热学气体分子热运动速率和能量分布
热力学中的气体分子速率分布函数
热力学中的气体分子速率分布函数热力学是研究热现象和能量转换的学科,它和物理学和化学有着紧密的关系。
其中一个重要的概念就是气体分子速率分布函数,它可以用来描述气体内分子的速率分布规律。
什么是气体分子速率分布函数?在热力学中,我们通常将气体看作是一群由许多微观分子组成的粒子集合。
这些分子运动着,它们的速率不同,而气体分子速率分布函数就可以用来描述这些速率的分布规律。
在理想气体模型中,我们可以假设每个分子是一个质点,它们遵循牛顿力学定律,相互之间的碰撞完全弹性。
这样的假设很大程度上简化了问题,使得我们可以利用数学模型来描述气体的性质。
气体分子速率分布函数的表达式现在我们来看看气体分子速率分布函数的具体表达式。
在理想气体模型中,气体分子的速率可以表达为分子速率分布函数 f(v):f(v) = 4π(v^2/n)^(3/2) * e ^ (-mv^2/2kT)其中,v 表示分子的速率,n 表示分子数,m 表示分子的质量,k 是玻尔兹曼常数,T 是气体的温度。
这个公式告诉我们有多少分子从速率为 v 的状态转化为另一个速率状态。
从这个公式里,我们可以看到,分子速率分布函数和分子的质量、温度有关。
对于一个特定的气体,当温度增加时,分子的速率分布函数也会随之变化。
如果温度越高,气体分子速率分布函数就会越宽,分子的速率也就越高。
与分子速率分布函数相关的物理量在热力学中,与气体分子速率分布函数相关的物理量还有很多。
例如,我们可以通过分子速率分布函数来计算气体的热容、内能、休耳费函数等。
这些物理量的计算需要使用复杂的数学方法和理论模型,但了解速率分布函数的基本概念是理解这些物理量的关键。
总结热力学中的气体分子速率分布函数是非常重要的一个概念,它可以用来描述气体内分子的速率分布规律。
通过对分子速率分布函数的研究,人们可以更好地理解气体的性质和物理行为。
同时,这个概念也为计算和预测气体的热力学量和热力学过程提供了基础。
热力学中的理想气体分子动理论
感谢您的观看
汇报人:XX
分子平均转动动能计算
分子转动动能公式:Erot=1/2Iω2 分子转动动能与温度的关系:随着温度的升高,分子转动动能增大 理想气体分子转动动能计算公式:Erot=1/2Iω2=1/2kT 理想气体分子平均转动动能计算公式:Erot=1/2kT
理想气体分子的 分布律
麦克斯韦分布律
定义:描述理想气体分子在平衡态 下速度分布的规律
分子碰撞与平均自由程
分子碰撞:气体分子间的相互碰撞, 是气体分子动理论的基本概念。
分子动理论:基于分子碰撞和平均 自由程的理论,解释了气体的一些 基本性质和行为。
添加标题
添加标题
添加标题
添加标题
平均自由程:分子在连续两次碰撞 之间所走的平均距离,是气体分子 动理论中的重要参数。
理想气体:在分子动理论中,理想气 体被视为无相互作用的单个分子的集 合,其行为可以通过分子动理论来描 述。
理想气体分子动 能的计算
分子平均动能计算
分子平均动能的概念:分子在运动过程中所具有的动能的总和除以分子的数目。
分子平均动能的影响因素:温度和物质的种类。
分子平均动能与温度的关系:温度越高,分子平均动能越大。
分子平均动能的计算公式:E=3/2*k*T,其中E为分子平均动能,k为玻尔兹曼常数,T为热力学温 度。
热力学中的理想气体分 子动理论
汇报人:XX
目录
理想气体模型
理想气体分子动能的计算
01
04
分子动理论
02
热力学定律与分子动理论
03
理想气体分子的分布律
05
理想气体分子的速率分布 和能量分布的实验验证
06
理想气体模型
理想气体定义
第三节 气体分子的速率分布
v v+ dv
v
示速率分布在v~v+ dv 中的
分子数与总分子数的比率 f
(v )dv
dN
N
(4)在v1~v2 区间内,曲线下的面积
f(v)
T
表示速率分布在v1~v2 之间的
分子数与总分子数的比率
v2 f (v)dv N
v1
N
O
v1 v2
v
( 速率分布曲线 )
(5)曲线下面的总面积, 等于分布在整个速率范围内所有各个速率
气体分子的速率分布
一、 速率分布函数
速率分布的概念 热运动中的分子的速率通过碰撞不断地改变,不可能逐个加
以描述, 要进行研究,就需要把分子的速率按大小划分成很多 个区间,然后确定各速率区间的分子数占总分子数的比例, 并研究随着速率区间的变化所引起的分子数相对比例的变 化.
速率
v1 ~ v2 v2 ~ v3 …
解: (1)由归一化条件,
0 f (v)dv 1
Nf(v) a
v0 a vdv 2v0 a dv
0 Nv0
N v0
O
a Nv0
v02 2
a N
v0
3 2
av0 N
1
a 2N 3v0
v0 2v0 v
(2) f (v) dNv Ndv
N dN 3v0 / 2
v0 / 2~3v0 / 2
0
0
2kT
8kT 1.59 RT
π
M
方均根速率
N
iv
2 i
v2 i
N
N
iv
2 i
v2 i
N
dNv f (v )dv N
v 2
热学-第三章气体分子热运动速率和能量分布
得:dN m 4 e 得
N
kT 2
v dv
记忆这个公式分三部分: 第一部分,4v2dv是“球壳”的体积,而“球壳”全方位的高 度对称性正是分子热运动想各个方向几率均等的生动表现;
第二部分 ,
e
mv2 / 2kT
正是分子热运动速率取值不等几率的表现,值得注意,这个 指数衰减律的结果没有单位,mv2/2是分子热运动的动能,kT 既有能量的量纲,所以指数衰减的指数部分是热运动的动能 与体系能量状态特征量之比,对于大的速率,指数衰减的速 度比v2增加的速度快得多,二者共同影响的结果,分布函数 值必然较小。
vf v dv
Nvfvdv
(B)
v2
v1 v2 v1
vf v dv f v dv
(C)
v2
v1
(D)
v2 v1
vf v dv N
(B)
2.麦克斯韦速度分布律
在平衡态下,当气体分子间的相互作用可以 d v的分子 忽略时,分布在速度区间 v ~ v 数占总分子数的比率为
dω= 4πv2dv
麦克斯韦速率分布律
将dω=dvxdvydvz代入
dN m e N 2 kT
x y
3 2 2 2 m ( v v v 2 x y z) 2 2 kT
v dv dv dv x y z
麦克斯韦 速率分布 分布律
2 2 2 2 且: v v v v z
小球在伽 尔顿板中的分 布规律 .
统计规律 当小球数 N 足够大时小球的分布具有 统计规律. . . . . . . . . . 设 N i 为第 i格中的粒子数 .
热学-统计物理3 第3章 气体分子热运动速率和能量的统计分布律
v v pv v 2
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
例1 计算在 27 C 时,氢气和氧气分子的方均
M
3.方均根速率 v2
v2
N
0
v2dN N
0
v2Nf N
(v)dv
o
v
v2 v2 f (v)dv 4 ( m )3 2 e mv2 2kT v4dv
0
2 kT
0
v4ev2 dv 3
0
8 5
v2 3kT m
v2 3kT 3RT
2kT
v
麦克斯韦速率分布函数的物理意义: f (v) dNv
Nd v
既反映理想气体在热动平衡条件下,分布在速率 v 附近单
位速率区间内的分子数占总分子数的百分比,又表示任意
一分子的速率出现在 v附近单位速率区间内的概率。
如果以速率为横坐标轴,速率分布函数为纵坐标轴,画 出的一条表示f(v) —v之间关系的曲线,称为气体分子的麦 克斯韦速率分布曲线。 ,它形象地描绘出气体分子按速率 分布的情况。
大量分子的速率的算术平均值叫做分子的平均速率.
v
vNf (v)dv
0
vf (v)dv
v 4 (
m
)3 e2 mv2 2kT v2dv
N
0
0
4习题课热学
6
例2 若气体分子的速率分布曲线如图,图中A、B两 部分面积相等,则图中V0的物理意义为何? 1.最可几速率;2.平均速率;3.方均根速率; 4.大于和小于速率v0的分子各占一半。 解:由f(v)-v曲线下面积物理意义可知, A、B两部分面 积相等意味着大于和小于速率v0的分子各占一半。 注:最可几速率的物理 意义是曲线的最大值所 对应的速率值。 应选(4)
P dp 得斜率 = − v dv T 由 热线 pvγ = C 绝
P P1 O A
P dp 得 率 = −γ 斜 v dv Q
B
v1
v2
13
v
P dp − dv 由题意 T v = 1 = 0.714 = P γ dp −γ dv Q v 1 得 γ= =1.4 0.714 γ γ 再由绝热方程 p1v1 = p2v2
T2 卡诺循环 η卡 =1− T 1 T2 ω卡 = T −T2 1
2
过程 特征
参量关系
Q
A
∆E
等容 V 常量 (P/T)=常量 ) 常量
νcV ∆T
0
p∆V ∆
νcV ∆T νcV ∆T
V1
) 常量 等压 P 常量 (V/T)=常量 ν c p ∆ T
νR∆T ∆
V1
νRT ln V2
T 常量
PV = 常量
V2 νRT ln
等温
νRT ln
p1
p2
νRT ln
p1
0
p2
绝热
PV = 常量 dQ γ −1 V T = 常量 =0 γ −1 − γ = P T 常量
γ
− νcV ∆T
0
p2V2 − p1V1 ν cV ∆T 3 1− γ
分子运动与热能
分子运动与热能热能是物体分子运动所具有的能量。
分子运动是指物质微观粒子——分子的热运动。
分子运动的特性和规律对理解热现象和热能转化至关重要。
本文将以分子运动的角度来探讨和解释热能的产生和传递。
一、分子运动的基本特性1. 分子运动的速度:根据气体动理论,分子速度与温度成正比。
在给定温度下,分子的速度服从马克思韦尔分布,即速度分布为高斯分布。
2. 分子运动的路径:分子在运动中呈现随机运动、无规则碰撞的特性。
分子路径的无序性导致能量在物质中的传递和分布。
3. 分子碰撞:分子通过相互碰撞来传递能量。
在碰撞过程中,能量可以从速度更高的分子传递给速度较低的分子,实现能量的平衡。
4. 分子自由度:分子在空间中具有多种运动方式,如平动、转动和振动。
不同自由度的运动会影响分子的能量和热量的传递。
二、分子运动与热能传递1. 热平衡与热传导:当两个物体处于热平衡时,它们之间的热能不再传递。
而热传导是指物体间由于温度差异造成的热能传递。
2. 分子碰撞与热能传递:热能通过分子间的碰撞进行传递。
当两个物体温度不同,分子速度不同,碰撞会使能量从高温物体传递到低温物体。
这种能量传递方式称为热传导。
3. 物质热传导性质:物质的热传导性质与分子运动密切相关。
导热性能好的物质,其分子间的碰撞频率高,能量传递迅速,导热系数较大。
4. 热容与分子运动:物体的热容与其分子的平动能量和振动能量有关。
热容越大,物体吸收或释放的热能越大,热传递能力越强。
三、热力学定律解释1. 热力学第一定律:热力学第一定律给出了能量守恒的原则。
根据这一定律,物体的内能变化等于吸收的热量减去对外界做功的量,即ΔU = Q - W。
2. 热力学第二定律:热力学第二定律阐述了热量自然传递的方向。
根据这一定律,热量不会自动从低温物体传递到高温物体,而是从高温物体传递到低温物体,熵增加。
3. 熵与分子运动:熵是物体无序程度的度量,与分子的运动状态有关。
当物体的熵增加时,分子的运动方式更随机,热能更分散。
热力学-3.气体分子动理论速率与能量
1.59 RT M
一般用于计算分子运动的平均距离;
同理,方均根速率
v2 v2 f (v)dv
3kT
3RT 1.73 RT
0
m
M
M
方均根速率用来计算分子平均动能。
最概然速率
2kT 2RT
RT
vp
m
1.41
M
M
最概然速率用在讨论分子速率分布。
f(v)
O
vp v v2
•在气体动理论方面,他提出气体分子按 速率分布的统计规律。
1。由于分子受到频繁的碰撞,每个分子热运动的速率是变化的, 要某一分子具有多大的运动速率没有意义,所以只能估计在某 个速率间隔内出现的概率;
2。哪怕是相同的速率间隔,但是不同的速率附近,其概率是不 等的。
速率接近为0的可能性很小,速率非常大的可能性也很小, 而居中速率的可能性则较大。
f (v) dN Ndv
速率分布函数
理解分布函数的几个要点: 1.条件:一定温度(平衡态)和确定的气体系统,T和m是一定的;
2.范围:(速率v附近的)单位速率间隔,所以要除以dv; 3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
f (v)dv dN N
N v1 v2
v2
f (v)dv
第三章 气体分子热运动 速率和能量的统计分布律
内容回顾
第一章 平衡态和温度 第二章 压强和温度的微观本质
平均效果
气体分子按速率分布的统计规律最早是由麦克斯韦于
1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统 计力学中导出,1920年斯特恩从实验中证实了麦克斯韦分子 按速率分布的统计规律。
热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
热学-第三章气体分子热运动速率和能量分布
等概率性
在平衡态下,系统从任意一个微观状态转移到另一个 微观状态的概率相等。
宏观态与微观态等概率性的意义
平衡态是系统内部最混乱的状态,即系统内部各个分 子运动状态的分布最均匀,没有明显的有序性。
热力学概率与宏观态的等概率性
热力学概率
宏观态等概率性与热力学概 率的关系
在平衡态下,系统处于各个宏观态的概率相等,即 热力学概率相等。
了解气体分子的能量分布和速度分布有助于深入理解热力学的基本原理,如温度 、内能、熵等概念。
03 气体分子的碰撞和动量传 递
气体分子间的碰撞频率
总结词
气体分子间的碰撞频率与气体分子的速度分布和分子间的距离有关,是气体分子热运动的重要参数。
详细描述
气体分子间的碰撞频率是指在单位时间内,两个分子相互碰撞的次数。由于气体分子的速度分布和分 子间的距离不同,碰撞频率也会有所差异。在理想气体中,碰撞频率可以用公式计算,它与气体分子 的平均自由程和分子速度有关。
定义
气体分子在热运动中具有的 平均能量是指所有气体分子 的总能量除以分子总数。
计算公式
平均能量 = (总能量) / (分子 总数)
影响因素
温度和物质的种类会影响气 体分子的平均能量。
气体分子的最可几能量
01
定义
气体分子在热运动中具有的最可 几能量是指一定温度下,占据一 定数量的分子的主要能量的值。
熵与自然过程的不可逆性
熵与自然过程的不可逆性密切相关,因为高熵状态对应于无序程度较高的状态,低熵状态对应于有序 程度较高的状态。
在自然过程中,由于熵增加原理的作用,系统总是向着高熵状态发展,即从有序向无序发展。因此,许 多自然过程都是不可逆的。
例如,物体受热会膨胀,但自发地收缩;化学反应会进行到底,但自发地逆向反应很困难;生物体衰老 和死亡后不能自发地恢复青春等。这些都是由于系统内部熵增加导致的不可逆过程。
第3章 气体分子热运动速率和能量的统计分布
v vxi vy j vzk
速度空间体积元
速率分布是速度矢量大小被限制在一定区间
满足此条件的速度矢量其端点位于半径为 v,厚度为dv的球壳内
球壳体积为
17
用球壳体积
代替
并注意 v2 vx2 v2y vz2 得麦克斯韦速率分布
dN 4π(
n n 1 n
•分子数∆n 越大,涨落的百分数就越小,涨落现象越不显著。
• 麦克斯韦速率分布律只对大量分子组成的体系才成立。 9
三、用麦克斯韦速率分布函数求平均值
平均速率(算术平均值)
离散型
v v1N1 v2N2 viNi vnNn i viNi
N
N
连续型
N
v 0 vdN 0 vNf (v)dv
•当R 以一定的角速度转动,铋分子由S3到达G需用一段时间。 • 这段时间内R己转过一角度,铋分子不再沉积在板上P处。 • 不同速率的分子将沉积在不同的地方.速率大的分子由S3到G所需
的时间短,沉积在距P较近的地方,速率小的分子沉积在距P较远 的地方。
34
•设速率为 v的分子沉积在P’处以s 表示弧PP’的长度。 表示R的
N1, N2,…, Ni, …
小球在槽内的分配情况,称为一种分布。
总数足够大,槽内的小球的数目与小球总数之比
..........
.. . .
.......
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .
. . .
.
. . .
.
. . .
气体分子的热运动与速度分布
气体分子的热运动与速度分布在我们的生活中,气体无处不在,无论是我们呼吸的空气,还是我们家中使用的燃气,都是由气体组成的。
那么,气体分子是如何运动的呢?它们的速度分布又是怎样的呢?让我们一起来探索气体分子的热运动和速度分布。
首先,让我们来了解一下气体分子的热运动。
气体分子无线自由运动着,距离彼此远去,而且它们之间的相互作用力较小。
这使得气体分子可以在容器中快速移动,并不断与容器壁碰撞。
这种热运动使得气体分子呈现出多种不同的运动方式,如直线运动、旋转运动和振动运动等。
可以说,气体分子的热运动是密不可分的。
接下来,我们来讨论气体分子的速度分布。
根据统计力学的理论推导,气体分子的速度分布服从麦克斯韦速度分布定律。
麦克斯韦速度分布定律告诉我们,在给定温度下,气体分子的速度可以呈现出一个特定的分布情况。
根据麦克斯韦速度分布定律,气体分子的速度分布呈现出高斯分布曲线。
也就是说,在给定温度下,大部分气体分子的速度集中在一个平均速度附近,而少部分气体分子的速度偏离平均速度。
这个平均速度可以由麦克斯韦-波尔兹曼速度分布定律计算得到。
麦克斯韦-波尔兹曼速度分布定律告诉我们,气体分子的平均速度与温度成正比。
具体地说,平均速度与平方根温度成正比,即$v_{avg} \propto \sqrt{T}$。
这意味着,温度越高,气体分子的平均速度也越高。
除了平均速度,气体分子的速度分布还涉及到速度的分散程度。
可以使用速度的标准差来度量速度的分散程度。
根据麦克斯韦速度分布定律,气体分子的速度标准差与平均速度成正比,即$\sigma \propto v_{avg}$。
这意味着,平均速度越高,气体分子的速度分散程度也越大。
此外,气体分子速度的分布还与气体分子的质量有关。
根据麦克斯韦-波尔兹曼速度分布定律,质量较大的分子相对运动较慢,质量较小的分子相对运动较快。
因此,在相同温度下,质量较大的气体分子的平均速度要比质量较小的分子的平均速度小。
气体的分子速率与动能分布计算
气体的分子速率与动能分布计算气体的分子速率与动能分布计算是研究气体分子在给定温度下的运动特性的重要方法。
通过计算分子速率和动能分布,可以揭示气体分子的速度分布情况、动能转移和分子碰撞等基本动力学过程。
本文将介绍气体的分子速率与动能分布计算的基本原理和方法,并给出相关公式和计算实例。
【概述】气体分子速率与动能分布计算是通过统计力学和热力学理论推导而来的,主要基于以下假设和原理:1. 气体分子是质点:气体分子在宏观尺度上可以看作质点,忽略其内部结构和形状。
2. 分子间相互作用:气体分子之间的相互作用主要通过碰撞传递能量和动量,对于稀薄气体来说,分子间的相互作用可以被视为弹性碰撞。
3. 热力学平衡:气体分子达到热力学平衡状态,分子速率和动能分布保持一定的统计规律。
【分子速率的计算】在给定温度下,气体分子的速率服从麦克斯韦-波尔兹曼分布。
麦克斯韦-波尔兹曼速率分布函数表示了不同速率下分子的数量分布。
分子速率的计算公式为:f(v) = 4π(μ/2πkT)^(3/2)v^2e^(-μv^2/(2kT))其中,f(v)表示速率为v的分子数量,μ为分子的摩尔质量,T为温度,k为玻尔兹曼常数。
通过计算分子速率分布函数,可以得到不同速率区间内分子数量的分布情况。
这对于研究气体分子的能量转移、速率相关物性和反应动力学等问题具有重要意义。
【动能分布的计算】气体分子的动能分布可以通过速率分布函数进一步计算得到。
动能分布表示了不同分子速率下的动能分布情况。
动能分布的计算公式为:g(E) = (2πμ/(kT))^(3/2)(2/3)√(E/πμ)^(1/2)e^(-E/(kT))其中,g(E)表示动能为E的分子数量,μ为分子的摩尔质量,T为温度,k为玻尔兹曼常数。
通过计算动能分布函数,可以得到不同动能区间内分子数量的分布情况。
这对于研究气体的能量转移和反应动力学过程具有重要意义。
【计算实例】以氢气(H2)分子在300K温度下为例,计算其分子速率和动能分布。
热学第三章气体分子速率和能量统计分布律
vz ~vz dvz 内的分子数 dNvx ,vy ,vz
即:在速度空间中,在速度分
量 v x ,附v y近,v的z 小立方体
区间dv范xd围vy内dv的z 代表点数(即分 子数)就是麦克斯韦速度分布
中的
d Nvx ,vy ,vz
d N v x ,v y ,v z N f(v x ,v y ,v z)v x d d v y d v z
kT1.59 m
RT
3)方均根速率 v 2
N v2dN v2Nf(v)dv
v2 0
0
f (v)
N
N
v2 f (v)dv 0
o
v
v2 3kT m
v2
3kT m
3R T1.73R T
vp v v2
v1.59
kT1.59 m
RT
vp
2kT m
2R T1.41RT
方均根速率
1m2 3kT
2
解: 速率在 v vdv间的分子数 dNN(v f)dv
1)
v v Nf( )dv
vp
2)
v p 1 2mv2Nf(v)dv
3)
2 Nf ()d
1~2
ห้องสมุดไป่ตู้
1
2 Nf ()d
1
例 如图示两条 f(v)~v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
上数据求出氢气和氧气的最概然速率 .
解:
1、必要的假设:
取直角坐标系 xyz
在垂直于 x 方向上取面积 d A
设单位体积内的气体分子数为
n
n
N
V
vx ~vx dvx 2、求一段时间 d t 内速度分量在 vy :~范围内
第三章气体分子热运动速率和能量的统计分布律
热学
14
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
N
N
v
v f (v)dv
8kT
0
πm
v 1.60 kT 1.60 RT
f (v)
m
M
3)方均根速率 v2
o
v
v2
N
0
v2dN N
0
v2
Nf
N
(v)dv
v2 3kT m
热学
8
vp v v2
vrms
v2
3kT m
3RT M
v 1.60 kT 1.60 RT
m
M
vp
2kT m
为清楚起见 , 从正面来
观察。
铁钉
隔板
热学
28
统计规律和方法
伽尔顿板 再投入小球: 经一定段时间后 , 大量小
球落入狭槽。
分布情况:中间多,两边少。
重复几次 ,结果相似。
单个小球运动是随机的 , 大量小球运动分布是确定的。
大量偶然事件整体所遵 循的规律 —— 统计规律。
热学
小球数按空间 位置 分布曲线
v2
dN 4π(
m
)3
2
e
mv2 2 kT
v2
dv
N
2πkT
热学
5
反映理想气体在热动 平衡条件下,各速率区间 分子数占总分子数的百分
6-3 气体分子速率分布率和平均自由程
氧气摩尔质量 温度
3.20 10
处于平衡态
和
mol
27 C
气体分子的
27
273
300 ( k )
394 ( m s )
447 ( m s )
483 ( m s )
归一化例题
第三节
气体分子速率分布律和能量分布律
假设有大量的某种粒子,总数目为N,其速率分布函数为
均为正常数,且 画出该速率分布函数曲线
为已知
要求
抛物线方程
+
得
Max
得
速率在 区间的粒子数 得
第三节
气体分子速率分布律和能量分布律
平均自由程
热运动分子之间 频繁碰撞 分子的运动路径 曲折复杂
碰撞时两 分子质心距 离的平均值 称为分子的 有效直径
研究碰撞的意义:
分子间通过碰撞,实现能量的交换; 分子间通过碰撞交换能量达到能量按自由度均分; 分子间通过碰撞,由非平衡状态向平衡状态过渡; 分子间通过碰撞交换速度,使速度分布达到稳定。
3 2
mv
2 2 kT v 2
第三节
气体分子速率分布律和能量分布律
麦克斯韦速率分布曲线
f (v)
dN 面积 f (v ) d v N
面积
v2
v1
N f (v ) d v N
f (v)
O
v dv
v1 v2
v
第三节
气体分子速率分布律和能量分布律
实验动态示意 麦氏速率分布实验
麦氏分布实验
f (v)
平 均 速 率
O
v
v
第三节
气体分子速率分布律和能量分布律
方均根速率:
大学热学第七讲 平均自由程
量子力学
r h 2 ∇ + U ( r )ψ = Eψ − 2µ
薛 定 谔 (E.Schrodinger) 1887~1961 奥地利人
创立波动力学理论
四. 经典理论的缺陷
1. 振动能对热容量的影响
r h 2 ∇ + U ( r )ψ = Eψ − 2µ
1 2 1 U ( x ) = kx = m ω 2 x 2 2 2
§3.4 能量按自由度均分定理
一. 自由度 二. 能量按自由度均分定理 三. 理想气体的内能 四. 理想气体的热容量 理想气体的热容量 五. 经典理论的缺陷
四. 经典理论的缺陷 物理学发展的重大变革..... 物理学发展的重大变革.....
19世纪末 19世纪末 牛顿力学(海王星38 38) 牛顿力学(海王星38) 电磁学(麦言电磁波存在13 13) 电磁学(麦言电磁波存在13) 热学(唯象热力学和分子运动论) 热学(唯象热力学和分子运动论) 光学 原子物理学(玻尔) 原子物理学(玻尔)
1 = ⋅ (t + r + 2s) R 2
3 单原子分子气体: 单原子分子气体: CV , m = R 2 5 刚性双原子分子气体: 刚性双原子分子气体: CV , m = R 2 7 非刚性双原子分子气体: 非刚性双原子分子气体: CV , m = R 2
与 温 度 无 关
• 在不同温度时双原子气体 H2 的CV,m, 反常行为
气体分子热运动平均动能 气体分子热运动平均动能—— 平均动能——
单原子分子: 单原子分子:
f =t=3
kT εk = f ⋅ 2
3 εk = kT 2
刚性双原子分子: 刚性双原子分子:
f = t +r = 3+2 = 5
热学(李椿 章立源 钱尚武)习题解答_第 三 章 气体分子热运动速率和能量的统计分布律分析
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
热学 (3 第三章 气体分子热运动速率和能量的统计分布率)
f ()d dN
N
dN
2
=
f
( )d
N 1
表示速率分布在→+d内的
分子数占总分子数的概率
表示速率分布在1→2内的分
子数占总分子数的概率
N
0
dN N
0
f
d
1
归一化条件
应注意的问题:
分布函数是一个统计结果,以上各种讨论都是建立在众多分子微 观运动基础上的,分子的数目越大,结论越正确。所以:
1、作速率分布曲线。 2、由N和vo求常数C。 3、求粒子的平均速率。 4、求粒子的方均根速率。
f (v)
C ( vo> v > 0) 0 ( v > vo )
f (v)
解:
f (v)dv
0
vo 0
Cdv
Cvo
1
C
C 1 vo
o
vo v
o f ()d o Cd C o2
3. 方均根速率
2
2
f
d
0
3
2
4
m
2 kT
2
e
m 2 2kT
4
d
3kT
3RT
0
mM
2 3kT 3RT
m
M
4. 三种速率的比较
最概然速率
p
2kT m
2RT M
平均速率
8kT 8RT m M
方均根速率
一、速率分布函数
气体分子处于无规则的热运动之中,由于碰撞,每个分子的速度都
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偶然事件少了,或分子数少了,就不能表现出稳定的统计特性。
例如,抛两分的硬币,抛的次数越多,币制和国徽朝上的次数才 更加接近相等,否者将有很大差异。
2)统计规律表现出涨落
所谓涨落就是对稳定的统计结果的偏差,统计规律必然伴随着涨 落。例如,在某一速率v附近dv间隔内求出的比值dN/N是0.06, 表示有6%的分子,它们的速率取值分布在(v,v+dv)内,但并 不 是 说 , 每 时 每 刻 就 一 定 是 0.06 , 也 有 可 能 是 0.05998 , 0.0601,…等等,但长时间的平均值仍是0.06。
ms-1和500-600 ms-1有相同的速率间隔,但第一个间隔总的
来说速率较低,第二个间隔总的来说速率较大,其概率是不等 的。比如,速率接近为0的可能性很小,速率非常大的可能性 也很小,而居中速率的可能性则较大。根据这个两个事实,我 们自然要问,在不同速率间隔取值的概率有没有规律?肯定是 有的,这个规律能用一个函数定量表示出来。为此,我们引入 速率分布函数来描述分子热运动在不同速率间隔取值的概率规 律。
单位速率间隔内的分子数占总分子数的百分比只是
速率v的函数,称为速率分布函数。
f (v) dN Ndv
速率分布函数
理解分布函数的几个要点:
1.条件:一定温度(平衡态)和确定的气体系统,T和m是一定的; 2.范围:(速率v附近的)单位速率间隔,所以要除以dv;
3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
麦克斯韦(James Clerk Maxwell 1831——1879)
19世纪伟大的英 国物理学家、数 学家。经典电磁 理论的奠基人, 气体动理论的创 始人之一。
•他提出了有旋电场和位移电流概念,建 立了经典电磁理论,预言了以光速传播 的电磁波的存在。
•1873年,他的《电磁学通论》问世,这 是一本划时代巨著,它与牛顿时代的 《自然哲学的数学原理》并驾齐驱,它 是人类探索电磁规律的一个里程碑。
1
引言:
气体分子处于无规则的热运动之中,由于碰撞,每个分 子的速度都在不断地改变,所以在某一时刻,对某个分 子来说,其速度的大小和方向完全是偶然的。然而就大 量分子整体而言,在一定条件下,分子的速率分布遵守
一定的统计规律——气体速率分布律。
气体分子按速率分布的统计规律最早是由麦克斯韦于1859年 在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学 中导出,1920年斯特恩从实验中证实了麦克斯韦分子按速率 分布的统计规律。
§1、气体分子的速率分布律
1、速率分布函数 速率分布函数的定义:
一定量的气体分子总数为N,dN表示速率分布在某区间
v~v+dv内的分子数, dN/N表示分布在此区间内的分子数占
总分子数的比率。 实验规律:
•在不同的速率附近,给定的速率间隔dv内,比值dN/N是
不同的。容易想见,速率间隔越大, dN/N?
3-1 麦克斯韦气体速率分布律
第一章我们引入了平衡态和温度的概念,但在热力学范围内不 能得到深刻的认识。第二章以分子运动论为基础,认识了压强 和温度的微观本质,对平衡态下分子热运动的规律有了初步认 识,我们有一个基本的统计公理(假设)。这个公理只解决了 分子热运动速度方向的几率问题,并没有涉及分子热运动速率 大小取值的概率,无法作进一步的定量分析。分子热运动情况 是分子物理的重要研究对象,我们必须讨论速率大小取值的概 率问题。由于分子数目如此巨大,速率的取值从0到∞,这个 取值区间非常大,分子在任何一个微小速率范围内的取值其概 率都不会大,但到底有多小却不易判断。所以,这是一个大数 量偶然微观运动的集体效应的问题,既统计的问题,对应的规 律就是一个统计规律。一般地研究这个问题比较复杂,我们以 理想气体为基础来开展讨论。
物理意义:
速率在 v 附近,单位速率区间的分子数占总分子数
的概率,或概率密度。
f (v)dv dN N
dN
v2
=
f
(v )dv
N v1
表示速率分布在v→v+dv内的 分子数占总分子数的概率
表示速率分布在v1→v2内的分 子数占总分子数的概率
N
0
dN N
0
f vdv
1
归一化条件
应注意的问题:
分布函数是一个统计结果,以上各种讨论都是建立在众多分子微 观运动基础上的,分子的数目越大,结论越正确。所以:
对于由大 量分子组成的 热力学系统从 微观上加以研 究时,必须用 统计的方法 .
小球在伽 尔顿板中的分 布规律 .
............ ........... ............ ........... ............ ........... ............
统计规律 当小球数 N 足够大时小球的分布具有
速度取向的概率问题。速度是矢量,必须解决有关大小取值的 概率问题。首先我们容易想到这样两个事实:1。由于分子受 到频繁的碰撞,每个分子热运动的速率是变化的,要某一分子 具有多大的运动速率没有意义,所以只能估计在某个速率间隔
内出现的概率;2。哪怕是相同的速率间隔,例如都是100ms-
1,但是不同的速率附近,其概率是不等的,例如,100-200
•在气体动理论方面,他还提出气体分子 按速率分布的统计规律。
统计规律性
分子运动论从物质微观结构出发,研究大量分 子组成的系统的热性质。其中个别分子的运动 (在动力学支配下)是无规则的,存在着极大 的偶然性。但是,总体上却存在着确定的规律 性。(例:理想气体压强)
人们把这种支配大量粒子综合性质和集体行为 的规律性称为统计规律性
• dN/N 是 v 的函数; •当速率区间足够小时(宏观小,微观大), dN/N还应与
区间大小成正比。
dN
为此,规定以单位速率间隔为比较标准,即 Ndv,这样,比 值 dN 就 反 映 出 了 随 速 率 v的 改 变 而 改 变 。 为 此 我 们 规 定 Ndv ;
定义:处于一定温度下的气体,分布在速率v附近的
统计规律.
.. ..
.. ..
.. .. .. .. .. .. .. .. .. ..
.. ..
. .
.. .. .. .. .. .. .. .. .
i 设 Ni为第 格中的粒子数 .
粒子总数 N Ni
i
i
lim
N
Ni N
i 概率 粒子在第 格中
出现的可能性大小 .
归一化条件
i
i
Ni iN