MOS管的静态工作点的计算

MOS管的静态工作点的计算
MOS管的静态工作点的计算

据场效应管的上述特点,利用双极型三极管与场效应管的电极对应关系,即

b→G,e→S,c→D,即可在单管共射放大电路的基础上,组成共源极放大电路。

上图是一个由N沟道增强型MOS场效应管组成的单管共源极放大电路的原理电路图。为了使场效应管工作在恒流区以实现放大作用,对于N沟道

增强型MOS管来说,应满足以下条件:

uGS>UT

uDS>uGS-UT

其中UT为N沟道增强型MOS场效应管的开启电压。

一、静态分析

为了分析共源极放大电路的静态工作点,可以利用近似估算法或图解法。

(一)近似估算法

在上图中,由于MOS场效应管的栅极电流为零,因此电阻RG上没有电压降,则当输入电压等于零时

UGSQ=VGG (2.7.1)

由上图可得

UDSQ=VDD-IDQRD (2.7.4)

(二)图解法

为了用图解法确定静态工作点,应先画出直流负载线。由上图电路的漏极回路可列了以下方程:

uDS=VDD-iDRD

根据以上方程,在场效应管的输出特性曲线上画出直流负载线,如下图所示。直流负载线与uGS=UGSQ=VGG的一条输出特性的交点即是静态工作点Q。由图可得静态时的IDQ和UDSQ,见下图。

二、动态分析

同样可以利用微变等效电路法对场效应管放大电路进行动态分析。

首先讨论场效应管的等效电路。由于漏极电流iD是栅源电压uGS和漏源电压uGS 的函数,根据式(2.7.8)可画出场效应管的微变等效电路,如下图所示。图中栅极与源极之间虽然有一个电压Ugs,但是没有栅极电流,所以栅极是悬空的。

D、S之间的电流源gmUgs也是一个受控源,体现了Ugs对Id的控制作用。

等效电路中有两个微变参数:gm和rDS。它们的数值可以根据式(2.7.6)和(2.7.7)中的定义,在场效应管的特性曲线上通过作图的方法求得。

一般gm的数值约为0.1至20mS。rDS的数值通常为几百千欧的数量级。当漏极负载电阻RD比rDS小得多,可认为等效电路中的rDS开路。

2.7.2 分压-自偏压式共源放大电路

静态时,栅极电压由VDD经电阻R1、R2分压后提供,静态漏极电流渡过电阻RS 产生一个自偏压,场效应管的静态偏置电压UGSQ由分压和自偏压的结果共同决定,因此称为分压-自偏压式共源放大电路。引入源极电阻RS也有利于稳定静态工作点,而旁路电容CS必须足够大,以免影响电压放大倍数。接入栅极电阻RG的作用是提高放大电路的输入电阻。

一、静态分析

(一)近似估算法

根据图2.7.7的输入回路可求得

UDSQ=VDD-IDQ(RD+RS)(2.7.13)

(二)图解法

为了分析分压-自偏压式共源放大电路的静态工作点,也可心在场效应管转移特性和漏极特性上利用作图的方法求解。

表达式可用一条直线表示,见上图(a)。另外,iD与uGS之间又必须满足转移特曲线的规律,所以二者的交点即是静态工作点Q。根据转移特性上Q点的位置可求得静态的UGSQ和IDQ值,见上图(a)。

电路的漏极回路可列出以下方程:

uDS=VDD—iD(RD+RS)

由此可在漏极特性曲线上画出直流负载线,见上图(b)。直流负载线与uGS=UGSQ一条漏极特性的交点确定了漏极特性曲线上Q点的位置。由此可找到静态时的UDSQ和IDQ值。

静态工作点的计算方法

在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为 0.7V 锗管为 0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管 解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

最新静态工作点的计算方法资料

在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为 0.7V 锗管为 0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管 解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。

例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。 解:(1)画直流负载线:因直流负载方程为U CE =U CC -i C R C i C =0,U CE =U CC =12V ;U CE =4mA ,i C =U CC /R C =4mA ,连接这两点,即得直流负载线:如图(3)中的兰线 (2)通过基极输入回路,求得I B =(U CC -U BE )/R C =40uA (3)找出Q 点(如图(3)所示),因此I C =2mA ;U CE =6V 三:电路参数对静态工作点的影响 静态工作点的位置在实际应用中很重要,它与电路参数有关。下面我们分析一下电路参数Rb ,Rc ,Ucc 对静态工作点的影响。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种 类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? ⑴ 分析电路中各元件的作用; (2) 解放大电路的放大原理; (3) 能分析计算电路的静态工作点; (4) 理解静态工作点的设置目的和方法。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的 电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说 明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三 种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。 首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCG 若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算I b增大,它也不能再增大了。 以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。 理解静态工作点的设置目的和方法 放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这 讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大 小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点的设置为Uce接近于

三极管放大电路设计-参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

三极管放大电路设计-参数计算及静态工作点设置方法

三极管放大电路设计-参数计算及静态工作点设置方法

————————————————————————————————作者:————————————————————————————————日期:

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近

MOS管的静态工作点的计算

据场效应管的上述特点,利用双极型三极管与场效应管的电极对应关系,即 b→G,e→S,c→D,即可在单管共射放大电路的基础上,组成共源极放大电路。 上图是一个由N沟道增强型MOS场效应管组成的单管共源极放大电路的原理电路图。为了使场效应管工作在恒流区以实现放大作用,对于N沟道 增强型MOS管来说,应满足以下条件: uGS>UT uDS>uGS-UT 其中UT为N沟道增强型MOS场效应管的开启电压。 一、静态分析 为了分析共源极放大电路的静态工作点,可以利用近似估算法或图解法。 (一)近似估算法 在上图中,由于MOS场效应管的栅极电流为零,因此电阻RG上没有电压降,则当输入电压等于零时 UGSQ=VGG (2.7.1) 由上图可得 UDSQ=VDD-IDQRD (2.7.4) (二)图解法

为了用图解法确定静态工作点,应先画出直流负载线。由上图电路的漏极回路可列了以下方程: uDS=VDD-iDRD 根据以上方程,在场效应管的输出特性曲线上画出直流负载线,如下图所示。直流负载线与uGS=UGSQ=VGG的一条输出特性的交点即是静态工作点Q。由图可得静态时的IDQ和UDSQ,见下图。 二、动态分析 同样可以利用微变等效电路法对场效应管放大电路进行动态分析。 首先讨论场效应管的等效电路。由于漏极电流iD是栅源电压uGS和漏源电压uGS 的函数,根据式(2.7.8)可画出场效应管的微变等效电路,如下图所示。图中栅极与源极之间虽然有一个电压Ugs,但是没有栅极电流,所以栅极是悬空的。 D、S之间的电流源gmUgs也是一个受控源,体现了Ugs对Id的控制作用。

等效电路中有两个微变参数:gm和rDS。它们的数值可以根据式(2.7.6)和(2.7.7)中的定义,在场效应管的特性曲线上通过作图的方法求得。 一般gm的数值约为0.1至20mS。rDS的数值通常为几百千欧的数量级。当漏极负载电阻RD比rDS小得多,可认为等效电路中的rDS开路。 2.7.2 分压-自偏压式共源放大电路 静态时,栅极电压由VDD经电阻R1、R2分压后提供,静态漏极电流渡过电阻RS 产生一个自偏压,场效应管的静态偏置电压UGSQ由分压和自偏压的结果共同决定,因此称为分压-自偏压式共源放大电路。引入源极电阻RS也有利于稳定静态工作点,而旁路电容CS必须足够大,以免影响电压放大倍数。接入栅极电阻RG的作用是提高放大电路的输入电阻。 一、静态分析 (一)近似估算法 根据图2.7.7的输入回路可求得 UDSQ=VDD-IDQ(RD+RS)(2.7.13) (二)图解法 为了分析分压-自偏压式共源放大电路的静态工作点,也可心在场效应管转移特性和漏极特性上利用作图的方法求解。

静态工作点的计算方法

在学习之前,我们先来了解一个概念: ?什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。我们在进行静态分析时,主要是求基极直流电流I B、集电极直流电流I C、集电极与发射极间的直流电压U CE 一:公式法计算Q点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B、I C、U CE的公式列出来 三极管导通时,U BE的变化很小,可视为常数,我们? 一般认为:硅管为 ????????? 锗管为 例1:估算图(1)放大电路的静态工作点。其中R B=120千欧,R C=1千欧,U CC=24伏,?=50,三极管为硅管解:I B=(U CC-U BE)/R B=120000=(mA) ???? I C=?I B=50*=(mA) ???? U CE=U CC-I C R C=*1= 二:图解法计算Q点 ??三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B=I BQ的特性曲线的交点,即为Q点。读出它的坐标即得I C和U CE 图解法求Q点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE=U CC-i C R C) (2):由基极回路求出I B (3):找出i B=I B这一条输出特性曲线与直流负载线的交点就是Q点。读出Q点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

解:(1)画直流负载线:因直流负载方程为U CE =U CC -i C R C i C =0,U CE =U CC =12V ;U CE =4mA ,i C =U CC /R C =4mA ,连接这两点,即得直流负载线:如图(3)中的兰线 (2)通过基极输入回路,求得I B =(U CC -U BE )/R C =40uA (3)找出Q 点(如图(3)所示),因此I C =2mA ;U CE =6V 三:电路参数对静态工作点的影响 ??静态工作点的位置在实际应用中很重要,它与电路参数有关。下面我们分析一下电路参数Rb ,Rc ,Ucc 对静态工作点的影响。 改变Rb 改变Rc 改变Ucc Rb 变化,只对I B 有影响。 Rb 增大,I B 减小,工作点沿直流负载线下移。 Rc 变化,只改变负载线的纵 坐标 Rc 增大,负载线的纵坐标上 移,工作点沿i B =I B 这条特性 曲线右移 Ucc 变化,I B 和直流负载线同时变 化 Ucc 增大,IB 增 大,直流负载线 水平向右移动, 工作点向右上方移动 Rb 减小,I B 增大,工作点沿直流负载线上移 Rc 减小,负载线的纵坐标下移,工作点沿i B =I B 这条特性Ucc 减小,IB 减小,直流负载线

静态工作点稳定的放大电路分析

静态工作点稳定的放大电路分析 一、课题名称 静态工作点稳定的放大电路分析 二、设计任务及要求 分析静态工作点、失真分析、动态分析、参数扫描分析、频率响应等。(包括原始数据、技术参数、条件、设计要求等) 三、电路分析 1.静态工作点Q的分析 (1)什么是静态工作点Q 静态工作点就是输入信号为零时,电路处于直流工作状态,这些直流电流、电压的数值在三极管特性曲线上表示为一个确定的点,设置静态工作点的目的就是要保证在被被放大的交流信号加入电路时,不论是正半周还是负半周都能满足发射结正向偏置,集电结反向偏置的三极管放大状态。 可以通过改变电路参数来改变静态工作点,这样就可以设置静态工作点。 若静态工作点设置的不合适,在对交流信号放大时就可能会出现饱和失真(静态工作点偏高)或截止失真(静态工作点偏低)。 如图1为阻容耦合电路 图1 晶体管型号BC107BP 参数 .MODEL BC107BP NPN IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400 BR =35.5

+IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6 RC =.25 VAF=80 +VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9 VJC=.54 MJC=.33 在放大电路中,当有信号输入时,交流量与直流量共存。将输入信号为零,即直流电流 源单独作用时晶体管的基极电流I B,集电极电流I C,b-e之间电压U BE,管压降U CE称为放大电 路的静态工作点Q,常将四个物理量记作I BQ,I CQ,U BEQ,U CEQ。在近似估算中常认为U BEQ为已知量, 对于硅管U BEQ=0.7V,锗管U BEQ=0.2V。 为了稳定Q点,通常使参数的选取满足 I1>>I BQ 因此B点电位 U BQ=Rb1/(Rb1+Rb2)·Vcc 静态工作点的估算 U BQ= Rb1/(Rb1+Rb2)·Vcc I EQ=(U BQ-U BEQ)/Re U CEQ=V CC-I CQ(Rc+Re) (2)为什么要设置合适的静态工作点 对于放大电路最基本的要求,一是不失真,二是能够放大。为什么要设置合适的静态 工作点呢?如果输出的波形严重失真,所谓的“放大”毫无意义。因此,设置合适的静态工 作点是很必要的。 Q点不仅影响电路是否会产生失真,而且还影响着放大电路几乎所有的动态参数。 (3)使用软件进行仿真 理论值: U BQ= Rb1/(Rb1+Rb2)·Vcc= 5/(15+5)*12=3V I EQ=(U BQ-U BEQ)/Re=(3-0.7)/2.3=1mA U CEQ=VCC-I CQ(Rc+Re)=12-7.4*1=4.6V 仿真结果:

静态工作点的计算方法

在学习之前,我们先来了解一个概念:?什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。我们在进行静态分析时,主要是求基极直流电流I B、集电极直流电流I C、集电极与发射极间的直流电压U C E 一:公式法计算Q点我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B、I C、U C E的公式列出来 三极管导通时,U BE的变化很小,可视为常数,我们一般认为: 硅管为 ????????? 锗管为 例1:估算图(1)放大电路的静态工作点。其中R B=120千欧,R C=1千欧,U CC=24伏,?=50,三极管为硅管 解:I B=(U CC-U BE)/R B=120000=(mA) ???? I C=?I B=50*=(mA) ???? U CE=U CC-I C R C=*1= 二:图解法计算Q点 ??三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B=I BQ的特性曲线的交点,即为Q 点。读出它的坐标即得I C和U CE 图解法求Q点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE=U CC-i C R C)

(2):由基极回路求出I B (3):找出i B=I B这一条输出特性曲线与直流负载线的交点就是Q点。读出Q点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。 解:(1)画直流负载线:因直流负载方程为U CE=U CC-i C R C i C=0,U CE=U CC=12V;U CE=4mA,i C=U CC/R C=4mA,连接这两点,即得直流负载线:如图(3)中的兰线 (2)通过基极输入回路,求得I B=(U CC-U BE)/R C=40uA (3)找出Q点(如图(3)所示),因此I C=2mA;U CE=6V 三:电路参数对静态工作点的影响 ??静态工作点的位置在实际应用中很重要,它与电路参数有关。下面我们分析一下电路参数Rb,Rc,Ucc对静态工作点的影响。

图说三极管的三个工作状态

抛开三极管内部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。 三极管是一个以b(基极)电流Ib 来驱动流过CE 的电流Ic 的器件,它的工作原理很像一个可控制的阀门。 图1 左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。当蓝色水流越大,也就使大管中红色的水流更大。如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。三极管的原理也跟这个一样,放大倍数为100 时,当Ib(基极电流)为1mA 时,就允许100mA 的电流通过Ice。 有了这个形象的解释之后,我们再来看一个单片机里常用的电路。 图2 我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。基极电流就是10V&pide;10K=1mA,集电极电流就应该是100mA。根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。那么剩下的5V 就吃在了三极管的C、E 极上了。好!现在我们假如让Rb为1K,那么基极电流就是10V&pide;1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA 也就是1A了呢?假如真的

为1安,那么Rc上的电压为1A×50Ω=50V。啊?50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。见下图: 图3 我们还是用水管内流水来比喻电流,当这个控制电流为10mA 时使主水管上的阀开大到能流过1A 的电流,但是不是就能有1A 的电流流过呢?不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。因此我们可以计算出那个固定电阻的最大电流10V/50Ω=0.2A 也就是200mA。就是说在电路中三极管基极电流增大集电极的电流也增大,当基极电流Ib增大到2mA 时,集电极电流就增大到了200mA。当基极电流再增大时,集电极电流已不会再增大,就在200mA 不动了。此时上面那个电阻也就是起限流作用了。 上面讲的三极管是工作在放大状态,要想作为开关器件来应用呢?毫无疑问三极管必须进入饱和导通和截止状态。图4所示的电路中,我们从Q的基极注入电流IB,那么将会有电流流入集电极,大小关系为:IC=βIB 。而至于BJT 发射结电压VBE,我们说这个并不重要,因为只要IB 存在且为正值时,这个结电压便一定存在并且基本恒定(约0.5~1.2V,一般的管子取0.7V左右),也就是我们所讲的发射结正偏。既然UBE是固定的,那么,如果BJT基极驱动信号为电压信号时,就必须在基极串联一个限流电阻,如图5。此时,基极电流为 IB=(Ui-UBE)/RB。一般情况省略RB是不允许的,因为这样的话IB将会变得很大,造成前级电路或者是BJT 的损坏。

静态工作点的计算方法

精品字里行间 放心做自己想做的在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称 Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流 I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求 I B 、I C 、U CE 的公式列出来三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为0.7V 锗管为0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图 的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

三极管放大电路设计,参数计算及静态工作点设置方法

数字电路即为TTL或C-MOS逻辑电路,而谈到模拟电路,首先就应想到运算放大器。但是,这里讲的运算放大器是怎样一个器件呢? 简而言之,运算放大器是具有两个输入端,一个输出端,以极大的放大率将两输入端之间的电压放大之后,传递到输出端的一种放大器。 如果以电路符号来表示运算放大器,则如右图,可表示为三角形。它的两个输入部分分别叫做非倒相输入(1N+)和倒相输入(IN-)。它以极大的放大率将倒相输入端与非倒相输人端之间的电压放大,然后从输出端(OUT)输出。 在一个封装之中,放入一个运算放大器电路的称为单(Single)运算放大器,放入两个运算放大器电路称为双(Dual)运算放大器,放入四个运算放大器电路,称为四(Quad)运算放大器。使用四运算放大器的电路,比使用单、双运算放大器组装的电路板,面积可变得更小。在几乎所有的封装中,若为单运算放大器,则使用管壳型封装或8引脚双列式封装;若为双运算放大器,则使用8引脚双列式封装;若为四运算放大器,则使用14引脚双列式封装。并且,在一般情况下,引脚的排列一般是通用的,尽管也有例外,对业余爱好者使用的运算放大器来讲,可能只会使用以上几种封装方式。因此,弄清这种引线的分布方式,将非常方便。 B类OTL功率放大电路原理

图a 半对称互补OTL放大电路图b 全对称互补OTL放大电路

图一输入变压器式功放电路 输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又,输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高频特性及失真会显著恶化是主要缺点。

三极管静态工作点

三极管之静态工作点 总所周知,三极管的工作状态有三个,截止区,放大区,饱和区。那么三极管工作在什么工作状态是由什么决定的呢?是由基极电流(Ib)来决定的,和其他因素完全没有关系。 如果Ib =0,则三极管工作在截止区。 如果0 < Ib ×β<饱和电流,则三极管工作在放大区 如果饱和电流

静态工作点的计算方法

静态工作点的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在学习之前,我们先来了解一个概念: 什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。我们在进行静态分析时,主要是求基极直流电流I B、集电极直流电流I C、集电极与发射极间的直流电压U CE 一:公式法计算Q点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B、I C、U CE的公式列出来 三极管导通时,U BE的变化很小,可视为常数,我们 一般认为:硅管为 0.7V 锗管为 0.2V 例1:估算图(1)放大电路的静态工作点。其中R B=120千欧,R C=1千欧,U CC=24伏,?=50,三极管为硅管解:I B=(U CC-U BE)/R B=24-0.7/120000=0.194(mA) I C=?I B=50*0.194=9.7(mA) U CE=U CC-I C R C=24-9.7*1=14.3V 二:图解法计算Q点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B=I BQ的特性曲线的交点,即为Q点。读出它的坐标即得I C和U CE 图解法求Q点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE=U CC-i C R C) (2):由基极回路求出I B (3):找出i B=I B这一条输出特性曲线与直流负载线的交点就是Q点。读出Q点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

静态工作点的计算方法

静态工作点的计算方法-CAL-FENGHAI.-(YICAI)-Company One1

在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为 0.7V 锗管为 0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管 解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图 (3)所示,试用图解法确定静态工作点。

静态工作点的计算方法

在学习之前,我们先来了解一个概念:什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q 点。我们在进行静态分析时,主要是求基极直流电流I B、集电极直流电流I C、集电极与发射极间的直流电压U CE 一:公式法计算Q点我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B、I C、U CE的公式列出来 三极管导通时,U BE的变化很小,可视为常数,我们一 般认为:硅管为0.7V 锗管为0.2V 例1:估算图(1)放大电路的静态工作点。其中R B=120千欧,R C=1千欧,U CC=24伏,?=50,三极管为硅管解:I B=(U CC-U BE)/R B=24-0.7/120000=0.194(mA) I C=?I B=50*0.194=9.7(mA) U CE=U CC-I C R C=24-9.7*1=14.3V 二:图解法计算Q点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B=I BQ的特性曲线的交点,即为Q点。读出它的坐标即得I C和U CE 图解法求Q点的步骤为:(1):通过直流负载方程画出直流负载线,(直流负载方程为U CE=U CC-i C R C)(2):由基极回路求出I B (3):找出i B=I B这一条输出特性曲线与直流负载线的交点就是Q点。读出Q点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

功率放大器的静态工作点的计算与测量

目录 摘要 (1) Abstract (1) 1 绪论 (1) 2 三种典型的稳定静态工作点的电路 (2) 3 三种典型晶体管放大器电路的静态工作点的分析 (3) 3.1图1的戴维南等效电路及分析 (4) 3.2图2的戴维南等效电路及分析 (4) 3.3图3的戴维南等效电路及分析 (5) 4 放大率β对静态工作点的影响 (6) 5 电压VBE随温度的变化对静态工作点的影响 (6) 6 结束语 (7) 参考文献: (7)

晶体管放大器静态工作点的分析 姓名:刘延勇学号:20095042008 学院:物理电子工程学院班级:09电信 指导教师:周胜海职称:副教授 摘要:在基本放大电路中,只有在信号的任意时刻晶体管都工作放大区或场效应管都工作在恒流区,输出才不会失真,为此放大电路必须设置合适的静态工作点Q。面对在几个稳定静态工作点的电路中选择时,如何迅速判定各电路静态工作点稳定性能的优劣,是一个值得弄清的重要问题。本文给出了求出典型放大器偏置电路的静态工作点的戴维南等效电路,依此等效电路可直接看清电路工作时的物理意义,进一步判定各个放大电路静态工作点稳定性能的优劣。 关键词:晶体管;放大器;等效电路;静态工作点 The Method to Fast Value the Performance of Static State Stability for Transistor Amplifiers Abstract: While for selecting best one from several circuits for DC stability, it is an important problem which deserves to understand that how to fast value the performance of static state stability for transistor amplifiers. In this paper, The venin equivalent networks of representative bias configuration for transistor amplifiers are derived in detail. The physical performance can be understood explicitly in the equivalent networks, and the judgement of stability functions of every bias circuit could be simply gained. Key Words : amplifier; bias circuit; transistor; equivalent network 1 绪论 所谓静态工作点就是输入信号为零时,电路处于直流工作状态,这些直流电流、电压的数值在三极管特性曲线上表示为一个确定的点,设置静态工作点的目的就是要保证在被放大的交流信号加入电路时,不论是正半周还是负半周都能满足发射结正向偏置,集电结反向偏置的三极管放大状态。可以通过改变电路参数

静态工作点的计算方法

静态工作点的计算方法

在学习之前,我们先来了解一个概念: 什麽是Q 点?它就是直流工作点,又称为静态工作点,简称Q 点。我们在进行静态分析时,主要是求基极直流电流I B 、集电极直流电流I C 、集电极与发射极间的直流电压U CE 一:公式法计算Q 点 我们可以根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们 一般认为:硅管为 0.7V 锗管为 0.2V 例1:估算图(1)放大电路的静态工作点。其中R B =120千欧,R C =1千欧,U CC =24伏,?=50,三极管为硅管 解:I B =(U CC -U BE )/R B =24-0.7/120000=0.194(mA) I C =?I B =50*0.194=9.7(mA) U CE =U CC -I C R C =24-9.7*1=14.3V 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(2)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(3)所示,试用图解法确定静态工作点。

相关文档
最新文档