七年级上学期期中数学试卷(I)卷新版
2024—2025学年人教版七年级数学上册期中考试试卷
七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。
人教版七年级数学上册期中测试卷(七套)(含知识点)
A、 B、 C、 D、
8、若 与 是同类项,那么 ()
A、0 B、1 C、-1 D、-2
9、有理数a、b、c的大小关系为:c<b<0<a,则下面的判断正确的是()
A、 B、 C、 D、
10、已知a、b为有理数,下列式子:① ② ③ ④ 其中一定能够表示a、b异号的有()个
(1)若A点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明
(2)若蜗牛的爬行速度为每秒 ,请问蜗牛一共爬行了多少秒?
24、(6分)便民超市原有 桶食用油,上午卖出 桶,中午休息时又购进同样的食用油 桶,下午清仓时发现该食用油只剩下5桶,请问:
(1)便民超市中午过后一共卖出多少桶食用油?(用含有X的式子表达)
(1)通过计算,比较下列各组中两个数的大小(填“>”,“<”,“=”)
① ; ②
③ ; ④
⑤ ; ……
(2)从第(1)题的结果经过归纳,可以猜想出 与 的大小关系是
(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:
23.如图,大正方形的边长为 ,小正方形的边长为2,
求阴影部分的面积。
六、(本大题共2小题,每小题6分,共12分)
24.我国股市交易中每卖一次需交0.75﹪的各种费用,某投资者以每股10元的价格买入某股票 股,当该股票涨到12元时全部卖出。
(1)用式子表示投资者实际盈利多少?
(2)若该投资者买入1000股,则他盈利了多少元?
25.某地出租车收费标准是:起步价为4元,可乘3km,3km到5km,每km收费1.2元;5km后,每km收费2元,若某人乘坐了 ( )km的路,请写出他支付的费用;若他支付的费用是10.4元,你能算出他乘坐的路程吗?(注:km为千米)
七年级第一学期期中考试数学试卷(附含有答案)
七年级第一学期期中考试数学试卷(附含有答案)本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷共1页,满分为40分;第II卷共2页,满分为110分.本试题共3页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,考试结束后,将答题卡交回.本考试不允许使用计算器第1卷(选择题共40分)注意事项:第I卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的个选项中,只有一项是符合题目要求的)1.-2024的相反数是()A.2024B.12024C.﹣12024D.-20242.12月8日,济郑高铁全线贯通运营,济郑高铁是国家"八纵八横"高铁网的重要连接线,是山东省"八纵六横"高铁网的西向出省通道,项目通车后郑州东站至济南西站间最快1小时43分钟可达,济郑高铁山东段全长168公里,总投资348亿元,途经济南、德州、聊城3市、10个县(区),惠及沿线2000万人口,数据"348亿"用科学记数法表示为()A.0.348x1011B.3.48x1011C.3.48x1010D.34.8x1053.下列调查中,最适合采用普查的是()A.对某市居民垃圾分类意识的调查B.对某批汽车抗撞击能力的调查C.对一批节能灯管使用寿命的调查D.对某班学生的身高情况的调查4.如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点确定一条直线B.两点间距离的定义C.两点之间,线段最短D.因为它直(第4题图) (第5题图)5.如图所示是一个正方体的展开图,图中的六个正方形内分别标有:宝、华、汇、才、加、油,将其围成一个正方体后,与"才"所在面相对面上的字是()A.宝B.华C.加D.油6.从n边形的一个顶点可引出3条对角线,则n为()A.6B.5C.4D.37.下列计算正确的是()A.m2n-2mn2=-mn2B.5y2-2y2=3C.7a+a=7a2D.3ab+2ab=5ab8.有理数m,n在数轴上的位置如图所示,则化简|n|-|m-n|的结果是()A.mB.2n-mC.-mD.m-2n(第8题图)(第10题图)9.某商品按原价的8折出售,仍可获利20%,若商品的原价为2400元,则该商品的进价为()A.1500元B.1600元C.1680元D.1800元10.在数学文化节游园活动中,被称为"数学小王子"的小明参加了"智取九宫格"的游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.小明抽取到的题目如图所示,他运用所学的数学知识,很快就完成了这个游戏,则m的值为()A.30B.39C.45D.51第II卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.如果存入银行100元钱,记作"+100"元,那么从银行提取45元钱,记作元.12.单项式4xy2的次数是.13.若关于x的一元一次方程a-bx=4的解是x=3,则﹣6b+2a+2023值为.14.1.5°= ’= "15.期中考试后,小红将本班50名同学的数学成绩进行分类统计,得到如图所示的扇形统计图,则该班有名学生数学成绩为优.(第15题图)16.在长为2,宽为x(x 比1大,且比2小)的长方形纸片上,从它的一侧,剪去一个以长方形纸片宽为边长的正方形(第一次操作);从剩下的长方形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为 .三.解答题(本大题10个小题,共86分) 17.(本小题满分6分)计算:(1)5+(-6)+3-(-4); (2)-23÷49×(-23)2.18.(本小题满分6分)先化简,再求值:2(3a 2b+ab)-(2ab+5a 2b),其中a=-1,b=2.19.(本小题满分6分)如图是由6个棱长为1的相同小正方体组成的几何体,请在边长为1的网格中画出从正面、左面、上面看到的这个几何体形状图.20.(本小题满分10分)解方程:(1)3x -1=5; (2)x+24-2x -32=1.21.(本小题满分9分)有30筐白菜,以每筐25kg 为标准,其中质量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30筐白菜中,质量最大的一筐比质量最小的一筐多多少千克? (2)与标准质量相比,30筐白菜总计超过或不足的质量为多少千克? (3)若白菜每千克售价3元,则这30筐白菜可卖多少钱?22.(本小题满分7分)如图,已知点C 为AB 上一点,AC=30cm ,BC=25AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.请将下面解答中缺失的部分补充完整,(其中"[ ]"中填写用字母表示的线段," "上填写数字)解:因为BC=25AC ,AC=30cm 所以BC=25x30=12cm所以AB=AC+BC=30+12=42(cm), 因为E 为AB 的中点,所以AE=1[ ]= cm2因为D为AC的中点所以AD=1[ ]= cm2所以DE=[ ]-[ ] = (cm).23.(本小题满分8分)垃圾的分类处理与回收利用,可以减少污染,节约资源,某市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其它垃圾)根据统计图提供的信息,解答下列问题:(1)在这次抽样调查中,一共有吨生活垃圾;(2)请将条形统计图补充完整;(3)扇形统计图中,B所对应的百分比是,D所对应的圆心角度数是.(4)假设该市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾是多少吨?24.(本小题满分10分)学校要购入两种记录本,预计花费460元,其中4种记录本每本3元,B种记录本每本2元,且购买4种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,4种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?25.(本小题满分12分)阅读下面材料:数学课上,老师给出了如下问题:如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°所以∠BOC= ∠AOB= .因为∠BOD=20°所以∠COD=∠+∠= .小静说:"我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD 还可能在∠AOB的内部.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求此时∠COD的度数.26.(本小题满分12分)【阅读材料】数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的思想解决一些问题,例如:数轴上表示5的点与表示2的点之间的距离为|5-2|=3,数轴上表示5的点与表示﹣2的点之间的距离为|5-(﹣2)|=7【理解运用】如图所示,点A,B分别表示数﹣1、7,根据阅读材料完成下列各题:(1)线段AB的长是.(2)若在直线AB上存在点C,使得CB=1AB,则点C对应的数值是.4(3)动点M,N分别从点A,B同时出发以每秒3个单位长度和每秒2个单位长度的速度沿数轴向右运动,当点M,n重合时,求它们运动的时间是多少?AB时,求它们运动的时间是多少?(4)在(3)的条件下,当MN=12答案解析一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的个选项中,只有一项是符合题目要求的)1.-2024的相反数是( A )A.2024B.12024C.﹣12024D.-20242.12月8日,济郑高铁全线贯通运营,济郑高铁是国家"八纵八横"高铁网的重要连接线,是山东省"八纵六横"高铁网的西向出省通道,项目通车后郑州东站至济南西站间最快1小时43分钟可达,济郑高铁山东段全长168公里,总投资348亿元,途经济南、德州、聊城3市、10个县(区),惠及沿线2000万人口,数据"348亿"用科学记数法表示为( C )A.0.348x1011B.3.48x1011C.3.48x1010D.34.8x1053.下列调查中,最适合采用普查的是( D )A.对某市居民垃圾分类意识的调查B.对某批汽车抗撞击能力的调查C.对一批节能灯管使用寿命的调查D.对某班学生的身高情况的调查4.如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( C )A.两点确定一条直线B.两点间距离的定义C.两点之间,线段最短D.因为它直(第4题图) (第5题图)5.如图所示是一个正方体的展开图,图中的六个正方形内分别标有:宝、华、汇、才、加、油,将其围成一个正方体后,与"才"所在面相对面上的字是( B )A.宝B.华C.加D.油6.从n边形的一个顶点可引出3条对角线,则n为( A )A.6B.5C.4D.37.下列计算正确的是( D )A.m2n-2mn2=-mn2B.5y2-2y2=3C.7a+a=7a2D.3ab+2ab=5ab8.有理数m,n在数轴上的位置如图所示,则化简|n|-|m-n|的结果是( C )A.mB.2n-mC.-mD.m-2n(第8题图)(第10题图)9.某商品按原价的8折出售,仍可获利20%,若商品的原价为2400元,则该商品的进价为( B )A.1500元B.1600元C.1680元D.1800元10.在数学文化节游园活动中,被称为"数学小王子"的小明参加了"智取九宫格"的游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.小明抽取到的题目如图所示,他运用所学的数学知识,很快就完成了这个游戏,则m的值为( B )A.30B.39C.45D.51第II卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.如果存入银行100元钱,记作"+100"元,那么从银行提取45元钱,记作﹣45 元.12.单项式4xy2的次数是 3 .13.若关于x的一元一次方程a-bx=4的解是x=3,则﹣6b+2a+2023值为2031 .14.1.5°= 90 ’= 5400 "15.期中考试后,小红将本班50名同学的数学成绩进行分类统计,得到如图所示的扇形统计图,则该班有10 名学生数学成绩为优.(第15题图)16.在长为2,宽为x(x比1大,且比2小)的长方形纸片上,从它的一侧,剪去一个以长方形纸片宽为边长的正方形(第一次操作);从剩下的长方形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为1.2或1.5 .三.解答题(本大题10个小题,共86分) 17.(本小题满分6分)计算:(1)5+(-6)+3-(-4); (2)-23÷49×(-23)2. =﹣1+7 =﹣8×94×49 =6 =﹣818.(本小题满分6分)先化简,再求值:2(3a 2b+ab)-(2ab+5a 2b),其中a=-1,b=2. 解:原式=6a 2b+2ab -2ab -5a 2b =a 2b将a=-1,b=2代入原式=(﹣1)2×2=219.(本小题满分6分)如图是由6个棱长为1的相同小正方体组成的几何体,请在边长为1的网格中画出从正面、左面、上面看到的这个几何体形状图.20.(本小题满分10分)解方程:(1)3x -1=5; (2)x+24-2x -32=1.解:3x=6 解:x+2-4x+6=4x=2 x=4321.(本小题满分9分)有30筐白菜,以每筐25kg 为标准,其中质量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30筐白菜中,质量最大的一筐比质量最小的一筐多多少千克?(2)与标准质量相比,30筐白菜总计超过或不足的质量为多少千克?(3)若白菜每千克售价3元,则这30筐白菜可卖多少钱?(1)3-(-3)=6kg,答:质量最大的一筐比质量最小的一筐多6kg.(2)(-3)x1+(-2)x3+(-1)x5+0x9+1x6+2x4+3x2=6kg答:30筐白菜总计超过6kg.(3)3x(25x30+6)=2268(元)答:这30筐白菜可卖2268元.22.(本小题满分7分)如图,已知点C 为AB 上一点,AC=30cm ,BC=25AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.请将下面解答中缺失的部分补充完整,(其中"[ ]"中填写用字母表示的线段," "上填写数字)解:因为BC=25AC ,AC=30cm所以BC=25x30=12cm所以AB=AC+BC=30+12=42(cm),因为E为AB的中点,[ AB]= 21 cm所以AE=12因为D为AC的中点所以AD=1[ AC ]= 15 cm2所以DE=[ AE ]-[ AD ] = 6 (cm).23.(本小题满分8分)垃圾的分类处理与回收利用,可以减少污染,节约资源,某市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其它垃圾)根据统计图提供的信息,解答下列问题:(1)在这次抽样调查中,一共有吨生活垃圾;(2)请将条形统计图补充完整;(3)扇形统计图中,B所对应的百分比是,D所对应的圆心角度数是.(4)假设该市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾是多少吨?(1)27÷54%=50故答案为:50,(2)50-273-5=15=36°(3)15÷50=30%,360°×550故答案为:30%,36°(4)5000x-=300吨答:该城市每月产生的5000吨生活垃圾中有害垃圾300吨.24.(本小题满分10分)学校要购入两种记录本,预计花费460元,其中4种记录本每本3元,B种记录本每本2元,且购买4种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,4种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?(1)设购买B种记录本x本,则购买A种记录本(2x+20)本,根据题意,得3(2x+20)+2x=460解得x=502x+20=2x50+20=120本答:购买A种记录本120本,B种记录本50本。
河南省洛阳市西工区2024-2025学年上学期期中七年级数学试题(含答案)
西工区2024-2025学年第一学期质量检测七年级数学试卷注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷包含I 、II 两卷。
第I 卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第II 卷为非选择题,所有答案必须填在答题卡的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
)1.如果把向东走记作,那么表示的实际意义是( )A.向东走 B.先向东走,再向西走C.向西走-4kmD.向西走4km2.下列两个数互为相反数的是( )A.3和B.和C.和D.和3.2024年国庆节,洛阳全市共接待游客823.09万人次,旅游总收入69.77亿元。
旅游总收入用科学计数法表示为( )元A. B. C. D.4.如图,,两个数在数轴上的位置如图所示,则下列各式正确的是( )A. B. C. D.5.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲、乙两种读本共100本供学生阅读,其中甲种读本的价格为10元/本,乙种读本的价格为8元/本,设购买甲种读本本,则购买乙种读本的费用为( )A.元B.元C.元D.元6.代数式的意义可以是( )A.-7与的和B.-7与的差C.-7与的积D.-7与的商7.下列各说法中的两种量成反比例关系的是( )①圆锥的体积一定,它的底面积和高。
②三角形的面积一定,它一边和这边上的高。
③长方形周长一定,它的长和宽。
④圆的面积和它的半径。
A.①②B.②③C.①③D.③④8.我国是最早认识负数并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正3km 3km +4km -4km 2km 2km 13()3--3-()23-23-()33-33-86.97710⨯96.97710⨯100.697710⨯68.230910⨯a b 0a b +<0ab <0b a -<0a b>x ()8100x -()10100x -()1008x -8x 7x -x x x x负术”的方法,图1表示的是计算的过程.按照这种方法,图2表示的过程应是在计算( )A. B. C. D.9.小磊解题时,将式子先变成,再计算结果,则小磊运用了( )A.加法交换律 B.加法交换律和加法结合律C.加法结合律D.无法判断10.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,则搭2024个这样的小正方形需要小棒( )A.6073根B.6072根C.8095根D.8096根二、填空题(本题共5小题,每小题3分,共15分。
2024年第一学期七年级数学期中考试数学试题卷
2024年第一学期七年级数学期中考试试题卷一、选择题(3×10=30分)1.的相反数是( )A .2024B .C .D .2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作元,那么元表示( )A .支出60元B .收入60元C .支出1060元D .收入1060元3.在,,0,,,中,有理数有( )A .2个B .3个C .4个D .5个4.2024年9月25日8时44分,中国人民解放军火箭军向太平洋相关公海海域,成功发射1发携载训练模拟弹头的洲际弹道导弹,准确落入预定海域,从发射点和导弹落点粗略估算,这次导弹飞行射程大概有12000公里,数据12000用科学记数法表示为( )A .B .C .D .5.精确到百分位是( )A .B .C .D .6.单项式的系数和次数分别是( )A .,4B .,7C .5,7D .5,47.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3a−b 2B .3(a−b)C .(3a−b)2D .3a−b8.已知一个代数式加上x 2−y 2等于x 2+y 2,则这个代数式为()A.−3y 2B.3y 2C.2x 2+y 2D.2y 29.小王利用计算机设计了一个计算程序,输入和输出的数据如下表那么,当输入数据是8时,输出的数据是( )A .B .C .D .输入12345输出2024-2024-1202412024-1000-1060+π6 3.14-23-32-22750.1210⨯51.210⨯41.210⨯31210⨯0.06540.070.060.0650.1345x y -5-5-861865867869⋅⋅⋅⋅⋅⋅⋅⋅⋅1225310417526⋅⋅⋅10.在矩形内,将一张边长为和两张边长为的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为,若要知道的值,只要测量图中哪条线段的长 A .B .C .D .二、填空题(3×6=18分)11.比较大小:1101 |−1100|12.小华同学写作业时不慎将墨水滴在数轴上,根据图中的数值判断,被墨迹盖住的两部分的整数有 个.13.一个数在数轴上表示的点离原点的距离是5,这个数是.14.比-2大的负整数是 ;比-3.45小的最大负整数是 。
七年级第一学期期中考试数学试题(带有答案)
七年级第一学期期中考试数学试题(带有答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.-6B.6C.±6D.162.如图是由5个相同的小立方块搭成的几何体,从正面看这个几何体是()A. B. C. D.3.第19届亚运会于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城核心区建筑总面积2720000平方米,将数2720000用科学记数法表示为()A.0.272X107B.2.72X106C.27.2X105D.272x104,0,(﹣1)2,﹣0.6,2,﹣|﹣10| 4.根据《九章算术》的记载,中国人最早使用负数.那么在﹣25中负数的个数有()A.2B.3C.4D.55.下列运算正确的是()A.3y2-2y2=1B.3a+2b=5abC.3x2+2x3=5x5D.3a2b-3ba2=06.下列几何体中,截面不可能是长方形的是()A. B. C. D.7.下列说法正确的是()A.﹣52的底数是﹣5B.正数和负数统称为有理数0C.单项式3πxy的系数是3D.﹣|a|-1一定是负数8.若2a-b=4,则式子4a-2b-5的值为()A.3B.﹣3C.1D.﹣19.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.ab>0C.|a|>|b|D.a+b>0(第9题图) (第10题图)10.如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的 一,图形②面积是图形①面积的2倍的13,图形③而积是图形②面积的2倍的13,……,图形⑥面积是图形⑤面积的2倍的13,图形⑦面积是图形⑥面积的2倍,计算13+29+427+...+2536的值为( )A.665729B.64729C.179243D.64243第II 卷(非选择题共110分) 二.填空题:(本大题共6个小题,每小题4分,共24分)11.如果水位升高2m 记作+2m ,那么水位下降5m 记作 m. 12.比较大小:﹣1 ﹣34(填>或<)。
2022-2023学年全国初中七年级上数学新人教版期中试卷(含解析)
2022-2023学年全国七年级上数学期中试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 如果收入元记作元,那么支出元记作( )A.元B.元C.元D.元2. 在,,,四个数中,最小的数是 A.B.C.D.3. 我国年月日时分发射升空的神舟十一号载人飞船和天宫二号对接时的轨道高度是米,用科学记数法表示,其结果为 A.米B.米C.米D.米4. 下列说法正确的是( )A.的系数是10+1020−20−10+20+1001−13−3()01−13−320161017730393000()3.93×1053.9×1053.93×1043.9×104−2vt 3−2a 23B.的次数是次C.是多项式D.的常数项为5. 下列运算正确的是( )A.B.C.D.6. 若实数,满足,且,恰好是等腰的两条边的边长,则的周长是( )A.B.C.D.7. 代数式的最小值是 A.B.C.D.8. 下列方程中属于一元一次方程的是( )A.B.C.D.9. 数和数在数轴上的位置如图,化简的结果是( )a 32b 36x +y 5+x −1x 212a +3b =5ab−(−1=1)2020y −2y =−y−=422m n |m −2|+=0n −4−−−−−√m n △ABC △ABC 121086|3x −2|+2()1234=4y 22+=6y 2+x +1=0x 2x −2y =1a b |a −b|A.B.C.D.10. 一列数,,,,其中,(为不小于的整数),则( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 在横线上填上“”或者“”(1)________(2)________(3)________ 12. 已知有理数、所对应的点在数轴上如图所示,化简=________.13. 若,则________.14. 如果代数式与的差是单项式,那么________.15. 若,则的值为________.16. 整式的加减中,“去括号”与“合并同类项”的数学依据都是________.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17. 计算:a −bb −a−a −ba +ba 1a 2a 3⋯=a 112=a n 11−a n−1n 2=a 2021122−1−2><−14−13−57−790−0.5a b |a −b |(x +y)−2y =2x +212x +y =5x m−2y 3xy n+1=(−m)n 2+m −1=0m 24+2m +5m 22+(+−)×24]÷(−5)1133..18. 先化简,再求值:,其中. 19. 若关于,的多项式不含二次项,求的值. 20. 在的方格中,每行、每列及对角线上的个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图①的“等和格”中,每行、每列及对角线上的个代数式的和都等于图②是显示部分代数式的“等和格”,可得________(用含的代数式表示);图③是显示部分代数式的“等和格”,求与的值.21. 某地电话拨号入网有两种收费方式,用户可任选其一,计时制:元分;包月制:元月(限一部个人住宅电话上网),此外每种上网方式均加收通信费元分:某用户某月上网时间为分钟,用表示计时制的费用,用表示包月制的费用,请你分别写出两种收费方式下该用户支付的费用(用含的代数式表示);如果某用户一个月内上网时间为分钟,你认为采用哪种方式较为合算?22. 化简求值:已知是的整数部分,,求的平方根.已知:实数,在数轴上的位置如图所示,化简:.23. 先计算下列各式:_________, _________,_________,_________, ________,,通过观察并归纳,请写出能反映这种规律的一般结论,用含的数学式子表示出来.24. 如图,已知数轴上有、两点,点在点的左侧,已知点表示的数为,且,两点间的距离为,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动.数轴上点表示的数是________;(1)[2+(+−)×24]÷(−5)12163834(2)0.5+7×(−)−÷1213(−2)3(−2)42(b −3ab)−3(ab +2b −1)a 2a 2a =−2,b =13x y (3a +2)+(9a +10b)xy −x +2y +7x 23a −5b 3×33315.(1)a =b (2)a b A 0.1/B 50/0.2/(1)x y A y B x (2)300(1)a 13−−√=3b √ab +54−−−−−−√(2)a b +2−|a −b |(a +1)2−−−−−−−√(b −1)2−−−−−−√=1–√=1+3−−−−√=1+3+5−−−−−−−√=1+3+5+7−−−−−−−−−−−√=1+3+5+7+9−−−−−−−−−−−−−−√…n A B B A A 6A B 10P A 6(1)B (2)运动秒时,点表示的数是________;动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点,同时出发.求:①当点运动多少秒时,点与点相遇?②当点运动多少秒时,点与点的距离为个单位长度.(2)1P (3)Q B 4P Q P P Q P P Q 8参考答案与试题解析2022-2023学年全国七年级上数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】A【考点】正数和负数的识别【解析】根据正负数的含义,可得:收入记住“+”,则支出记作“-”,据此求解即可.【解答】解:根据正数和负数表示相反意义的量,可得:如果收入元记作元,那么支出元记作元.故选.2.【答案】D【考点】有理数大小比较【解析】根据有理数比较大小的法则进行解答即可.【解答】解:∵正数负数,在这四个数中只有,是负数,比较出,的大小即可.,,,.故选.10+1020−20A >0>−13−3∴−13−3∵−=∣∣∣13∣∣∣13|−3|=33>13∴−3<−13D3.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:.故选.4.【答案】C【考点】单项式的系数与次数多项式的概念的应用多项式的项与次数【解析】根据单项式次数、系数的定义,以及多项式的有关概念解答即可;单项式的系数是单项式中的数字因数,单项式的次数是单项式中所有字母的指数和.【解答】解:,的系数是,故错误;,的次数是,故错误;,根据多项式的定义知,是多项式,故正确;,的常数项为,而不是,故错误.故选.5.【答案】Ca ×10n 1≤|a |<10n n a n >1n <1n 393000=3.93×105A A −2vt 3−23A B a 32b 31+3=4B C x +y 5C D +x −1x 2−11D C【考点】合并同类项有理数的乘方【解析】根据合并同类项、乘方的法则分别对每一项进行分析,即可得出答案.【解答】解:,与不是同类项,不能合并,错误;,,错误;,,正确;,,错误.故选.6.【答案】B【考点】三角形三边关系非负数的性质:绝对值等腰三角形的判定与性质非负数的性质:算术平方根【解析】由已知等式,结合非负数的性质求、的值,再根据、分别作为等腰三角形的腰,分类求解.【解答】解:∵,∴,,解得,,当作腰时,三边为,,,不符合三边关系定理;当作腰时,三边为,,,符合三边关系定理,∴周长为:.故选.7.【答案】B【考点】A 2a 3bB −(−1=−1)2020C y −2y =−yD −=−422C m n m n |m −2|+=0n −4−−−−−√m −2=0n −4=0m =2n =4m =2224n =42442+4+4=10B非负数的性质:绝对值【解析】根据绝对值非负数解答.【解答】解:因为,所以当,即时,取最小值.故选.8.【答案】B【考点】一元一次方程的定义【解析】根据只含有一个未知数(元),且未知数的次数是,这样的方程叫一元一次方程进行分析即可.【解答】解:、不是一元一次方程,故此选项错误;、是一元一次方程,故此选项正确;、不是一元一次方程,故此选项错误;、不是一元一次方程,故此选项错误;故选:.9.【答案】B【考点】数轴绝对值【解析】根据有理数,在数轴上的位置,得出的正负,根据绝对值的性质,进行绝对值的化简即可.【解答】解:由图可得,,|3x −2|≥03x −2=0x =23|3x −2|+22B 1A B C D B a b a −b a <b ∴a −b <0,.故选.10.【答案】B【考点】规律型:数字的变化类【解析】由的值,及,分别求出,,,的值,归纳总结得到数列的值以,,循环,而除以得到余数为,即可确定出的值.【解答】解:,且为整数),,,,,,,数列,,,,以,,循环,,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】(1)(2)(3)【考点】有理数大小比较【解析】∴a −b <0∴|a −b|=−(a −b)=b −aB a 1=a n 11−a n−1a 2a 3a 4a 5122−1201232a 2021∵=a 112=(n ≥2a n 11−a n−1n ∴==2a 211−12==−1a 311−2==a 411+112==2a 511−12==−1a 611−2==a 711+112⋯∴a 1a 2a 3⋯a n 122−1∵2021÷3=673⋯2==2a 2021a 2B >>>该题主要考查了有理数大小的比较.【解答】解:(1),故答案为:.(2),故答案为:.(3)大于一切负数故答案为:.12.【答案】【考点】数轴绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】列代数式求值列代数式求值方法的优势【解析】∵−==∣∣∣14∣∣∣14312−==∣∣∣13∣∣∣13412<312412∴−>−1413>−==∣∣∣57∣∣∣574563−==∣∣∣79∣∣∣794963<45634963∴−>−5779>∵0∴0>−0.5>b −a−43此题暂无解析【解答】解:,,,.故答案为:.14.【答案】【考点】合并同类项有理数的乘方【解析】根据同类项的定义得出,求出的值,即可解答.【解答】解:由题意得:,,所以,,则.故答案为:.15.【答案】【考点】整式的加减——化简求值【解析】根据“=”,得到=,代入即可得到答案.【解答】解:∵,∴,(x +y)−2y =2x +212x +y −2y −2x −2=01212−x −y =23232x +y =−43−439m −2=1,n +1=3m ,n m −2=1n +1=3m =3n =2(−m =(−3=9)n )2972+m −1m 202+m m 214+2m +5m 22+m −1=0m 22+m =1m 24+2m +52∴.故答案为:.16.【答案】乘法分配律【考点】整式的加减【解析】根据去括号和合并同类项的定义即可得结论.【解答】整式的加减中,“去括号”的数学依据是乘法分配律,“合并同类项”的数学依据乘法分配律的逆运算.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17.【答案】解:原式.原式.【考点】有理数的混合运算【解析】此题暂无解析4+2m +5m 2=2(2+m)+5m 2=2×1+5=77(1)=(+×24+×24−×24)÷(−5)52163834=(+4+9−18)÷(−5)52=(−5)÷(−5)52=(−)÷(−5)52=12(2)=0.5+×(−)−(−8)÷1615213=−+125212=−32【解答】解:原式.原式.18.【答案】解:原式,把,代入上式得:原式..【考点】整式的加减——化简求值【解析】本题考查整式的化简求值.【解答】解:原式,把,代入上式得:原式..19.【答案】(1)=(+×24+×24−×24)÷(−5)52163834=(+4+9−18)÷(−5)52=(−5)÷(−5)52=(−)÷(−5)52=12(2)=0.5+×(−)−(−8)÷1615213=−+125212=−32=2b −6ab −3ab −6b +3a 2a 2=−4b −9ab +3a 2a =−2b =13=−4×(−2×−9×(−2)×+3)21313=−+6+3163=113=2b −6ab −3ab −6b +3a 2a 2=−4b −9ab +3a 2a =−2b =13=−4×(−2×−9×(−2)×+3)21313=−+6+3163=113(3a +2)+(9a +10b)xy −x +2y +72解:∵关于,的多项式不含二次项,∴,得.两边同除以,得.答:的值是.【考点】多项式的项与次数列代数式求值【解析】根据题意可得,,然后根据等式的性质即可求出的值.【解答】解:∵关于,的多项式不含二次项,∴,得.两边同除以,得.答:的值是.20.【答案】由题意得,解得,由得,则.【考点】列代数式整式的加减【解析】(1)根据“等和格”的定义可得:,依此即可求解;(2)由题意得,解方程可得,再由(1)得可求.【解答】解:由题意得,x y (3a +2)+(9a +10b)xy −x +2y +7x 2{3a +2=0,①9a +10b =0.②①×5−②6a −10b =−1023a −5b =−53a −5b −53a +2=09a +10b =03a −5b x y (3a +2)+(9a +10b)xy −x +2y +7x 2{3a +2=0,①9a +10b =0.②①×5−②6a −10b =−1023a −5b =−53a −5b −52b (2)−2a +2a =b −1+(−2b)b =−1(1)a =2b a =−2−2a +3a =−2b +2a −2a +2a =b −1+(−2b)b =−1a (1)−2a +3a =−2b +2a −a =−2b则,故.故答案为:.由题意得,解得,由得,则.21.【答案】解:采用计时制应付的费用为:,采用包月制应付的费用为:.若一个月内上网的时间为分钟,则计时制应付的费用为:(元),包月制应付的费用为:(元).∵,∴计时制合算.【考点】列代数式列代数式求值【解析】(1)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费.(2)将分钟分别代入()计算出费用的大小,再进行比较就可以得出结论.【解答】解:采用计时制应付的费用为:,采用包月制应付的费用为:.若一个月内上网的时间为分钟,则计时制应付的费用为:(元),包月制应付的费用为:(元).∵,∴计时制合算.22.【答案】解:∵,∴,∵,∴,∴,−a =−2b a =2b 2b (2)−2a +2a =b −1+(−2b)b =−1(1)a =2b a =−2(1)=0.1⋅x +0.2⋅x =0.3x y A =50+0.2x y B (2)300=0.3×300=90y A =50+0.2×300=110y B 90<1103001(1)=0.1⋅x +0.2⋅x =0.3x y A =50+0.2x y B (2)300=0.3×300=90y A =50+0.2×300=110y B 90<110(1)3<<413−−√a =3=3b √b =9==9ab +54−−−−−−√3×9+54−−−−−−−−√ab +54−−−−−−√∴的平方根是.由数轴可得:,则,,,则.【考点】估算无理数的大小平方根数轴绝对值【解析】由于,由此可得的整数的值;由于,根据算术平方根的定义可求,再代入计算,进一步求得平方根.利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.【解答】解:∵,∴,∵,∴,∴,∴的平方根是.由数轴可得:,则,,,则.23.【答案】解:∵;;;;;.【考点】规律型:数字的变化类ab +54−−−−−−√±3(2)−1<a <0<1<b a +1>0b −1>0a −b <0+2−|a −b |(a +1)2−−−−−−−√(b −1)2−−−−−−√=a +1+2(b −1)+(a −b)=a +1+2b −2+a −b =2a +b −1(1)3<<413−−√13−−√a =3b √b ab +54−−−−−−√(2)(1)3<<413−−√a =3=3b √b =9==9ab +54−−−−−−√3×9+54−−−−−−−−√ab +54−−−−−−√±3(2)−1<a <0<1<b a +1>0b −1>0a −b <0+2−|a −b |(a +1)2−−−−−−−√(b −1)2−−−−−−√=a +1+2(b −1)+(a −b)=a +1+2b −2+a −b =2a +b −1=11–√==21+3−−−−√4–√==31+3+5−−−−−−−√9–√==41+3+5+7−−−−−−−−−−−√16−−√==51+3+5+7+9−−−−−−−−−−−−−−√25−−√……=n 1+3+5+⋯+(2n −1)−−−−−−−−−−−−−−−−−−−−√【解析】直接运算,发现规律,即可得出答案.【解答】解:∵;;;;;.24.【答案】当运动时间为秒时,点表示的数为,点表示的数为.①依题意,得,解得:.答:当点运动秒时,点与点相遇.②相遇前,,解得:,相遇后,,解得:.答:当点运动秒或秒时,点与点的距离为个单位长度.【考点】数轴由实际问题抽象出一元一次方程动点问题【解析】由已知得数轴上点表示的数为, ,从而写出数轴上点所表示的数动点从点出发,运动时间为秒,所以运动的单位长度为,因为沿数轴向左匀速运动,所以点所表示的数是,再代入即可求解.①点表示的数为,点运动秒时追上点,则,然后解方程得至②设点运动秒时,点与点间的距离为个单位长度,分两种情况:当、相遇前,则;当、相遇后,则;由此求得答案解即可.【解答】解:∵数轴上有、两点,点在点的左侧,已知点表示的数为,且,两点间的距离为,∴数轴上点所表示的数为.故答案为:.点运动秒的长度为,∵动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,∴点所表示的数为:,当时,点所表示的数为:.故答案为:.=11–√==21+3−−−−√4–√==31+3+5−−−−−−−√9–√==41+3+5+7−−−−−−−−−−−√16−−√==51+3+5+7+9−−−−−−−−−−−−−−√25−−√……=n 1+3+5+⋯+(2n −1)−−−−−−−−−−−−−−−−−−−−√−40(3)t P 6−6t Q −4−4t 6−6t =−4−4t t =5P 5P Q 6−6t −(−4−4t)=8t =1−4−4t −(6−6t)=8t =9P 19P Q 8A 6AB =10B P A t (t >0)6t P 6−6t t =1Q −4−4t P t Q 6−6t =−4−4t t =5P a P Q 8P Q −4−4a +8=6−6a P Q 6−6a +8=−4−4a (1)A B B A A 6A B 10B 6−10=−4−4(2)P t 6t P A 6P 6−6t t =1P 00(3)Q当运动时间为秒时,点表示的数为,点表示的数为.①依题意,得,解得:.答:当点运动秒时,点与点相遇.②相遇前,,解得:,相遇后,,解得:.答:当点运动秒或秒时,点与点的距离为个单位长度.(3)t P 6−6t Q −4−4t 6−6t =−4−4t t =5P 5P Q 6−6t −(−4−4t)=8t =1−4−4t −(6−6t)=8t =9P 19P Q 8。
2024——2025学年华东师大版七上数学期中考试卷
2024-2025学年七年级上学期数学期中试卷注意事项1,本卷答题时间120分钟,满分150分。
2,评测范围:2024版华东师大七上数学第1--2章。
3,本卷共分为两大部分,第I卷选择题,第II卷非选择题。
第I卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)2024的相反数是()A.12024B.-12024C.2024 D.﹣20242.(4分)有理数分为()A.正数和负数B.素数和合数C.整数和分数D.偶数和奇数3.(4分)计算7﹣(﹣5)+(﹣7)﹣(+3)时,去括号正确的是()A.7﹣5+7+3B.7+5﹣7﹣3C.7﹣5+7﹣3D.7﹣5﹣7+3 4.(4分)若3a2b n﹣1与是同类项,则m n的值为()A.3B.2C.1D.05.(4分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.(﹣2)2=﹣4D.2022÷3×=20226.(4分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022 7.(4分)根据等式的性质,下列等式的变形正确的是()A.若a=b,则6+a=b﹣6B.若﹣3x=﹣3y,则x=﹣yC.若,则D.若a=b,则8.(4分)下列说法正确的是()A.多项式x2﹣5xy﹣x+1的次数是5B.单项式的次数是3C.单项式x2y的系数是0D.多项式2x2+xy2+3是二次三项式9.(4分)若|m|=5,|n|=2,且m、n异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或310.(4分)如图是一个运算程序的示意图,若开始输入x的值为27,则第2021次输出的结果为()A.3B.27C.9D.1第II卷二.填空题(共6小题,满分24分,每小题4分)11.(4分)新华网北京2020年6月19日电,今年的京东618是新冠肺炎疫情后第一个电商行业大促的购物节,数据显示,2020年6月1日0时至6月18日24时,京东618全球年中购物节累计下单金额近27000000万元,创下新的纪录,数据27000000用科学记数法可表示为.12.(4分)已知关于x的方程(a+3)x﹣4=x﹣4a的解为x=﹣2,则a=.13.(4分)比较大小:﹣(填“>”或“<”).14.(4分)将13.549精确到十分位得.15.(4分)如图,已知长方形铁板的长为acm,宽为2bcm,在中心挖去一个圆面,用含a,b的式子表示阴影部分的面积为cm2.16.(4分)如图,数轴上有两点表示的数为a,b,则化简|a﹣b|﹣|b﹣1|=.三.解答题(共9小题,满分86分)17.(8分)计算:(1)(+﹣)÷(﹣);(2)﹣22+(﹣3)2×(﹣)﹣42÷|﹣4|.18.(8分)化简:(1)(4x2﹣5x)+(x2+4x﹣1)﹣3x2;(2)(5a2+a﹣6)﹣4(3﹣8a+2a2).19.(6分)先化简,再求值:3a2b﹣[2ab2﹣2(﹣a2b+ab2)],其中a=﹣2,b=.20.(10分)若多项式mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6化简后不含x的三次项和一次项,请你求m、n的值,并求出(m﹣n)2021的值.21.(10分)小马虎做一道数学题“两个多项式A,B,已知B=2x2﹣3x+6,试求A﹣2B的值”.小马虎将A﹣2B 看成A+2B,结果答案(计算正确)为5x2﹣2x+9.(1)求多项式A;(2)求出当x=﹣1时,A﹣B的值.22.(10分)出租车司机老姚某天上午8:00~9:15的营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负.他这天上午行车里程(单位:km)如下:+5,﹣3,+6,﹣7,+6,﹣2,﹣5,﹣4,+6,﹣8.(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,求姚师傅从最后一位乘客里收入多少元?23.(10分)我们知道:﹣=,﹣=,……那么反过来也成立.如:=﹣,=﹣……则计算:①++++……++②++++……++.24.(12分)某校准备购买篮球50个,跳绳x条(x>50).篮球定价80元/个,跳绳定价20元/条.商店甲、乙向学校提供了各自的优惠方案:商店甲:买一个篮球送一条跳绳;商店乙:篮球和跳绳都按定价的90%付款.(1)若该校到商店甲、乙购买,分别需付款多少元;(用含x的代数式表示)(2)若x=300,通过计算说明此时哪间商店购买较为合算?(3)当x=300时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并把付款的钱算出来.25.(12分)如图,已知数轴上点A,C表示的数分别为﹣10,20,我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如:点A与点C之间的距离记作AC.(1)点A与点C之间的距离AC=;(2)已知点B为数轴上一动点,且满足CB+AB=32,直接写出点B表示的数;(3)动点D从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A以每秒2个单位长度向左运动,点C以每秒3个单位长度向右在数轴上运动,运动时间为t秒.代数式2AD+m×DC的值不随时间t的变化而改变,请求出m的值.参考答案一.选择题1.【答案】D 2.【答案】C 3.【答案】B 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】A 10.【答案】D 二.填空题11.【答案】2.7×107.12.【答案】4.13.【答案】见试题解答内容14.【答案】13.5.15.【答案】2ab﹣πb2,16.【答案】a﹣1.三.解答题17.【答案】(1)﹣31;(2)﹣14.18.【答案】(1)2x2﹣x﹣1;(2)﹣3a2+33a﹣18.19.先化简,再求值:3a2b﹣[2ab2﹣2(﹣a2b+ab2)],其中a=﹣2,b=.【答案】见试题解答内容20.【答案】3,4,﹣1.21.【答案】(1)x2+4x﹣3;(2)﹣17.22.【答案】(1)将第七名乘客送到目的地时,老姚刚好回到上午出发点;(2)老姚距上午出发点6km,在出发点的西面;(3)姚师傅从最后一位乘客里收入18元.23.【答案】(1)(2)24.【答案】(1)(20x+3000)元,(3600+18x)元;(2)x=300时,在甲、乙两家商店购买需付款一样;(3)8500元;方案见解答.25.【答案】(1)30;(2)﹣11或21;(3)﹣3.。
湖北省武汉市江夏区、黄陂区、蔡甸区2024-2025学年七年级上学期11月期中数学试题(含答案)
2024-2025学年度第一学期七年级期中质量检测数学试卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2.试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第I 卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.的倒数是( )A.3B. C.D.2.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( ).A.点A 与点DB.点B 与点CC.点B 与点DD.点A 与点C3.下列计算正确的是( )A. B. C. D.4.下列单项式与是同类项的是( ).A.abB. C. D.5.一箱某种零件上标注的直径尺寸是,下列零件的直径符合标准的是( )A.9.7mmB.9.9mmC.10.3mmD.10.5mm6.为了解群众的低碳环保意识,小明在某超市出口统计后发现:一小时内使用自带环保袋的人数比使用超市塑料袋人数的3倍少b 人,若使用超市塑料袋的为m 人,则使用自带环保离的人数为( ).A. B. C. D.7.化简式子结果正确的是( ).A. B. C. D.8.数轴上A ,B (A 在B 的左侧)两点表示的有理数分别为a ,b ,若,,下列关于原点说法正确的是( ).3-3-13-13321-+=033-=-2(3)6⨯-=2(4)2÷-=-2ab 2a b22a b2ab-10mm 0.2mm ±3m b-3b m-3m b+33m b-(3)(32)x y x y ---+2x y-+2x y--4x y-+25x y-0a b +<0ab <A.原点O 在点A 的左侧B.原点O 在A ,B 之间,且C.原点O 在点B 的右侧D.原点O 在A ,B 之间,且9.国庆节期间,甲、乙两家商场对同一款标价相同的电子产品进行让利促销:甲商场规定购买一件该产品按原价优惠m 元后再打八折;乙商场规定购买一件该产品按原价打八折后再优惠m 元.站在消费者的角度,下列说法正确的是( ).A.在两家商场购买都一样 B.甲商场比乙商场优惠20%m 元C.乙商场比甲商场优惠20%m 元D.无法确定哪家购买更优惠10.二进制就是逢二进一,其各数位上的数字为0或1,例如十进制数5可以写成二进制数101,因为(规定当时,);13可以写成二进制数1101,因为.按此方式,十进制数27化为二进制数为( ).A.11011B.10101C.11001D.11010第II 卷(非选择题 共90分)二、填空题(每小题3分,共18分下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.武汉冬季某一天的最高气温为零上5℃,记作℃,那么这天的最低气温零下2℃可以记作__________℃.12.我国的陆地面积约为,用科学计数法表示9600000为__________.13.单项式的系数为__________;次数为__________.14.运动会期间,学校为同学们准备了一批苹果,把这些苹果平均分装在若干个袋子里,每袋装的苹果个数和总袋数如下表所示,若用n 表示总袋数,m 表示每袋装的苹果数,用式子表示n 与m 的关系为每袋装的苹果个数(m )1015202530…总袋数(n )6040302420…15.已知有理数a ,b ,下列说法:①若,则;②若,则;③若,,则;④若,则.其中一定正确的结论有__________(填写序号即可).16.已知x ,y ,z 均为整数,若,则的值为__________.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)已知有理数3,,,2,.||||a b <||||a b >2102541120212(101)=+=⨯+⨯+⨯=0a ≠01a =321021384112120212(1101)=++=⨯+⨯+⨯+⨯=5+29600000km 223x y 1ab=-0a b +=22a b =a b =±a b <0a b +<||||a b >10a b -<<<<1a ab b ab ab<<-<-<-2024||()2x y z x -+-=||2||3||x z x y y z -+---4-2-1-(1)请在数轴上表示这五个数:(2)将上述有理数用“<”连接起来.18.(本题8分)计算.(1);(2).19.(本题8分)先化简,再求值:,其中,.20.(本题8分)课外阅读可以丰富知识、开阔视野,开学初,某校七年级6个班计划采取学生自愿捐赠图书的方式布置班级读书角,每班以60本为标准,超过60的部分记为“+”,不足60的部分记为“-”,下表是实际捐赠图书情况:班级1班2班3班4班5班6班数量354(1)捐赠图书最多的班比捐赠最少的班多多少本?(2)该校七年级6个班学生共捐赠图书多少本?21.(本题8分)对于两个有理数a ,b 的大小比较,有下面的方法:若,则;若,则;若,则:我们把这种比较两个数大小的方法叫做“作差法”.(1)分别求出图1中长方形A 的周长和图2中长方形B 的周长;(2)若,请用“作差法”比较,的大小.(3)若,,直接写出图1与图2中长方形的周长之和__________.22.(本题10分)窗户的形状如图1所示(图中长度单位:m ),其上部是半圆形,下部是长为a m ,宽为b m 的四个小长方形.10(4)(3)5--+--323(2)5(4)(6)9⨯--⨯---÷()()22222432314a b ab ab a b a b ----1a =12b =-6-2-1-0a b ->a b >0a b -=a b =0a b -<a b <A C B C a b >A C B C 2a c =210b a +=(1)窗户的面积为__________,窗户的外框(如图2)总长为__________m (结果保留);(2)现要在窗户上安装玻璃(窗户的内框虚线部分忽略不计).若玻璃每平方米30元,窗户外框每米50元.①若,,制作这样一个窗户共需费用多少元(取整数)?②设窗户的外框与玻璃的费用差为w 元,当b 的长度发生变化时,w 的值保持不变,直接写出a 的值为__________.23.(本题10分)如图,数轴上A ,B ,C 三点对应的数a ,b ,c 满足,.动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右运动.(1)直接写出a ,b ,c 的值;(2)当点P 运动多少秒时,P 到A ,B ,C 三点的距离之和为34个单位长度?(3)点P 运动2秒后,另一动点2从点A 出发,以每秒5个单位长度的速度向右运动,当点P 与点2的距离为5个单位长度时,请直接写出P 点表示的数为__________.24.(本题12分)观察下列三行数,回答下面的问题:1,,5,,9,,…;①3,,7,,11,,…;②,9,,21,,33,…;③取每一行的第个数,分别记为a ,b ,c .例如当时,,,.(1)当时,请直接写出a ,b ,c 的值分别为__________.(2)取每行数中的第n 个数,是否存在a ,b ,c 三个数的和等于19?如果存在,请你求出a 的值,如果不存在,请说明理由;(3)在第②行中,是否存在连续的三个数的和是,若存在,求出这三个数;若不存在,请说明理由:(4)若,则a ,b ,c 中最大数和最小数的差是__________.(请用含的式子表示).参考答案题号12345678910答案CBBDBACDCA2m π2a =1b =π||10a =2|4|(20)0b c ++-=3-7-11-1-5-9-3-15-27-n 2n =3a =-1b =-9c =7n =95-m a b c =++m二、填空题:11.12.13.,314.15.①②③16.,说明:第13题第一空1分,第二空2分:第15题填对一个1分,出现错误选项0分:第16题正确一个结论得1分.第16题提示:①,即,,则或2.此时,或:②,,则,.故原式的值为:,.三、解答题:17.解:(1)(2)18.解:(1)原式(2)原式.19.解:原式当,时原式.20.(1)依题意,得(本),答:即最多的班比最少的班多11本:(2)依题意,得(本),答:该校七年级6个班学生共捐赠图书363本.2-69.610⨯23600mn =3±2-2024()1z x -=||1z x -=||1x y -=||0y z -=||2||3||121303x z x y y z -+---=+⨯-⨯=||2||3||121323x z x y y z -+---=+⨯-⨯=-||2x y -=||0z x -=||2y z -=||2||3||022322x z x y y z -+---=+⨯-⨯=-3±2-42103-<-<-<<10435=+--6=24204=-+-8=-222221246214a b ab ab a b a b=--+-210ab =-1a =12b =-21510122⎛⎫-⨯⨯-=- ⎪⎝⎭()5611--=606365214363⨯+-+--+=说明:其他方法参照给分21.(1)依题意,得,.(2)依题意有:,因为,所以,即;(3)60.提示:,因为,,原式.22.(1),;(2)①依题意,得,(元),答:制作这样一个窗户共需费用1120元.②.提示:,因为的长度发生变化时,的值保持不变,即,所以.23.(1),,20.(2)依题意,点A ,B 之间的距离为6,B ,C 之间的距离为24,A ,C 之间的距离为30,P 到A ,B ,C 三点的距离之和为34个单位长度,即,又,所以,即点到的距离为4个单位长度,因为点表示的数为,故满足条件的表示的数为或0,即点运动的距离为2或10,则点运动的时间为秒或秒;另解:设点运动的时间为秒,表示的数为,到点的距离为3t ,2(23)822A C a b c a b a b c =+-+-=+-2(22)642B C a b c a b c a b c =+-+++=+-(822)(642)222()A B C C a b c a b c a b a b -=+--+-=-=-a b >2()0a b ->A B C C >8(822)(642)1464A C C a b c a b c a b c +=+-++-=+-2a c =210b a +=14621266(2)60a b a a b a b =+-=+=+=2π42a ab ⎛⎫+ ⎪⎝⎭()24πa b a ++2π30450(24π)2a ab a b a ⎛⎫++++ ⎪⎝⎭30(86)50(446)4207001120≈⨯++⨯++=+=5322π50(24π)30410020050π12015π2a w a b a ab a b a ab a⎛⎫=++-+=++-- ⎪⎝⎭2210020050π12015π10020012050π15πa b a ab a a b ab a a =++--=+-+-b w 20012040(53)0b ab b a -=-=5310-4-34PA PB PC ++=30PA PC AC +==4PB =P B B 4-P 8-P 23103P t P 103t -+P A①当点在A ,B 之间时,到点的距离为,到点的距离为,到A ,B ,C 三点的距离之和为,解得,此时表示的数为;②当点在B ,C 之间时,到点的距离为,到点C 的距离为,到A ,B ,C 三点的距离之和为,解得,此时表示的数为0;③当点在点右侧时,到点的距离为,到点的距离为,到A ,B ,C 三点的距离之和为,解得,此时表示的数为(不符合题意,舍去);(3)或.(每个答案1分)提示:设点运动的时间为秒,依题意,点表示的数为,点表示的数为,到点的距离为,所以或,解得或;所以点表示的数为或.24.(1)13,15,;(2)依题意设这三个数分别为,,,a ,b ,c 三个数的和为,解得,当不符合题意,舍去,故不存在a ,b ,c 三个数的和为19;(3)依题意设第一个数为,①当为奇数时,后两个数分别为,,则,即.(不符合题意,舍去),②当为偶数时,后两个数分别为,,P P B 63t -P C 303t -P 36330334t t t +-+-=23t =P 8-P P B 63t -+P 303t -P 36330334t t t -++-=103t =P P C P B 63t -+P C 303t -+P 36330334t t t -+-+=709t =P 40352-252Q t Q 105t -+P 43t -+P Q |105(43)||62|5t t t -+--+=-+=625t -+=625t -+=-112t =12t =P 52-25239-a 2a +3a -2(3)19a a a +++-=17a =-17a =-x n 2x -+4x +(2)495x x x +-+++=-101x =-n 6x -+4x -则,即;综上所述,在第②行中,存在连续三个数的和是,这三个数分别为,103,;(4)或,.提示:依題意,,,即,①当为奇数时,则a ,b ,c 中最大数和最小数的差是:.②当n 为偶数时,则a ,b ,c 中最大数和最小数的差是:.(6)495x x x +-++-=-97x =-95-97-101-104m -84m -+2b a =+3c a =-2m a b c a =++=-2a m =-n 2(3)424(2)2104b c a a a m m -=+--=+=-+=-344(2)84c a a a a m m -=--=-=--=-+。
七年级数学上学期期中考试卷含参考答案
七年级数学期中考试卷第Ⅰ卷(100分)细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确...的是().A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数2.下列计算正确的是().A.(-3)-(-5)=-8 B.(-3)+(-5)=+8 C.(-3)3=-9 D.-32=-93.把12300进行科学记数法正确的是().A.0.123×105B.1.23×104C.1.23×105D.12.3×103 4.若x m y2与-xy n是同类项,则m等于().A.1B.-1 C.2 D.-25.若多项式2a 2的值是5,则6a 2+5的值是(). A.10 B .15C .20 D .256.一个数的平方等于它本身,这个数是(). A .1B .0 C .0或1 D .1或–1 7.下列各组是同类项的一组是().A.xy 2与-2y B.3x 2y 与-4x 2yz C.a 3与b 3D.–2a 3b 与ba 38.下列运算正确的是().A.3x 2+2x 3=5x 5B .2x 2+3x 2=5x 2C .2x 2+3x 2=5x 4D .2x 2+3x 3=6x 59.若x <0,则│-x │等于(). A .0 B .x C .-x D .以上答案都不对 10.若,则x -y 等于(). A .1B .-1 C .3 D .-3二、耐心填一填(本题有6个小题,每小题3分,满分18分)11.单项式的系数是.12.已知x 是整数,且,则x 可能取的一个数值是. 13.对下列各数按括号内的要求取近似数:x 21212(2)10x y -++=23x y-41x -<<-(1)1.3579≈(保留2个有效数字); (2)4.49876≈(精确到百分位).14.比较大小:(1);(2)-0.1-0.01(用“>”或“<”号). 15.2a -b +c =2a -().16.在数轴上表示a 、b简│a-b │+a+b 的结果是.三、用心答一答(本大题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.计算(本题有4小题,每小题4分,满分16分) (1)(2)3)(4)18.化简(本题有3小题,每小题4分,满分12分) (1)(2)(3)19.(本题满分8分)12______02-231()(24)346--⨯-16()2( 1.5)5-+-+--364( 2.5)(0.1)-⨯+-÷-22(3)3(3)(4)⎡⎤----⨯-⎣⎦2222(43)(143)x y xy x y xy --+-223(432)2(14)x x x x -+--+2243(32)2y y y y ⎡⎤---+⎣⎦先化简,再求值:,其中20.(本题满分8分)若整式M,N 满足式子M+N=x 2-3,其中M=3x -3,求N.21.(本题满分8分)在某地,人们发现蟋蟀叫的次数与温度有某种关系.用蟋蟀1分钟叫的次数n 除以7,然后再加上3,就可以近似地得到该地当时的温度(℃). (1)用式子表示该地当时的温度;(2)当蟋蟀1分钟叫的次数为100时,该地当时的温度约为多少?(精确到个位)第Ⅱ卷(50分) 22.(本题满分12分) 已知x 、y 互为相反数,a 、b 互为倒数,|n |=2,求的值.23.(本题满分14分)人在运动时的心跳速率通常和人的年龄有关,如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动所能承受的每分钟心跳的最高次数,那么b =0.8(220-a ).(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳最高次数是多少?(2)一个45岁的人运动时每10秒心跳的次数是22次,请问他有危险吗?为什么?22(23)(22)1x y x y --+--11,45x y =-=abn y x 2-+24.(本题满分12分)电影院的第一排有10个座位,后面一排比紧挨的前面一排多一个座位.(1)如果某电影院2号厅有6排座位,那么该厅一共有多少个座位?(2)如果有n 排座位,那么该厅第n 排有几个座位?该厅最后3排一共有多少个座位?若n 为奇数,那么该厅一共有多少个座位?(用含n 的代数式表示)25.(本题满分12分) 比较a 与之间的大小.答题卷七年级数学题号 1-10 11-16 17 18 19 20 21 22 23 24 25 总分 得分一、单选题 题号1 2 3 4 5 6 7 8 9 101a学号: 姓名:线二、填空题C参考答案细心选一选(本大题满分30分,每题3分)耐心填一填(本大题满分18分,每题3分) (备注:第12题答案不唯一,第13、14题的第1问1分,第2问2分)三、用心答一答(本大题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17、(1)解:原式=−23×24+34×24+16×24-------------2分 =-16+18+4-------------3分或原式=-------------3分=6-----------4分(2)解:原式=−6−15+2+1.5-------------1分 =(-6-0.2)+(2+1.5)-------------2分 =-6.2+3.5-------------3分 =-2.7-------------4分说明:以上跳步骤可以不扣分,只需要后续步骤是对的,但只写答案没有过程只得1分。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1. 2023的倒数是 ( )A. - 2023B. 2023C.12023D.−12023【答案】C2. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃【答案】B3. 下列各式中,与3x²y³是同类项的是( )A. 6x⁵B.3x³y²C.−12x2y3D.−14x5【答案】C4.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为( )A.4×10⁵B.4×10⁶C.40×10⁴D.0.4×10⁶【答案】A5. 下列是根据等式的性质进行变形,正确的是 ( )A. 若x=y, 则x+5=y-5B. 若a-x=b+x, 则a=bC. 若 ax= ay, 则x=yD. 若x2=y2,则x=y【答案】D6. 下列各式正确的是 ( )A. - |-5|=5B. - (-5)=-5C. |-5|=-5D. - (-5)=5【答案】D7. 下列说法错误的是( )A.2x²−3xy−1是二次三项式B. - x+1的项是-x、 1C.−x²y的系数是-1D.−2ab²是二次单项式【答案】D8. 已知有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是( )A. b>a>0B. b>0>aC. a+b>0D. a-b>0【答案】B9. 解方程x+14=x−5x−112时,去分母正确的是( )A.3 (x+1)=x - (5x-1)B.3 (x+1)=12x-5x-1C.3 (x+1)=12x - (5x-1)D.3x+1=12x-5x+1【答案】C10. 已知整数a₁, a₂, a₃, a₄, 满足下列条件:a₁=0,a₂=−|a₁+1|,a₃=−|a₂+2|,a₄=−|a₃+3|,依此类推, 则a₁₀₀₁的值为( )A. - 500B. - 501C. - 1000D. - 1001【答案】A二、填空题(本题共6小题,每小题3分,共18分)11. 点A在数轴上的位置如图所示,则点A 表示的数的相反数是 .【答案】-212. 比较大小:−65¯−34(填“>” 、“<” 或“=” ).【答案】<13. 已知关于x的方程 mx+2=x的解是x=6, 则m的值为 .【答案】2 314. 已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2−a+b2024+x=¯.【答案】215. 若2m--n=2, 则代数式6+4m-2n 值为 .【答案】1016. 如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为【答案】2或3##3或2三、解答题(本题共9个小题, 第17、18、19题每题6分, 第20、21题每题8分, 第22、23每题9分, 第24、25每题10分, 共72分)17. 计算: −1²⁰²³+(−2)³×5−(−28)÷4+|−2|.【详解】原式=-1-40+7+2,=-32.18. 解方程:(1) 3(x-3)=x+1(2)x+24−2x−36=2【详解】(1) 解: 3x-9=x+1,3x-x=9+1,2x=10,x=5;(2) 解:3(x+2)−2(2x−3)=24,3x+6−4x+6=24,−x=12,x=−12.19. 先化简, 再求值:3y²−x²+2(2x²−3xy)−3(x²+y²)的值,其中.x=2,y=−3.【详解】解:3y²−x²+2(2x²−3xy)−3(x²+y²)=3y²−x²+4x²−6xy−3x²−3y²=−6xy:当x=2,y=−3时,原式:=−6×2×(−3)=36.20. 已知关于x的多项式2mx³−2x²+3x−(2x³+nx)不含三次项和一次项,求((m−n)³的值.【详解】解:2mx³−2x²+3x−(2x³+nx)=2mx³−2x²+3x−2x³−nx=(2m−2)x³−2x²+(3−n)x,由题意,得:2m−2=0,3−n=0所以m=1, n=3.则(m−n)³=(−2)³=−8.21. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过(1) 该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2) 求该外卖小哥这一周总共送餐多少单?【小问1详解】14−(−8)=14+8=22 (单),即该外卖小哥这一周送餐量最多的一天比最少的一天多22单;【小问2详解】50×7+(−3+4−5+14−8+7+10)=350+19=369369 (单),即该外卖小哥这一周一共送餐369单.22. 如图所示:已知a,b,c在数轴上的位置(1) 化简:|a+b|−|c−b|+|b−a|(2) 若a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,求−a+2b+c−(a+b−c)的值.【小问1详解】解: 由数轴可得: c<b<0<a,∴a+b>0,c-b<0,b-a<0,∴原式=a+b+c-b-b+a=2a-b+c.【小问2详解】∵a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,c<0,∴a=2,b=-1,c=-2,∴-a+2b+c-(a+b-c)=-a+2b+c-a-b+c=-2a+b+2c=-4-1-4=-9.23. 已知A=2a²−a−ab,B=a²−b+ab.(1) 化简A-2B;(2) 若A-2B的值与a的取值无关, 求A-2B的值.【小问1详解】解: A-2B=(2a²−a−ab)−2(a²−b+ab)=2a²−a−ab−2a²+2b−2ab=-a+2b-3ab;【小问2详解】解: 由(1) 得:A−2B=−a+2b−3ab=(−1−3b)a+2b,∵A-2B的值与a的取值无关,∴--1-3b=0,,解得:b=−13∴A−2B=2b=−2324. 如图,在数轴上点A表示数a,点B表示数b,且(a+5)²+|b−16|=0.(1) 填空:a=;(2) 若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3) 若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD -5AD的值始终是一个定值,求此时m的值.【小问1详解】解:∵(a+5)²+|b−16|=0,∴a+5=0,b−16=0,∴a=−5,b=16,故答案为: - 5, 16:【小问2详解】解:设点C在数轴上表示的数为x,①点C在点A的左侧时,∵AC=−5−x,BC=16−x,AC+BC=29。
2022-2023学年新人教版七年级上数学期中试卷(含解析)
2022-2023学年初中七年级上数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:154 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 在下列各组中,表示互为相反意义的量的是 A.下降的反义词是上升B.向北走和向西走C.增产吨粮食与减产吨粮食D.羽毛球比赛胜场与负场2. 年,我国测量登山队队员再次登顶,测得珠峰的最新高程为米,期间,科研人员利用多种技术手段,收集了珠峰及邻近地区多万平方公里的最新地形数据,总量达亿条.将数据亿用科学记数法表示,其结果正确的是 A.B.C.D.3. 下列说法错误的是( )A.减去等于加上B.,说明大于C.与互为相反数,则D.若与的绝对值相等,则这两个数相等4. 下列说法中正确的是( )A.是单项式B.的系数为()15km 15km5−53320208848.86100 1.441.44()1.44×1081.44×109144×10101.44×1010−22a −b <0b aa b a +b =0a b x +y 2−πx −1C.不是单项式D.的次数是5. 计算的结果是( )A.B.C.D.6. 下列说法中,正确的是( )A.近似数和近似数的精确度一样B.近似数和近似数的精确度一样C.近似数千万和近似数万的精确度一样D.近似数和近似数的精确度一样7. 下列各式成立的是( )A.B.C.D. 8.实数,在数轴上的对应点的位置如图所示.下列结论正确的是 ( )A.B.C.D.9. 如图,在长为,宽为的一个长方形的场地的两边修一条公路,若公路宽为,则余下阴影部分的面积是( )−5−5b a 23−2a +3a 1a−a5a3.20 3.23.20×103 3.2×1032200032.0 3.2a −(b +c)=a −b +ca +b −c =a +(b −c)a +(b +c)=a −b +ca +b −c =a −(b +c)a b a >ba >−b−a >b−a <ba b xA.B.C.D.10. 对于有理数,下面的个说法中:①表示负有理数;②表示正有理数;③与中,必有一个是负有理数.正确说法的个数有 A.个B.个C.个D.个卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 已知,比较的大小关系,用“”连接为________.12. 在数轴上到所对应的点距离为的点所表示的数是________.13. 若是七次单项式,则________.14. 某市出租车收费标准是:起步价为元,千米后每千米为元.若这人乘坐千米,需________元.15. 若与是同类项,则________.16. 的所有可能的值有________.ab −(a +b)x +x 2ab −(a −b)x −x 2ab −(a +b)x +2x 2ab −(a −b)x −2x 2a 3−a |a |a −a ()0123a =,b =,c =2−5553−3336−222a,b,c,<12–√−23x 2y 2m−5m =73 1.8x(x >3)2x 3y n −5x m y 2mn =+(ab ≠0)a |a |b |b |17. 已知,则代数式的值为________.18. 用符号表示关于自然数的代数式.我们规定:当为偶数时, ;当为奇数时, .例如: , .设,,,.以此规律,得到一列数则这个数之和________.三、 解答题 (本题共计 10 小题 ,每题 10 分 ,共计100分 )19. 小红看一本故事书,第一天看了全书的,第二天看了页,这时已看页数与剩下页数之比是.这本书共有多少页?还剩多少页没有看完?20. 已知下列有理数,请按要求解答下列问题:,,,.请将上面各数填入对应的括号内:负有理数集合{________________};整数集合{________________};正数集合{________________}.21. 先化简,再求值:,其中 22. 化简求值:,其中;已知,求代数式的值;若的结果与的取值无关,求的值. 23. 数轴上点对应的数为,点在点右边,甲、乙在分别以个单位/秒、个单位/秒的速度向左运动,丙在以个单位/秒的速度向右运动.若丙经过秒运动到点,则点表示的数是________;若它们同时出发,若丙在遇到甲后秒遇到乙,求点表示的数;在的条件下,设它们同时出发的时间为秒,是否存在的值,使丙到乙的距离是丙到甲的距离的倍?若存在,求出值;若不存在,说明理由.24. 把下列各数在数轴上表示出来,并将它们按照从小到大的顺序用“”连接起来.,,,,,x −2y +3=0−2x +4y +2018f (x)x x f (x)=x 2x f (x)=3x +1f (1)=3×1+1=4f (8)==482=8x 1=f ()x 2x 1=f (),x 3x 2…=f ()x n x n−1,,,⋯,x 1x 2x 3x 20202020+++…++=x 1x 2x 3x 2019x 202016422:3−30 3.5,−32−1⋯⋯⋯(4−2xy +)−2(−xy +5)x 2y 2x 2y 2x =−1,y =−.12(1)8+[4−3(+3m)]m 2m 2m 2m =−32(2)(x −2+|y +|=0)2122x −[5x −3(2x −1)−2x ]+1y 2y 2(3)(m −7x +2)−(4−x −1)+6x x 2x 2x m A −5B A B 21A 3(1)5C C (2)1B (3)(2)t t 2t <−|−2|14−30−(−2.5)25. 先化简,再求值:,其中,.26. 某公路检修队乘车从地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):,,,,,,,,,.问收工时,检修队在地哪边?距地多远?问从出发到收工时,汽车共行驶多少千米?在汽车行驶过程中,若每行驶千米耗油升,则检修队从地出发到回到地,汽车共耗油多少升?27. 先化简,再求值:-,其中=,=.28. 某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价元,乒乓球每盒定价元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的折优惠.该班需球拍副,乒乓球盒(不小于盒).问:(1)用代数式表示甲、乙两店购买所需的费用;(2)当需要盒乒乓球时,通过计算,说明此时去哪家购买较为合算;(3)当需要盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.A +2−8+5+7−8+6−7+12−4+6(1)A A (2)(3)10.25A A (2b +a )+a 2b 2(b −1)−2a −5a 2b 2a −8b 481295x 54040参考答案与试题解析2022-2023学年初中七年级上数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】正数和负数的识别【解析】根据相反意义的量的定义对各选项分析判断利用排除法求解.【解答】解:,下降的反义词是上升,但没有量,故本选项错误;,向北走和向西走不是互为相反意义的量,故本选项错误;,增产吨粮食与减产吨粮食是互为相反意义的量,故本选项错误;,羽毛球比赛胜场与负场是是互为相反意义的量,故本选项正确.故选.2.【答案】A【考点】科学记数法--表示较大的数【解析】无【解答】解:用科学计数法表示一个较大的数时,要写成的形式,其中,而亿,所以亿可以用科学计数法表示为.故选.3.【答案】D A B 15km 15km C 55D 33D a ×10n 1≤|a|<101=1081.44 1.44×108A绝对值相反数【解析】利用负数的运算,不等式的大小比较,相反数,绝对值,逐个判断即可.【解答】解:,,故选项正确;,∵,∴,故选项正确;,∵,∴,故选项正确;,∵,∴,故选项错误.故选.4.【答案】D【考点】单项式【解析】几个单项式的和叫多项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【解答】、是多项式,故错误;、是数字不是字母,系数为,故错误;、单独一个数字也是一个单项式,故错误;、的次数是.5.【答案】B【考点】合并同类项【解析】此题暂无解析A −(−2)=+2AB a −b <0b >a BC a =−b a +b =0CD |a|=|b|a =±b D D A x +y 2A B π−πB C C D −5b a 23此题暂无解答6.【答案】D【考点】近似数和有效数字【解析】根据近似数的精确度对各选项进行判断.【解答】解:、近似数精确到百分位,近似数精确到十分位,所以选项错误;、近似数精确到十位,近似数精确到百位,所以选项错误;、近似数千万精确度到千万位,近似数万精确万位,所以选项错误;、近似数和近似数都精确到十分位,所以选项正确.故选.7.【答案】B【考点】去括号与添括号【解析】根据去括号和添括号的法则分别对每一项进行分析即可得出答案.【解答】解:、,故本选项错误;、,故本选项正确;、,故本选项错误;、,故本选项错误;故选.8.【答案】C【考点】A 3.20 3.2AB 3.20×103 3.2×103BC 22000CD 32.0 3.2D D A a −(b +c)=a −b −c B a +b −c =a +(b −c)C a +(b +c)=a +b +c D a +b −c =a −(−b +c)B有理数大小比较数轴【解析】根据数轴上的点所表示的数即可解答【解答】解:∵,∴,,.故选.9.【答案】A【考点】列代数式【解析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得: .故选.10.【答案】A【考点】绝对值相反数有理数的概念【解析】分别对个说法进行判断,注意特殊值的运用.【解答】−3<a <−2<0<1<b <2b >a a <−b −a >b C (a −x)(b −x)=ab −ax −bx +x 2=ab −(a +b)x +x 2A 3解:①当时,表示正有理数,故错误;②表示非负数,故错误;③当时.和都不表示负有理数,故错误.综上可知没有一个说法正确.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】.【考点】比较大小【解析】此题暂无解析【解答】解:,,,.故答案为:.12.【答案】或【考点】数轴【解析】设这个数是,则这个是数与之间的距离就是,即可列方程求得的值.【解答】a <0−a |a |a =0a −a A c <a <b ∵a ===2−5551()25111132111b ===3−3331()33111127111c ===6−2221()62111136111∴c <a <b c <a <b 1+2–√1−2–√x 1|x −1|x |x −1|=–√解:设这个数是,则,解得或.故答案为:或.13.【答案】【考点】单项式单项式的系数与次数【解析】根据单项式的概念求解.【解答】解:∵是七次单项式,∴,∴.故答案为:.14.【答案】【考点】列代数式【解析】这人所需费用为起步价千米后的费用.【解答】解:这人乘坐千米,所需费用为元.故答案为:.15.【答案】【考点】同类项的概念x |x −1|=2–√x =1+2–√1−2–√1+2–√1−2–√5−23x 2y 2m−52+2m −5=7m =55[7+1.8(x −3)]+3x(x >3)[7+1.8(x −3)][7+1.8(x −3)]6【解析】此题暂无解析【解答】解:因为与是同类项,所以,所以.故答案为:.16.【答案】【考点】有理数的除法绝对值【解析】根据绝对值的性质,可化简绝对值,根据有理数的除法,可得答案.【解答】解:当,时,;当,时,;当,时,;当,时,.故答案为:.17.【答案】【考点】列代数式求值【解析】此题暂无解析【解答】2x 3y n −5x m y 2m =3,n =2mn =3×2=662,0,−2a >0b >0+=1+1=2a |a |b |b |a >0b <0+=1−1=0a|a |b |b |a <0b >0+=−1+1=0a |a |b |b |a <0b <0+=−1−1=−2a |a |b |b |2,0,−22024解:由,得到,则原式.故答案为:.18.【答案】【考点】规律型:数字的变化类【解析】此题暂无解析【解答】解:∵,∴, ,, ,…通过计算,,,,,,…,可知结果在,,间循环,每个数一周期.∵,.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 10 分 ,共计100分 )19.【答案】解:(页),(页).答:这本书共有页,还有页没看.【考点】有理数的混合运算【解析】此题暂无解析x −2y +3=0x −2y =−3=−2(x −2y)+2018=6+2018=202420244719=8x 1=f()=f(8)=×8=4x 2x 112=f()=f(4)=×4=2x 3x 212=f()=f(2)=×2=1x 4x 312=f()=f(1)=3×1+1=4x 5x 4=8x 1=4x 2=2x 3=1x 4=4x 5=2x 64213(2020−1)÷3=673+++…++x 1x 2x 3x 2019x 2020=8+673×(4+2+1)=4719471942÷(−)22+316=42÷730=180180−180×=10825180108【解答】解:(页),(页).答:这本书共有页,还有页没看.20.【答案】解:负有理数集合;整数集合;正数集合【考点】有理数的概念及分类【解析】【解答】解:负有理数集合;整数集合;正数集合21.【答案】解:.当时原式.【考点】整式的加减——化简求值合并同类项【解析】42÷(−)22+316=42÷730=180180−180×=10825180108{−3,−,−1,⋯}32{−3,0,−1,⋯}{3.5,⋯}{−3,−,−1,⋯}32{−3,0,−1,⋯}{3.5,⋯}(4−2xy +)−2(−xy +5)x 2y 2x 2y 2=4−2xy +−2+2xy −10x 2y 2x 2y 2=(4−2)+(−2xy +2xy)+(−10)x 2x 2y 2y 2=2−9x 2y 2x =−1,y =−12=2×(−1−9×(−)212)2=2−94=−14此题暂无解析【解答】解:.当时原式.22.【答案】解:原式,当时,原式;原式,∵,∴,,则原式;化简得,原式,∵代数式的结果与的取值无关,∴,∴.【考点】非负数的性质:偶次方非负数的性质:绝对值整式的加减——化简求值【解析】(1)原式去括号合并得到最简结果,把的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出与的值,代入计算即可求出值.【解答】解:原式,当时,原式;原式,∵,(4−2xy +)−2(−xy +5)x 2y 2x 2y 2=4−2xy +−2+2xy −10x 2y 2x 2y 2=(4−2)+(−2xy +2xy)+(−10)x 2x 2y 2y 2=2−9x 2y 2x =−1,y =−12=2×(−1−9×(−)212)2=2−94=−14(1)=8+4−3−9m =9−9mm 2m 2m 2m 2m =−32=+=8142721354(2)=2x −5x +6x −3+2x +1=4x +x −2y 2y 2y 2(x −2+|y +|=0)212x =2y =−12=2+2−2=2(3)=(m −4)+3x 2x m −4=0m =4m x y (1)=8+4−3−9m =9−9mm 2m 2m 2m 2m =−32=+=8142721354(2)=2x −5x +6x −3+2x +1=4x +x −2y 2y 2y 2(x −2+|y +|=0)212=−1∴,,则原式;化简得,原式,∵代数式的结果与的取值无关,∴,∴.23.【答案】或设点表示的数为,则到的距离为,点在点的右边,,根据题意,得,解得,即点表示的数为.存在,理由如下:①在丙与甲相遇前,根据题意,得,解得;②在丙与甲相遇后,根据题意,得,解得;综上所述,当秒或秒时,丙到乙的距离是丙到甲的距离的倍.【考点】数轴有理数的概念有理数的加法由实际问题抽象出一元一次方程解一元一次方程【解析】根据丙的运动速度与时间来计算相关线段的长度.设点表示的数为,则到的距离为,点在点的右边,根据时间差为秒列出方程并解答.此题需要分类讨论,分丙与甲相遇前和丙与甲相遇后.【解答】解:,.故答案为:或.设点表示的数为,则到的距离为,点在点的右边,,根据题意,得,解得,即点表示的数为.存在,理由如下:x =2y =−12=2+2−2=2(3)=(m −4)+3x 2x m −4=0m =410−20(2)B x B A |x +5|B A ∴|x +5|=x +5−=1x+53+1x+53+2x =15B 15(3)2(20−3t −2t)=20−3t −t t =1032×5(t −4)=20−3t −t t =307t =103t =3072(1)(2)B x B A |x +5|B A 1(3)(1)−5+3×5=10−5−3×5=−2010−20(2)B x B A |x +5|B A ∴|x +5|=x +5−=1x+53+1x+53+2x =15B 15(3)2(20−3t −2t)=20−3t −t①在丙与甲相遇前,根据题意,得,解得;②在丙与甲相遇后,根据题意,得,解得;综上所述,当秒或秒时,丙到乙的距离是丙到甲的距离的倍.24.【答案】解:,,即.【考点】在数轴上表示实数有理数大小比较【解析】此题暂无解析【解答】解:,,即.25.【答案】【考点】整式的加减——化简求值【解析】先去括号,再合并同类项,把值代入计算即可.【解答】解:2(20−3t −2t)=20−3t −t t =1032×5(t −4)=20−3t −t t =307t =103t =3072−|−2|=−2−(−2.5)=2.5−3<−|−2|<0<<−(−2.5)14−|−2|=−2−(−2.5)=2.5−3<−|−2|<0<<−(−2.5)14[加加]−2+y,−16x 22−3(3−2y)+5(−y)x 2x 2x 2=2−9+6y +5−5y222把代入,原式26.【答案】解:(千米).收工时,检修队在地南边,距地千米.(千米).答:从出发到收工时,汽车共行驶千米.(升),答:检修队从地出发到回到地,汽车共耗油升.【考点】正数和负数的识别有理数的加法绝对值有理数的混合运算【解析】本题考查正数与负数,有理数加法法则.先将记录数据相加,并计算出结果,再根据结果是正数则在南边,如果是负数由在北边进行研究判定即可.本题考查有理数的加法,绝对值.求出记录数据的绝对值的和即可.本题考查有理数混合运算.用汽车行驶的总路程乘以每千米的耗油量,计算即可.【解答】解:(千米).收工时,检修队在地南边,距地千米.(千米).答:从出发到收工时,汽车共行驶千米.(升),答:检修队从地出发到回到地,汽车共耗油升.27.【答案】=2−9+6y +5−5yx 2x 2x 2=−2+yx 2x =−3y =2=−2+y =−2×+2=−16x 2(−3)2(1)(+2)+(−8)+(+5)+(+7)+(−8)+(+6)+(−7)+(+12)+(−4)+(+6)=(2+5+7+6+12+6)+(−8−8−7−4)=(+38)+(−27)=+11∴A A 11(2)|+2|+|−8|+|+5|+|+7|+|−8|+|+6|+|−7|+|+12|+|−4|+|+6|=2+8+5+7+8+6+7+12+4+6=6565(3)(65+11)×0.25=76×0.25=19A A 19(1)(+2)+(−8)+(+5)+(+7)+(−8)+(+6)+(−7)+(+12)+(−4)+(+6)=(2+5+7+6+12+6)+(−8−8−7−4)=(+38)+(−27)=+11∴A A 11(2)|+2|+|−8|+|+5|+|+7|+|−8|+|+6|+|−7|+|+12|+|−4|+|+6|=2+8+5+7+8+6+7+12+4+6=6565(3)(65+11)×0.25=76×0.25=19A A 19原式=-=-.当=,=时,原式=-()=-=.【考点】整式的加减——化简求值【解析】此题暂无解析【解答】此题暂无解答28.【答案】甲店购买需付款=元;乙店购买需付款=元;当=时,甲店需=元;乙店需=元;所以乙店购买合算;先甲店购买副球拍,送盒乒乓球元,另外盒乒乓球再乙店购买需元,共需元.【考点】列代数式列代数式求值【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把=代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买副球拍,送盒乒乓球,另外盒乒乓球再乙店购买即可.【解答】甲店购买需付款=元;乙店购买需付款=元;当=时,b−a 2a +b 4b−a 6−2a −5b 2a −b 2a −8b ×(−5)×−8−148×5+(x −5)×12(12x +180)48×90%×5+12×90%×x (10.8x +216)x 4012×40+18066010.8×40+2166485524035378618x 40553548×5+(x −5)×12(12x +180)48×90%×5+12×90%×x (10.8x +216)x 40甲店需=元;乙店需=元;所以乙店购买合算;先甲店购买副球拍,送盒乒乓球元,另外盒乒乓球再乙店购买需元,共需元.12×40+18066010.8×40+2166485524035378618。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上学期期中数学试卷(I)卷新版
一、精心选一选 (共10题;共20分)
1. (2分)在|﹣2|,0,1,﹣1这四个数中,最大的数是()
A . |﹣2|
B . 0
C . 1
D . ﹣1
2. (2分)-6的相反数是()
A . -6
B . 6
C .
D .
3. (2分)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()
A . 6
B . 5
C . 4
D . 3
4. (2分)给出四个数0,﹣,﹣,,其中为无理数的是()
A . 0
B . ﹣
C . ﹣
D .
5. (2分)(2017·青岛模拟) 下列命题中错误的是()
A . ﹣2017的绝对值是2017
B . 3的平方根是
C . ﹣的倒数是﹣
D . 0的相反数是0
6. (2分)数轴上到原点的距离等于1的点所表示的数是()
A . ±1
B . 0
C . 1
D . -1
7. (2分)计算正确的是()
A . (﹣5)0=0
B . x3+x4=x7
C . (﹣a2b3)2=﹣a4b6
D . 2a2•a﹣1=2a
8. (2分)在(-2)2 , (-2),+(−) , -|-2|这四个数中,负数的个数是()
A . 1个
B . 2个
C . 3个
D . 4个
9. (2分)下列说法不正确的是()
A . ±0.3是0.09的平方根,即±=±0.3
B . 存在立方根和平方根相等的数
C . 正数的两个平方根的积为负数
D . 的平方根是±8
10. (2分)当x=-2时,代数式3x+2x2-1与代数式x2-3x的差是()
A . -9
B . 0
C . 1
D . -3
二、细心填一填 (共8题;共11分)
11. (4分) (2018七上·蔡甸月考) 所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:
-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101
正数集合:{ ________ …};
负数集合:{________…};
分数集合:{________ …};
非负数集合:{________…}.
12. (1分) (2018七上·滨海月考) 3的相反数为________.
13. (1分)中国的陆地面积约为9 600 000km2 ,把9 600 000用科学记数法表示为________ .
14. (1分) (2016七上·莘县期末) 一个多项式减去7a2﹣3ab﹣2等于5a2+3,则这个多项式是________.
15. (1分)比较大小:-________-(用“>或=或<”填空).
16. (1分) (2016七上·丹徒期中) 如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为________.
17. (1分) (2017八上·罗庄期末) 若x2﹣mx+4是完全平方式,则m=________.
18. (1分) (2017七上·深圳期中) 已知P是数轴上的一个点,它到原点的距离是4个单位,则P点表示的数是________.
三、耐心答一答 (共6题;共39分)
19. (1分)给出下列关于的判断:① 是无理数;② 是实数;③ 是2的算术平方根;④1<<2.其中正确的是________(请填序号).
20. (10分)(2016·成都) 计算:
(1)
(﹣2)3+ ﹣2sin30°+(2016﹣π)0
(2)
已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.
21. (5分)(2018·台湾) 嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1 ,R2 , R3 ,其行经位置如图与表所示:
路径编号图例行径位置
第一条路径R1_A→C→D→B
第二条路径R2…A→E→D→F→B
第三条路径R3▂A→G→B 已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.
22. (5分) (2016七上·赣州期中) 某同学做数学题:已知两个多项式A,B,其中B=5x2﹣3x+6,他在求A﹣B时,把A﹣B错看成了A+B,求得的结果为8x2+2x+1.请你帮助这位同学求出A﹣B的正确结果.
23. (11分) (2017七下·杭州期中) 如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长.
(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.
(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为________.
24. (7分) (2017七上·洱源期中) 某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:
时间(h)057x
由上面表格中的数据,解决下列问题:
(1)甲车开出7小时时的位置为________km,流动加油车出发位置为________km;
(2)当两车同时开出x小时时,甲车位置为________km,流动加油车位置为________km (用x的代数式表示);
(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.
参考答案
一、精心选一选 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、细心填一填 (共8题;共11分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、耐心答一答 (共6题;共39分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略。