线性相关与线性回归方程

合集下载

线性相关分析和线性回归

线性相关分析和线性回归

相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。

两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。

协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。

协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。

协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。

相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。

(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。

因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。

当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。

线性相关与回归(简单线性相关与回归、多重线性回归、Spearman等级相关)

线性相关与回归(简单线性相关与回归、多重线性回归、Spearman等级相关)

4.剔除强影响点(Influential cases;或称为突出点, outliers)
通过标准化残差(Standardized Residuals)、学生氏残 差(Studentlized Residuals)来判断强影响点 。当指标 的绝对值大于3时,可以认为样本存在强影响点。
删除强影响点应该慎重,需要结合专业知识。以下两种情 况可以考虑删除强影响点:1.强影响点是由于数据记录错 误造成的;2.强影响点来自不同的总体。
r r t sr 1 r2 n2
只有当0时,才能根据|r|的大小判断相关 的密切程度。
4.相关与回归的区别和联系 (1)相关与回归的意义不同 相关表达两个变量 之间相互关系的密切程度和方向。回归表达两个变 量之间的数量关系,已知X值可以预测Y值。从散点 图上,散点围绕回归直线的分布越密集,则两变量 相关系数越大;回归直线的斜率越大,则回归系数 越大。 (2)r与b的符号一致 同正同负。
5.自变量之间不应存在共线性(Collinear)
当一个(或几个)自变量可以由其他自变量线性表示时,称 该自变量与其他自变量间存在共线性关系。常见于:1.一个 变量是由其他变量派生出来的,如:BMI由身高和体重计算 得出 ;2.一个变量与其他变量存在很强的相关性。 当自变量之间存在共线性时,会使回归系数的估计不确定、 预测值的精度降低以及对y有影响的重要自变量不能选入模 型。
P值
截距a 回归系数b sb 标准化回归系数 t值 P值
3.直线回归的预测及置信区间估计
给定X=X0, 预测Y
3.直线回归的预测及置信区间估计
因变量
自变量
保存(产生新变量,保 存在当前数据库) 统计
3.直线回归的预测及置信区间估计

第三节:多元线性相关与回归分析

第三节:多元线性相关与回归分析

第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。

但是,在现实中,某一现象的变动常受多种现象变动的影响。

例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。

这就是说,影响因变量的自变量通常不是一个,而是多个。

在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。

这就产生了测定与分析多因素之间相关关系的问题。

研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。

多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。

限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。

只对某些多元回归分析所特有的问题作比较详细的说明。

多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。

βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。

该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。

假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52)(t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。

回归分析与相关性分析的基本原理与应用

回归分析与相关性分析的基本原理与应用

回归分析与相关性分析的基本原理与应用数据分析是现代社会中非常重要的一个领域,在各个行业和领域中都有广泛的应用。

而回归分析和相关性分析是数据分析中经常使用的两种方法,本文将探讨回归分析和相关性分析的基本原理和应用。

一、回归分析的基本原理与应用回归分析是用来研究变量之间关系的一种统计方法,主要用于预测一个变量(因变量)与其他变量(自变量)之间的关系。

具体来说,回归分析可以帮助我们确定自变量对因变量的影响程度以及预测因变量的取值。

回归分析的基本原理是基于线性回归模型,即通过建立一个线性方程来描述因变量和自变量之间的关系。

简单线性回归模型的表达式为:Y = α + βX + ε,其中Y表示因变量,X表示自变量,α和β为回归系数,ε为误差项。

在应用回归分析时,我们需要确定自变量与因变量之间的关系强度以及回归系数的显著性。

这可以通过计算相关系数、拟合优度等统计指标来实现。

此外,回归分析还可以通过预测因变量的取值来进行决策和规划,例如销量预测、市场需求预测等。

二、相关性分析的基本原理与应用相关性分析是用来研究变量之间线性相关关系的一种统计方法,主要用于衡量变量之间的相关性程度。

相关性分析可以帮助我们理解变量之间的相互关系,以及在研究和预测中的应用。

相关系数是用来衡量两个变量之间相关性的指标,最常用的是皮尔逊相关系数。

皮尔逊相关系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。

通过计算相关系数可以判断两个变量之间是否存在线性关系,以及线性关系的强弱程度。

在应用相关性分析时,我们可以利用相关系数来进行综合评价和比较。

例如,在市场研究中,我们可以通过相关性分析来确定产品特性与客户购买意愿之间的关系,以指导产品开发和市场推广策略。

三、回归分析与相关性分析的比较回归分析和相关性分析都是研究变量之间关系的统计方法,但它们在方法和应用上存在一些区别。

首先,回归分析主要关注自变量对因变量的影响程度和预测,而相关性分析主要关注变量之间的相关程度。

多元线性回归与相关

多元线性回归与相关


Q (Yi Y i ) Yi b0 b1 xi1 b2 xi 2 bp xip min
i 1 i 1
(15 1)
浙江大学医学院流行病与卫生统计学教研室
沈毅
根据微积分知识,b0,b1,bp必须满足联立方程组:
Q Q Q 0, 0,, 0, b0 b1 bp
浙江大学医学院流行病与卫生统计学教研室
沈毅
在许多情况下需要比较各自变量对应变量的相对贡献大 小。但由于各自变量的测量单位不同,单从各偏回归系数的 绝对值大小来评价是不妥的,必须对各偏回归系数进行标准 化处理,即消除测量单位的影响后,才能进行比较。这种消
除测量单位影响后的偏回归系数称为标准化偏回归系数 b'j
吸烟:0为不吸,1为过去或现在吸烟。(见表15-1)
由表15-2可知有关参数估计值为:b0=44.293,b1=1.778,b2=9.623。 b1=1.778表示 40岁以上男性吸烟状态不变的条件下,年龄每增加五岁,收 缩压平均提高1.778mmHg;b2=9.623表示年龄不变的条件下,吸烟者与不 吸烟者相比,收缩压平均提高 9.623 mmHg。于是得到回归方程:
浙江大学医学院流行病与卫生统计学教研室
沈毅
二、偏回归系数的假设检验 在多元线性回归模型中,线性回归方程有统计学意义, 并不说明所有βj均不等于零。为了检验每个自变量是否与Y
都有线性回归关系,需分别对每个自变量Xj或相应的偏回
归系数bj进行假设检验,以免把无统计学意义的自变量引 入回归方程。所用检验方法有F检验法与t检验法,这两者 的检验结果是一致的。
α(p,n-
p-1),则在α水准上拒绝H0,认为p个自变量X中至少有一个与应变量

第十章 线性相关与回归

第十章 线性相关与回归

相关与回归
28
直线回归就是用来研究两个连续性变量x 直线回归就是用来研究两个连续性变量 之间的数量依存关系。 和y之间的数量依存关系。其中 为自变 之间的数量依存关系 其中x为自变 y为因变量 它依赖于x。 为因变量, 量,y为因变量,它依赖于x。 直线回归适用于单变量正态分布资料, 直线回归适用于单变量正态分布资料,即 y为随机正态变量,x为可以精确测量的 为随机正态变量, 为可以精确测量的 为随机正态变量 值。
31
根据上例的数据,求男青年身高与前臂长之间的回归 方程。 从相关系数的计算中,已经求得:
• • • • • • ∑X=1891 ∑Y=500 ∑ X2=89599 ∑ Y2=22810 ∑XY=86185 N=11
相关与回归 12
例 10.1
• 从男青年总体中随机抽取11名男青年的身 高和前臂长,身高和前臂长均以cm为单位, 测量结果如表10-1所示,试计算身高与前 臂长之间的相关系数?是正相关还是负相 关?
相关与回归
13
表10-1 11例男青年身高与前臂长的测量结果 例男青年身高与前臂长的测量结果
编号 1 2 3 4 5 6 7 8 9 10 11 身高(cm) 170 173 160 155 173 188 178 183 180 165 166 前臂长(cm) 47 42 44 41 47 50 47 46 46 43 44
X、Y 变化趋势相同---变化趋势相同---完全正相关; 完全正相关; 反向变化----完全负相关。 反向变化----完全负相关。 ----完全负相关
图12-3 12相关系数示意图
相关与回归
9
X、Y 变化互不影响----零 变化互不影响-------零
相关(zero 相关(zero correlation)

相关系数与线性回归分析

相关系数与线性回归分析

相关系数与线性回归分析相关系数和线性回归分析是统计学中常用的方法,用于研究变量之间的关系和进行预测分析。

本文将介绍相关系数和线性回归分析的概念、计算方法和应用场景。

一、相关系数相关系数是用来衡量两个变量之间的相关性强弱的统计指标。

它的取值范围是-1到1之间,值越接近于1或-1,表示两个变量之间的相关性越强;值越接近于0,则表示两个变量之间的相关性越弱。

计算相关系数的方法有多种,常见的是皮尔逊相关系数。

它可以通过协方差和两个变量的标准差来计算。

具体公式如下:r = Cov(X,Y) / (σX *σY)其中,r表示相关系数,Cov(X,Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。

相关系数的应用非常广泛。

例如,在金融领域,相关系数可以用来研究股票之间的关联程度,有助于投资者进行风险分析和资产配置;在医学领域,相关系数可以用来研究疾病因素之间的关系,帮助医生进行诊断和治疗决策。

二、线性回归分析线性回归分析是一种用来研究自变量与因变量之间关系的统计方法。

它通过建立一个线性方程,来描述自变量对因变量的影响程度和方向。

线性回归模型可以通过最小二乘法来估计模型参数。

最小二乘法的基本思想是通过使模型预测值与实际观测值的残差平方和最小化来确定模型参数。

具体公式如下:Y = β0 + β1*X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。

线性回归分析常用于预测和解释变量之间的关系。

例如,在市场营销中,可以通过线性回归分析来预测产品销售量与价格、广告投入等因素的关系;在经济学中,可以利用线性回归模型来研究GDP与就业率、通货膨胀率等经济指标之间的关系。

三、相关系数与线性回归分析的关系相关系数和线性回归分析常常一起使用,因为它们有着密切的关联。

相关系数可以用来衡量两个变量之间的相关性强弱,而线性回归分析则可以进一步分析两个变量之间的因果关系。

在线性回归分析中,相关系数经常作为检验模型是否适用的依据之一。

相关分析和线性回归分析

相关分析和线性回归分析
❖积距相关分析,即最常用的参数 相关分析,适用于双正态连续变 量。
当前您正浏览第十三页,共七十二页。
Spearman 等级相关系数
❖用来度量定序变量间的线性相 关系数。
❖该系数的设计思想与Pearson简 单相关系数完全相同,只是应 用的范围不一样。
❖对数据没有严格的要求。
当前您正浏览第十四页,共七十二页。
❖局部平均:样本足够大时 ❖函数拟合:模型拟合(广泛采用)
当前您正浏览第二十六页,共七十二页。
回归分析的一般步骤
❖ 确定解释变量和被解释变量 由于回归分析用于分析一个事物是如何
随着其他事物的变化而变化的,因此回归分 析的第一步应确定哪个事物是需要被解释的, 即哪个变量是被解释的变量(记为y),哪 些事物是用于解释其他变量的,即哪些变量 是解释变量(记为x)。回归分析是要建立y 关于x的回归方程,并在给定x的条件下,通 过回归方程预测y的平均值。
当前您正浏览第三十七页,共七十二页。
❖ 2、后退法(Backward),将已纳入方程的变 量按对因变量的贡献大小由小到大依次剔除, 每剔除一个自变量,即重新检验每一自变量对 因变量的贡献。
❖ 3、前进法(Forward),对已纳入方程的变量 不考察其显著性,直到方程外变量均达不到入 选标准。
标准回归方程:ZY=ß1Zx1+ ß2Zx2
❖ 此时的ß是标准偏回归系数。
当前您正浏览第三十五页,共七十二页。
多元线性回归的条件
❖ 1、线性走势:自变量与因变量之间的关系是 线性的。
❖ 2、独立性:因变量的取值必须独立。 ❖ 3、正态性:就自变量的任何一个线性组合,
因变量均服从正态分布。 ❖ 4、方差齐性:就自变量的任何一个线性组合,

线性相关和线性回归的异同

线性相关和线性回归的异同

线性相关和线性回归的异同
线性相关和线性回归的主要区别有三点:
1.线性相关分析涉及到变量之间的呈线性关系的密切程度,线性回归分析是在变量存在线性相关关系的基础上建立变量之间的线性模型;
2.线性回归分析可以通过回归方程进行控制和预测,而线性相关分析则无法完成;
3.线性相关分析中的变量地位平等,都是随机变量,线性回归分析中的变量有自变量和因变量之分,而自变量一般属确定性变量,因变量是随机变量。

线性相关和线性回归的相同之处:
所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

第六讲 线性相关和回归

第六讲 线性相关和回归

Stata 软件基本操作和数据分析入门第六讲 线性相关和回归在实际研究中,经常要考察两个指标之间的关系,即:相关性。

现以体重与身高的关系为例,分析两个变量之间的相关性。

要求身高和体重呈双正态分布,即:在身高和体重平均数的附近的频数较多,远离身高和体重平均数的频数较少。

样本相关系数计算公式(称为Pearson 相关系数):)()())((22YYXXXY L L L Y Y X X Y Y X X r =----=∑∑∑(1)1. 考察随机模拟相关的情况。

显示两个变量相关的散点图程序simur.ado (本教材配套程序,使用见前言)。

命令为simur 样本量 总体相关系数 如显示样本量为100,ρ=0的散点图 本例命令为simur 100 0如显示样本量为200,ρ=0.8的散点图本例命令为simur 200 0.8如显示样本量为200,ρ=0.99的散点图本例命令为simur 200 0.99如显示样本量为200,ρ=-0.99的散点图本例命令为simur 200 -0.99例1. 测得某地15名正常成年男子的身高x(cm)、体重y(kg)如试计算x和y之间的相关系数r并检验H0:ρ=0 vs H1: ρ≠0。

α=0.05数据格式为Stata命令pwcorr 变量1 变量2 …变量m,sig 本例命令pwcorr x y,sigpwcorr x y,sigPearson相关系数=0.5994,P值=0.0182<0.05,因此可以认为身高与体重呈正线性相关。

注意:Pearson相关系数又称为线性相关系数并且要求X和Y双正态分布,通常在检查中要求X服从正态分布并且Y服从正态分布。

如果不满足双正态分布时,可以计算Spearman相关系数又称为非参数相关系数。

Spearman相关系数的计算基本思想为:用X和Y的秩代替它们的原始数据,然后代入Pearson相关系数的计算公式并且检验与Pearson 相关系数类同。

高中数学选修2-3统计案例之线性回归方程习题课

高中数学选修2-3统计案例之线性回归方程习题课

1.相关关系的分类从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关.2.线性相关从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线.3.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(x n,y n),其回归方程为y^=b^x+a^,则b^,a^其中,b是回归方程的斜率,a是在y轴上的截距.4.样本相关系数r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2,用它来衡量两个变量间的线性相关关系.(1)当r>0时,表明两个变量正相关;(2)当r<0时,表明两个变量负相关;(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.5.线性回归模型(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差.(2)相关指数用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好.规律(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.注意(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.考向一相关关系的判断例1.下列选项中,两个变量具有相关关系的是( )A.正方形的面积与周长B.匀速行驶车辆的行驶路程与时间C.人的身高与体重D.人的身高与视力答案:C例2.对变量x、y有观测数据(x i,y i)(i =1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由题图1可知,各点整体呈递减趋势,x与y负相关,由题图2可知,各点整体呈递增趋势,u与v正相关.例3.下面哪些变量是相关关系().A.出租车车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.铁块的大小与质量解析A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.答案 C例4.如图所示,有5组(x,y)数据,去掉________组数据后,剩下的4组数据的线性相关性最大.解析:因为A、B、C、E四点分布在一条直线附近且贴近某一直线,D点离得远.答案:D例5.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v 有观测数据(u i、v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断().A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.答案 C例6.下列关系属于线性负相关的是( )A.父母的身高与子女身高的关系B.球的体积与半径之间的关系C.汽车的重量与汽车每消耗1 L汽油所行驶的平均路程D.一个家庭的收入与支出解析:选C.A、D中的两个变量属于线性正相关,B中两个变量是函数关系.例7.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):(1)画出散点图;(2)判断是否具有相关关系.[审题视点] (1)用x 轴表示化肥施用量,y 轴表示棉花产量,逐一画点.(2)根据散点图,分析两个变量是否存在相关关系.解 (1)散点图如图所示(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.例8. 根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).解析从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系.答案否考向二线性回归方程例9.对有线性相关关系的两个变量建立的回归直线方程y^=a+bx中,回归系数b( )A.不能小于0 B.不能大于0C.不能等于0 D.只能小于0解析:选C.∵b=0时,r=0,这时不具有线性相关关系,但b能大于0也能小于0.例10.已知回归方程y^=4.4x+838.19,则可估计x与y的增长速度之比约为________.解析:x与y的增长速度之比即为回归方程的斜率的倒数14.4=1044=522.答案:5 22例11.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是().A.y^=-10x+200 B.y^=10x+200 C.y^=-10x-200 D.y^=10x-200 解析因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.答案 A例12.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[审题视点] (2)问利用公式求a ^、b ^,即可求出线性回归方程.(3)问将x =100代入回归直线方程即可. 解 (1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:i =14x 2i =86,x =3+4+5+64= 4.5(吨),y =2.5+3+4+4.54=3.5(吨). 已知∑i =14x i y i =66.5,所以,由最小二乘法确定的回归方程的系数为:b ^=∑i =14x i y i -4x ·y ∑i =14x 2i -4x 2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35.因此,所求的线性回归方程为y ^=0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.例13.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对x的线性回归方程为().A.y=x-1 B.y=x+1C.y=88+12x D.y=176解析由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.答案 C例14.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y^=bx+a;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得,x=0,y=3.2,b=26040=6.5,a=y-b x=3.2.由上述计算结果,知所求回归直线方程为y -257=b(x-2 006)+a=6.5(x-2 006)+3.2,即y^=6.5(x-2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).例15.下列有关回归直线方程y^=bx+a 的叙述正确的是( )①反映y^与x之间的函数关系;②反映y与x之间的函数关系;③表示y^与x之间的不确定关系;④表示最接近y与x之间真实关系的一条直线.A.①② B.②③C.③④ D.①④解析:选D.y^=bx+a表示y^与x之间的函数关系,而不是y与x之间的函数关系;但它反映的关系最接近y与x之间的真实关系,故选D.例16.设有一个回归方程y^=3-5x,变量x增加一个单位时( )A.y平均增加3个单位B.y平均减少5个单位C.y平均增加5个单位D.y平均减少3个单位解析:选B.∵-5是斜率的估计值,说明x每增加一个单位,y平均减少5个单位.例17.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不.正确的是( ) A.由样本数据得到的回归方程y^=b^x+a^必过样本中心(x,y)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r =-0.9362,则变量y和x之间具有线性相关关系解析:选C.C中应为R2越大拟合效果越好.例18.已知回归方程y^=2x+1,而试验得到一组数据是(2,4.9),(3,7.1),(4,9.1),则残差平方和是( )A .0.01B .0.02C .0.03D .0.04解析:选C.当x =2时,y ^=5, 当x =3时,y ^=7,当x =4时,y ^=9.∴e ^1=4.9-5=-0.1,e ^2=7.1-7=0.1, e ^3=9.1-9=0.1.∴ i =13e ^i 2=(-0.1)2+(0.1)2+(0.1)2=0.03.例19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②回归方程y ^=bx +a 必过点(x ,y ); ③曲线上的点与该点的坐标之间具有相关关系;④在一个2×2列联表中,由计算得K2=13.079,则其两个变量间有关系的可能性是 90%.其中错误的是________.解析:①正确.由回归方程的定义及最小二乘法思想,知②正确.③④不正确.答案:③④例20.在2009年十一国庆8天黄金周期间,某市物价部门,对本市五个商场销售的某商品的一天销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:9通过分析,发现销售量对商品的价格x具有线性相关关系,则销售量y对商品的价格x的回归直线方程为________.解析:由数据表可得x=10,y=8,离差x-x:-1,-0.5,0,0.5,1;离差y-y:3,2,0,-2,-3.∴b^=-1×3-0.5×2-0.5×2-1×3 1+0.25+0+0.25+1=-3.2,a ^=y -b ^x =40,∴回归直线方程为y ^=-3.2x +40. 答案:y ^=-3.2x +40例21.在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系.解:以x 轴表示身高,y 轴表示体重,可得到相应的散点图如图所示:由散点图可知,两者之间具有相关关系,且为正相关.12.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程y^=b^ x+a^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?解:(1)设抽到不相邻2组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻2组数据的情况有4种,所以P(A)=1-410=35.(2)由数据求得,x=12,y=27,由公式求得.b^=52,a^=y-b^x=-3.所以y关于x的线性回归方程为y^=5 2 x-3.(3)当x=10时,y^=52×10-3=22,|22-23|<2;当x=8时,y^=52×8-3=17,|17-16|<2.所以该研究所得到的线性回归方程是可靠的.。

11线性回归与相关

11线性回归与相关

SS 剩余= SS 总-SS 回归
这三个平方和的自由度依次为:
总=n-1,
回归=1,
剩余=n-2
MS回归
SS回归 回归
MS剩余
SS剩余 剩余
MS回归 F MS剩余
对例题回归方程用方差分析进行假设检验
(1)建立假设检验 H0:β =0 H1:β ≠0 α =0.05 (2)计算统计量

归关系进行检验。
回归系数的假设检验可用下面简化公式计算
SS总 (Y Y ) 2 Y 2 ( Y ) 2 n
ˆ Y )2 (Y b( X X ) Y ) 2 b2 ( X X )2 SS回归 (Y
LXY L2 XY b LXX bLXY LXX LXX
linear correlation

相关系数r没有度量衡单位,其数值为 1 r 1。
r 0 表示正相关; r 0 表示负相关;r 0 表示
无相关,即无直线关系。当 | r | 1 时称为完全相 关。

相关系数的绝对值愈接近1,表示相关愈密切;相
关系数愈接近0,表示相关愈不密切。
1 9
1020.23 9.81
103.97
< 0.01
对例题的回归方程用t 检验进行假设检验 (1)建立假设检验 β =0 β ≠0 α =0.05 (2)计算统计量
细心的读者可以发现统计量 F 与 t 之间存在着关系 F t 。 本例 103.97 10.22 。
88.31 sY X 3.13 9 1.523 0 t 10.22 0.149
r r0.005/2,9 , 界值表 r0.005 / 2 ,9 0.776 , P 0.005

第10章 线性相关与回归

第10章 线性相关与回归
r = rXY =
∑( X X)(Y Y) ∑( X X) ∑(Y Y)
2 i i
=
LXY LXX.LYY
2
相关系数r没有测量单位,其数值为-1≤≤+1 没有测量单位,其数值为-
相关系数的计算方法
计算时分别可用下面公式带入相关系数r 计算时分别可用下面公式带入相关系数r的 计算公式中
∑ (X ∑ (Y ∑ (X
四,进行线性相关分析的注意事项
⒊ 依据公式计算出的相关系数仅是样本相关系
数,它是总体相关系数的一个估计值,与总体 它是总体相关系数的一个估计值, 相关系数之间存在着抽样误差,要判断两个事 相关系数之间存在着抽样误差, 物之间有无相关及相关的密切程度, 物之间有无相关及相关的密切程度,必须作假 设检验. 设检验.
蛙蛙蛙 蛙蛙蛙
20
10
0 0 10 20 30
温度
2.计算回归系数与常数项 2.计算回归系数与常数项
在本例中:
∑ X = 132
∑ Y = 246
∑X ∑Y
2
= 2024
= 6610
X = 12
2
Y = 22.363
∑ XY = 3622
l b = XY = l XX

XY

( ∑ X )( ∑ Y ) (132)(246) 3622 670 n 11 = = = 1.523 2 2 (∑ X ) 132 440 2 2024 X 11 n
X2
4 16 36 64 100 144 196 256 324 400 484 2024
Y2
25 121 121 196 484 529 1024 841 1024 1156 1089 6610
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间:2018年3月20日必修3第二章统计
第9课时线性相关与线性回归方程
学习目标:能在散点图中作出线性回归直线,能用线性回归方程进行预测
了解最小二乘法的含义及思想
理解数形结合、数学模型化的数学思想与方法
学习过程:
一、最小二乘法是什么?怎样得到线性回归直线方程?
1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据。

人体的脂肪百分比和年龄:
根据上述数据,人体的脂肪含量y与年龄x之间有怎样的关系?
(1)回归直线方程可不可以象前节一样取其中两个点得到?
(2)可不可以考虑选择不同的几组点求出相应的直线的斜率与截距,再求这些斜率、截距的平均值得到回归直线方程?
(3)你认为回归直线相对于样本数据的各点而言应具备什么特点才可靠?
(4)怎样刻画“样本数据的各点到回归直线的距离最小”?
(5)将表中的年龄作为x代入所求回归方程,得出的数值与真实值之间有什么关系?你怎样看待这种情况?
2.当两个变量线性相关时,这两个变量的线性回归直线方程(简称回归方程)如何求?
其中系数可直接由公式求之:
回归直线方程表明回归直线过点(称之为样本点的中心)
二、问题分析
1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,
则下列结论中不正确的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重为58.79kg
2.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:
摄氏温度/℃-5 0 4 7 12 15 19 23 27 31 36
热饮杯数156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;
(3)求回归方程;
(4)如果某天气温是2℃,预测这天卖出的热饮杯数。

三、总结性思考
1.最小二乘法是什么意思?
2.怎样根据样本数据求线性回归直线方程?
四、课后作业
P94 A3
五、再思考。

相关文档
最新文档