(完整版)六年级5.4组合图形的周长与面积练习题
六年级数学组合图形的面积试题答案及解析
六年级数学组合图形的面积试题答案及解析1.我们开始提到的“乡村小屋”的面积是多少?【答案】18【解析】图形内部格点数;图形边界上的格点数;根据毕克定理,则(单位面积).2.两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为,右下角的阴影部分(线状)面积为,求大正方形的面积.【答案】19【解析】块状部分与线状部分之间的部分称为D,则D与前者共14个方格,与后者共17个方格,因此每个方格的面积是大正方形的面积为.3.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.4.如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.5.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少?【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.6.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.7.右图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).8.如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.9.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.10.如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).11.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.12.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.13.如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).14.已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.15.如下图,长方形和长方形拼成了长方形,长方形的长是20,宽是12,则它内部阴影部分的面积是多少.【答案】120【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为.16.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【答案】13.5【解析】解法一:寻找可利用的条件,连接、,如下图:可得:、、,而即;而,.所以阴影部分的面积是:解法二:特殊点法.找的特殊点,把点与点重合,那么图形就可变成右图:这样阴影部分的面积就是的面积,根据鸟头定理,则有:.17.在长方形内部有一点,形成等腰的面积为16,等腰的面积占长方形面积的,那么阴影的面积是多少?【答案】3.5【解析】先算出长方形面积,再用其一半减去的面积(长方形面积的),再减去的面积,即可求出的面积.根据模型可知,所以,又与的面积相等,它们的面积和等于长方形面积的一半,所以的面积等于长方形面积的,所以.18.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分的面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.19.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.20.如图,长方形的面积是36,是的三等分点,,求阴影部分的面积.【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.。
《组合图形的面积》练习题(含答案)
组合图形的面积
测试题
1、下面的图形是由两个三角形组成的,请画出这两个三角形。
A
B D
C
2、已知平行四边形的面积是48平方分米,求阴影部分的面积。
3dm
8dm
3、求下面个图形的面积、(单位:分米)
(1)(2) 14 8
6 6
12
3 6
12
(3)(4) 8
4 6
3
4、如图所示,梯形的周长是52厘米,求阴影部分的面积。
16
5、校园里有一块花圃,(如图所示),算出它的面积。
(单位:米)
6 2
2
5
6、大小正方形如图放置,阴影部分为重叠部分,求空白部分面积。
(单位:厘米)
22
7、有一块土地如图所示,你能用几种方法求出它的面积(单位:米)
12
15
8
22
7、如图所示,一个平行四边形背分成A、B两被封,A的面积比B的面积打40平方米,A的上底是多少
B
A
8米
【参考答案】。
六年级下册数学总复习试题-组合图形的面积专项练 (含答案)
组合图形的面积一、单项选择题1.如图中的阴影局部面积是〔〕平方厘米A. 144B. 72C. 18D. 无法确定2.如图中阴影局部的面积是〔〕平方厘米.〔单位:厘米〕A. 132B. 14.25C. 289D. 28.53.等腰梯形的一内角为45°,高等于上底,下底为9,那么梯形的面积为〔〕。
A. 27B. 18C. 36D. 244.图中阴影局部的面积是〔〕平方厘米.A. 24B. 28C. 325.下面三幅图的阴影局部的面积相比较,( )的面积大。
A. 图(1)大B. 图(2)大C. 图(3)大D. 同样大二、填空题6.求图中阴影局部的面积为________ (结果保存π).7.如图中三角形的面积是10平方厘米,图中圆的面积是________平方厘米.8.看图计算〔单位:厘米〕组合图形的面积是________平方厘米9.求以下列图形的面积是________dm2。
〔单位:dm〕10.图中正方形的面积是12平方厘米,圆的面积是________平方厘米.11.计算下面图形阴影局部的面积________.(单位:厘米)12.〔2021•长沙〕如图,两个正方形的边长分别是8厘米和4厘米,那么阴影局部的面积是________平方厘米.13.先求右面图形中涂色局部的面积,再求小正方形的面积.涂色面积________平方分米,小正方形面积________平方分米.14.看图计算〔单位:厘米〕平行四边形AFEB的面积S=________平方厘米平行四边形CFED的面积S=________平方厘米15.以下列图表示的是一间房子侧面墙的形状.它的面积是________平方米.16.求下面各图阴影局部的面积〔1〕________〔2〕________17.计算下面图形的面积________.(单位:厘米)18.有一条引水渠穿过了一块麦地,这块地的总面积是引水渠占去的面积的________倍?19.把一个长12厘米,宽8厘米的长方形纸片剪下一个最大的正方形,剩下局部的面积是________平方厘米.20.求阴影局部的面积.________平方厘米21.大正方形边长为8厘米,小正方形边长为4厘米,阴影局部的面积是________平方厘米。
六年级数学组合图形试题
六年级数学组合图形试题1.(6分)求如图阴影部分的面积和周长.(单位:厘米)【答案】周长是56.52厘米,面积是10.26平方厘米【解析】如图所示,阴影部分的周长=以6为半径的圆的周长+以6为直径的圆的周长,空白①的面积=空白②的面积=阴影③的面积=阴影④的面积,则阴影部分的面积=以6为半径的圆的面积﹣三角形的面积将数据分别代入等量关系即可求解.解:周长=3.14×6×2÷4+3.14×6=37.68+18.84=56.52(厘米)面积=3.14×62÷4﹣6×6÷2=28.26﹣18=10.26(平方厘米)答:阴影部分的周长是56.52厘米,面积是10.26平方厘米.点评:解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积的和或差求得,阴影部分的周长有哪几段弧组成.2.是长方形内一点,已知的面积是,的面积是,求的面积是多少?【答案】3【解析】由于是长方形,所以,而,所以,则,所以.3.如图,阴影部分四边形的外接图形是边长为的正方形,则阴影部分四边形的面积是.【答案】48【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.4.如图,阴影部分四边形的外接图形是边长为厘米的正方形,则阴影部分四边形的面积是多少平方厘米?【答案】68【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.5.已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.6.如图,四边形中,,,,已知四边形的面积等于4,则四边形的面积是多少?【答案】4/3【解析】运用三角形面积与底和高的关系解题.连接、、、,因为,,所以,在中,,在中,,在中,,在中,.因为,所以.又因为,所以.7.如右图,和都是矩形,的长是厘米,的长是厘米,那么图中阴影部分的面积是多少平方厘米?【答案】6【解析】图中阴影部分的面积等于长方形面积的一半,即(平方厘米).8.在四边形ABCD中,AC和BD互相垂直并相交于O点,四个小三角形的面积如图所示。
(完整版)六年级数学上册组合图形的周长和面积
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
六年级5.4组合图形的周长与面积练习题
六年级上册数学组合图形〔圆〕的周长和面积练习题一、根底训练:1.求阴影局部的面积(单位:厘米)。
2X2÷2-3.14x2x2÷42.正方形面积是16平方厘米,求阴影局部的面积。
16÷4=4(cm) 16-3.14x4x4÷43.求图中阴影局部的面积及周长。
〔单位cm〕面积:2x2-3.14x1x1=0.86〔平方厘米〕周长:3.14x1x1=3.14〔cm〕4.求阴影局部的面积及周长。
(单位:厘米)面积:4x4-3.14x〔4÷2〕x〔4÷2〕周长:4x2+3.14x45.求阴影局部的面积。
7.如图〔8〕,求阴影局部的面积。
(单位:厘米)8.如图〔9〕求阴影局部的面积。
(单位:厘米)S=〔2+1〕X2=6〔平方厘米〕9. 如图〔11〕求阴影局部的面积。
(单位:厘米)〖3.14x4x4-3.14x3x3〗÷610.在如图〔12〕是正三角形中求阴影局部的面积及周长。
(单位:厘米) 面积:3.14x3x3÷2 周长:3.14x3+3x612. 如图〔13〕求阴影局部的面积。
(单位:厘米)13.如图〔14〕求阴影局部的面积。
(单位:厘米)16.如右图〔33〕,求阴影局部的面积及周长。
(单位:厘米)二、能力提升:17.如右图〔19〕正方形边长为4厘米,求阴影局部的面积及周长。
18.如图〔20〕,正方形ABCD的面积是36平方厘米,求阴影局部的面积。
19.如图〔22〕,正方形边长为8厘米,求阴影局部的面积。
20.如图〔28〕求阴影局部的面积。
(单位:厘米)21.如图〔33〕求阴影局部的面积。
北师大版六年级上册数学圆的周长和面积组合图形计算
专题01 圆的周长和面积(组合图形)注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.所有题目必须在答题卡上作答,在试卷上作答无效。
3.考试结束后将试卷和答题卡一并交回。
一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。
(单位:厘米)2.如图中,大圆的半径等于小圆的直径。
请计算阴影部分的周长。
3.计算下面图形的周长与面积。
4.计算下边图形的周长和面积。
5.计算如图形阴影部分的周长和面积。
(单位:dm)6.求下面各图中阴影部分的周长和面积。
(1)(2)7.求阴影部分的周长。
(单位:)cm8.计算图中阴影部分的面积。
(单位:)cm9.求阴影部分的周长。
10.求如图阴影部分的周长(单位:厘米).11.求阴影部分的周长。
(大圆 4.5R =,小圆2r =,单位:)cm12.求图中形阴影部分的面积.(可以直接用π表示,也可以π取3.14)13.如图,求阴影部分的周长。
(π取3.14)14.计算右图的面积(单位:)dm 。
15.已知三角形的面积是29m,求圆的面积。
16.按要求计算下列各题。
(1)求图中图形的周长。
(2)求图中阴影部分的面积。
17.求阴影部分的面积:(单位:)cm18.求阴影部分的周长。
(单位:)cm19.求下列阴影部分的面积.20.求如图阴影部分面积。
(单位:厘米)专题01 圆的周长和面积(组合图形)答案解析一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。
(单位:厘米)【分析】根据题意,圆的直径为(4×3)厘米,阴影部分的周长等于圆的周长的一半加上5条4厘米长的线段之和,利用圆的周长公式:C=πd,代入数据即可求出阴影部分的周长;阴影部分的面积等于圆的面积的一半减去边长为4厘米的正方形面积,分别利用圆的面积和正方形的面积公式求出这两个图形的面积,再相减即可得解。
××÷+×【解答】3.14(43)245×÷+=3.1412220+=18.8420=38.84(厘米)2××÷÷−×3.14(432)244=2×÷−3.146216×÷−=3.1436216−=56.5216=40.52(平方厘米)即阴影部分的周长是38.84厘米,面积是40.52平方厘米。
六年级数学组合图形“面积周长”训练
六年级数学组合图形“面积周长”训练
对于数学这门学科,很多孩子还是觉得特别难的,先不说压轴题和应用题,就拿几何题来说,就是孩子们学习的一个重难点。
所有积累的知识都是在平常的学习过程中积累得来的,只有当量变发展到一定程度时才有可能产生质变。
因此,孩子们在平时的学习过程中,特别是刚接触这一学科时,一定要将它所包含的每一个概念、理论等熟练掌握,分清它们的用途,并且对其进行分类,从而为以后的学习打下基础。
鉴于此,下面是老师专门整理的小学六年级的组合图形面积+周长训练,非常的全面经典,建议为孩子打印一份,吃透了,考试名列前茅。
小学数学六年级暑假《组合图形面积计算》练习题(共十大题,有难度)
六年级数学计算组合图形面积练习题
班级考号姓名总分
1、求下列各图阴影部分的面积(单位:厘米)
2、计算下面图形的面积。
(单位:厘米)
3、计算下面图形中涂色部分的面积。
(单位:厘米)
4、求下面图形中涂色部分的面积。
(单位:厘米)
5、如下图示,AB=4厘米,求涂色部分的面积。
6、计算下图中涂色部分的面积。
(6分)
7、如下图,正方形的面积是2平方分米,求圆的面积。
8、下面两个圆中直角等腰三角形的面积都是5平方厘米,求圆的面积。
9. 计算下图中阴影部分的面积.
10. 求阴影部分的面积.图中圆与长方形面积相等,长方形长6.28米。
阴影部分面积多少平方米?。
组合图形的面积练习题
《组合图形的面积》练习题
一、填空
1.把两个边长分别为10cm,4cm,7cm的三角形,拼成一个平行四边形,共有()种拼法,其中周长最大的平行四边形的周长是()cm。
2. 形的面积公式是S=(a+b)h÷2,当上底与下底相等,即a=b时,梯形变成()形,这时面积S=()。
3. 一个直角三角形的三条边长分别是10厘米、8厘米、和6厘米,斜边上的高是()厘米。
二、求阴影部分面积
(1)单位(厘米)
(2)如图,梯形ABCD的上底AD是5厘米,下底BC是8厘米.三角形CDE的高DF是4厘米,高DF把三角形CDE分为面积相等的甲乙两部分,求阴影部分的面积.
三、如图,梯形ABCD的上底长5厘米,下底长8厘米,已知三角形DBC的面积是24平方厘米,求梯形的面积。
完整版六年级54组合图形的周长与面积练习题
趁自己年纪,好好把握时光六年级上册数学组合图形(圆)的周长和面积练习题 、基础训练:1.求阴影部分的面积(单位:厘米)2X2+2 — 3.14x2x2 呜面积:2x2 — 3.14x1x 仁0.86 (平方厘米)周长:3.14x1x1=3.14 (cm )4.求阴影部分的面积及周长。
(单位:厘米)面积:4x4-3.14x (4吃)x (4吃) 周长:4x2+3.14x4求阴影部分的面积。
2.正方形面积是16平方厘米,16 詔=4(cm ) 16 — 3.14x4x4 + 3.求图中阴影部分的面积及周长。
(单位 cm )5.求阴影部分的面积。
7 .如图(8),求阴影部分的面积。
(单位:厘米)8.如图(9)求阴影部分的面积。
(单位:厘米)S= (2+1)X2=6 (平方厘米)(12)(单位:厘米)10.在如图(12)是正三角形中求阴影部分的面积及周长。
(单位:厘米)面积:3.14x3x3 - 2周长:3.14x3+3x612.如图(13)求阴影部分的面积。
(单位:厘米)(13)13.如图(14)求阴影部分的面积。
(单位:厘米)16. 如右图(33),求阴影部分的面积及周长。
(单位:厘米)、能力提升:17. 如右图(19)正方形边长为4厘米,求阴影部分的面积及周长。
(33)趁自己年纪,好好把握时光18. 如图(20),正方形ABCD的面积是36平方厘米,求阴影部分的面积。
19. 如图(22),正方形边长为8厘米,求阴影部分的面积。
20. 如图(28)求阴影部分的面积。
(单位:厘米)(28)(19)〔22)趁自己年纪,好好把握时光21.如图(33)求阴影部分的面积。
六年级5.4组合图形的周长与面积练习题
六年级上册数学组合图形(圆)的周长和面积练习题一、基础训练:1.求阴影部分的面积(单位:厘米)。
2X2÷2-3.14x2x2÷42.正方形面积是16平方厘米,求阴影部分的面积。
16÷4=4(cm) 16-3.14x4x4÷43.求图中阴影部分的面积及周长。
(单位cm)面积:2x2-3.14x1x1=0.86(平方厘米)周长:3.14x1x1=3.14(cm)4.求阴影部分的面积及周长。
(单位:厘米)面积:4x4-3.14x(4÷2)x(4÷2)周长:4x2+3.14x45.求阴影部分的面积。
7.如图(8),求阴影部分的面积。
(单位:厘米)8.如图(9)求阴影部分的面积。
(单位:厘米)S=(2+1)X2=6(平方厘米)9. 如图(11)求阴影部分的面积。
(单位:厘米)〖3.14x4x4-3.14x3x3〗÷610.在如图(12)是正三角形中求阴影部分的面积及周长。
(单位:厘米) 面积:3.14x3x3÷2 周长:3.14x3+3x612. 如图(13)求阴影部分的面积。
(单位:厘米)13.如图(14)求阴影部分的面积。
(单位:厘米)16.如右图(33),求阴影部分的面积及周长。
(单位:厘米)二、能力提升:17.如右图(19)正方形边长为4厘米,求阴影部分的面积及周长。
18.如图(20),正方形ABCD的面积是36平方厘米,求阴影部分的面积。
19.如图(22),正方形边长为8厘米,求阴影部分的面积。
20.如图(28)求阴影部分的面积。
(单位:厘米)21.如图(33)求阴影部分的面积。
(完整word版)六年级数学上册组合图形的周长和面积
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
人教版小学数学组合图形的面积 (经典例题含答案)
班级小组姓名成绩(满分120)一、组合图形的面积(一)组合图形的面积计算(共4小题,每题3分,共计12分)例1.求下面图形的面积。
(单位:cm)32×10÷2+32×203×4÷2+(5+10)×5÷210×12-(4+8)×2÷2=160+640=6+37.5=120-12=800(cm²)=43.5(cm²)=108(cm²)例1.变式1.先回答问题,再计算图形的面积。
(单位:cm)(1)组合图形的面积=(长方形)面积+(三角形)面积36×24+24×21÷2=1116(平方厘米)(2)52阴影部分的面积=(梯形)面积-(三角形)面积(30+52)×28÷2-30×28÷2=728(cm²)例1.变式2.计算下面图形的面积,你能用不同的计算方法吗?5×2.5+(3+5)×(5-2.5)÷2=5×2.5+8×2.5÷2=12.5+10=22.5(平方米)5×3+(2.5+5)×(5-3)÷2=5×3+7.5×2÷2=15+7.5=22.5(平方米)例1.变式3.如图,左边阴影部分的面积是60平方厘米。
求右边空白部分(梯形)的面积。
(单位:厘米)60×2÷8=15(厘米)(16+16+8)×15÷2=40×15÷2=300(平方厘米)答:空白部分的面积是300平方厘米.(二)组合图形的面积计算(共4小题,每题3分,共计12分)例2.计算下列组合图形的面积。
(单位:cm)(8.5+15)×13÷2-8.5×4÷2=135.75(cm²)例2.变式1.解决问题。
2014年六年级上册数学组合图形的周长和面积训练题(新人教版)
2014年六年级上册数学组合图形的周长和面积训练题(新人教版)(单位:厘米)例1.求阴影部分的面积。
例2.正方形面积是7平方厘米,求阴影部分的面积。
例3.求图中阴影部分的面积。
例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米) 例10.求阴影部分的面积。
(单位:厘米)例11.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例13.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例19.正方形边长为2厘米,求阴影部分的面积。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。
例22.如图,正方形边长为8厘米,求阴影部分的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学
组合图形(圆)的周长和面积练习题
一、基础训练:
1.求阴影部分的面积(单位:厘米)。
2X2÷2-3.14x2x2÷4
2.正方形面积是16平方厘米,求阴影部分的面积。
16÷4=4(cm) 16-3.14x4x4÷4
3.求图中阴影部分的面积及周长。
(单位cm)
面积:2x2-3.14x1x1=0.86(平方厘米)
周长:3.14x1x1=3.14(cm)
4.求阴影部分的面积及周长。
(单位:厘米)
面积:4x4-3.14x(4÷2)x(4÷2)
周长:4x2+3.14x4
5.求阴影部分的面积。
7.如图(8),求阴影部分的面积。
(单位:厘米)
8.如图(9)求阴影部分的面积。
(单位:厘米)
S=(2+1)X2=6(平方厘米)9. 如图(11)求阴影部分的面积。
(单位:厘米)
〖3.14x4x4-3.14x3x3〗÷6
10.在如图(12)是正三角形中求阴影部分的面积及周长。
(单位:厘米) 面积:3.14x3x3÷2 周长:3.14x3+3x6
12. 如图(13)求阴影部分的面积。
(单位:厘米)
13.如图(14)求阴影部分的面积。
(单位:厘米)
16.如右图(33),求阴影部分的面积及周长。
(单位:厘米)
二、能力提升:
17.如右图(19)正方形边长为4厘米,求阴影部分的面积及周长。
18.如图(20),正方形ABCD的面积是36平方厘米,求阴影部分的面积。
19.如图(22),正方形边长为8厘米,求阴影部分的面积。
20.如图(28)求阴影部分的面积。
(单位:厘米)
21.如图(33)求阴影部分的面积。