8组合变形
合集下载
8组合变形2
max M y max 6 M z max 6 M y max max 2 Wz Wy bh bh2
3)危险点位置 最大拉应力位于固定端截面上 边缘和后边缘的交点d,即梁的危 险截面是固定端截面,危险点为 截面的d角点。
6 1.5 106 6 1.2 106 MPa MPa 8.8 MPa 2 2 100 150 150 100
max max
2
△
最大切应力和最大正应力为
max T
Wp
max
M max Wz
A
3、强度准则 d A截面上、下边缘点有最大正应力和 B 切应力,是危险点。其应力状态如图。 D 塑性材料在弯、扭组合变形的二向应 l F 力状态下,应用第三、第四强度理论的强 M'=FD/2度准则进行强度计算。其强度准则为:
2.斜弯曲强度准则:
max
本课节小结
三、拉 (压)与弯曲组合变形 1.拉弯组合 外力不沿梁的横向(斜交于轴线),但力作用线 仍在纵向对称平面内,梁将发生拉 (压)与弯曲组合变形。
2.拉弯组合强度设计准则为:
max
M z max M y max [ ] Wz Wy
FN M max [ ] A Wz
F‘=F
xd 3 2 4 2 [ ]
xd 4 2 3 2 [ ]
T
M
M'
Fl
x
x
将弯曲正应力 max = M max/ W z 和扭转 切应力 max =T/WP代入上式,用圆截面 Wz 代替 WP , WP=2Wz ,即得到圆轴的弯 、扭组合时的强度准则为
Mz y M y z k z y Iz Iy 2.斜弯曲的强度计算
3)危险点位置 最大拉应力位于固定端截面上 边缘和后边缘的交点d,即梁的危 险截面是固定端截面,危险点为 截面的d角点。
6 1.5 106 6 1.2 106 MPa MPa 8.8 MPa 2 2 100 150 150 100
max max
2
△
最大切应力和最大正应力为
max T
Wp
max
M max Wz
A
3、强度准则 d A截面上、下边缘点有最大正应力和 B 切应力,是危险点。其应力状态如图。 D 塑性材料在弯、扭组合变形的二向应 l F 力状态下,应用第三、第四强度理论的强 M'=FD/2度准则进行强度计算。其强度准则为:
2.斜弯曲强度准则:
max
本课节小结
三、拉 (压)与弯曲组合变形 1.拉弯组合 外力不沿梁的横向(斜交于轴线),但力作用线 仍在纵向对称平面内,梁将发生拉 (压)与弯曲组合变形。
2.拉弯组合强度设计准则为:
max
M z max M y max [ ] Wz Wy
FN M max [ ] A Wz
F‘=F
xd 3 2 4 2 [ ]
xd 4 2 3 2 [ ]
T
M
M'
Fl
x
x
将弯曲正应力 max = M max/ W z 和扭转 切应力 max =T/WP代入上式,用圆截面 Wz 代替 WP , WP=2Wz ,即得到圆轴的弯 、扭组合时的强度准则为
Mz y M y z k z y Iz Iy 2.斜弯曲的强度计算
第8章 组合变形(土木)
F F
350
F
350
M
FN
y1
A 15000 mm 2 z0 75mm z1 125 mm
I y 5.31 10 7 mm 4
y
z0
z1
150 50 150
(2)立柱横截面的内力 50 FN F M F 350 75 10 3
425 F 10 3 N.m
危险点在1,2点。
max
b 9cm
h 2b 18cm
屋 顶 桁 架 结 构 的 简 化
例: 图示悬臂梁由25b工字钢制成,弹性模量 E=200GPa。荷载和几何尺寸如图所示,试求: (1) 求梁上C点的应力;
(2) 求梁内最大拉应力和最大压应力。 q q=5kN/m
C C P=2kN y
t .max 667 F t
t 30 106 F
667 667
45000 N
c.max 934F c
t .max
c.max
c 120 106 F
934 934
128500 N
许可压力为 45000N 45kN F
FN
c. max
Mz1 FN Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
F
350
t .max 667 F c.max 934 F
M
FN
(4)求压力F
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从虎克定律;
2. 必须是小变形,保证能按构件初始形状或尺寸进行分解与叠 加计算,且能保证与加载次序无关. 图示纵横弯曲问题,横截面上内 力为
350
F
350
M
FN
y1
A 15000 mm 2 z0 75mm z1 125 mm
I y 5.31 10 7 mm 4
y
z0
z1
150 50 150
(2)立柱横截面的内力 50 FN F M F 350 75 10 3
425 F 10 3 N.m
危险点在1,2点。
max
b 9cm
h 2b 18cm
屋 顶 桁 架 结 构 的 简 化
例: 图示悬臂梁由25b工字钢制成,弹性模量 E=200GPa。荷载和几何尺寸如图所示,试求: (1) 求梁上C点的应力;
(2) 求梁内最大拉应力和最大压应力。 q q=5kN/m
C C P=2kN y
t .max 667 F t
t 30 106 F
667 667
45000 N
c.max 934F c
t .max
c.max
c 120 106 F
934 934
128500 N
许可压力为 45000N 45kN F
FN
c. max
Mz1 FN Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
F
350
t .max 667 F c.max 934 F
M
FN
(4)求压力F
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从虎克定律;
2. 必须是小变形,保证能按构件初始形状或尺寸进行分解与叠 加计算,且能保证与加载次序无关. 图示纵横弯曲问题,横截面上内 力为
《材料力学》课程讲解课件第八章组合变形
强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
材料力学第八章组合变形
例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学课件第8章组合变形zym
§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4
材料力学- 8组合变形
l/2 l/2
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
材料力学——8组合变形
A
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK
9
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [
则
FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [
则
FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m
《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
材料力学第8章组合变形
MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W
工程力学-第8章组合变形
斜弯曲也称为双向平面弯曲。 一、强度计算:
外力分解: Py Pcos
内力计算: Pz Psin
MzPyxPcosxMco;s MyPzxPsinxMsin;
应力计算:
返. 回 下一张 上一张 小结
最大应力:
ma x M Izzym ax M Iyyzma x M W zzM Iyy;
强度条件:
m axM Wzz
返. 回 下一张 上一张 小结
二、计算: 以挡土墙为例。
自重作用使任意截面产生轴向
压力N(x);对应各点产生压应力:
N(x);
N
A
土压力作用使截面产生弯矩
M(x);对应点产生正应力:
M(x)y;
M
Iz
X截面任意点应力:
k
N(x)M(x)y;
A
Iz
ma x N(x)M(x);
min
A
W z
挡土墙底部截面轴力和弯矩最大,
返. 回 下一张 上一张 小结
3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合
二、计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影
响,则可依据叠加原理计算。
1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。
设计 W z : M [m ]a x12c0 m 3;
查表 1号 6选工字 W z 钢 14 c, 1 m 3,A2,6 1 cm 2;
校核 m a | xN A : M W m z | a1 x .4 0 M 0 1 P 0 0 0 a [] 5;
因此,可选16号工字钢。
建筑力学第8章组合变形
• ■一、内力计算
• 根据前面所学的力的平移定理,可将偏心力P向截面形心简化,得到 一个轴向压力P和一个力偶矩M=P·e的力偶[图8-7(b)]。
• 在承受偏心压力的直杆中,各横截面上的内力相等,由截面法可求得 内力
下一页 返回
第四节 偏心压缩(拉伸)
• FN=P • M=P·e • 可见,偏心压缩是轴向压缩和平面弯曲的组合。
• 将两种荷载作用下的横截面正应力进行叠加得 • σ=FN/A±M·y/Iz • 强度条件为σmaxmin=FA±Mmax/Wz≤[σ]maxmin
返回
第四节 偏心压缩(拉伸)
• 作用在直杆上的外力作用线与杆轴平行而不重合,有一偏心距,此时 杆件就受到偏心压缩(拉伸)。如图8-7(a)中柱子受到上部结 构传来的荷载P,其作用线与柱轴线间的距离为e,柱子就产生了偏 心压缩变形。此处的P叫作偏心力,e叫作偏心距。
• ■二、应力计算和强度条件
• 在横截面上任取一点 • K,其应力是轴向压缩应力σN和弯曲应力σMz的叠加。 • σN=-P/A • σMz=±Mz·y/Iz
上一页 下一页 返回
第四节 偏心压缩(拉伸)
• K点的总应力为 • σK=σN+σMz=-P/A±Mz·y/Iz(8-3) • 式中,σMz的正负号可由K点所在的变形区域判定:当K点处于受拉
第八章 组合变形
• 第一节 组合变形的概念 • 第二节 斜弯曲 • 第三节 轴向拉(压)和弯曲 • 第四节 偏心压缩(拉伸)
返回
第一节 组合变形的概念
• 前面各章已经讨论了杆件在各种基本变形时的强度和刚度问题。实际 工程中杆件的受力情况较复杂,所引起的变形不是单一的基本变形, 而是几种基本变形的组合。如图8-1(a)所示的烟囱,在承受自 身重力发生轴向压缩变形的同时,又因承受风荷载而引起弯曲变形; 如图8-1(b)所示的厂房牛腿柱,所受吊车梁的压力与柱的轴线 不重合,即受到偏心压力作用,使支柱产生压缩和弯曲两种基本变形 。
• 根据前面所学的力的平移定理,可将偏心力P向截面形心简化,得到 一个轴向压力P和一个力偶矩M=P·e的力偶[图8-7(b)]。
• 在承受偏心压力的直杆中,各横截面上的内力相等,由截面法可求得 内力
下一页 返回
第四节 偏心压缩(拉伸)
• FN=P • M=P·e • 可见,偏心压缩是轴向压缩和平面弯曲的组合。
• 将两种荷载作用下的横截面正应力进行叠加得 • σ=FN/A±M·y/Iz • 强度条件为σmaxmin=FA±Mmax/Wz≤[σ]maxmin
返回
第四节 偏心压缩(拉伸)
• 作用在直杆上的外力作用线与杆轴平行而不重合,有一偏心距,此时 杆件就受到偏心压缩(拉伸)。如图8-7(a)中柱子受到上部结 构传来的荷载P,其作用线与柱轴线间的距离为e,柱子就产生了偏 心压缩变形。此处的P叫作偏心力,e叫作偏心距。
• ■二、应力计算和强度条件
• 在横截面上任取一点 • K,其应力是轴向压缩应力σN和弯曲应力σMz的叠加。 • σN=-P/A • σMz=±Mz·y/Iz
上一页 下一页 返回
第四节 偏心压缩(拉伸)
• K点的总应力为 • σK=σN+σMz=-P/A±Mz·y/Iz(8-3) • 式中,σMz的正负号可由K点所在的变形区域判定:当K点处于受拉
第八章 组合变形
• 第一节 组合变形的概念 • 第二节 斜弯曲 • 第三节 轴向拉(压)和弯曲 • 第四节 偏心压缩(拉伸)
返回
第一节 组合变形的概念
• 前面各章已经讨论了杆件在各种基本变形时的强度和刚度问题。实际 工程中杆件的受力情况较复杂,所引起的变形不是单一的基本变形, 而是几种基本变形的组合。如图8-1(a)所示的烟囱,在承受自 身重力发生轴向压缩变形的同时,又因承受风荷载而引起弯曲变形; 如图8-1(b)所示的厂房牛腿柱,所受吊车梁的压力与柱的轴线 不重合,即受到偏心压力作用,使支柱产生压缩和弯曲两种基本变形 。
材料力学第八章-组合变形
12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
工程力学8组合变形
最大拉应力 最大压应力
σt max
P 425×7.5P = + MPa 15 5310
P 425×12.5P = − MPa 15 5310
′ σcmax = σ′ +σc′max
由抗拉强度条件
σt max ≤ [σt ] = 30 MPa
由抗压强度条件
P ≤ 45.1 kN P ≤171.3 kN
A =15×10 m , zo = 7.5 cm , 4 I y = 5310 cm
2
−3
求内力(作用于截面形心 求内力 作用于截面形心) 作用于截面形心
10
几何参数
A =15×10 m , zo = 7.5 cm , 4 I y = 5310 cm
2
−3
求内力(作用于截面形心 求内力 作用于截面形心) 作用于截面形心 取研究对象如图
23
i
2 z
+
i
2 y
= −1
当压力作用点在直线 上移动时 当压力作用点在直线pq上移动时,C点的应力保 直线 上移动时, 点的应力保 持为零。 持为零。 中性轴通过C点,但方位不断变化。 中性轴通过 点 但方位不断变化。 截面核心的确定 截面核心的确定 设AE为中性轴 为 中性轴的截距为a 中性轴的截距为 y, az, 由:
b h 2 i = , iz = 12 12
2 y
2
2
设AB为中性轴 为中性轴
a点坐标 点坐标
h AB直线的截距为: ay = − , az = ∞ 直线的截距为: 直线的截距为 2 2 2 iy iz h 由:ya = − , z = − ya = , za = 0 a ay az 6
26
材料力学第8章 组合变形
b.未通过轴线或形心主惯性轴,向其分解
注意:荷载分解、简化的前提是不改变研究段的内力。
(2)内力分析方法
用截面法计算任意截面的内力,通过内力确定变形的组成
z
Fsz My
Ty
Fsy
M z FN
FN
T
x M z , Fsy M y , Fsz
轴向拉、压 扭转 x,y面内的平面弯曲 x,z面内的平面弯曲
§8-2 两相互垂直平面内的弯曲
F sin
F cos F
(2)求B点的应力
MB FN
WA
12.32103 25103
0.1 0.22
0.1 0.2
6
B
17.23 MPa
(3)求B点30º斜截面上的正应力
300 cos2 30 17.23 cos2 30 12.99 MPa
(4)求B点的主应力
1 0 2 0 3 17.23 MPa
z
面梁,其横截面都有两个相互垂直的对称 轴,且截面的周边具有棱角,故横截面上
Mz
的最大正应力发生在截面的棱角处。于是
,可根据梁的变形情况,直接确定截面上
My
最大拉、压应力点的位置,而无需定出其
y
中性轴。
因危险点为单向应力状态(忽略弯曲切应力的影响), 故,强度条件为:
max
M y max Wy
F sin
12.32kN m
F cos F
例: 如图示一矩形截面折杆,已知F=50kN,尺寸如图所示, α=30°。(1)求B点横截面上的应力;(2)求B点α=30°截
面上的正应力;(3)求B点的主应力σ1、 σ2、 σ3。
FN
B
MB 100mm
材料力学-第八章组合变形
M z y M y sin
Iz
Iz
x
M y z M z cos
Iy
Iy
x
y
z
y
z
M
y sin
z
cos
对于圆形截面
因为过形心的任意轴均为截面的对称轴,所以当横 截面上同时作用两个弯矩时,可以将弯矩用矢量表示, 然后求二者的矢量和。于是,斜弯曲圆截面上的应力计 算公式为:
A
C
B
D
2 kN 5 kN
300 500
2 kN (a)
500
解:
1.5 kN Am
7 kN
C
1.5 kN m
B
D
(1)分析载荷 如图b所示
5 kN
12 kN (b)
T 1.5 kN m
(2)作内力图 x
如图c、d、e、f 所示
(c)
MC MD
1.5 kN Am
7 kN
C
1.5 kN m
B
FN A
F (2a)2
1 4
F a2
(2)开槽后的正应力
My
FN F
My
Fa 2
FN
2
max
FN A
My Wy
F 2a2
Fa / 2 2a2 a2 /
6
2
F a2
2a
2a
z
a
所以:
2
1
8
y
§8.3 斜弯曲
F1
材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 组合变形的强度分析
压弯组合变形
第8章 组合变形的强度分析
拉弯组合变形
第8章 组合变形的强度分析
弯扭组合变形
第8章 组合变形的强度分析
拉(压)弯曲组合变形 弯扭组合变形
8.1 拉(压)、弯组合变形
m
m
e
F
m
m
M FN
F
FN F
FN F N A A
B
+
B
N
A
A
F Fe A A W
A 2m
FAy M FAx
C 1m FC C
B F
A
B F
x
FN
12KN.m x
24KN
8.1 拉(压)、弯组合变形
例8-2 F=12kN, []=100MPa
解: FCy 18kN, FCx 24kN 危险截面为C截面 按弯曲强度条件可得: M 12 103 3 W 120cm 6 100 10
求:1)画出轴的受力简图 2)画出扭矩图与弯矩图 3)按第3强度理论校核 解: 1)受力简图如图 求约束力
FCy 17.5kN
y FAy A MB B FCy M 14kN D x FCz C D z y 400mm B A 10kN C 400mm
200mm
D
C
x
4kN
4kN
10kN
z FAz M 0: 0.8 F 14 1 0 z Cy
D 3
1 32
4
8.2 弯扭组合变形
计算简图
8.2 弯扭组合变形
例8-3:转轴如图所示。
y
80MPa,D 800mm,d 80mm。
300mm
150mm
5kN x
5kN
试用第三强度理论校核轴的强度。 解:转轴受力如图所示。 扭矩: T MC 10 5 0.4 2kN m
B F
8.2 弯扭组合变形
l
l MF=Fa
a F
F
8.2 弯扭组合变形
y
l
MF
z
x
MF=Fa
F
T MF
F
x
M x
Fl
8.2 弯扭组合变形
y y
危险截面
MF x
T M
z
F
T MF
x
πD3 Wz 32
M Wz
T
WP
M x
πD3 WP 16
Fl
WP 2Wz
8.2 弯扭组合变形
F Fa/4 \m
解:(1)
FN M F Fa 4 2 A W a a a a 2 2 6 (2)
8F a 2 4F a 2
2
F
a
a/2 a/2
FN F 0 2 A a
8F a 8 2 0 F a
8.1 拉(压)、弯组合变形
例8-2 图示起重机的最大吊重F=12kN,许用应力 []=100MPa ,试为横梁AB选择合适的工字钢。
解:根据横梁AB的受力图, 由平衡方程可得:
1.5m
M A ( F ) 0 : FCy 18kN, FCx 24kN
作弯矩图和轴力图,危险截面 为C截面。 注意:求工字钢截面几何尺 寸时,因为A、W不可能同时 获得,所以不能同时考虑弯 矩与轴力条件,可先按弯曲 强度条件试算,再按弯压组 合进行强度校核。
M0
A B
C
z
y FAy
10kN
FBy
MC
弯矩:M z、M y 分别如图所示
M zB 0.75kN m
M yB 2.25kN m
M0 FAz A z
T Mz My
x
FBz
B
5kN 15kN
2kN· m
MB
2 M zB
2 M yB
0.75kN•m
2.37kN m
2.25kN•m
M0 FAz A z
T Mz My
x
FBz
B
5kN 15kN
2kN· m
M 2 T 2 106 r3 23702 20002 W 50.24 61.72MPa 80MPa
0.75kN•m
转轴安全
2.25kN•m
8.2 弯扭组合变形
例8-4:转轴如图,两皮带轮 的直径D=500mm,轴的直径 d=80mm,[σ]=80MPa
8.2 弯扭组合变形
例8-3:转轴如图所示。
y
80MPa,D 800mm,d 80mm。
300mm
150mm
5kN x
5kN
试用第三强度理论校核轴的强度。 解:
M0
A B
C
T 2kN m
M B 2.37kN m
z
y FAy
10kN
FBy
MC
3 3.14 π D W 0.083 50.24cm3 32 32
y MF y
x
M
Mn
z
F
r3 2 4 2
M W z
2
T 4 W P
2
πD3 Wz 32
M 2 T 2 Wz
M Wz
T
WP
πD3 WP 16
r4 2 3 2
14kN
M
y
0:14 0.4 0.8FCz 0
FCz 7kN
8.2 弯扭组合变形
D=500mm,d=80mm, [σ]=80MPa
ቤተ መጻሕፍቲ ባይዱ
FCy 17.5kN, FCz 7kN
解:2)扭矩图与弯矩图 危险截面为B截面
MB M M
2 zB 2 yB
y
FAy
MB
B
FCy M 14kN D x
x
1.4kN•m
2.8kN•m
拉伸(压缩)+弯曲
拉伸(压缩)
弯
曲
弯曲+扭转
Mz
扭转
M T
My
FN
M
单向应力状态
复杂应力状态
强度理论 强度条件
max
r
1.5m A 2m
FAy FAx
C 1m FC C
B F
A
M 查型钢表,可选用16号钢 注意:求工字钢截面几何尺 x 3 2 W 141cm ,W A 26.1cm 寸时,因为 A、 不可能同时 12KN.m FN 获得,所以不能同时考虑弯 按弯压组合强度条件,可知 C截面下边缘 x 矩与轴力条件,可先按弯曲 各点压应力最大: 24KN 强度条件试算,再按弯压组 FN M max C max 94.3MPa 合进行强度校核。 A W 说明所选工字钢合适。
z
2 2
A FAz
FCz C
D
2.8 1.4
14kN
T 1.5kN•m
TB (10 4)
r3
3)强度校核
D 1.5kN m 2
3.13kN m
x
My A
B
C
D
x
2.8kN•m
1 2 MB TB2 Mz W 32 2 2 3130 1500 d3 69.9MPa < [ ] 转轴安全
WP 2Wz
M 2 0.75T 2 Wz
8.2 弯扭组合变形
塑性材料的圆截面轴弯扭组合变形
1 2 2 M T [ ] 第三强度理论: r 3 W 1 2 2 M 0 . 75 T [ ] 第四强度理论: r 4 W
W
d
3
32
W
M Fe M Fe M W W
B
M
A
F Fe A W
=
B
max
max
N M
8.1 拉(压)、弯组合变形
例8-1 具有切槽的正方形木杆,受力如图。求: (1)m-m截面上的最大拉应力σ+和最大压应力 σ-; \m (2)此σ+是截面削弱前的σ+值的几倍?
压弯组合变形
第8章 组合变形的强度分析
拉弯组合变形
第8章 组合变形的强度分析
弯扭组合变形
第8章 组合变形的强度分析
拉(压)弯曲组合变形 弯扭组合变形
8.1 拉(压)、弯组合变形
m
m
e
F
m
m
M FN
F
FN F
FN F N A A
B
+
B
N
A
A
F Fe A A W
A 2m
FAy M FAx
C 1m FC C
B F
A
B F
x
FN
12KN.m x
24KN
8.1 拉(压)、弯组合变形
例8-2 F=12kN, []=100MPa
解: FCy 18kN, FCx 24kN 危险截面为C截面 按弯曲强度条件可得: M 12 103 3 W 120cm 6 100 10
求:1)画出轴的受力简图 2)画出扭矩图与弯矩图 3)按第3强度理论校核 解: 1)受力简图如图 求约束力
FCy 17.5kN
y FAy A MB B FCy M 14kN D x FCz C D z y 400mm B A 10kN C 400mm
200mm
D
C
x
4kN
4kN
10kN
z FAz M 0: 0.8 F 14 1 0 z Cy
D 3
1 32
4
8.2 弯扭组合变形
计算简图
8.2 弯扭组合变形
例8-3:转轴如图所示。
y
80MPa,D 800mm,d 80mm。
300mm
150mm
5kN x
5kN
试用第三强度理论校核轴的强度。 解:转轴受力如图所示。 扭矩: T MC 10 5 0.4 2kN m
B F
8.2 弯扭组合变形
l
l MF=Fa
a F
F
8.2 弯扭组合变形
y
l
MF
z
x
MF=Fa
F
T MF
F
x
M x
Fl
8.2 弯扭组合变形
y y
危险截面
MF x
T M
z
F
T MF
x
πD3 Wz 32
M Wz
T
WP
M x
πD3 WP 16
Fl
WP 2Wz
8.2 弯扭组合变形
F Fa/4 \m
解:(1)
FN M F Fa 4 2 A W a a a a 2 2 6 (2)
8F a 2 4F a 2
2
F
a
a/2 a/2
FN F 0 2 A a
8F a 8 2 0 F a
8.1 拉(压)、弯组合变形
例8-2 图示起重机的最大吊重F=12kN,许用应力 []=100MPa ,试为横梁AB选择合适的工字钢。
解:根据横梁AB的受力图, 由平衡方程可得:
1.5m
M A ( F ) 0 : FCy 18kN, FCx 24kN
作弯矩图和轴力图,危险截面 为C截面。 注意:求工字钢截面几何尺 寸时,因为A、W不可能同时 获得,所以不能同时考虑弯 矩与轴力条件,可先按弯曲 强度条件试算,再按弯压组 合进行强度校核。
M0
A B
C
z
y FAy
10kN
FBy
MC
弯矩:M z、M y 分别如图所示
M zB 0.75kN m
M yB 2.25kN m
M0 FAz A z
T Mz My
x
FBz
B
5kN 15kN
2kN· m
MB
2 M zB
2 M yB
0.75kN•m
2.37kN m
2.25kN•m
M0 FAz A z
T Mz My
x
FBz
B
5kN 15kN
2kN· m
M 2 T 2 106 r3 23702 20002 W 50.24 61.72MPa 80MPa
0.75kN•m
转轴安全
2.25kN•m
8.2 弯扭组合变形
例8-4:转轴如图,两皮带轮 的直径D=500mm,轴的直径 d=80mm,[σ]=80MPa
8.2 弯扭组合变形
例8-3:转轴如图所示。
y
80MPa,D 800mm,d 80mm。
300mm
150mm
5kN x
5kN
试用第三强度理论校核轴的强度。 解:
M0
A B
C
T 2kN m
M B 2.37kN m
z
y FAy
10kN
FBy
MC
3 3.14 π D W 0.083 50.24cm3 32 32
y MF y
x
M
Mn
z
F
r3 2 4 2
M W z
2
T 4 W P
2
πD3 Wz 32
M 2 T 2 Wz
M Wz
T
WP
πD3 WP 16
r4 2 3 2
14kN
M
y
0:14 0.4 0.8FCz 0
FCz 7kN
8.2 弯扭组合变形
D=500mm,d=80mm, [σ]=80MPa
ቤተ መጻሕፍቲ ባይዱ
FCy 17.5kN, FCz 7kN
解:2)扭矩图与弯矩图 危险截面为B截面
MB M M
2 zB 2 yB
y
FAy
MB
B
FCy M 14kN D x
x
1.4kN•m
2.8kN•m
拉伸(压缩)+弯曲
拉伸(压缩)
弯
曲
弯曲+扭转
Mz
扭转
M T
My
FN
M
单向应力状态
复杂应力状态
强度理论 强度条件
max
r
1.5m A 2m
FAy FAx
C 1m FC C
B F
A
M 查型钢表,可选用16号钢 注意:求工字钢截面几何尺 x 3 2 W 141cm ,W A 26.1cm 寸时,因为 A、 不可能同时 12KN.m FN 获得,所以不能同时考虑弯 按弯压组合强度条件,可知 C截面下边缘 x 矩与轴力条件,可先按弯曲 各点压应力最大: 24KN 强度条件试算,再按弯压组 FN M max C max 94.3MPa 合进行强度校核。 A W 说明所选工字钢合适。
z
2 2
A FAz
FCz C
D
2.8 1.4
14kN
T 1.5kN•m
TB (10 4)
r3
3)强度校核
D 1.5kN m 2
3.13kN m
x
My A
B
C
D
x
2.8kN•m
1 2 MB TB2 Mz W 32 2 2 3130 1500 d3 69.9MPa < [ ] 转轴安全
WP 2Wz
M 2 0.75T 2 Wz
8.2 弯扭组合变形
塑性材料的圆截面轴弯扭组合变形
1 2 2 M T [ ] 第三强度理论: r 3 W 1 2 2 M 0 . 75 T [ ] 第四强度理论: r 4 W
W
d
3
32
W
M Fe M Fe M W W
B
M
A
F Fe A W
=
B
max
max
N M
8.1 拉(压)、弯组合变形
例8-1 具有切槽的正方形木杆,受力如图。求: (1)m-m截面上的最大拉应力σ+和最大压应力 σ-; \m (2)此σ+是截面削弱前的σ+值的几倍?