北师大版)

八年级数学下册期中考试卷及答案(北师大版)

八年级数学下册期中考试卷及答案(北师大版)(满分:150分;考试时间:120分钟)一、单选题(共10题;共40分)1.(4分)下列各式中,能用平方差公式分解因式的是( )A .x 2+y 2B .x 2-y 2C .–x 2-y 2D .x-y 22.(4分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个3.(4分)如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有( )处.A .1B .2C .3D .44.(4分)若x+a <y+a ,ax >ay ,则( )A .x >y ,a >0B .x >y ,a <0C .x <y ,a >0D .x <y ,a <05.(4分)若把分式2x yxy+ 中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变C .缩小为原来的110D .缩小为原来的11006.(4分)如图,在▱ABCD 中,用直尺和圆规作▱BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A .4B .6C .8D .107.(4分) 如图,函数 2y x =和 5y ax =+ 的图象交于点 (),3A m ,则不等式 25x ax <+ 的解集是 ( )A .32x <B .3x <C .32x >D .3x >8.(4分)如图,边长为5的等边三角形ABC 中,M 是高 CH 所在直线上的一个动点,连接MB ,将线段 BM 绕点B 逆时针旋转 60︒ 得到 BN ,连接 HN .则在点M 运动过程中,线段 HN 长度的最小值是( )A .54B .1C .2D .529.(4分)任何一个正整数 n 都可以进行这样的分解: n s t =⨯ ( s 、 t 是正整数,且s t ),如果 p q ⨯ 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p q ⨯ 是 n 的最佳分解,并规定: ()pF n q=.例如18可以分解成 118⨯ , 29⨯ , 36⨯ 这三种,这时就有 31(18)62F == ,给出下列关于 ()F n 的说法: ①1(2)2F =;②1(48)3F = ;③()21n F n n n +=+ ;④若 n 是一个完全平方数,则 ()1F n = ,其中正确说法的个数是( )A .4B .3C .2D .110.(4分)如图,在▱ABCD 中,▱DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,▱ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO=OHB .DF=CEC .DH=CGD .AB=AE二、填空题(共5题;共20分)11.(4分)函数 23y x =- 的自变量 x 的取值范围是 . 12.(4分)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .13.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF▱AB ,那么n 的值是 .14.(4分)如图,函数y =2x 和y =ax+4的图象相交于点A (n ,2),则不等式2x≥ax+4的解集为 .15.(4分)如图,A、B、C、D、E、F、G都在▱O的边上,OA=AB=BC=CD=DE=EF=FG,若▱EFG=30°,则▱O=.三、计算题(共1题;共12分)16.(12分)解下列不等式(1)(6分)4x-2+1132 55xx x>++ --(2)(6分)762 23xx->+四、解答题(共6题;共78分)17.(10分)大学生小李自主创业,春节期间购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523A型文具?18.(10分)如图,有一个长方形,通过不同方法计算图形的面积,验证了一个多项式的因式分解,请写出这个式子.19.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元。

北师大实验中学2020-2021初二下期中数学试题和答案(定)

北师大实验中学2020-2021初二下期中数学试题和答案(定)

北师大附属实验中学2020~2021学年度第二学期初二数学期中考试试卷一、选择题(本大题共10道小题,每小题3分,共30分) 1.下列二次根式中,能与合并的是( ).ABCD2.平行四边形ABCD 中,若∠A =2∠B ,则∠C 的度数为( ). A .120 º B .60 º C . 30 º D . 15 º3. 已知是一元二次方程2+80x mx −=的一个解,则的值是( ). A .2− B . 2 C .4− D .2或4−4.下列说法不.正确的是( ). A . 矩形的对角线相等B . 直角三角形斜边上的中线等于斜边的一半C . 对角线互相垂直且相等的四边形是正方形D . 菱形的对角线互相垂直5.如图,数轴上点M 所表示的数为m ,则m 的值是( ).A2 B.1+CD16.菱形ABCD 的边长为5,一条对角线长为6,则菱形面积为( ).A. 20B. 24C. 30D. 482x =m7.如图,O 是矩形ABCD 的对角线的交点,M 是 AD 的中点.若BC =8,OB =5,则OM 的长为 ( ). A .2 B .2.5 C .3 D .48.已知三角形的两边长是4和6,第三边的长是方程()234x −=的根,则此三角形的周长为( ). A. 17B. 11C. 15D. 11或159. 已知,如图长方形ABCD 中,AB =3,AD=9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△BEF 的面积为( ). A .6 B .7.5C .12D .1510.如图,在4×4的正方形网格中,每一格长度为1,小正方形的顶点称为格点,A ,B ,C ,D ,E ,F 都在格点上,以AB ,CD ,EF 为边能构成一个直角三角形,则点F 的位置有( ). A .1处 B .2处C .3处D .4处二、填空题(每空2分,共18分)11. 要使21x −有意义,则x 的取值范围是 . 12. 化简:(1)=81_________(2)=−314_________13. 如图,□ ABCD 的对角线相交于点O,两条对角线的和为18,AD 的长 为5,则△OBC 的周长为 __________.14. 若方程013)2(=+++mx xm m是关于x 的一元二次方程,则m =______.15. 在ΔABC 中,AB =15,AC =13, 高AD =12,则BC 的长为______.ODCBAABEFDC16. 如图,在矩形COED 中,点D 的坐标是(1,2),则CE 的长是 .17. 对任意的两实数a ,b ,用min (a ,b )表示其中较小的数,如min (2,4−)=4−,则方程x •min (2,4x 3−)=x 1−的解是 .18. 在数学课上,老师提出如下问题:老师说:“小云的作法正确.”请写出小云所作的直线AD 的作图依据: ________________________________________________________________.三、解答题:(第19题每小题6分;第20题每小题5分;第21~25题每题6分,共52分) 19.计算:(1) (2)20.解下列方程:(1)9)5(2=−x (2)0142=−−x x21. 已知: 如图, 在□ABCD 中, E ,F 是对角线AC 上的两点,且AF = CE . 求证:BE ∥DF .22. 如图, 菱形ABCD 的对角线AC , BD 相交于点O , E 是AD 的中点, 点F , G 在AB 上, EF ⊥AB , OG ∥EF. (1) 求证:四边形OEFG 是矩形;(2) 若AD=10cm, EF=4cm, 则OE= _____cm , BG =_____cm .23. 在□ABCD 中,AE 平分∠BAD ,O 为AE 的中点,连接BO 并延长,交AD 于点F ,连接EF ,OC . (1)求证:四边形ABEF 是菱形;(2)若点E 为BC 的中点,且BC =8,∠ABC =60°,求OC 的长.24. 请阅读下列材料:问题:如图1,点A ,B 在直线l 的同侧,在直线l 上找一点P ,使得BPAP +的值最小.小军的思路是:如图2,作点A 关于直线l 的对称点'A ,连接B A ',则B A '与直线l 的交点P 即为所求.请你参考小军同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设'AA 与直线l 的交点为C ,过点B 作l BD ⊥,垂足为D . 若1=CP ,2=PD ,1=AC ,写出BP AP +的值为 ; (2)如图3,若1=AC ,26BD CD ==,,写出此时BP AP +的最小值 ;(3)写出的最小值为 .图3lC ABP A 'DAl图图1Al图225.如图, 已知正方形ABCD,点E是CB延长线上一点,连接AE,过点C作CF⊥AE于点F,连接BF.(1)求证:∠FAB=∠BCF;(2)作点B关于直线AE的对称点M,连接BM,FM.①依据题意补全图形;②用等式表示线段CF,AF,BM之间的数量关系,并证明.四、附加题(26题7分,27题6分,28题726. (1)用“=”、“>”、“<”填空:14+31+556___________+(2)由(1)中各式猜想m+n与2√mn(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃. 如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少需要_____________m.A27. 阅读、操作与探究:小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:如图1,Rt △ABC 中,BC ,AC ,AB 的长分别为3,4,5,先以点B 为圆心,线段BA 的长为半径画弧,交CB 的延长线于点D ,再过D ,A 两点分别作AC ,CD 的平行线,交于点E .得到矩形ACDE ,则矩形ACDE 的邻边比为 .请仿照小亮的方法解决下列问题:(1)如图2,已知Rt △FGH 中,GH :GF :FH = 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;(需保留做图痕迹)(2)若已知直角三角形的三边比为()()()2221:2+2:2+21n n n n n ++(n 为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 ;(3)若小亮所画的矩形的邻边比为3:4,那么他所借助的直角三角形的三边比为________________.图2图1HGFEDAB C28. 在平面直角坐标系xOy 中,对于两个点P ,Q 和图形W ,如果在图形W 上存在点M , N (M , N 可以重合)使得PM =QN ,那么称点P 与点Q 是图形W 的一对平衡点.(1)如图1,已知点A (0,3),B (2,3).①设点O 与线段AB 上一点的距离为d , 则d 的最小值是____,最大值是____;②在1233(,0)(1,4)(30)2P P P ,,,这三个点中,与点O 是线段AB 的一对平衡点的是____;(2)如图2,已知正方形的边长为2,一边平行于x 轴,对角线的交点为点O ,点D 的坐标为(2,0).若点(,2)E x 在第一象限,且点D 与点E 是正方形的一对平衡点,求x 的取值范围;(3)已知点F (-2,0),G (0,2),某正方形对角线的交点为坐标原点,边长为a (2a ).若线段FG 上的任意两个点都是此正方形的一对平衡点,直接写出a 的取值范围.图1图2【参考答案】二、填空题:(每空2分,共18分)18.四条边都相等的四边形是菱形(两组对边分别相等的四边形是平行四边形);菱形的两组对边分别平行(平行四边形的两组对边分别平行);两点确定一条直线.三、解答题:(第19题每小题6分;第20题每小题5分;第21~25题每题6分,共52分)19.计算:126==分分235156÷===(分5分分20.解下列方程: (1)9)5(2=−x1253253382x x x ,x −=±=±==…………分…………分………5分 (2)0142=−−x x()22212411441425322225x x x x x x x x −=−+=+−=−==±==…………分…………2分………………分4分分21.证明: 证法1:AD=BC =AD=BC =AF=CE =AD BC DAC BCA ADF CBE DAC BCF ADF CBEDFA BEC BE DF ∴∴∠∠∆∆⎧⎪∠∠⎨⎪⎩∴∆≅∆∴∠∠∴四边形ABCD 是平行四边形,………………………2分…………………………3分在和中…………………………5分…………………………6分2BD AC O BO=DO EO=FO EBFD AO CO AF AO CE CO BE DF ∴=∴−=−∴∴证法:连接,交于点,四边形ABCD 是平行四边形,…………………………2分AF=CE即…………4分又BO=DO四边形是平行四边形…………………………5分…………………………6分22.解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG.∵OG ∥EF ,∴四边形OEFG 为平行四边形.∵EF ⊥AB ,∴90EFG ∠=︒.∴平行四边形OEFG 为矩形. …………………………………4分(2) OE=5,BG=2. …………………………………6分23. (1)证明:∵四边形ABCD 为平行四边形∴AD ∥BC.∴,EAF AEB AFO EBO ∠=∠∠=∠∵O 为AE 的中点,∴AO =EO.==AO=EO AOF EOB AFO EBO OAF OEB AOF EOB∆∆∠∠⎧⎪∠∠⎨⎪⎩∴∆≅∆在和中∴AF =B E.∵AD ∥BC.∴四边形ABEF 为平行四边形.∵AE 平分∠BAD∴BAE EAF∠=∠∠=∠∵EAF AEB∴BAE AEB∠=∠∴AB=B E.∴四边形ABEF是菱形………………3分(2)解:过点O作OG⊥B C于点G.∵E是BC的中点,BC=8,∴BE=CE=4.∵四边形ABEF是菱形,∠ABC=60°,∴∠OBE=30,∠BOE=90°.∴OE=2,∠OEB=60°.∴GE=1,∴GC=5.∴OC=. ................................................................. 6分3…………………2 分24.解:(1)2(2)---------4分(3 6 分25.(1)证明:∵CF⊥AE,∴EFC∠=90°,∵四边形ABCD是正方形,∴ABC∠=90°,∴ABE∠=90°,∴EFC∠,∠=ABE又∵AEB CEF∠=∠,∠=∠. ··················································································2分∴FAB BCF(2)①如图:················································································ 3分证明:在CF 上截取点N ,使得CN =AF ,连接BN .∵四边形ABCD 是正方形,∴AB =CB .在△AFB 和△CNB 中, AF CN FAB NCB AB CB =⎧⎪∠=∠⎨⎪=⎩∴ △AFB ≌△CNB ,∴ ∠ABF =∠CBN ,FB =NB ,∴∠FBN =∠ABC =90°,∴△FBN 是等腰直角三角形,∴∠BFN =45°.∵点B 关于直线AE 的对称点是点M ,∴FM =FB ,∵CF ⊥AE ,∠BFN =45°,∴∠BFE =45°,∴∠BFM =90°,∴∠BFM =∠FBN ,∴FM //NB .∵FM =FB ,FB =NB ,∴FM =NB ,CA A∴四边形FMBN 为平行四边形,∴BM =NF ,∴AF +BM = CF . ···················································································· 6分 (其它方法酌情给分)26.(1)> , (2) > , (3) = ……………………3分(2)≥2220m n m n +−=+−=≥∴+≥………………6分(3)40……………………7分27. 1:2;…………………………………………………………………...……… 1分(1)………….……… 3分2:3;…………………………………………………………………...……… 4分(2)()1n n +:…………….……………………………………………………… 5分(3)7:24:25……………………………………6分28.(1)①3, ……………………2分②1P …………………………3分(2)04(x <≤过程略)………………6分82a ≤≤…………7分N MF G H图2。

北师大版数学八年级下册《期中考试题》含答案

北师大版数学八年级下册《期中考试题》含答案

北 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O 顺时针旋转90°后得到点P′,则点P′的坐标是( )A .(-2,3)B .(3-,2)C .(2,-3)D .(3,-2)2.(本题3分)(2019·山东德州市·)如果a >b ,c <0,那么下列不等式成立的是( ). A . a +c >b +c ; B . c -a >c -b ; C . ac >bc ; D .a b c c>. 3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A .∠ABC=2∠CB .∠ABC=52∠C C .14∠ABC=∠CD .∠ABC=3∠C6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P 绕顶点M 旋转1800后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫作对称中心,此时,点M 是线段PQ 的中点,如图,在平面直角坐标系中,ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0),点1P ,2P ,3P ,…中相邻两点都关于ABO 的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .810.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC ∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为___________s14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.(1)AC =______cm ;(2)当点P 在边AC 上且恰好又在ABC ∠的角平分线上时,求此时t 的值;(3)在运动过程中,当t 为多少秒时,ACP △为等腰三角形(直接写出结果).22.(本题9分)(2020·靖江市靖城中学八年级期中)如图1,△ABC 中,CD ⊥AB 于点D ,且BD :AD :CD =2:3:4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =90cm 2,如图2,动点P 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点Q 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点P 运动的时间为t (秒),①若△DPQ 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点P 运动的过程中,△PDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.23.(本题10分)(2020·温岭市实验学校八年级期中)如图1,在Rt ABC 中,∠C=90°,AD 平分∠BAC ,BE 平分∠ABC ,AD 、BC 相交于点F .(1)求∠AFE 的度数;(2)如图2,过点F 作FP ⊥BE 交AB 于点P ,求证:EF =FP ;(3)如图3,在(2)的条件下,连接DE ,过点F 作FN ⊥AB 于点N ,并延长NF 交DE 于点M ,试判断DM 与EM 的数量关系,并说明理由.答案与解析一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是( )A.(-2,3) B.(3-,2) C.(2,-3) D.(3,-2)[答案]D[分析]如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,由旋转90°可知,△OPA≌△OP′B,则P′B=PA=3,BO=OA=2,由此确定点P′的坐标.[详解]如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=PA=3,BO=OA=2,∴P′(3,-2).故选D.[点睛]本题考查了点的坐标与旋转变换的关系.关键是根据旋转的条件,确定全等三角形.2.(本题3分)(2019·山东德州市·)如果a>b,c<0,那么下列不等式成立的是( ).A.a+c>b+c;B.c-a>c-b;C.ac>bc;D.a bc c >.[答案]A[解析]根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵a >b,∴a+c >b+c,故此选项正确;B,∵a >b,∴-a <-b,∴-a+c <-b+c,故此选项错误;C,∵a >b,c <0,∴ac <bc,故此选项错误;D,∵a >b,c <0, ∴a b c c<, 故此选项错误;故选A .3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤ [答案]A[分析]首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.[详解]解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .[点睛]本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④ [答案]A[分析] 适当做辅助线,构建三角形.延长CF 并交BA 延长线于H①证明△ABE≌△ACH ,得到BE=CH,又可证CH=2CF,故可得BE =2CF②若要得到AD =DF ,则需要证明△ADF 为等腰直角三角形,需要证明∠DAF 为45°即可 ③过E 作EM AF ⊥交AF 于点M,证明△EMF 为等腰直角三角形,EM MF =12AD DE AM EM AM MF AF CF BE +=+=+=== ④过E 作EN BC ⊥于点N,证明2AE AE EN AE EC AC =+<+=,得到22AB BC AE BC AE +>+>,即可证明④错误.[详解]①延长BA 、CF ,交于点H ,∵,BF CH CBF HBF ⊥∠=∠∴BCH H ∠=∠∴BC BH =∴2CH CF =∵90ABE AEB ∠+∠=︒ 90FCE FEC ∠+∠=︒ AEB FEC ∠=∠∴ABF ACF ∠=∠∵90BAF CAH ∠=∠=︒ AB AC =∴BAE CAH ≌∴,2BE CH BE CF ==②由①知,F 为CH 中点,又CAH 为直角三角形 故12AF CH CF HF === ∴H FAH ∠=∠∵,45BC BH HBC =∠=︒∴67.5H FAH ∠=∠=︒∵90HAC ∠=︒∴22.5FAC ∠=︒又BF 为HBC ∠的平分线∴22.5HBF ∠=︒∴67.5BAD ∠=︒∴9067.522.5CAD ∠=︒-︒=︒45FAD FAC DAC ∠=∠+∠=︒在RT ADF 中,45DAF DFA ∠=∠=︒∴AD DF =③过E 作EM AF ⊥交AF 于点M,由②知,CA 为∠DAF 的平分线∴,DE EM AD AM ==△EMF 为等腰直角三角形∴EM MF = ∴12AD DE AM EM AM MF AF CF BE +=+=+===④过E 作EN BC ⊥于点N,可知AE EN =在RT ENC 中,EN EC <∴2AE AE EN AE EC AC =+<+=即2AE AC <,而AC AB =∴2AE AB <故22AB BC AE BC AE +>+>∴2AB BC AE +≠,故④错误,本题答案选A.[点睛]本题主要考查三角形辅助线的作法,要考虑题目的含义适当的作辅助线构建全等三角形.本题属于拔高题,熟练作辅助线证全等是本题解题的关键所在.5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A.∠ABC=2∠C B.∠ABC=52∠C C.14∠ABC=∠C D.∠ABC=3∠C[答案]D[分析]延长BM到E,证明△ABF≌△AEM,利用线段长度推出△BCE是等腰三角形,再根据角度转换求出即可. [详解]证明:延长BM,交AC于E,∵AD平分∠BAC,BM⊥AD,∴∠BAM=∠EAM,∠AMB=∠AME又∵AM=AM,∴△ABM≌△AEM,∴BM=ME,AE=AB,∠AEB=∠ABE,∴BE=BM+ME=4,AE=AB=5,∴CE=AC-AE=9-5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠C,又∵∠ABE=∠AEB=∠C+∠EBC.∴∠ABE=2∠C,∴∠ABC=∠ABE+∠EBC=3∠C.故选D.[点睛]本题考查三角形综合题型,关键在于作出合理的辅助线.6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个[答案]D[分析] ①由等腰直角三角形的性质得∠BAD =∠CAD =∠C =45°,再根据三角形外角性质可得到∠AEF =∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF =∠DAN ,∠BDF =∠ADN ,证△DFB ≌△DAN ,即可判断②③;连接EN ,只要证明△ABE ≌△NBE ,即可推出∠ENB =∠EAB =90°,由此可知判断④.[详解]解:∵等腰Rt △AB C 中,∠BAC =90°,AD ⊥BC ,∴∠BAD =∠CAD =∠C =45°,BD=AD, ∵BE 平分∠ABC ,∴∠ABE =∠CBE =12∠ABC =22.5°, ∴∠AEF =∠CBE +∠C =22.5°+45°=67.5°,∠AFE =∠FBA +∠BAF =22.5°+45°=67.5°,∴∠AEF =∠AFE ,∴AF =AE ,即△AEF 为等腰三角形,所以①正确;∵M 为EF 的中点,∴AM ⊥BE ,∴∠AMF =∠AME =90°,∴∠DAN =90°−67.5°=22.5°=∠MBN , 在△FBD 和△NAD 中FBD NAD BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,AN=BF ,所以②③正确;∵AM ⊥EF ,∴∠BMA =∠BMN =90°,∵BM =BM ,∠MBA =∠MBN ,∴△MBA ≌△MBN ,∴AM =MN ,∴BE 垂直平分线段AN ,∴AB =BN ,EA =EN ,∵BE=BE ,∴△ABE ≌△NBE ,∴∠ENB =∠EAB =90°,∴EN ⊥NC ,故④正确,故选:D .[点睛]本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°[答案]C[分析]先构造△CFH全等于△AEC,得到△BCH是等腰直角三角形且FH=CE,当FH+BF最小时,即是BF+CE最小时,此时求出∠AFB的度数即可.[详解]解:如图,作CH⊥BC,且CH=BC,连接HB,交AC于F,此时△BCH是等腰直角三角形且FH+BF最小,∵AC=BC,∴CH=AC,∵∠HCB=90°,AD⊥BC,∴AD//CH,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH≌△AEC,∴FH=CE,∴FH+BF=CE+BF最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C.[点睛]本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P绕顶点M旋转1800后与点Q重合,那么称点P与点Q关于点M对称,定点M叫作对称中心,此时,点M是线段PQ的中点,如图,在平面直角坐标系中,ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点1P,2P,3P,…中相邻两点都关于ABO的一个顶点对称,点1P与点2P关于点A对称,点2P与点3P关于点B对称,点3P与点4P关于点O对称,点4P与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)[答案]B[分析] 先利用对称中心的定义分别确定P 1、P 2、P 3、P 4、P 5、P 6、P 7的坐标,发现点P 7的坐标和点P 1的坐标相同,即这些点的坐标以6个为一组进行循环,由此可确定点P 100的坐标和点P 4的坐标相同.[详解]解:如图:∵点P 1的坐标是(1,1),A (1,0),而点P 1与点P 2关于点A 对称,∴点P 2的坐标为(1,-1),同理得到点P 3的坐标为(-1,3),点P 4的坐标为(1,-3),点P 5的坐标为(1,3),点P 6的坐标为(-1,-1),点P 7的坐标为(1,1),如图,∴点P 7的坐标和点P 1的坐标相同,∵100=16×6+4, ∴点P 100的坐标和点P 4的坐标相同,即为(1,-3).故选:B .[点睛]本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.注意从特殊情形中找规律. 9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .8[答案]B[分析] 分类讨论:作AB 的垂直平分线和坐标轴的交点,以A 为圆心AB 为半径作圆和坐标轴的交点,以B 为圆心AB 为半径作圆和坐标轴的交点,根据两边相等的三角形是等腰三角形,可得答案.[详解]作AB 的垂直平分线和坐标轴的交点,得到P5,此时AP=BP ;以A 为圆心AB 为半径作圆和坐标轴的交点,得到P2和P6,此时AB=AP ;以B 为圆心AB 为半径作圆和坐标轴的交点,得到P1、P3和P4,此时BP=BA ;综上所述:符合条件的点P 共有6个.故选B .[点睛]本题考查了等腰三角形的判定和性质,把所有可能的情况都找出来,不遗漏掉任何一种情况是本题的关键. 10.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-[答案]B[分析]过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,先计算出EAM ∠,则AE 平分MAD ∠,根据角平分线的性质得EM EN =,再由CE 平分ACB ∠得到EM EH =,则EN EH =,于是根据角平分线定理的逆定理可判断DE 平分ADB ∠,再根据三角形外角性质解答即可. [详解]解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,DAC α∠=,αDAB 902∠=︒-,αEAM 902∠∴=︒-, AE ∴平分MAD ∠,EM EN ∴=,CE 平分ACB ∠,EM EH ∴=,EN EH ∴=,DE ∴平分ADB ∠, 11ADB 2∠∠∴=, 由三角形外角可得:1DEC 2∠∠∠=+,12ACB 2∠∠=,11DEC ACB 2∠∠∠∴=+, 而ADB DAC ACB ∠∠∠=+, 11DEC DAC α22∠∠∴==, 故选:B .[点睛]本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE 平分ADB ∠.二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.[答案]m≥-3[分析]先求出每个不等式的解集,再根据已知得出关于a 的不等式,求出不等式的解集即可.[详解]解:2145x x x m ->+⎧⎨>⎩①②, ∵不等式①的解集是x <−3,不等式②的解集是x >m ,又∵不等式组2145x x x m ->+⎧⎨>⎩无解, ∴m≥−3,故答案为:m≥−3.[点睛]本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m 的不等式组.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.[答案]42[分析]延长BE 交AC 于F ,根据ASA 证明AEB AEF ∆≅∆,根据全等三角形的性质得到BE=EF ,进而得到BF=8,根据三角形的外角性质和等边对等角得到ABE FBC C ∠=∠+∠,进而得到FBC C ∠=∠,根据等角对等边得到FB=FC=8,然后根据ABD S ∆和ADC S ∆的面积比得到AB=10,进一步得到18AC AB FC =+=,然后根据三角形周长公式求解即可.[详解]延长BE 交AC 于,FAD 平分,BAC ∠,BAD CAD ∴∠=∠,BE AD ⊥,AEB AEF ∴∠=∠在AEB ∆和AEF ∆中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,AEB AEF ∆≅∆∴,,BE EF AB AF ABE AFE ∴==∠=∠,4,BE =.4,8,EF BF BE EF ==+=,AFE FBC C ∠=∠+∠,ABE FBC C ∴∠=∠+∠23,ABC ABE FBC FBC C C ∠=∠+∠=∠+∠=∠,FBC C ∴∠=∠8,FB FC ∴== AD 是BAC ∠的角平分线,59ABD ADC S BD AB S CD AC ∆∆∴=== 59AB AB FC ∴=+ 10,AB ∴=18,AC AB FC ∴=+=ABC C AB AC BC ∆∴=++101859=+++42=.故答案为42.[点睛]本题考查了三角形全等判定和性质,三角形外角的性质,等腰三角形的性质,综合考查了三角形的相关知识,熟练掌握各部分知识点是本题的关键.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s[答案]3秒或12秒或15秒[详解]①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120° ∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15.故答案为3秒或12秒或15秒[点睛]本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.[答案]3[分析]设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M ,根据题意可知△ABC 是等腰三角形,根据等腰三角形的角平分线的性质可得MN MR =,等量代换可得BM MN BR +=,在Rt △BER 中,BR 是斜边,BE 是直角边,所以BR 的最小值是与BE 重合,即△ABC 的BC 边上的高,求出BE 的长即可.[详解]解:如图,设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M .∵AD BC ⊥于点D 且CD BD =,∴△ABC 是等腰三角形,∴MN MR BM MN BM MR BR =∴+=+=,,∴当BR ⊥AC 时有最小值,即BE∵∠ACB=∠ABC=75°,∴∠CAB=30°,又∵∠AEB=90°,∴∠EBA=60°,∵:2:1AB BE =,∵6AC AB ==,∴3BE =.故答案为3.[点睛]本题主要考查了轴对称—最短线路问题,解题的关键是正确作出对称点和利用垂直平分线的性质证明BM MN +的最小值为三角形某一边上的高.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .[答案]①②③④[分析]根据等角的余角相等证明结论①,根据角平分线的性质证明结论②,证明∠DBE=∠BAC-∠C-∠DBE ,再结合①的结论可得结论③,证明∠AEB=∠ABE+∠C ,再由BD ⊥FC ,FH ⊥BE ,可以证明结论④.[详解]①∵BD ⊥FD ,∴∠FGD+∠F=90°,∵FH ⊥BE ,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH ,∴∠DBE=∠F ,故①正确;②∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∠BEF=∠CBE+∠C ,∴2∠BEF=∠ABC+2∠C ,∠BAF=∠ABC+∠C ,∴2∠BEF=∠BAF+∠C ,故②正确;③∠ABD=90°-∠BAC ,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC , ∵∠CBD=90°-∠C , ∴∠DBE=∠BAC-∠C-∠DBE ,由①得,∠DBE=∠F ,∴∠F=∠BAC-∠C-∠DBE ,∴∠F=12(∠BAC ﹣∠C ),故③正确; ④∵∠AEB=∠EBC+∠C , ∵∠ABE=∠CBE ,∴∠AEB=∠ABE+∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD=∠FEB ,∴∠BGH=∠ABE+∠C ,故④正确.故答案是:①②③④.[点睛]本题考查角度的证明,解题的关键是掌握角度之间关系的证明方法.16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.[答案](3或(1,3--[分析]计算出OM=33,ON=4,即可确定∠NMO=60°,然后利用AB 与直线MN 垂直画出图形,直线AB 交y 轴于点C ,作AD ⊥x 轴于H ,则∠OCB=60°,再解直角三角形求AD 、OD ,从而确定A 点坐标.[详解]当0x =时,344y x =-+=,则()0,4N ,当0y =时,430x +=,解得433x =,则43 ,03M ⎛⎫ ⎪ ⎪⎝⎭. 在Rt OMN △中,224383433MN ⎛⎫=+= ⎪ ⎪⎝⎭, ∵12OM ON =,∴30∠=︒ONM ,∴60NMO ∠=︒, 在Rt ABO △中,∵30A ∠=︒,2AO =,∴60OBA ∠=︒,∴233OB =, ∵AB 与直线MN 垂直,∴直线AB 与x 轴的夹角为60︒,如图1,直线AB 交y 轴于点C ,交MN 于G ,作AD x ⊥轴于D ,⊥GH x 轴于H ,图1∴30MGH ∠=︒,∴60BGH ∠=︒,∴60OCB ∠=︒,∵60OBA ∠=︒,∴OBC 是等边三角形,∴60BOC ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中,112OD OA ==,332AD ==∴A 点坐标为(3,如图2,直线AB 交y 轴于点C ,作AD x ⊥轴于D .图2同理:60OCB ∠=︒,∵ABO 60∠=,∴60COB ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中, 112OD OA ==,332AD OA ==, ∴A 点坐标为()1,3--, 综上所述,A 点坐标为()1,3或()1,3--. 故答案为:()1,3或()1,3--.[点睛] 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决本题的关键是正确画出旋转后的图形.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.[答案]5044[分析]翻转两次后点B 落在数轴上,根据翻转4次为一个周期循环,依据翻转总次数得出翻转几个周期循环,确定点B 落在数轴上推算出移动的距离得出结果.[详解]如图,翻转两次后点B 落在数轴上,以后翻转4次为一个周期,且长方形的周长=2(2+3)=10,∴一个周期后右边的点移动10个单位长度,∵20164504÷=,∴翻转2018次后,点B 落在数轴上,点B 所对应的数是50410515044⨯+-=,故答案为:5044.[点睛]此题考查旋转的性质,长方形的性质,图形规律类运算探究,根据图形得到变化的规律是解题的关键. 18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.[答案](6,3 ()113232n n --⨯. [分析] 根据等边三角形的性质和∠B 1OA 2=30°,可求得∠B 1OA 2=∠A 1B 1O=30°,可求得OA 2=2OA 1=4,同理可求得OA n =2n ,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,进一步可求得点B n 的坐标.[详解]解:∵112A B A △为等边三角形,∴11260∠=︒B A A ,∵1230B OA ∠=︒,∴121130B OA A B O ∠=∠=︒,可求得2124OA OA ==,同理可求得2n n OA =,∵130n n B OA +∠=︒,160n n n B A A +∠=︒,∴2n n n n B A OA ==,即1n n n A B A +△的边长为2n ,则可求得其高为132322n n -⨯=⨯, ∴点n B 的横坐标为:132223222n n n n ⨯+=⨯=⨯, ∴点n B 的坐标为()1132,32n n --⨯⨯,点2B 的坐标为()6,23.故答案为:()6,23;()1132,32n n --⨯⨯. [点睛] 本题属于规律型问题,考查点的坐标,掌握等边三角形的性质为解题关键.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .[答案](1)画图见解析;(2)(2,-1).[解析]试题分析:(1)、根据网格结构找出点A 、B 关于点C 成中心对称的点A 1、B 1的位置,再与点A 顺次连接即可;根据网格结构找出点A 、B 、C 平移后的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.试题解析:(1)、△A 1B 1C 如图所示, △A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).考点:(1)、作图-旋转变换;(2)、作图-平移变换.20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?[答案](1)43元;(2)45元;(3)丙一月份用车8小时,二月份用车23小时[分析](1)分段计算,10小时内一部分车费,11至20小时内一部分车费,超过20小时的一部分车费,三者之和即为所求;(2)设总里程为x ,且x>20,根据题意得到:10小时内车费+11至20小时内车费+,超过20小时车费=1.5⨯总里程,列出方程求解即可;(3)设丙一月份用车x 小时,则二月份用车()31x -小时,根据题意得到015.5x ≤<,分为三种情况讨论:①一月份不超过10小时,②一月份超过10小时,不超过15.5小时且二月不超过20小时,③一月份超过10小时,不超过15.5小时且二月超过20小时,列出方程求解即可.[详解](1)甲该月车费:()10210 1.52820143⨯+⨯+-⨯=(元).(2)设乙二月份用车x 小时,由题意可知:20x >,∴()10210 1.5201 1.5x x ⨯+⨯+-⨯=,解得:30x =,∴乙二月份车费是:30 1.545⨯=(元).(3)设丙一月份用车x 小时,则二月份用车()31x -小时.由题意可知:015.5x ≤<,①若010x ≤≤,则213131x ≤-≤,∴()2210 1.5101312054x x +⨯+⨯+⨯--=,解得:8x =(满足题意),则3123x -=,∴丙一月份用车8小时,二月份用车23小时.②若1015.5x <<,则15.53121x <-<.1°.若15.53120x <-≤,则:()()210 1.510210 1.5311054x x ⨯+-+⨯+--=,此时,上述方程无解,舍去.2°.若203121x <-<,则:()()210 1.510210 1.510312054x x ⨯+-+⨯+⨯+--=,解得:6x =,312521x -=>(舍)∴综上可知,丙一月份用车8小时,二月份用车23小时.[点睛]本题考查了一元一次方程的应用,一元一次不等式的应用,重点是根据题意列出不等式,分情况讨论是本题的关键.21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.。

北师大版数学八年级下册《期中考试卷》及答案

北师大版数学八年级下册《期中考试卷》及答案
① 是 的平分线;
②若 ,则 ;
③ ;
④点 在 的垂直平分线上.
A.1个B.2个C.3个D.4个
[答案]C
[解析]
[分析]
连接PM,PN,证明∆APN≅∆APM,即可判断①;由 , ,得:∠BAC=60°,结合 是 的平分线,得∠BAD=∠ABD,即可判断②;过点D作DH⊥AB,由 ,得: ,结合CD=HD,即可判断③;根据垂直平分线性质定理的逆定理,即可判断④.
D、平行四边形的对角线互相平分,故本选项的说法正确,不符合题意;
故选:B.
[点睛]本题考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
6.如图,在△ABC中,DE是AC的垂直平分线,AB=6cm,且△ABD的周长为16cm,则BC的长为()
A.8cmB.10cmC.14cmD.22cm
[答案]B
答案与解析
一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若x>y,则下列式子中正确的是( )
A.x﹣2>y﹣2B.x+2<y+2C.﹣2x>﹣2yD.
[答案]A
[解析]
[分析]
利用不等式的基本性质判断即可.
[详解]A、由x>y可得:x−2>y−2,正确;
三、解答题
19.分解因式:
20.若关于 的二元一次方程组 的解满足 ,求出满足条件的 的所有正整数数值.
21.如图,在正方形网格中, 的三个顶点都在格点上,点 的坐标分别为
(1)画出 关于原点 对称的
(2)平移 ,使点 移动到点 ,画出平移后的 ,并写出点 的坐标;
(3) 与 成中心对称,写出其对称中心 坐标.

北师大版数学八年级下册《期中检测题》附答案

北师大版数学八年级下册《期中检测题》附答案
A. B. C. D.
10.关于 的方程 的解为正整数,且关于 的不等式组 有解且最多有 个整数解,则满足条件的所有整数 的值为_______.
二、填空题(本大题共6个小题,每小题4分,共24分)
11.使分式 的值为0,这时x=_____.
12.已知 ,则 的值为___________.
13.已知a,b是一个等腰三角形的两边长,且满足a2+b2-6a-8b+25=0,则这个等腰三角形的周长为______________.
2
4
6
……
经历同样的过程画函数 和 的图象如下图所示,观察发现:三个函数的图象都是由两条射线组成的轴对称图形:三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.
请直接写出 与 的交点坐标和函数 的对称轴;
在所给的平面直角坐标系内画出函数 的图象(不列表),并写出函数 的一条性质;
6.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()
A. ﹣6B.6C. ﹣2D.2
[答案]C
[解析]
[分析]
由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.
[详解]解:设a是方程x2﹣5x+k=0的另一个根,
则a+3=1,
即a=﹣2.
北 师 大 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题:(每小题3分,共计30分)
1.式子 中,分式有()
A.1个B.2个C.3个D.4个
2.下列因式分解正确的是()

北师大版八年级下册数学书答案

北师大版八年级下册数学书答案

北师大版八年级下册数学书答案【篇一:最新北师大版八年级下数学期中测试卷及答案】xt>(90分钟满分100分)沉着、冷静、快乐地迎接期中考试,相信你能行!班级:姓名得分:一、选择题(每小题3分,共30分)一.选择题2.(2013贵州省黔西南州,8,4分)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个?x?2>0,?3.(2013山东临沂,8,3分)不等式组?x的解集是()?1≥x?3??2a.x≥8 b.x>2 c.0<x<2d.2<x≤84.(2013山东滨州,11,3分)若把不等式组??2?x≥??,的解集在数轴上表示出来,则其对应x??≥???的图形为a.长方形b.线段c.射线d.直线5.(2013四川宜宾,3,3分)不等式x?2的解集在数轴上表示为( )6. (2013福建福州,6,4分)不等式1+x<0的解集在数轴上表示正确的是()a.b. c. d.7.(2013陕西,9,3分)如图,在四边形错误!未找到引用源。

中,对角线ab=ad,cb=cd,若连接ac、bd相交于点o,则图中全等三角形共有()a.1对 b.2对c.3对 d.4对8 . [2013湖南邵阳,10,3分]如图(三)所示,点e是矩形abcd的边ad延长线上的一点,且dad=de,连结be交cd于点o,连结ao.下列结论不正确的是() aa.△aob≌△bocb.△boc≌△eodb.c.△aod≌△eod d.△aod≌△boc o cb9. (2013广东省,8,3分)不等式5x-1>2x+5 的解集在数轴上表示正确的是e10.(2013四川乐山,5,3分)如图,点e是?abcd的边cd的中点,ad、be的延长线相交于点f,df=3,de=2,则错误!未找到引用源。

abcd的周长为【】a.5 b.7c.10 d.14二、填空题(每小题3分,共21分)1.(2013重庆市(a),14,4分)不等式2x-3≥x的解集是.2.(2013贵州安顺,16,4分)若关于x的不等式(1-a)x>2可化为x<范围是 .3. (湖南株洲,14,3分) 一元一次不等式组?2,则a的取值1?a?3x?2?0的解集是. x?1?0?4.(2013山东德州,17,4分)如图,在正方形abcd中,边长为2的等边三角形aef的顶点e、f分别在bc和cd上,下列结论:①ce=cf②∠aeb=75③be+df=ef④s正方形abcd=2+错误!未找到引用源。

北师大版数学八年级下册《期中考试试题》含答案

北师大版数学八年级下册《期中考试试题》含答案

北 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10个小题,每小题3分,共30分) 1.如果0a b,那么在下列结论中正确的是( )A .1a bB .1abC .1a bD .1a b2.下列图形中是中心对称图形的是( )A .B .C .D .3.等腰三角形一腰上的高与另一腰的夹角为40,则其顶角为( ) A .50B .130C .50或130D .55或1304.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处 C .AC ,BC 两边垂直平分线的交点处D .A ,B 两内角平分线的交点处5.将不等式组13x x 的解集在数轴上表示出来,应是( ) A . B . C .D .6.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了△A B C ,其中(1,3)A ,则C 点的坐标为( ) A .(3,6)B .(2,1)C .(3,4)D .(2,5)7若点(1,1)P k 在第四象限,则k 的取值范围为( )A .1kB .12kC .12kD .112k8如图,在ABC 中,ABC 和ACB 的平分线交于点O ,过O 点作//EF BC ,交AB 于E ,交AC 于F ,若3BE ,2CF,则线段EF 的长为( )A .5B .6C .7D .89如图1,ABC 和ADE 都是等腰直角三角形,C 和ADE 都是直角,点C 在AE 上,ABC 绕着A 点经过逆时针旋转后能够与ADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )A .45,90B .90,45C .60,30D .30,6010.不等式组1235a x ax 的解集是32xa ,则a 的取值范围是( )A .1aB .3aC .1a 或3aD .13a二、填空题(本题共7个小题,每小题4分,共28分) 11.已知0a b c,a b c ,则ca的取值范围是 . 12.如图,把ABC 绕着点A 顺时针方向旋转角度(090),得到△AB C ,若B ,C ,C 三点在同一条直线上,46B CB,则的度数是 .13.一次函数223yx 的图象如图所示,当33x时,y 的取值范围是 .14.如图,在ABC 中,90B ,60A ,5BC ,将ABC 沿直角边BC 所在的直线向右平移2个单位长度,到达DEF ,AC 与DE 交于点G ,则EG 的长为 .15.如图,已知30AOB ,点P 在边OA 上,14OP ,点E ,F 在边OB 上,PE PF ,6EF .若点D 是边OB上一动点,则45PDE时,DF 的长为 .16.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,问他至少答对 道题,总分才不会低于70分. 17.已知不等式2123x a xb的解集为11x ,求(1)(1)a b 的值为 .三.解答题(一)(本题共3个小题,每小题6分,共18分) 18.解下列不等式(组),并把它们的解集在数轴上表示出来: (1)34122x x ; (2)475(1)2132x x xx19.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A ,(2,2)B ,(1,4)C ,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ; (2)画出与ABC 关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.20.如图,在ABC 中,AB AC ,AB 的垂直平分线分别交AB ,AC 于点D ,E .(1)若40A ,求EBC 的度数;(2)若5AD,EBC 的周长为16,求ABC 的周长.四.解答题(二)(本题共3个小题,每小题8分,共24分)21.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x 套(x 为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y 元. (1)求y 与x 的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?a,且最多购进240套甲款运动服, (3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中2040)若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.22.如图,点D是ABC中BAC的平分线和边BC的垂直平分线DE的交点,DG AB于点G,DH AC交AC的延长线于点H,(1)D点到B、C两点的距离相等吗?为什么?(2)D点到BAC两边的距离相等吗?为什么?(3)探求BG和CH之间的大小关系,并证明你的结论.23.如图,在ABC=,延长BC至E使BE BA∆中,AC BC⊥,AC BC⊥于点D,BD与AC交=,过点B作BD AE于点F,连接EF.(1)求证:ACE BCF∆≅∆.(2)求证:2=.BF AD(3)若CE求AC的长.五.解答题(三)(本题共2个小题,每小题10分,共20分)24.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:BHE DGF;(2)若6BC cm,求线段FG的长.AB cm,825.如图,在等边ABC中,BAC的平分线交y轴于点D,C点的坐标为(0,6)(1)如图1,求点D坐标.(2)如图2,E为x轴上任意一点,以CE为边,在第一象限内作等边CEF,FB的延长线交y轴于点G,求OG的长.(3)如图3,在(1)条件下,当一个含60角的三角板绕B点旋转时,下列两个结论中:①DN DM;②DN DM其中有且只有一个是定值,请你判断哪一个结论成立并证明成立的结论.答案与解析一、选择题(本题共10个小题,每小题3分,共30分) 1.如果0a b ,那么在下列结论中正确的是( )A .1a bB .1abC .1a bD .1a b[解析]A 、取12a ,13b ,516a b ,故本选项错误,B 、取2a,1b ,21ab ,故本选项错误,C 、取2a ,1b ,21a b ,故本选项错误,D 、取2a,1b,21a b,故本选项正确.故选:D .2.下列图形中是中心对称图形的是( )A .B .C .D .[解析]A 、不是中心对称图形,是轴对称图形,故本选项错误; B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、是中心对称图形,还是轴对称图形,故本选项正确;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选:C .3.等腰三角形一腰上的高与另一腰的夹角为40,则其顶角为( ) A .50B .130C .50或130D .55或130[解析]①如图1,等腰三角形为锐角三角形, BDAC ,40ABD,50A ,即顶角的度数为50.②如图2,等腰三角形为钝角三角形, BDAC ,40DBA,50BAD , 130BAC,即顶角的度数为130. 故选:C .4.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处 C .AC ,BC 两边垂直平分线的交点处D .A ,B 两内角平分线的交点处[解析]A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC ,BC 两边垂直平分线的交点处. 故选:C . 5.将不等式组13x x 的解集在数轴上表示出来,应是( ) A . B . C .D .[解析]不等式组13x x 的解集为:13x , 故选:A .6.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了△A B C ,其中(1,3)A ,则C 点的坐标为( ) A .(3,6) B .(2,1)C .(3,4)D .(2,5)[解析]ABC 三个顶点的坐标分别为(2,1)A ,将ABC 平移到了△A B C ,其中(1,3)A ,横坐标减3,纵坐标加2,(0,2)C ,对应点坐标为:(3,4).故选:C .7.若点(1,1)P k 在第四象限,则k 的取值范围为( ) A .1kB .12kC .12kD .112k[解析]根据题意,得:10k ,解得:1k,故选:A .8.如图,在ABC 中,ABC 和ACB 的平分线交于点O ,过O 点作//EF BC ,交AB 于E ,交AC 于F ,若3BE ,2CF,则线段EF 的长为( )A .5B .6C .7D .8[解析]BO 、CO 是ABC 、ACB 的角平分线,OBEOBC ,OCF BCO ,又//EF BC , OBC BOE ,BCO COF , OBEBOE ,COFOCF ,BE OE ,CF OF , 325EFOE OFBE CF,故选:A .9.如图1,ABC 和ADE 都是等腰直角三角形,C 和ADE 都是直角,点C 在AE 上,ABC 绕着A 点经过逆时针旋转后能够与ADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )A .45,90B .90,45C .60,30D .30,60 [解析]根据图1可知, ABC 和ADE 是等腰直角三角形,45CAB ,即ABC 绕点A 逆时针旋转45可到ADE ;如右图, ABC 和ADE 是等腰直角三角形,45DAE CAB ,90FAB DAE CAB ,即图1可以逆时针连续旋转90得到图2.故选:A .10.不等式组1235a x a x 的解集是32x a ,则a 的取值范围是() A .1a B .3a C .1a 或3aD .13a[解析]根据题意可知13a 且25a所以3a又因为32x a即23a所以1a所以13a故选:D .二.填空题(本题共7个小题,每小题4分,共28分)11.已知0a b c,a b c ,则c a 的取值范围是 122c a . [解析]0a b c , 0a ,0c①ba c ,且0a ,0c ab c a c a ,即2a c ②解得2c a , 将b a c 代入b c ,得a c c ,即2a c ③ 解得12c a , 122c a . 故答案为:122ca . 12.如图,把ABC 绕着点A 顺时针方向旋转角度(090),得到△AB C ,若B ,C ,C 三点在同一条直线上,46B CB ,则的度数是 46 .[解析]由题意可得:AC AC ,C ACB , ACC C , 把ABC 绕着点A 顺时针方向旋转,得到△AB C ,点C 刚好落在边B C 上, B CBACB C CAC ,46B CB CAC . 故答案为:46.13.一次函数223y x 的图象如图所示,当33x 时,y 的取值范围是 04y .[解析]当3x时,2243y x ; 当3x 时,2203yx . 当33x 时,y 的取值范围是04y . 故答案为:04y . 14.如图,在ABC 中,90B ,60A ,5BC ,将ABC 沿直角边BC 所在的直线向右平移2个单位长度,到达DEF ,AC 与DE 交于点G ,则EG[解析]由平移得:2BE,90DEF B , 5BC , 523CE ,60A ,30ACB ,2CG EG ,设EG x ,则2CG x , 由勾股定理得:2223(2)x x , 3x或3(舍),3EG ,15.如图,已知30AOB,点P 在边OA 上,14OP ,点E ,F 在边OB 上,PE PF ,6EF .若点D 是边OB上一动点,则45PDE 时,DF 的长为 4或10 .[解析]如图,过点P作PH OB于点H,PE PF,13EH FH EF,2OP,AOB,14301PH OP,72当点D运动到点F右侧时,PDE,45DPH,45PH DH,7DF DH FH;734当点D运动到点F左侧时,D F D H FH.7310所以DF的长为4或10.故答案为4或10.16.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,问他至少答对16道题,总分才不会低于70分.[解析]设张强答对x道题,x x根据题意可得52(201)70解得:3 157 x因为x是整数,所以x所取最小值为16,故答案是:16.17.已知不等式2123x ax b的解集为11x,求(1)(1)a b的值为6.[解析]由2123x ax b得1232axxb.11x,112a,321b,解得1a,2b,(1)(1)(11)(21)6a b,故答案为6.三.解答题(一)(本题共3个小题,每小题6分,共18分) 18.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)34122xx;(2)475(1)2132x xx x[解析](1)去分母:2341x x ,移项,合并:22x,1x,在数轴上表示为(2)47512132x xx x①②解①得:2x;解②得:2x;不等式组的解集为22x,数轴上表示为.19.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A ,(2,2)B ,(1,4)C ,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ;(2)画出与ABC 关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.[解析](1)如图所示,△111A B C 即为所求.(2)如图所示,△222A B C 即为所求,点2A 的坐标为(5,1).20.如图,在ABC 中,AB AC ,AB 的垂直平分线分别交AB ,AC 于点D ,E . (1)若40A,求EBC 的度数; (2)若5AD ,EBC 的周长为16,求ABC 的周长.[解析](1)AB AC,40A,70ABC C,DE是AB的垂直平分线,EA EB,EBA A,40EBC;30(2)DE是AB的垂直平分线,DA BD,EB AE,5EB BC EC EA BC EC AC BC,EBC的周长16AB BC AC.则ABC的周长26四、解答题(二)(本题共3个小题,每小题8分,共24分)21.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x 为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?a,且最多购进240套甲款运动服, (3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中2040)若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.y x x x;[解析](1)根据题意得(10060)(15080)(300)3021000y x.即3021000(2)由题意得,6080(300)20000x x ,解得200x ,至少要购进甲款运动服200套.又3021000y x ,300, y 随x 的增大而减小,当200x时,y 有最大值, 302002100015000y 最大,若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,(10060)(15080)(300)ya x x ,其中200240x , 化简得,(30)21000ya x , 2040a ,则:①当2030a 时,300a ,y 随x 的增大而减小, 当200x 时,y 有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大. ②当30a 时,300a ,21000y ,则服装店应购进甲款运动服的数量应满足100120x ,且x 为整数时, 服装店获利最大.③当3040a 时,300a ,y 随x 的增大而增大,200240x ,当240x 时,y 有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大. 22.如图,点D 是ABC 中BAC 的平分线和边BC 的垂直平分线DE 的交点,DG AB 于点G ,DH AC 交AC 的延长线于点H , (1)D 点到B 、C 两点的距离相等吗?为什么?(2)D 点到BAC 两边的距离相等吗?为什么?(3)探求BG 和CH 之间的大小关系,并证明你的结论.[解析](1)相等.D是线段BC垂直平分线上的一点,D点到B、C两点的距离相等;(2)相等.点D在BAC的角平分线上,D点到BAC两边的距离相等;(3)BG CH.连接BD、CD,D是线段BC垂直平分线上的点,BD DC,D是BAC平分线上的点,DG AB,DH ACDG DH,Rt BDG Rt CDH,BG CH.23.如图,在ABC=,延长BC至E使BE BA∆中,AC BC⊥,AC BC⊥于点D,BD与AC交=,过点B作BD AE于点F,连接EF.(1)求证:ACE BCF∆≅∆.(2)求证:2=.BF AD(3)若CE求AC的长.[解析]证明:(1)AC BC⊥,BD AE⊥∴∠=∠=︒90FCB BDA∠+∠=︒DAF AFD90∠+∠=︒,90CBF CFB∠=∠CFB AFDACE BCF∠=∠=︒=,90∴∠=∠,且AC BCCBF CAE∴∆≅∆ACE BCF ASA()(2)ACE BCF∆≅∆∴=AE BF=,BD AE⊥BE BA∴=,AD ED即2=AE AD2∴=.BF AD(3)ACE BCF∆≅∆∴=CF CE∴在Rt CEF∆中,2EF=,=,⊥,AD EDBD AE∴==,2AF FE∴=+=AC AF CF2五、解答题(三)(本题共2个小题,每小题10分,共20分)24.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:BHE DGF ; (2)若6AB cm ,8BC cm ,求线段FG 的长.[解析](1)证明:四边形ABCD 是矩形, AB CD ,90A C ,ABD BDC , BEH 是BAH 翻折而成,ABH EBH ,90A HEB ,AB BE , DGF 是DGC 翻折而成,FDG CDG ,90C DFG ,CD DF , 12DBH ABD ,12BDG BDC , DBH BDG , BEH 与DFG 中,HEB DFG ,BE DF ,DBH BDG , BEHDFG ,(2)解:四边形ABCD 是矩形,6AB cm ,8BC cm , 6ABCD cm ,8AD BC cm , 22228610BD BC CD , 由(1)知,FDCD ,CG FG , 1064BF cm ,设FG x ,则8BGx , 在Rt BGF 中,222BG BF FG ,即222(8)4x x ,解得3x ,即3FG cm .25.如图,在等边ABC 中,BAC 的平分线交y 轴于点D ,C 点的坐标为(0,6)(1)如图1,求点D坐标.(2)如图2,E为x轴上任意一点,以CE为边,在第一象限内作等边CEF,FB的延长线交y轴于点G,求OG的长.(3)如图3,在(1)条件下,当一个含60角的三角板绕B点旋转时,下列两个结论中:①DN DM;②DN DM其中有且只有一个是定值,请你判断哪一个结论成立并证明成立的结论.[解析](1)如图1,ABC为等边三角形,而OC AB,OA OB,30ACO,60BAC,在Rt ACO中,3362333AO OC,AD为OAC的平分线,30OAD,3323233OD OD,D点坐标为(0,2);(2)如图2,作FG BC于G,FH x轴于H,EFC为等边三角形,FC FE,60FCE CFE,OBC,60120CBE,FCB BEF,180FEH BEF,而180FCG FEH,在FCG和FEH中,FGC FHEFCG FEH,FC FEFCG FEH AAS,()FG FH,BF平分CBE,1FBE CBE,602OBG,60OB OA,2333236OG OB;(3)①正确.理由如下:在DN上截取DP DM,连接MP、DB,如图3,DO垂直平分AB,DA DB OD,24DAO,3060ADO,MDP,60而DM DP,DMP为等边三角形,DM MP,60DPM,120MPN,MDN,60MBN,60点M、D、B、N四点共圆,MND MBD,在MNP和MBD中,MNP MBDMPN MDB,MP MDMNP MBD AAS,()PN BD,4DN DP,4DN DM4。

北师大版八年级数学下学期末期中考试试题及答案七

北师大版八年级数学下学期末期中考试试题及答案七

北师大版八年级数学下学期末期中考试试题及答案一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共36分) 1.在Rt △ABC 中,∠C =90°,∠B =30°,则( ) A .AB =2ACB .AC =2ABC .AB =ACD .AB =3AC2.关于x 的不等式()22m x m +>+的解集是1x <,则m 的取值范围是( ) A .0m ≥ B .0m ≤ C .2m <- D .2m >- 3.如图,OC 平分∠AOB ,CM ⊥OB 于点M ,CM =3,则点C 到射线OA 的距离为( )A .5B .4C .3D .23题图 4题图4.如图,将△ABD 沿△ABC 的角平分线AD 所在直线翻折,点B 在AC 边上的落点记为点E .已知∠C =20°,AB +BD =AC ,那么∠B 等于( ) A .80°B .60°C .40°D .30°5.步步高超市从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打( )折. A .6B .7C .8D .96.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为 ( ) A .2个B .4个C .6个D .8个7.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是( ). A .等腰三角形 B .正三角形 C .平行四边形 D .菱形8.如图,两只蚂蚁以相同的速度沿甲、乙两条不同的路线,同时从A 出发爬向终点B ,则( ) A .按甲路线走的蚂蚁先到终点 B .按乙路线走的蚂蚁先到终点 C .两只蚂蚁同时到终点D .无法确定9.一次函数y =kx +b (k ,b 是常数,k ≠0)的图象如图所示,则不等式kx +b >0的解集是( ) A .x >0B .x >3C .x <0D .x <310.如下图,将△ABC 绕点C 顺时针方向旋转43︒得A CB ∆'',若AC A B ''⊥,则BAC ∠等于( ) A .43︒B .45︒C .47︒D .50︒10题图 11题图 12题图11.如图,△ABC 中,DE 垂直平分AB ,垂足为D ,交BC 于E ,若∠B =32°,AC =CE ,则∠C 的度数是( ) A .52°B .55°C .60°D .65°12.如图,一个直角三角板ABC 绕其直角顶点C 旋转到△DCE 的位置,若∠BCD = 29°30′,则下列结论错误的是( ) A .∠ACD =119°30′ B .∠ACE −∠BCD =120° C .∠ACE =150°30′D .∠ACD =∠BCE二、填空题(将正确答案填在题中横线上,每题3分,共24分)13.据中央气象台“天气预报”报道,某市今天的最低气温是17℃,最高气温是25℃,则今天气温t (℃)的范围是_________.14.已知等腰三角形的一个外角是80°,则它顶角的度数为______.15.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4, 2),则点A 1的坐标是________.15题图 16题图16.如图,在△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF =4,CF =1,则AC 的长为______.17.对于一个数x ,我们用(]x 表示小于x 的最大整数 ,例如:(]2.62=,(](]34,109-=-=,如果(]3x =,则x 的取值范围为__________.2x a ->⎧202119.如图,在△ABC 中,∠C =90°,AC =BC ,BD 平分∠ABC 交AC 于点D ,DE ⊥AB 于点E .若AB =10cm ,则△ADE 的周长为______cm.19题图 20题图20.如图,△ABC 和△DEC 关于点C 成中心对称,若AC =1,AB =2,90BAC ∠=︒,则AE 的长是______. 三、解答题(本题共有8小题,共66分)21.(本题5分)一次知识竞赛中共有20题,答对一题得5分,不答得0分,答错扣2分.小林同学有2题没答.(1)设小林同学答错x 题,则他答对 题; (2)最终小林同学得分超过69分,则他至多答错了几题?22.(本题5分)如图所示,在4×3的正方形网格中,从点A 出发的四条线段AB 、AC 、AD 、AE ,它的另一个端点B 、C 、D 、E 均在格点上(正方形网格的交点).(1)若每个小正方形的边长都是1,分别求出AB 、AC 、AD 、AE 的长度(结果保留根号). (2)在AB 、AC 、AD 、AE 四条线段中,是否存在三条线段,它们能构成直角三角形?如果存在,请指出是哪三条线段,并说明理由.22题图23.(本题6分)在平面直角坐标系xOy 中,已知三角形ABC 的三个顶点坐标分别为(4,3)A ,(3,1)B ,(1,2)C ,(2)将△ABC 先向左平移4个单位,在向下平移3个单位,得到111A B C △,画出111A B C △,并写出点1A 的坐标.23题图24.(本题8分)已知关于x ,y 的方程组232x y m x y m +=-⎧⎨-=⎩的解x ,y 均为负数.(1)求m 得取值范围 (2)化简:|3||1|m m -++25.(本题8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为()3,5A -,()2,1B -,()1,3C -,(1)若△ABC 和111A B C △关于原点O 成中心对称图形,画出图形并写出111A B C △的各顶点的坐标; (2)将△ABC 绕着点O 按顺时针方向旋转90°得到222A B C △,作出222A B C △,并写出各顶点的坐标.25题图26.(本题8分)如图,△ABC是等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE 相交于点P,BQ⊥AD于点Q.(1)求证:△ABE≌△CAD.(2)求∠PBQ的度数.26题图27.(本题10分)如图,在△ABC中,∠B=60°,点M从点B出发沿线段BC方向,在线段BC上运动.在点M运动的过程中,连结AM,并以AM为边在线段BC上方,作等边△AMN,连结CN.(1)当∠BAM=______°时,AB=2BM;(2)请添加一个条件:__________,使得△ABC为等边三角形;当△ABC为等边三角形时,求证:CN+CM=AC.27题图28.(本题10分)材料阅读:如图①所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.(1)观察“规形图”,试探究BDC ∠与A ∠,B ,C ∠之间的数量关系,并说明理由; (2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图②,把一块三角尺DEF 放置在ABC △上,使三角尺的两条直角边DE ,DF 恰好经过点B ,C ,若40A ∠=︒,则ABD ACD ∠+∠=_____︒.Ⅱ.如图③,BD 平分ABP ∠,CD 平分ACP ∠,若40A ∠=︒,130BPC ∠=︒,求BDC ∠的度数.参考答案1.A. 解析:如图所示.在Rt △ABC 中,∠C =90°,∠B =30°,则AB =2AC . 故选A .2.C. 解析:∵关于x 的不等式()22m x m +>+的解集是1x <, ∴20m +<,解得:2m <-,故选:C . 3.C. 解析:过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF . ∵CM =3,∴CF =3.故选C .4.C. 解析:根据折叠的性质可得BD =DE ,AB =AE ,∠B=∠AED , ∵AC =AE+EC ,AB+BD =AC ,∴DE =EC , ∴∠EDC =∠C =20°,∴∠B=∠AED =∠EDC+∠C =40°,故选:C . 5.B. 解析:设至多可打x 折, 则12008008005%10x-≥⨯, 解得x ≥7, 即至多可打7折. 故选:B .6.B. 解析:∵两条边分别为5和9,设第三边长为x , 第三边的取值范围是:9-5<x <9+5,即4<x <14,∵5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有6、8、10、12共4个,故选:B .7.D. 解析:等腰三角形、正三角形、平行四边形、菱形这四种图案中, ∵轴对称图形的有等腰三角形、正三角形、菱形, 中心对称图形的有平行四边形、菱形,∴既是中心对称图形又是轴对称图形的是菱形. 故选D.8. C. 解析:∵将甲的路线分别向左侧和下方平移,可发现甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达. 故选C.9.D. 解析:函数y =kx +b 的图象经过点(3,0),并且函数值y 随x 的增大而减小,所以当x <3时,函数值大于0,即关于x 的不等式kx +b >0的解集是x <3. 故选:D .10.C. 解析:∵将△ABC 绕点C 顺时针方向旋转43︒得A CB ∆'',点A 对应点A′, ∴∠ACA ′=43°,BAC ∠=∠A′,∵AC A B ''⊥,∴∠A′=180°-90°-43°=47°, ∴BAC ∠=∠A′=47°.故选C . 11.A. 解析:连接AE ,如图:∵DE 垂直平分AB ,∴EA=EB ,∴∠EAB=∠B=32°, ∵AC=CE ,∴∠CAE=∠CEA =∠B +∠EAB =64°, ∴∠C=180°-64°-64°=52°,故选:A .12.B. 解析:由旋转的性质得:90ACB DCE ∠=∠=︒,ACB BCD DCE BCD ∴∠+∠=∠+∠,即ACD BCE ∠=∠,则选项D 正确2930BCD '∠=︒,90293011930ACD BCD ACB ''∴∠=∠=︒+︒=︒∠+, 则选项A 正确360AC ACE B C C B D E D ∠-=∠-∠∠︒-36090293090'=︒-︒-︒-︒15030'=︒,则选项C 正确150302930121ACE BCD''∴∠-∠=︒-︒=︒,则选项B错误故选:B.13.17≤t≤25. 解析:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故答案为:17≤t≤25.14.100°. 解析:等腰三角形一个外角为80°,那相邻的内角为100°,三角形内角和为180°,如果这个内角为底角,内角和将超过180 °,所以100°只可能是顶角.故答案为:100°.15.(-4,-2). 解析:∵△ABO与△A1B1O关于点O成中心对称,点A(4,2),∴点A1的坐标是:(-4,-2).故答案为:(-4,-2).16.5. 解析:∵EF是AB的垂直平分线,∴F A=BF=4,∴AC=AF+FC=5.故答案为:5.17.﹣3<x≤﹣2或3<x≤4. 解析:当x<0时,∵(]3x=,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵(]3x=,∴x>3,∴3<x≤4,综上所述,x的取值范围是﹣3<x≤﹣2或3<x≤418.-1. 解析:由不等式得x>a+2,x<12 b,∵-1<x<1,∴a+2=-1,12b=1,∴a=-3,b=2,∴(a+b)2021=(-1)2021=-1.19.10. 解析:∵BD平分∠ABC交AC于D,DE⊥AB于E,∴∠DBE=∠DBC,∠BED=∠C=90°,BD=BD,∴△BDE≌△BDC(AAS),∴DE=DC,BE=BC,∴△ADE的周长=DE+DA+AE=DC+DA+AE=CA+AE=BC+AE=BE+AE=AB=10cm.故答案为:10.20.. 解析:∵△DEC 与△ABC关于点C成中心对称,∴DC=AC=1,DE=AB=2,∴在Rt△EDA中,AE的长是:AE====.故答案为:22.21.解:(1)设小聪答错了x 道题,则答对20218x x --=-,(2)由题意,得5(18-x )-2x >69 ,所以9052x x -->69,所以7x ->21- ,解得,x <3, 答:小林同学至多答错2题22.解:(1)22125AB =+=,222313AC =+=,222222AD =+=,222425AE =+=;(2)存在,线段AB ,AC ,AD 可以构成直角三角形, 理由为:2225813AB AD AC +=+==满足勾股定理, ∴线段AB ,AC ,AD 可以构成直角三角形. 23.解:(1)如图所示:△ABC 即为所求,△ABC 的面积为:11123121312 2.5222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=;(2)如图所示:111A B C △即为所求;A 1的坐标为:(0,0). 24.解:(1)由题意可知,1x m =-,1y m =--,因为0x <,0y <,即:m -1<0, -m -1<0, 解得,m <1, m >-1, 所以-1<m <1.(2)由(1)-1<m <1,所以m -3<0,m +1>0.所以原式(3)(1)m m =--++4=.25.解:(1)如图,△A 1B 1C 1为所作,因为△ABC 和△A 1B 1C 1关于原点O 成中心对称图形,所以A 1(3,-5),B 1(2,-1),C 1(1,-3);(2)如图,△A 2B 2C 2为所作,A 2(5,3),B 2(1,2),C 2(3,1);26.解:(1)∵△ABC是等边三角形,∴=,60AB AC∠=∠=︒,BAC C∴≌;∵,ABE CAD=AE CD≌,(2)ABE CADABE CAD∴∠=∠,BAD CHO BAC∠+∠=∠=︒,60∴∠+∠=︒,BAD ABE60∠=∠+∠,BPQ BAD ABE∴∠=︒,BPQ60⊥,BQ AD∴∠=︒,BQP90∴∠+∠=︒,PBQ BPQ90∴∠=︒-∠=︒-︒=︒.90906030PBQ BPQ27.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;如图1中,∵△ABC 与△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,∴∠BAC ﹣∠MAC =∠MAN ﹣∠MAC ,即∠BAM =∠CAN ,在△BAM 与△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△CAN (SAS ),∴BM =CN ,∴AC =BC =CN+MC .28.解:(1)如图①,连接AD 并延长至点F ,根据外角的性质,可得 BDF BAD B ∠=∠+∠,CDF C CAD ∠=∠+∠,又BDC BDF CDF ∠=∠+∠,BAC BAD CAD ∠=∠+∠,BDC A B C ∴∠=∠+∠+∠;(2)Ⅰ.由(1),可得BDC ABD ACD A ∠=∠+∠+∠;又40A ∠=︒,90D ∠=︒,904050ABD ACD ∴∠+∠=︒-︒=︒, 故答案为:50︒;Ⅱ.由(1),可得BPC BAC ABP ACP ∠=∠+∠+∠,BDC BAC ABD ACD ∠=∠+∠+∠,1304090ABP ACP BPC BAC ∴∠+∠=∠-∠=︒-︒=︒, 又BD 平分ABP ∠,CD 平分ACP ∠,()1452ABD ACD ABP ACP ∴∠+∠=∠+∠=︒, 454085BDC ∴∠=︒+︒=︒.。

解答题压轴题训练(一)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(北师大版

解答题压轴题训练(一)(解析版)-2020-2021学年八年级数学下学期期中考试压轴题专练(北师大版

2021年八下期中考试金牌解答题压轴题训练(一)(时间:60分钟 总分:100) 班级 姓名 得分 一、解答题1.已知在ABC 中,AB AC =,射线BM 、BN 在ABC ∠内部,分别交线段AC 于点G 、H .(1)如图1,若60ABC ∠=︒,30MBN =︒∠,过点A 作AE BN ⊥于点D ,分别交BC 、BM 于点E 、F ;①求证:CE AG =;①若2BF AF =,连接CF ,求CFE ∠的度数;(2)如图2,点E 为BC 上一点,AE 交BM 于点F ,连接CF .若2∠=∠=∠BFE BAC CFE ,请直接写出=ABF ACFSS________.【答案】(1)①见解析;①30°;(2)2 【分析】(1)①根据题意可得60BFD ∠=︒,ABC 为等边三角形,从而综合三角形的外角定理得到ABF CAF ∠=∠,最终运用“角边角”证明ABG CAE △≌△即可; ①取BF 的中点K ,连接AK ,由2BF AF =推出FAK 是等腰三角形,根据等腰三角形的性质得到FAK FKA ∠=∠,并求出1302FKA BFD ∠=∠=︒,然后结合①的结论证明GAK EFC △≌△,从而得到30CFE AKF ∠=∠=︒;(2)在BF 上取BK =AF ,连接AK ,推出①EAC =①FBA ,根据全等三角形的性质得到CF ABKA SS =△,①AKB =①AFC ,证得①F AK 是等腰三角形,根据等腰三角形的性质得到AF =FK ,即可得到结论. 【详解】(1)①①AE BN ⊥,30MBN =︒∠, ①60BFD ∠=︒,即:60ABF BAF ∠+∠=︒, ①60ABC ∠=︒,AB AC =, ①ABC 为等边三角形,则60BAF CAF BAC ∠+∠=∠=︒,60BAG C ∠=∠=︒, ①ABF CAF ∠=∠, 在ABG 和CAE 中,ABF CAF AB ACBAG C ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ABG CAE ASA △≌△, ①CE AG =;①如图所示,取BF 的中点K ,连接AK , ①2BF AF =, ①12AF BK FK BF ===, ①FAK 是等腰三角形,①FAK FKA ∠=∠,①2BFD FAK FKA FKA ∠=∠+∠=∠, ①1302FKA BFD ∠=∠=︒, 由①可得:AG CE =,BG AE =,AGB AEC ∠=∠, ①KG BG BK AE AF FE =-=-=, 在GAK 与EFC 中,AG CE AGB AEC KG FE =⎧⎪∠=∠⎨⎪=⎩①()GAK EFC SAS △≌△, ①30CFE AKF ∠=∠=︒;(2)如图所示,在BF 上取BK =AF ,连接AK , ①①BFE =①BAF +①ABF ,①BFE =①BAC , ①①BAF +①EAC =①BAF +①ABF , ①①EAC =①FBA , 在①ABK 和①ACF 中,AB AC ABK FAC BK AF =⎧⎪∠=∠⎨⎪=⎩①①ABK ①①ACF (SAS ), ①CF ABKA SS =△,①AKB =①AFC ,①①BFE =2①CFE , ①①BFE =2①AKF ,①①BFE =2①AKF =①AKF +①KAF , ①①AKF =①KAF ,①F AK 是等腰三角形, ①AF =FK , ①BK =AF =FK , ①FK ABKA S S =△, ①22FAFK ABFABKABKAC SSS SS=+==△,①2ABF ACFS S=,故答案为:2.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,等腰三角形的判定与性质等,正确结合题意作出辅助线是解题关键.2.某市出租车的起步价是7元(起步价是指不超过3km 行程的出租车价格),超过3km 行程后,其中除3km 的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km ,那么顾客还需付回程的空驶费,超过3km 部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A 处到相距km x (12x )的B 处办事,在B 处停留的时间在3分钟以内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返. 问选择哪种计费方式更省钱?(写出过程)【答案】当x 小于5时,方案二省钱;当x=5时,两种方案费用相同;当x 大于5且不大于12时时,方案一省钱 【分析】先根据题意列出方案一的费用:起步价+超过3km 的km 数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km 的km 数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小. 【详解】 方案一的费用:7+(x -3)×1.6+0.8(x -3)+4×2 =7+1.6x -4.8+0.8x -2.4+8=7.8+2.4x,方案二的费用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;①方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案二省钱;①方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案一省钱.【点睛】此题考查了应用类问题,解答本题的关键是根据题目所示的收费标准,列出x的关系式,再比较.3.已知:如图,①AOB=α,OC平分①AOB,D是边OA上一点,将射线OB沿OD平移至射线DE,交OC于点F,E在F右侧.M是射线DA上一点(与D不重合),N是线段DF上一点(与D,F不重合),连接MN,①OMN=β.(1)请在图1中根据题意补全图形;(2)求①MNE的度数(用含α,β的式子表示);(3)点G在线段OF上(与O,F不重合),连接GN并延长交OA于点T,且满足2①NGO +①OMN=180°,画出符合题意的图形,并探究①ENM与①ENG的数量关系.【答案】(1)见解析;(2)①MNE=β+α,(3)见解析,①ENM=180°﹣2①ENG 【分析】(1)根据要求画出图形即可;(2)利用三角形的外角的性质以及平行线的性质解决问题即可;(3)结论:①ENM=180°﹣2①ENG.利用三角形的外角的性质解决问题即可.【详解】解:(1)图形如图所示.(2)①DE①OB,①①MDN=①AOB,①①MNE=①OMN+①MDN=β+α.(3)结论:①ENM=180°﹣2①ENG.理由:如图,设①NGO=γ.①2①NGO+①OMN=180°,①2γ+β=180°,即β=180°-2γ,①①ENM=α+β=α+180°﹣2γ=180°+α﹣2γ,①①ENG=①DNT=①MTN﹣①ADF=①AOC+①NGO﹣①ADF=12α+γ﹣α =γ﹣12α,即2γ=2①ENG+α,①①ENM=180°+α﹣(2①ENG+α)= 180°﹣2①ENG . 【点睛】本题考查了平移变换,平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 4.综合与实践如图①,已知直线33y x =+与x 轴,y 轴分别交于B ,A 两点以B 为直角顶点在第二象限内部作等腰Rt ABC ,完成下列任务:(1)点C 的坐标为______________; (2)求直线AC 的关系式;(3)如图①,直线AC 交x 轴于M ,点()3,P a -是线段BC 上一点,在线段BM 上是否存在一点N ,使直线PN 平分BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)(4,1)C -;(2)132=+AC y x ;(3)存在,19(,0)4-N 【分析】(1)如图1,作CQ①x 轴,垂足为Q ,利用等腰直角三角形的性质证明①ABO①①BCQ (AAS ),根据全等三角形的性质求OQ ,CQ 的长,确定C 点坐标; (2)由待定系数法,即可求出答案;(3)依题意确定P 点坐标,可知①BPN 中BN 边上的高,再由S ①PBN =12S ①BCM ,求BN ,进而得出ON .【详解】解:(1)①33y x =+,令x=0,则y=3,令y=0,则x=1-, ①点A 为(0,3),点B 为(1-,0), ①OA=3,OB=1;如图,作CQ①x 轴,垂足为Q ,①①OBA+①OAB=90°,①OBA+①QBC=90°, ①①OAB=①QBC ,又①AB=BC ,①AOB=①Q=90°, ①①ABO①①BCQ (AAS ),①BQ=AO=3,OQ=BQ+BO=4,CQ=OB=1, ①C (-4,1);(2)设直线AC 的解析式为:AC y kx b =+, 由A (0,3),C (4-,1)可知,341b k b =⎧⎨-+=⎩,解得123k b ⎧=⎪⎨⎪=⎩, ①直线AC :132=+AC y x ; (3)如图,①点B (1-,0),点C (-4,1), 直线BC :1133y x =--, ①()3,P a -是线段BC 上一点, ①23,3P ⎛⎫- ⎪⎝⎭,由132=+AC y x 知,点M 为(-6,0), ①BM=5,则S ①BCM =52.设点N (n ,0),且点N 在线段BM 上,则BN=1n --, 假设存在点N 使①BPN 面积等于①BCM 面积的一半, 则12BN•y P =12×52, ①125(1)234n ⨯--⨯=, 解得:194n =-,①点N 的坐标为(194-,0); 【点睛】本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.5.小南根据学习函数的经验,对函数|2|y a x b =-+的图象与性质进行了探究.下表是小南探究过程中的部分信息:请按要求完成下列各小题:(1)该函数的解析式为 ,自变量 x 的取值范围为 ; (2)n 的值为 ;点11,22⎛⎫-⎪⎝⎭该函数图象上;(填“在”或“不在”) (3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为 坐标的点,并画出该函数的图象;(4)结合函数的图象,解决问题: ①写出该函数的一条性质: ; ①如图,在同一坐标系中是一次函数1133y x =-+的图象,根据象回答,当11|2|33a xb x -+<-+时,自变量 x 的取值范围为 .【答案】(1)23y x =--;全体实数;(2)-3;不在;(3)见解析;(4)①函数有最小值为-3;①24x -<< 【分析】(1)把x=-4,y=3;x=-3,y=2代入2y a x b =-+得到二元一次方程组,解方程组求出a 、b 的值,即可求出解析式;自变量 x 没有限制,为全体实数; (2)把x=2代入(1)中的解析式,可求出n 的值;把x=12代入(1)中的解析式,可求出y 的值,即可判断点11,22⎛⎫-⎪⎝⎭在不在该函数图象上; (3)描点,顺次连接即可画出该函数的图象;(4)①观察图象即可得到函数的最小值;①根据图象即可求出11|2|33a xb x -+<-+时x 的取值范围.解:(1)把x=-4,y=3;x=-3,y=2代入2y a x b =-+, 得423322a b a b ⎧--+=⎪⎨--+=⎪⎩, 解得,13a b =⎧⎨=-⎩, ①该函数的解析式为23y x =--;自变量 x 的取值范围为全体实数; 故答案是:23y x =--;全体实数;(2)在23y x =--中,当x=2时,3y =-,①n=-3.当x=12时,32y =-, ①点11,22⎛⎫- ⎪⎝⎭不在函数23y x =--的图象上; 故答案为:-3;不在;(3)该函数的图象如图:(4)①从图象可以看出,该函数有最小值为-3;故答案为:函数有最小值为-3;①从图象可以看出,当24x -<<时23y x =--的图象位于1133y x =-+的图象的下方, ①当11|2|33a xb x -+<-+时,自变量 x 的取值范围为24x -<<. 故答案为:24x -<<.本题考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用图象求不等式的解集,正确画出函数的图象是解题的关键.6.如图1,已知①ABC中,①ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(1)求BD的长度;(2)如图2,将①ACD绕点C逆时针旋转α(0°<α<360°)得到①A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;①连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(3)如图3,将①ACD绕点C逆时针旋转α(0°<α<360°)得到①A'CD',若点M为AC 的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.【答案】(1)﹣;(2)﹣;①45°或225°;(3)+3【分析】(1)过点C作CH①AB于H,由等腰直角三角形的性质可得CH=BH=12AB,由勾股定理求出DH,则可求出答案;(2)①由旋转的性质可得CD=CD'=①DCD'=30°=①CDA=①CD'A',由等腰三角形的性质和直角三角形的性质可得CF=D'F=,EF,CE=2EF=,即可求解;①分两种情况讨论,由“SSS”可证①A'CD①①BCD',可得①A'CD=①BCD',即可求解;(3)当A'D'①AC时,N是AC与A'D'的交点时,MN的长度最小,当A'D'①AC时,N是AC与A'D'的交点时,MN的长度最小,即可求解.解:(1)如图1,过点C 作CH①AB 于H ,①①ACB =90°,AC =BC =6,CH①AB ,①AB =CD =,CH =BH =12AB =,①CAB =①CBA =45°,①DH ==①BD =DH ﹣BH =﹣;(2)①如图2,过点E 作EF①CD'于F ,①将①ACD 绕点C 逆时针旋转α(0°<α<360°)得到①A′CD′,①CD =CD'=,①图1中CD=2CH ,①①DCD'=30°=①CDA =①CD'A',①CE =D'E , 又①EF①CD',①CF =D'F =EF=CE =2EF =,①DE =DC ﹣CE =﹣;①如图2﹣1,①①ABC=45°,①ADC=30°,①①BCD=15°,①①ACD=105°,①将①ACD绕点C逆时针旋转α(0°<α<360°)得到①A′CD′,①AC=A'C,CD=CD',①ACA'=①DCD'=α,①CB=CA',又①A′D=BD′,①①A'CD①①BCD'(SSS),①①A'CD=①BCD',①105°﹣α=15°+α,①α=45°;如图2﹣2,同理可证:①A'CD①①BCD',①①A'CD=①BCD',①α﹣105°=360°﹣α﹣15°,①α=225°,综上所述:满足条件的α的度数为45°或225°;(3)如图3,当A'D'①AC时,N是AC与A'D'的交点时,MN的长度最小,①①A'=45°,A'D'①AC ,①①A'=①NCA'=45°,①CN =A'N =,①点M 为AC 的中点,①CM =12AC =3,①MN 的最小值=NC ﹣CM =﹣3;如图4,当点A ,点C ,点D'共线,且点N 与点D'重合时,MN 有最大值,此时MN =CM +CN =+3,①线段MN 的取值范围是﹣+3.【点睛】本题主要考查全等三角形的判定与性质、勾股定理、等腰直角三角形的性质、旋转的性质及二次根式的性质,熟练掌握全等三角形的判定与性质、勾股定理、等腰直角三角形的性质、旋转的性质及二次根式的性质是解题的关键.7.如图,ABC 中,CD AB ⊥于点 D ,CD BD =,点 E 在CD 上,DE DA =,连接BE .(1)求证:BE CA =;(2)延长BE 交AC 于点F ,连接DF ,求CFD ∠的度数;(3)过点C 作CM CA ⊥,CM CA =,连接BM 交CD 于点N ,若12BD =,5AD =,直接写出NBC 的面积.【答案】(1)见解析;(2)①CFD =135°;(3)①NBC 的面积为21.【分析】(1)由“SAS ”可证①BDE ①①CDA ,可得BE =CA ;(2)过点D 作DG ①AC 于G ,DH ①BF 于H ,由全等三角形的性质可得①DBE =①ACD ,S ①BDE =S ①ADC ,由面积关系可求DH =DG ,由角平分线的性质可得①DFG =①DFH =45°,即可求解;(3)在CD 上截取DE =AD =5,连接BE ,延长BE 交AC 于F ,由①BEN ①①MCN ,可得EN =CN ,由三角形的面积公式可求解.【详解】证明(1)在①BDE 和①CDA 中,90BD CD BDE CDA DE AD =⎧⎪∠=∠=︒⎨⎪=⎩,①①BDE ①①CDA (SAS ),①BE =CA ;(2)如图2,过点D 作DG ①AC 于G ,DH ①BF 于H ,①①BDE ①①CDA ,①①DBE =①DCA ,S ①BDE =S ①ADC ,①①DBE +①A =①ACD +①A =90°,①①AFB =①CFB =90°,①S ①BDE =S ①ADC , ①1122BE DH AC DG ⨯=⨯⨯, ①DH =DG ,又①DG ①AC ,DH ①BF ,①①DFG =①DFH =45°,①①CFD =135°;(3)如图3,在CD 上截取DE =AD =5,连接BE ,延长BE 交AC 于F ,由(1)、(2)可得BE =AC ,BF ①AC ,BD =CD =12,①CM ①CA ,①BF ①CM ,①①M =①FBN ,①CM =CA ,①CM =BE ,在①BEN 和①MCN 中,FBN M BNE MNC BE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①BEN ①①MCN (AAS ),①EN =CN ,①EC =CD -DE =12-5=7, ①72CN =,①①NBC的面积1171221 222NC BD=⨯⨯=⨯⨯=,故①NBC的面积为21.【点睛】本题是三角形综合题,考查了直角三角形的性质,全等三角形的判定和性质,角平分线的判定和性质,三角形的面积公式等知识,灵活运用这些性质解决问题是本题的关键.8.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.【答案】(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.【分析】(1)根据大、小两种货车共18辆,以及两种车所运的货物的和是192吨,据此即可列方程或方程组即可求解;(2)首先表示出每种车中,每条路线中的费用,总运费为w元就是各个费用的和,据此即可写出函数关系式;(3)根据运往甲地的物资不少于96吨,即可列出不等式求得a的范围,再根据a是整数,即可确定a的值,根据(2)中的函数关系,即可确定w的最小值,确定运输方案.【详解】(1)设大货车用x 辆,则小货车用(18﹣x )辆,根据题意得:14x +8(18﹣x )=192,解得:x =8,18﹣x =18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a ,那么运往乙地的大货车就应该是(8﹣a ),运往甲地的小货车是(10﹣a ),运往乙地的小货车是10﹣(10﹣a ),w =720a +800(8﹣a )+500(10﹣a )+650[10﹣(10﹣a )]=70a +11400(0≤a ≤8且为整数);(3)14a +8(10﹣a )≥96,解得:a ≥83. 又①0≤a ≤8,①3≤a ≤8 且为整数.①w =70a +11400,k =70>0,w 随a 的增大而增大,①当a =3时,W 最小,最小值为:W =70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.【点睛】本题主要考查了一次函数和一元一次不等式的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.9.(1)如图①,在直角ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点(与点B 不重合),连接AD ,将ABD △绕点A 逆时针旋转90︒,得到ACE △,那么,CE BD 之间的位置关系为__________,数量关系为__________;(2)如图①,在ABC 中,90BAC ∠=︒,AB AC =,D ,E (点D ,E 不与点B ,C 重合)为BC 上两动点,且45DAE ∠=︒.求证:222BD CE DE +=.(3)如图①,在ABC 中,120CAB ∠=︒,AB AC =,60DAE ∠=︒,3BC =+D ,E (点D ,E 不与点B ,C 重合)为BC 上两动点,若以,,BD DE EC 为边长的三角形是以BD 为斜边的直角三角形时,求BE 的长.【答案】(1)CE①BD ;CE=BD ;(2)见解析;(3)BE 2=+【分析】(1)根据D CAE BA ∠=∠,AD=AE ,运用SAS 证明ABD ACE ≅,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;(2)把ACE 绕点A 顺时针旋转90︒,得到 ABG ,连接DG ,由SAS 得到ADG ADE ≅,可得DE=DG ,即可把EF 、BE 、FC 放到一个直角三角形中,从而根据勾股定理即可证明;(3)把AEC 绕点A 顺时针旋转120︒,得到AFB ,可得AF=AE ,ABF ACB ∠=∠,EC=BF ,EAF 120∠=︒,由SAS 可证ADE ADF ≅,可得DF=DE ,由以BD 、DE 、EC 为边的三角形是直角三角形,分两种情况讨论,由直角三角形的性质可求解.【详解】解:(1)CE 与BD 位置关系是CE①BD ,数量关系是CE=BD①ABD △绕点A 逆时针旋转90︒,得到ACE △①DAE 90BAC ∠=∠=︒①D 90DAC BA ∠=︒-∠,CAE 90DAC ∠=︒-∠①D CAE BA ∠=∠①BA=CA ,AD=AE①ABD ACE ≅①ACE 45B ∠=∠=︒且CE=BD①ACB 45B ∠=∠=︒①ECB=4545=90∠︒+︒︒,即CE①BD故答案为:CE①BD ;CE=BD ;(2)如图①,把ACE 绕点A 顺时针旋转90︒,得到ABG ,连接DG ,则ACE ABG ≅①AG=AE ,BG=CE ,ABG ACF 45∠=∠=︒①BAC 90∠=︒,GAE 90∠=︒①GAD DAE 45∠=∠=︒在ADG 和ADE 中,AG AE GAD DAE AD AD =⎧⎪∠=∠⎨⎪=⎩①ADG ADE ≅①ED=GD①GBD 90∠=︒①222BD BG DG +=即222BD EC DE +=(3)如图①,把AEC 绕点A 顺时针旋转120︒,得到AFB ,①AEC AFB ≅①AF=AE ,ABF ACB ∠=∠,EC=BF ,EAF 120∠=︒①CAB 120∠=︒,AB=AC①ABC ACB ABF 30∠=∠=∠=︒①FBD 60∠=︒①EAF 120∠=︒,EAD 60∠=︒①DAE DAF 60∠=∠=︒,且AF=AE ,AD=AD①ADE ADF ≅①DF=DE①以BD 、DE 、EC 为边的三角形是直角三角形①以BD 、DF 、BF 为边的三角形是直角三角形①BDF 是直角三角形若BDF 90∠=︒,且FBD 60∠=︒①BF=2BD=EC ,DF DE ==①(BC BD DE EC BD 2BD 33BD =++=+==①BD 1=①DE =①BE BD DE 1=+=+若BFD 90∠=︒,且FBD 60∠=︒①BD=2BF=2EC ,DF DE ==①(BC BD DE EC 2BF BF 33BF =++=+==①BF 1=①BD=2,DE =①BE 2=+【点睛】此题是几何变换综合题,考查了等腰三角形的性质、全等三角形的判定和性质、旋转的性质、勾股定理,添加恰当辅助线构造全等三角形是本题的关键.。

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案一、选择题1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.283.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,104.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤15.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=46.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.107.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG 是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.12.(4分)命题“两直线平行,同位角相等.”的逆命题是.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为cm2.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)15.(4分)计算(2﹣2)2的结果是.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,把正确答案填写在下列表格内.1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)解:A、的根指数为3,不是二次根式;B、的被开方数﹣1<0,无意义;C、的根指数为2,且被开方数2>0,是二次根式;D、的被开方数x<0,无意义;故选:C.2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.28解:∵平行四边形的对边相等,∴平行四边形的周长=2(4+7)=22.故选:C.3.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,10解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、62+82=102,故是直角三角形,故此选项不符合题意;C、52+122=132,故是直角三角形,故此选项不符合题意;D、72+52≠102,故不是直角三角形,故此选项符合题意;故选:D.4.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤1解:由题意得:a﹣1≥0,解得:a≥1,故选:B.5.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=4解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、2和不是同类二次根式,不能合并,故本选项错误;D、+=2+2=4,计算正确,故本选项正确.故选:D.6.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.10解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选:C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)解:过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(2,3),∴OE=2,PE=3,∵四边形ABCD是平行四边形,∴OE=MF=2,∵4+2=6,∴点N的坐标为(6,3).故选:D.10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.解:==,故填.12.(4分)命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为24cm2.解:∵菱形ABCD的两条对角线AC=6cm,BD=8cm,∴菱形的面积为:AC•BD=6×8=24(cm2).故答案为:24.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)解:∵+|b﹣6|=0,∴a﹣7=0,b﹣6=0,解得a=7,b=6,∴该直角三角形的斜边长为=.故答案为:.15.(4分)计算(2﹣2)2的结果是24﹣8.解:(2﹣2)2=20﹣8+4=24﹣8,故答案为:24﹣8.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为7.解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)解:连接BD,则点D即为点B关于AC的对称点,连接DE交AC于点P,由对称的性质可得,PB=PD,故PE+PB=DE,由两点之间线段最短可知,DE即为PE+PB的最小值,∵AB=AD=5,BE:AE=1:4∴BE=1,AE=4,在Rt△ADE中,DE===.故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.解:原式===.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.解:过A点作AD⊥BC于D点;在直角三角形ABD中,∠B=45°,AB=,∴AD=AB•sin∠B=1,在直角三角形ADC中,∠C=30°,∴AC=2AD=2.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.解:原式=••=,当a=﹣2时,原式==.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5∴C菱形OCED=4OC=4×2.5=10,在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.∴S菱形OCED=.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?解:(1)过B点作BE∥AD,如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500m,由勾股定理可得:AC2=BC2+AB2,所以AC==1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m,∴∠CAB=30°,∵∠DAB=60°,∴∠DAC=30°.即点C在点A的北偏东30°的方向.25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:∵Rt△ABC中,∠C=30°.∵CD=2t,AE=t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即30﹣2t=t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=2t,∴DF=t=AE,∴AD=2t,∴2t+2t=30,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=90°﹣30°=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=30﹣2t,AE=DF=CD=t,∴30﹣2t=t,解得t=12.当∠DFE=90°时,点E和点F都和点B重合,不能构成三角形,所以,此种情况不存在;综上所述,当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF =90°).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八下期中考
试卷及答案
Last revision on 21 December 2020
北师大版数学八下期中考试卷
(考试时间为90分钟,总分为100分)
一、填空题(每题2分,共30分)
1.“x 的2倍与3的差不小于0”,用不等式表示为______________
2.当x_____________时,分式2
1+-x x 有意义。

3._)(_________424341y x y x y x +=-+
4.不等式35)1(3-≥+x x 的正整数解是______________
5.不等式5211<-<-x 的解集是______________
6.分解因式:ab ab ab b a 336322-=-+-( )
7.点C 为线段AB 上一点,AC=2,BC=3,则AB :AC=
8.已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________
9.已知:
43=b a ,=+b
b a 10.已知:234z y x ==,则=+-x z y x 3_____________ 11.等腰直角三角形中,一直角边与斜边的比是____________。

12.小明用100元钱购得笔记本和钢笔30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买_________支钢笔。

13.已知:函数32-=x y ,当x___________时,y ≥0。

14.若:2216y mxy x ++是一个完全平方式,则m 的值是_________。

15.计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。

二、选择题(每题3分,共18分)
1.下列由左到右变形,属于因式分解的是( )
A.94)32)(32(2-=-+x x x
B.1)2(411842-+=-+x x x x
C.22244)2(y xy x y x +-=-
D.)3)(3(9)(2--+-=--b a b a b a
2.有四组线段,每组线段长度如下:①2,1,2,2
②3,2,6,4 ③10,1,5,2 ④1,3,5,7能组成比例的有( ) 组 组 组 组
3.如果把分式b
a b a 22-+中的a 、b 都扩大3倍,那么分式的值一定( ) A.是原来的3倍 B.是原来的5倍
C.是原来的3
1 D.不变 4.如果不等式组 m
x x x >-<+148 的解集是x>3,则m 的取值范围是( ) ≥3 ≤3 =3 <3
5.若关于x 的方程
1
112-+=-+x m x x 产生增根,则m 是( ) 6.把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )
三、解答题(共计35分)
1.解不等式(组),并要求把解集在数轴上表示出来。

(4+5=9分)
(1)3125->+-x x (2) x x x x 2
37121)1(335-≥-->- 2.分解因式(每题4分,共8分)
(1))()()(y x C x y b y x a -+--- (2)222224)(b a b a -+
3.解方程(5分)
4.计算(4+4+5=13分)
(1)先化简,再求值 16
8422+--x x x x 其中x=5 (2)2
11211x x x -+-+ (3)222)(a b a b b a b a ÷-⨯- 四、应用题(第1题7分,第2题10分,共17分)
1.小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。

已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时
2
法,甲旅行社的优惠方法是:买4是:一律按7折优惠,已知两家旅行社的原价均为每人化,哪家旅行社的收费更优惠
参考答案
一、填空题
1.2x-3≥0 ≠-2 ,2,3
<x<1 +1 :2 8.555-
:4 10.47 :2 ≥23 14.±8 15.b
x a x a +- )((b x x ab +或) 二、选择题
1.D 2.C 3.D 4.B 5.D 6.B
三、解答题
1.(1)322
5->+-x x 解 x-5+2>2(x-3)……1分
x-5+2>2x-6
x-2x>3-6
-x>-3
x<3 ……3分
……4分
(2) x x x x 2
37121
)
1(335-≥-->- 解由(1)得:5x-3>3x+3 由(2)得:2x ≥8
2x>6 x ≥4……2分
……4分 分
2.(1)解原式=a(x-y)+b(x-y)+c(x-y) ……1分
=(x-y )(a+b+c) ……4分
(2)解原式=)2)(2(2222ab b a ab b a -+++……2分
=22)()(b a b a -+ ……4分
3.解:方程两边同时乘以42-x 得
4)2(2-=+x x x 检验x=-3代入原方程得左边==右边……4分
42222-=++x x x ∴x=-3是原方程的解……5分
2x=-6
x=-3 ……3分
4.(1)解原式=4)
4()4(2-=--x x x x x ……2分 把x=5代入
54554=-=-x x ……4分 (2)解原式=)
1)(1(1211x x x x -+--+……1分 =
)1)(1()12(1x x x x -+---……3分 =
)1)(1(23x x x -++-……4分 =1
232--x x (3)解原式:22
22)(b
a b a b a b a •-•-……2分 =2
222)()(b a ab b a b a -- =
b
a a - ……5分 四、应用题
1.解设王老师的步行速度为x 千米/时,则骑自行车速度为3x 千米/时。

……1分 依题意得:315.035.033=-++x x ……4分 20分钟=31小时 解得:x=4 ……5分
经检验:x=4是所列方程的解
∴3x=4×3=12 ……6分
2.解:设参加旅游的人数为x 人,甲旅行社的收费为y1元,乙旅行社的收费为y2元 ,则依题意得:……2分
y1=4×100-(x-4) ×100×
21=50x+200 ……4分 y2=x x 7010
7100=• ……6分 由y1=y2得: 50x+200=70x 解得:x=10
由y1>y2得: 50x+200=70x 解得:x<10
由y1<y2得: 50x+200=70x 解得:x>10 ……9分 综上所述,当人数
x=10时,两家旅行社的收费一样多
当人数x<10时,乙旅行社的收费较优惠
当人数x>10时,甲旅行社的收费较优惠。

相关文档
最新文档