2017年河北省中考数学试卷(含答案解析版)

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年河北省中考数学试卷Word版含问题详解下载

2017年河北省中考数学试卷Word版含问题详解下载

河北省2017年中考数学试卷卷1(选择题,共42分)小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算结果为正数的是( A . ( 3)2 BC .增加了 (1 10%)D .没有改变8. 图3是由相同的小正方体木块粘在一起的几何体,它的主视图 是()、选择题(本大题有16个小题,共42分.1〜10小题各3 分,11〜16小题各2分,在每C. 0 ( 2017)2.把 0.0813 写成 a 10n ( 1 10, n 为整数)的形式,则A . 1 B.3.用量角器测量 MON 的度数,C. 0.813操作正确的是()D. 8.136 4 m 个 24 8 2 2… 2 4. 34^2 (33)n 个 3A .爭 B.2m 3nC.2m ~3- nD.2m3n5. 图1-1和图1-2中所有的小正方形都全等,将图 正方形放在图1-2中①②③④的某一位置,使它与原来 7个小正方形组成的图形是中心对称图形,这个位置是 ()A .①B .②C .③D .④6. 图2为张小亮的答卷,他的得分应是() A . 100 分 B . 80 分 C . 60 分 D . 40 分7. 若 ABC 的每条边长增加各自的10%得 A'B'C',则 数与其对应角 B 的度数相比()A .增加了 10%B .减少了 10% 1-1 B'的度A 0(姓名张小亮得分 ?填空(每小题20分,共100分)① -1的绝对值是 1. ② 2的倒数是 -2③ -2的相反数是 2. ④ 1的立方根是 1.I ⑤-1和7的平均数是 3/图3正面9. 求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC , 求证:AC BD .以下是排乱的证明过程:①又BO DO ,② ••• AO BD ,即 AC BD . ③ •••四边形ABCD 是菱形, ④ 二 AB AD .证明步骤正确的顺序是()A .③-②-①-④ BC .①-②-④-③ D10. 如图5,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东 35 ,为避免行 进中甲、乙相撞,则乙的航向不能是()A.北偏东55B.北偏西55C.北偏东35D.北偏西3511. 图6是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪 线长度所标的数据(单位:cm )不正确的()12. 图7是国际数学日当天淇淇和嘉嘉的微信对话,根据对话 内容,下列选项错误.的是()ABCDC淇淇嘉嘉,咱俩玩一个数学 ,游戏,好吗?好啊!玩什么游戏? 淇淇了 --------------在44 4=6等号的左边添加合适的数学运算J 符号,使等式成立..③-④-①-② .①-④-③-② BD 交于点0 . B . 4 40 406434 4 6 D . 4 1 4 413.若()—,则(x 1x 1A . 1B. 2)中的数是()C. 3D.任意实数{图4A . 4 4.46实用标准文案14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图 8, 乙组12户家庭用水量统计图比较5月份两组家庭用水量的中位数,下列说法正确的是用水量(吨)4 5 6 9 户数4521D •无法判断甲组12户家庭用水量统计图8实用标准文案A •甲组比乙组大 B.甲、乙两组相同 C •乙组比甲组大15.如图9,若抛物线yx 2 3与x 轴围成封闭区域(边界除外) 内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y k ( x 0)x的图象是()16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使 0K 边与AB 边重合,如图10所示•按下列步骤操作: 将正方形在正六边形中绕点 B 顺时针旋转,使KM 边与BC 边重 合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重 合,完成第二次旋转;……在这样连续 6次旋转的过程中,点B , M 间的距离可能是()A . 1.4B . 1.1C . 0.8D . 0.5第U 卷(共78分)、填空题(本大题有3个小题,共10分.17〜18小题各3分;19小题有2个空,每空2分. 把答案写在题中横线上)17.如图11, A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点 C,连接 CA CB 分别延长到点M, N,使AM=ACBN=BC 测得MN=200m 则A , B 间的距离为 m E DA(Q) B(K)图10实用标准文案19. 对于实数p , q ,我们用符号min p, q 表示p , q 两数中较小的数,如min 1, 2 1.因此,min . 2,.3 _______________若 min (x 1)2, x 2 1,则 x三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20. (本小题满分8分)在一条不完整的数轴上从左到右有点 A, B, C,其中AB=2 BC=1如图13所示.设点A , B, C 所对应数的和是p.(1)若以B 为原点,写出点A, C 所对应的数,并计算p 的值;(2) 若原点0在图13中数轴上点C 的右边,且CO=28求p.21. (本小题满分9分)编号为1〜5号的5名学生进行定点投篮,规定每人投 5次,每命中1次记1分,没有命 中记0分.图14是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样 记分规定投了 5次,其命中率为40%.精彩文档(1) 求第6号学生的积分,并将图14增补为这6名学生积分的条形统计图;(2) 在这6名学生中,随机选一名学生,求选上命中率高于 50%勺学生的概率;18.如图12,依据尺规作图的痕迹,计算/a =若以C 为原点,p 又是多少?a68°rCB图12AB C 图13(3) 最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22. (本小题满分9分)发现任意五个连续整数的平方和是5的倍数.验证⑴ 1 2 02 12 22 32的结果是5的几倍?(2) 设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23. (本小题满分9分)如图15, AB=16,0为AB中点,点C在线段OB上(不与点O, B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,B①别切优弧Cb于点P,Q,且点P,Q在AB异侧,连接OP.(1) 求证:AP=BQ(2) 当BQ斗3时,求&D的长(结果保留町;(3) 若厶APO勺外心在扇形COD勺内部,求OC的取值范围.24. (本小题满分10分)如图16,直角坐标系xOy中,A(0, 5),直线x=-5与x轴交于点D,直线y |x 39与8 8x轴及直线x=-5分别交于点C, E.点B,E关于x轴对称,连接AB.(1) 求点C, E的坐标及直线AB的解析式;(2) 设面积的和S S CDE S四边形ABDO,求S的值;(3) 在求⑵ 中S时,嘉琪有个想法:“将厶CDE沿x轴翻折到厶CDB的位置,而△ CDB与四边形ABDO拼接后可看成△ AOC这样求S便转化为直接求厶AOC勺面积不更快捷吗?”但大家经反复验算,发现S^OC S,请通过计算解释他的想法错在哪里.25. (本小题满分11分)平面内,如图17,在口ABCDK AB 10 , AD 15 , ta nA 4•点P为AD边上任意一3点,连接PB,将PB绕点P逆时针旋转90得到线段PQ .(1)当DPQ 10时,求APB的大小;(2)当tan ABP:tanA 3: 2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在口ABCD勺边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留B图17备用图26. (本小题满分12分)某厂按用户的月需求量x (件)完成一种产品的生产,其中x 0 •每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比•经市场调研发现,月需求量x与月份n (n为整数,1 n 12 )符合关系式x 2n2 2kn 9(k 3)(k 为常数),且得到了表中的数据.(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m 1)个月的利润相差大,求m .2017年泗北省初屮毕业主升学文化课考试数学试题参考答案说孙「在阅卷过程中*如考生还畜其它正确解法.可参照评廿参考按步秫酌博蛤分-2”坚持每JS 评阅到底的原则.肖考生的解答在猱一步出现镐谓.影响TJ&ffiSS 分时, 如集该步以后的解答未改蛮谴F 的内容和XA.同视总响的程度决定后面那分的 给分*但不掲超过后堆部分应给分数的一半;如果谡一步馬而的解書有綾严重的措 «<就不给分.3・廉善右端所注分戳n 護示皿确做到这一步应得的累加弁散一只给整数分St 一“ fiBE < +大题好16个小題.*42分-】小理各』分.1)-16小JS 各2分)二 填空HH 本大題召3个小施‘儿10分.17-18^58^3^: 19小嗨打2亍空.侮空2分】17, tOO1& 5619. 』=.解菩題(水大題有7个小1S.共6S5I )<3) p = (-2g7・2)*J2&-D + (-鱗:(!) &兮的秋分为5«40%x1 = 2龙分).・5——【劲丁这6名学生朝 有4名学生的命中华1号2号3号46号京临览号 ・・丹命中率ifii 于50瞄的学牛} =4-…&分图I<1)以B 为原点・点孰匚分别对应-2. I.4 + DU21.;Jn U&分4分(3)T S出现的次数眾务•二这个金数是3 .................. ......■/ 7豁学工积分的众散址乩化7环询中3空或没有命中./- 1的积分是3分或。

河北省2017年中考数学试题含答案

河北省2017年中考数学试题含答案

河北省2017年中考数学试题及答案
一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列运算结果为正数的是()
5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()
A.①B.②C.③D.④6.如图为张小亮的答卷,他的得分应是()
A.100分B.80分C.60分D.40分
&
11.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()
12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()
14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()
A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大 D.无法判断
A.1.4 B.1.1 C.0.8 D.0.5
二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)
]
答案:一、选择题
一、填空题
17.100 18. 560 19. ;2或-1 .
三、解答题。

衡水市2017年中考数学试题及答案(Word版)

衡水市2017年中考数学试题及答案(Word版)

衡水市2017年中考数学试题及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-2. 把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.133. 用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6. 如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7. 若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比 ( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9. 求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是 ( )A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10. 如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒11. 如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( )12. 如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-=B .004446++= C .34446++= D .14446-÷+= 13. 若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2-C .3-D .任意实数14. 甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15. 如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16. 已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17. 如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,MN m=,则A,B间的距离=,测得200=,BN BCCB,分别延长到点M,N,使AM AC为m.18. 如图,依据尺规作图的痕迹,计算α∠= °.19. 对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里. 25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26. 某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m 个月的利润相差最大,求m .参考答案:一、选择题1.A2.D3.C4.B5.C6. B7.D8.A9.D 10.D 11.A 12.D13.B 14.B 15.D 16.C.二、填空题17. 100 18. 56 19. 3;2或-1.三、解答题20.21.试题解析:(1)6号的积分为5×40%×1=2(分).(2)∵这6名学生中。

河北中考数学试题2017年河北省初中学业水平考试中考数学试卷精校Word版含答案

河北中考数学试题2017年河北省初中学业水平考试中考数学试卷精校Word版含答案

绝密★启用前 试卷类型:A二〇一七年河北省初中学业水平考试数学试题一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)- B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1 B .2- C .0.813 D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B.23m n C.32m n D.23m n5.图1-1和图1-2中所有的小正方形都全等,将图1-1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.图2为张小亮的答卷,他的得分应是( ) A .100分 B .80分 C .60分 D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变图3① ②③④ 图1-1图1-2图4 8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图 是( )9.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形, ④∴AB AD =. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图5,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A.北偏东55︒ B.北偏西55︒ C.北偏东35︒ D.北偏西35︒11.图6是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确...的( )12.图7是国际数学日当天淇淇和嘉嘉的微信对话,根据对话 内容,下列选项错误..的是( ) A.446+= B .004446++= C.46= D.1446-= 13.若321x x -=-( )11x +-,则( )中的数是( )CB A D611C 9131010图 6B 10 10A 8 15D图3北图5图7嘉嘉,咱俩玩一个数学游戏,好吗?好啊!玩什么游戏?在4 4 4=6等号的左边添加合适的数学运算符号,使等式成立.淇淇淇淇嘉嘉4吨 5吨6吨 7吨60° 乙组12户家庭用水量统计图 A .1- B .2- C .3- D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图8,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大 B.甲、乙两组相同 C .乙组比甲组大 D .无法判断15.如图9,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图10所示.按下列步骤操作: 将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图11,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM=AC ,BN=BC ,测得MN=200 m ,则A ,B 间的距离为图9xy· · O11 A(Q) FE D C N M B(K) 图10甲组12户家庭用水量统计图8·m18.如图12,依据尺规作图的痕迹,计算∠a = °19.对于实数p ,q ,我们用符号}{q p , min 表示p ,q 两数中较小的数,如}{12 1min =,. 因此,}{=--3 2min , ; 若}{1 )1(min 22=-x ,x ,则=x .三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图13所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值; 若以C 为原点,p 又是多少?(2)若原点O 在图13中数轴上点C 的右边,且CO=28,求p .图12ABCD68°α┓┛┏ 图11AB CMN AB C2 1 图1321.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分..图14是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图14增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)()2222232101++++-的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.图1423.(本小题满分9分)如图15,AB=16,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270°后得到扇形COD,AP,BQ 分别切优弧CD ⌒ 于点P ,Q ,且点P,Q 在AB 异侧,连接OP.(1)求证:AP=BQ ;(2)当BQ=34时,求Q D ⌒ 的长(结果保留π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.24.(本小题满分10分)如图16,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线83983--=x y 与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB. (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S S AOC ≠Δ,请通过计算解释他的想法错在哪里.图16ABCD P PQ图1525.(本小题满分11分)平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ . (1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).B APCD Q备用图图17ABCDP Q26.(本小题满分12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中0x>.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,112n≤≤)符合关系式2=-++(k为常数),且得到了表中的229(3)x n kn k Array数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(1)m+个月的利润相差最大,求m.。

2017年河北省中考数学试卷含解析(完美打印版)

2017年河北省中考数学试卷含解析(完美打印版)

2017年河北省中考数学试卷(含解析)一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=613.(2分)若=____+,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5二、填空题(本大题共3小题,共10分。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

2017年河北省唐山市玉田县中考数学二模试卷及解析答案word版

2017年河北省唐山市玉田县中考数学二模试卷及解析答案word版

2017年河北省唐山市玉田县中考数学二模试卷一、选择题(共16小题,1-10小题,每题3分,11-16小题,每题2分,共42分)1.(4分)9的绝对值是()A.9 B.﹣9 C .D .2.(4分)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个3.(4分)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A .B .C .D .4.(4分)下列计算正确的是()A.20170=0 B .=±9 C.(x2)3=x5D.3﹣1=5.(4分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a <C .﹣<a<1 D.a >6.(4分)小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米8.(4分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.9.(4分)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°10.(4分)在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,411.(2分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.D.512.(2分)下列关于x的方程(k﹣1)x2+2kx+2=0根的情况说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.总有实数根13.(2分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=114.(2分)如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A.1个 B.2个 C.3个 D.4个15.(2分)某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产50件D.若工人乙一天生产m(件),则他获得薪金4m元16.(2分)如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4二、填空题(共3个小题,共10分,17-18小题各3分,19题每空2分)17.(3分)要使代数式有意义,则x的取值范围是.18.(3分)从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是.19.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为,第n个正方形的边长为.三、解答题(共68分)20.(7分)先化简,再求值:(﹣)÷,其中x=tan45°+2cos60°.21.(9分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).(1)在图中标出△ABC外心D的位置,并直接写出它的坐标;(2)判断△ABC的外接圆D与x轴、y轴的位置关系,并说明理由.22.(9分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.23.(10分)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).24.(10分)已知:等腰三角形OAB在直角坐标系中的位置如下图,点A的坐标为(,3),点B的坐标为(﹣6,0).(1)若△OAB关于y轴的轴对称图形是△OA'B',请直接写出A、B的对称点A'、B'的坐标;(2)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图象上,求a的值;(3)若△OAB绕点O按逆时针方向旋转30°,此时点B恰好落在反比例函数的图象上,求k的值.25.(11分)两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;(2)如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;(3)当点F平移到线段BC的中点时,若四边形AFBD为正方形,猜想△ABC应满足什么条件?请直接写出结论:在此条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请在图3位置画出图形,并求出sin∠CGF 的值.26.(12分)如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.2017年河北省唐山市玉田县中考数学二模试卷参考答案与试题解析一、选择题(共16小题,1-10小题,每题3分,11-16小题,每题2分,共42分)1.(4分)9的绝对值是()A.9 B.﹣9 C.D.【解答】解:9的绝对值是9,故选:A.2.(4分)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A3.(4分)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.4.(4分)下列计算正确的是()A.20170=0 B .=±9 C.(x2)3=x5D.3﹣1=【解答】解:A、非零的零次幂等于1,故A不符合题意;B、81的算术平方根是9,故B不符合题意;C、幂的乘方底数不变指数相乘,故C不符合题意;D、负整数指数幂与正整数指数幂互为倒数,故D符合题意;故选:D.5.(4分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a <C .﹣<a<1 D.a >【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,∴,解不等式①得,a>﹣1,解不等式②得,a <,所以,不等式组的解集是﹣1<a <.故选:B.6.(4分)小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选C7.(4分)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米【解答】解:斜坡AB的坡度是tan10°=,故B正确;故选:B.8.(4分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.9.(4分)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°【解答】解:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.10.(4分)在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.11.(2分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.D.5【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴===()2=∴△ACD的面积=5,故选:D.12.(2分)下列关于x的方程(k﹣1)x2+2kx+2=0根的情况说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.总有实数根【解答】解:当k﹣1=0,即k=1时,原方程为2x+2=0,解得:x=﹣1;当k﹣1≠0,即k≠1时,△=(2k)2﹣4×2×(k﹣1)=4(k﹣1)2≥0,∴此时方程有实数根.综上所述:无论k为何值,关于x的方程(k﹣1)x2+2kx+2=0总有实数根.故选D.13.(2分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.14.(2分)如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A.1个 B.2个 C.3个 D.4个【解答】解:如图所示,使△PAO是以OA为腰的等腰三角形,则符合条件的点P有3个:P1,P2,P3,故选:C.15.(2分)某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产50件D.若工人乙一天生产m(件),则他获得薪金4m元【解答】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140﹣60)÷(40﹣20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+=20+30=50,故选项C 正确,若工人乙一天生产m(件),当m≤20时,他获得的薪金为:3m元;当m>20时,他获得的薪金为:60+(m﹣20)×4=(4m﹣20)元,故选项D错误,故选D.16.(2分)如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4【解答】解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选:B.二、填空题(共3个小题,共10分,17-18小题各3分,19题每空2分)17.(3分)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【解答】解:根据题意,得,解得x≥﹣1且x≠0.18.(3分)从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是.【解答】解:P(两位数是3的倍数)=4÷12=.故本题答案为:.19.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为8,第n个正方形的边长为2n ﹣1.【解答】解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1.故答案为8,2n﹣1.三、解答题(共68分)20.(7分)先化简,再求值:(﹣)÷,其中x=tan45°+2cos60°.【解答】解:原式=[(﹣)]•==∵x=tan45°+2cos60°=1+2×=2,∴原式==21.(9分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(5,3)、B(5,1).(1)在图中标出△ABC外心D的位置,并直接写出它的坐标;(2)判断△ABC的外接圆D与x轴、y轴的位置关系,并说明理由.【解答】解:(1)如图,△ABC的外心D点的坐标为(3,2);(2)△ABC的外接圆D与x轴相交,与y轴相离,理由:∵由题意可知△ABC为直角三角形,AB=2,CB=4,∴斜边即为外接圆的直径,半径等于AC==.又∵外心坐标为(3,2),∴外心D到x轴的距离为2,到y轴的距离为3,∵2<,3>,∴△ABC的外接圆D与x轴相交,与y轴相离.22.(9分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.23.(10分)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).【解答】解:(1)本次抽样调查学生有:18÷30%=60(人),即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(人),补全的条形统计图如右图所示,(3)测试结果为“良好”等级所对应圆心角的度数是:×360°=144°,测试结果为“良好”等级所对应圆心角的度数是144°;(4)该学校七年级学生中测试结果为“不及格”等级的学生有:600×=30(人),即该学校七年级学生中测试结果为“不及格”等级的学生有30人;(5)对“不及格”等级的同学提一个友善的建议是:同学们,这次考试并不代表以后,相信你们下次一定可以考一个理想的成绩,加油,相信自己.24.(10分)已知:等腰三角形OAB在直角坐标系中的位置如下图,点A的坐标为(,3),点B的坐标为(﹣6,0).(1)若△OAB关于y轴的轴对称图形是△OA'B',请直接写出A、B的对称点A'、B'的坐标;(2)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图象上,求a的值;(3)若△OAB绕点O按逆时针方向旋转30°,此时点B恰好落在反比例函数的图象上,求k的值.【解答】解:(1)由于△OAB关于y轴的轴对称图形是△OA'B',所以A、A′关于y轴对称,B、B′关于y轴对称;已知:点A的坐标为(,3),点B的坐标为(﹣6,0),故:,B'(6,0).(2)∵点A落在上,设为A(x,y),把y 1=3代入,∴;∴,∴a=5.(3)B点坐标为(﹣6,0),∵α=30°,此时A与B关于x轴对称,∵点A的坐标为(,3),∴旋转后B点的坐标是,∴k=9.25.(11分)两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;(2)如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;(3)当点F平移到线段BC的中点时,若四边形AFBD为正方形,猜想△ABC应满足什么条件?请直接写出结论:在此条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请在图3位置画出图形,并求出sin∠CGF 的值.=S四边形AFBD,理由如下:【解答】解:(1)S△ABC由题意可得:AD∥EC,=S△ABD,则S△ADF=S△ADF=S△ABD,故S△ACF=S四边形AFBD;则S△ABC(2)当点F平移到线段BC的中点时,四边形AFBD是平行四边形,理由如下:∵F为BC的中点,∴CF=BF,∵CF=AD,∴AD=BF,由平移可知AD∥BF,∴四边形AFBD为平行四边形;(3)如图3所示:△ABC为等腰直角三角形,即AB=AC,∠BAC=90°;理由如下:由(2)得:四边形AFBD是平行四边形,∵AB=AC,F为BC的中点,∴AF⊥BC,∴平行四边形AFBD为矩形,∵∠BAC=90°,F为BC的中点,∴AF=BC=BF,∴四边形AFBD是正方形;设CF=k,则GF=EF=CB=2k,由勾股定理得:CG==k,sin∠CGF===.26.(12分)如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.【解答】解;(1)线段AB的垂直平分线l1,过点B作x轴的垂线l2,直线l1与l2的交点为P,如图所示,(2)①当x>0时,如图2中,连接AP,作PE⊥y轴于E,∵l1垂直平分AB,∴PA=PB=y,在RT△APE中,∵EP=BO=x,AE=OE﹣OA=y﹣1,PA=y,∴y2=x2+(y﹣1)2,∴y=x2+,当x<0时,点P(x,y)同样满足y=x2+,∴曲线l就是二次函数y=x2+即曲线l是抛物线.②∵d1=x2+,d2=|x|,∴d1+d2=x2++|x|,当x=0时,d1+d2有最小值,∴d1+d2≥,∵d1+d2=8,则x2++|x|=8,当x≥0时,原方程化为x2++x﹣8=0,解得x=3或(﹣5舍弃),当x<0时,原方程化为x2+﹣x﹣8=0,解得x=﹣3或(5舍弃),∵x=±3时,y=5,∴点P坐标(3,5)或(﹣3,5).③如图3中,把y=2代入y=x2+,解得x=,∴直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2).当直线y=kx+3经过点(﹣,2)时,2=﹣k+3∴k=,当直线y=kx+3经过点(,2)时,2=k+3,∴k=﹣,∴直线y=kx+3与这条“W”形状的曲线有四个交点时,k的取值范围是:﹣<k <.赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。

2017年河北省中考数学试卷(含答案解析)

2017年河北省中考数学试卷(含答案解析)

绝密★启用前河北省2017年初中毕业生升学文化课考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,1~10小题,每小题3分,11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算结果为正数的是( )A .2(3)-B .32-÷C .0( 2 017)⨯-D .23- 2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.13 3.用量角器测量MON ∠的度数,下列操作正确的是( )ABCD4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------________________ _____________5.图1和图2中所有的小正方形都全等.将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④ 6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC △的每条边长增加各自的10%得'''A B C △,则'B ∠的度数与其对应角B ∠的度数相比 ( ) A .增加了10%B .减少了10%C .增加了(110)+%D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )ABCD9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥. 以下是排乱的证明过程: ①又BO DO ⊥,②AO BD∴⊥即AC BD ⊥.③四边形ABCD 是菱形, ④=AB AD ∴. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域.甲的航向是北偏东35,为避免行进中甲、乙相撞,则乙的航向不能是( )A .北偏东55B .北偏西55C .北偏东35D .北偏西3511.如图是边长为10 cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的是( )ABCD12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-= B .004446++= C .34446++= D .14446-÷+= 13.若321x x -=-( )11x +-,则( )中的数是 ( ) A .1-B .2-C .3-D 任意实数.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图.用水量(吨) 4 5 6 9 户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是( ) A .甲组比乙组大 B .甲、乙两组相同 C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0)x >的图象是 ( )甲组12户家庭用水量统计表ABC D16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( ) A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共10分.17,18小题,每小题3分;共19小题共4分.请把答案填写在题中的横线上)17.如图,,A B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接,CA CB ,分别延长到点,M N ,使AM AC =,BN BC =,测得200 m MN =,则,A B间的距离为 m .18.如图,依据尺规作图的痕迹,计算=α∠.19.对于实数p ,q ,我们用符号}{min ,p q 表示p ,q 两数中较小的数,如}{min 1 ,21=.因此,}{min 2,3--= ; 若}{22min (1),1x x -=,则x = .三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------在一条不完整的数轴上从左到右有点,,A B C 其中2AB =,1BC =,如图所示.设点,,A B C 所对应数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点,O B 重合),将OC 绕点O 逆时针旋转270后得到扇形COD ,,AP BQ 分别切优弧CD 于点,P Q ,且点,P Q 在AB 异侧,连接OP . (1)求证:AP BQ =;(2)当BQ =时,求QD 的长(结果保留π);(3)若APO △的外心在扇形COD 的内部,求OC 的取值范围.24.(本小题满分10分)如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点,C E .点,B E 关于x 轴对称,连接AB . (1)求点,C E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE △沿x 轴翻折到CDB △的位置,而CDB △与四边形ABDO 拼接后可看成AOC △,这样求S 便转化为直接求AOC △的面积不更快捷吗?”但大家经反复验算,发现AOC S S ≠△,请通过计算解释他的想法错在哪里.25.(本小题满分11分)平面内,如图,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90得到线段PQ .(1)当10DPQ =∠时,求APB ∠的大小;(2)当tan :tan 3:2ABP A =∠时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26.(本小题满分12分)某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .河北省2017年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】239=(-);3322-÷=-;020170⨯=(-);231-=-,所以运算结果为正数的是2(3)-,故选A 。

2017年河北中考数学试卷

2017年河北中考数学试卷

2017年河北中考数学试卷第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A.③→②→①→④B.③→④→①→②C.①→②→④→③ D.①→④→③→②10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A .446+=B .004446++= C .46= D .1446-=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1-B .2-C .3-D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当BQ =QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;m 个月的利润相差最大,求m.(3)在这一年12个月中,若第m个月和第(1)2017河北中考数学试卷。

2017年河北省中学考试数学试卷含问题详解解析汇报版

2017年河北省中学考试数学试卷含问题详解解析汇报版

实用文档文案大全2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a 为()A.1B.﹣2C.0.813D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)︷个+++︸个=()A.B. CD.实用文档文案大全5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()实用文档文案大全A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B 同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是(A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()实用文档文案大全A.B.C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是(A.4+4﹣=6B.4+40+40=6C.4++=6D.4﹣1÷+4=613.(2分)若=+,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()实用文档文案大全A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次实用文档文案大全旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5二、填空题(本大题共3小题,共10分。

2017年河北省中考数学试卷及答案(最新word版)(K12教育文档)

2017年河北省中考数学试卷及答案(最新word版)(K12教育文档)

(完整版)2017年河北省中考数学试卷及答案(最新word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年河北省中考数学试卷及答案(最新word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年河北省中考数学试卷及答案(最新word版)(word版可编辑修改)的全部内容。

2017年河北省中考数学试卷及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

下列运算结果为正数的是()A.2(3)- B.32-÷C.0(2017)⨯- D.23-2。

把0.0813写成10na⨯(110a≤<,n为整数)的形式,则a为( )A.1B.2-C.0.813D.8.133.用量角器测量MON∠的度数,操作正确的是( )4.23222333mn⨯⨯⨯=+++个个……( )A.23nm B。

23mnC。

32mnD.23mn5。

图1—1和图1-2中所有的小正方形都全等,将图1—1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A.① B.② C.③ D.④6。

图2为张小亮的答卷,他的得分应是()A.100分 B.80分 C.60分 D.40分7。

若ABC∆的每条边长增加各自的10%得'''A B C∆,则'B∠的姓名得分填空(每小题20分,共100分)① -1的绝对值是 .② 2的倒数是 .③ -2的相反数是 .④ 1的立方根是 .⑤ -1和7的平均数是 .张小亮?1-2213图3①②③④图1-1 图1-2图4A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( ) A .③→②→①→④ B .③→④→①→②C .①→②→④→③D .①→④→③→②10。

(完整word版)2017年河北省中考数学试卷及答案(word版)资料,推荐文档

(完整word版)2017年河北省中考数学试卷及答案(word版)资料,推荐文档

2017年河北省初中毕业生中考数学试卷及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A.2(3)- B.32-÷C.0(2017)⨯- D.23-2.把0.0813写成10na⨯(110a≤<,n为整数)的形式,则a为( )A.1B.2-C.0.813D.8.133.用量角器测量MON∠的度数,操作正确的是( c )4.23222333mn⨯⨯⨯=+++6474814243个个……( b )A.23nmB.23mnC.32mnD.23mn5.图1-1和图1-2中所有的小正方形都全等,将图1-1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A.① B.②C.③ D.④6.图2为张小亮的答卷,他的得分应是( )A.100分B.80分 C.60分 D.40分7.若ABC∆的每条边长增加各自的10%得'''A B C∆,则'B∠的度数与其对应角B∠的度数相比( )A.增加了10% B.减少了10%C.增加了(110%)+ D.没有改变8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图是( )姓名得分填空(每小题20分,共100分)① -1的绝对值是 .② 2的倒数是 .③ -2的相反数是 .④ 1的立方根是 .⑤ -1和7的平均数是 .张小亮?1-2213图3①②③④图1-1 图1-2图 4乙组12户家庭用水量统计图9.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形, ④∴AB AD =. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图5,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A.北偏东55︒ B.北偏西55︒ C.北偏东35︒ D.北偏西35︒11.图6是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确...的( )12.图7是国际数学日当天淇淇和嘉嘉的微信对话,根据对话 内容,下列选项错误..的是( ) A .4446+-= B .004446++= C .34446++= D .14446-÷+=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数 14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统C B A D611C 9131010图6B 10 10A 8 15D北 东图535°图7嘉嘉,咱俩玩一个数学游戏,好吗?好啊!玩什么游戏?在4 4 4=6等号的左边添加合适的数学运算符号,使等式成立.淇淇淇淇嘉嘉比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大 B.甲、乙两组相同 C .乙组比甲组大 D .无法判断15.如图9,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图10所示.按下列步骤操作: 将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图11,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM=AC ,BN=BC ,测得MN=200 m ,则A ,B 间的距离为 m用水量(吨) 4 5 6 9 户数4521xy1 2 3 4 5 12 3 4 5 O xy1 2 3 4 5 12 3 4 5 O xy 1 2 3 4 5 12 3 4 5 O xy 1 2 3 4 5 12 3 4 5 O 图9xy· · O11 A(Q) FE D C N M B(K) 图10图8 ·18.如图12,依据尺规作图的痕迹,计算∠a = °19.对于实数p ,q ,我们用符号}{q p , m in 表示p ,q 两数中较小的数,如}{12 1m in =,. 因此,}{=--3 2min ,; 若}{1 )1(m in 22=-x ,x ,则=x . 三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图13所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图13中数轴上点C 的右边,且CO=28,求p .21.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分..图14是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.图12ABCD68°α┓┛┏ 图11AB C MN A BC21 图13(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)()2222232101++++-的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23.(本小题满分9分)如图15,AB=16,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270°后得到扇形COD,AP,BQ 分别切优弧CD ⌒ 于点P ,Q ,且点P,Q 在AB 异侧,连接OP. (1)求证:AP=BQ ;(2)当BQ=34时,求Q D ⌒ 的长(结果保留π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.1 1 345 32 345 积分 1号 2号 03号 5号4号 图14学生编号· ·ABCDP PQ24.(本小题满分10分)如图16,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线83983--=x y 与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB. (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S S AOC ≠Δ,请通过计算解释他的想法错在哪里.图1625.(本小题满分11分)平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ . (1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).B APCD Q备用图图17ABCDP Q26.(本小题满分12分)某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据. (1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。

2017年河北省石家庄市长安二十一中中考数学模拟试卷(解析版)

2017年河北省石家庄市长安二十一中中考数学模拟试卷(解析版)

2017年河北省石家庄市长安二十一中中考数学模拟试卷一、选择题:1.﹣的相反数是()A.B.﹣ C.5 D.﹣52.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.2x2•x3=2x5D.(x3)4=x73.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.4.化简﹣的结果是()A.B.C.D.5.下列函数中,是一次函数的有()(1)y=πx (2)y=2x﹣1 (3)y=(4)y=2﹣3x (5)y=x2﹣1.A.4个 B.3个 C.2个 D.1个6.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对7.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×= D.=(b≠0 )8.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或910.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤311.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±412.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=13.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0 B.1 C.2 D.314.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣315.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.16.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3二、填空题:17.一个数的立方根是4,那么这个数的平方根是.18.因式分解:(a+b)2﹣4b2=.19.△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=.三、计算题:20.﹣32×﹣(+﹣)÷(﹣)21.2×(﹣3)2﹣5÷(﹣)×(﹣2)四、解答题:22.如图,已知△EFG ≌△NMH ,∠F 与∠M 是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm ,FH=1.1cm ,HM=3.3cm ,求MN 和HG 的长度.23.如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE +CF .24.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.25.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?26.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)27.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c 的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求抛物线的解析式;(2)在(1)的条件下,求点N的坐标和线段MN的长;(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.2017年河北省石家庄市长安二十一中中考数学模拟试卷参考答案与试题解析一、选择题:1.﹣的相反数是()A.B.﹣ C.5 D.﹣5【考点】14:相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣的相反数是.故选:A.2.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.2x2•x3=2x5D.(x3)4=x7【考点】4C:完全平方公式;35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【分析】A、本选项不是同类项,不能合并,错误;B、原式利用完全平方公式展开得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、本选项不是同类项,不能合并,错误;B、(x﹣2)2=x2﹣4x+4,本选项错误;C、2x2•x3=2x5,本选项正确;D、(x3)4=x12,本选项错误,故选C3.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.4.化简﹣的结果是()A.B.C.D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣=故选(A)5.下列函数中,是一次函数的有()(1)y=πx (2)y=2x﹣1 (3)y=(4)y=2﹣3x (5)y=x2﹣1.A.4个 B.3个 C.2个 D.1个【考点】F1:一次函数的定义.【分析】根据一次函数的定义对各选项进行逐一分析即可.【解答】解:(1)y=πx是一次函数;(2)y=2x﹣1是一次函数;(3)y=是反比例函数,不是一次函数;(4)y=2﹣3x是一次函数;(5)y=x2﹣1是二次函数,不是一次函数.是一次函数的有3个.故选:B.6.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【考点】LE:正方形的性质;KB:全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON ≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.7.下列等式不一定成立的是()A.(﹣)2=2 B.﹣=C.×= D.=(b≠0 )【考点】79:二次根式的混合运算.【分析】根据二次根式的性质、化简乘除法进行计算即可.【解答】解:A、(﹣)2=2,正确;B、﹣=2﹣=,正确;C、×=,正确;D、=(a>0,b>0 ),错误;故选D.8.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故D选项正确.故选:D.9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】L3:多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【考点】KF:角平分线的性质.【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【解答】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.11.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±4【考点】13:数轴.【分析】根据绝对值的意义得:到原点的距离为4的点有4或﹣4,即可得到A 表示的数.【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选D.12.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x ﹣5)个,由题意得,=,故选B.13.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0 B.1 C.2 D.3【考点】KQ:勾股定理;26:无理数.【分析】根据图中所示,利用勾股定理求出每个边长.【解答】解:观察图形,应用勾股定理,得AB=,BC=,AC=,∴三个边长都是无理数;故选D.14.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】AB:根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a 的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.15.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=A .B .C .D .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】由平行四边形的性质易证两三角形相似,根据相似三角形的性质可解.【解答】解:∵ABCD 是平行四边形 ∴AD ∥BC ∴△BFE ∽△DFA ∴BE :AD=BF :FD=1:3∴BE :EC=BE :(BC ﹣BE )=BE :(AD ﹣BE )=1:(3﹣1) ∴BE :EC=1:2 故选A .16.已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P 1(x 1,y 1)、P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线l 上的点,且﹣1<x 1<x 2,x 3<﹣1,则y 1、y 2、y 3的大小关系为( )A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 【考点】H5:二次函数图象上点的坐标特征.【分析】因为抛物线的对称轴为直线x=﹣1,且﹣1<x 1<x 2,当x >﹣1时,由图象知,y 随x 的增大而减小,根据图象的单调性可判断y 2<y 1;结合x 3<﹣1,即可判断y 2<y 1<y 3.【解答】解:对称轴为直线x=﹣1,且﹣1<x 1<x 2,当x >﹣1时,y 2<y 1, 又因为x 3<﹣1,由一次函数的图象可知,此时点P 3(x 3,y 3)在二次函数图象所以y2<y1<y3.故选D.二、填空题:17.一个数的立方根是4,那么这个数的平方根是±8.【考点】24:立方根;21:平方根.【分析】根据立方根的定义可知,这个数为64,故这个数的平方根为±8.【解答】解:设这个数为x,则根据题意可知=4,解得x=64;即64的平方根为±8.故答案为±8.18.因式分解:(a+b)2﹣4b2=(a+3b)(a﹣b).【考点】54:因式分解﹣运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b).故答案为:(a+3b)(a﹣b)19.△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=1或4.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质.【分析】根据等腰三角形的性质得到BD=2,CE=2,∠B=∠C,根据相似三角形的性质即可得到结论.【解答】解:∵AB=AC=4,点D是边AB的中点,点E是边AC的中点,∴BD=2,CE=2,∠B=∠C,∵∠DPE=∠C,∴∠BPD=180°﹣∠B﹣∠DPE,∠CEP=180°﹣∠EPC﹣∠C,∴∠DPB=∠PEC,∴△BPD∽△CPE,∴,即,∴PB=1或4,故答案为:1或4.三、计算题:20.﹣32×﹣(+﹣)÷(﹣)【考点】1G:有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣9×(﹣)﹣(+﹣)×(﹣24)=+18+4﹣9=14.21.2×(﹣3)2﹣5÷(﹣)×(﹣2)【考点】1G:有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.四、解答题:22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【考点】KA:全等三角形的性质.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.23.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.【考点】KH:等腰三角形的性质;JA:平行线的性质.【分析】根据平行线的性质和角平分线的性质,解出△BED和△CFD是等腰三角形,通过等量代换即可得出结论.【解答】解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.24.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.【考点】X8:利用频率估计概率;W7:方差.【分析】根据频数的计算方法计算即可.【解答】解:(1)48,0.81;(2)P(射中9环以上)=0.8从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8.25.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?【考点】FH:一次函数的应用.【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y与x的函数表达式是y=2x;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x>20时,y与x的函数表达式是y=2×20+2.8(x﹣20),即y=2.8x﹣16;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x计算用水量;四月份缴费金额超过40元,所以用y=2.8x﹣16计算用水量,进一步得出结果即可.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x﹣20)=2.8x﹣16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x﹣16中,得x=22.所以22﹣19=3吨.答:小颖家五月份比四月份节约用水3吨.26.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题可通过构造直角三角形来解答,过B点作BD⊥AC,D为垂足,在直角三角形BCD中,已知BC的长,可求∠BCD的度数,那么可求出BD的长,在直角三角形ABD中,可求∠DAB=70°﹣40°=30°,前面又得到了BD的长,那么就可求出AB的长.【解答】解:过B点作BD⊥AC,D为垂足,在直角三角形BCD中,∠BCD=180°﹣70°﹣90°=20°,BD=BC•sin20°=4×0.34=1.36米,在直角三角形ABD中,∠DAB=70°﹣40°=30°,AB=BD÷sin30°=1.36÷≈2.7米.答:树影AB的长约为2.7米.27.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c 的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求抛物线的解析式;(2)在(1)的条件下,求点N的坐标和线段MN的长;(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A,B的值,根据顶点式,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得N点坐标,根据勾股定理,可得答案;(3)根据相似三角形的性质,可得关于m的方程,可得M点的坐标,要分类讨论,以防遗漏.【解答】解:(1)∵直线y=2x﹣5与x轴和y轴分别交于点A和点B,∴A(,0),B(0,﹣5).当点M与点A重合时,∴M(,0),∴抛物线的解析式为y=﹣(x﹣)2,即y=﹣x2+5x﹣;(2)N在直线y=2x﹣5上,设N(a,2a﹣5),又N在抛物线上,∴2a﹣5=﹣a2+5a﹣,解得a1=,a2=(舍去),∴N(,﹣4).过点N作NC⊥x轴,垂足为C,如图1,∵N(,﹣4),∴C(,0),∴NC=4.MC=OM﹣OC=﹣=2,∴MN===2.(3)设M(m,2m﹣5),N(n,2n﹣5).∵A(,0),B(0﹣,5),∴OA=,OB=5,则OB=2OA,AB==,如图2,当∠MON=90°时,∵AB≠MN,且MN和AB边上的高相等,因此△OMN与△AOB 不能全等,∴△OMN与△AOB不相似,不满足题意;当∠OMN=90°时,=,即=,解得OM=,则m2+(2m﹣5)2=()2,解得m=2,∴M(2,﹣1);当∠ONM=90°时,=,即=,解得ON=,则n2+(2n﹣5)2=()2,解得n=2,∵OM2=ON2+MN2,即m2+(2m﹣5)2=5+(2)2,解得m=4,则M点的坐标为(4,3),综上所述:M点的坐标为(2,﹣1)或(4,3).。

河北省中考数学结课小模拟试卷(A卷,含解析)-人教版初中九年级全册数学试题

河北省中考数学结课小模拟试卷(A卷,含解析)-人教版初中九年级全册数学试题
A.k<0B.k≤0C.k>0D.k≥0
12.将一X矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED为( )
A.2B. C. D.
13.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )
A. = ﹣5B. = +5C. =8x﹣5D. =8x+5
当x=3时,y=2,
∴当1<x<3时,2<y<6.
故选C.
6.在2016年某某市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )
A.平均数为160B.中位数为158
【考点】方差;算术平均数;中位数;众数.
【分析】分别利用平均数、中位数、众数及方差的定义求解后即可判断正误.
A.平均数为160B.中位数为158
7.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为( )
A.1:3B.1:4C.1:5D.1:9
8.如图,AB是⊙O的弦,已知∠OAB=30°,AB=4,则⊙O的半径为( )
A.4B.2C. D.
【解答】解:方程x2+1= 的解可看成抛物线y=x2+1与双曲线y= 的交点横坐标.
画出两函数图象,如图所示.
∵抛物线y=x2+1开口向上,且最低点为(0,1),
∴当x>0时,y=x2+1>0,
∴双曲线y= 在第一象限有图象,
∴k>0.
故选C.
12.将一X矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED为( )

2017年河北省初中毕业生学业考试数学试题(附答案解析)

2017年河北省初中毕业生学业考试数学试题(附答案解析)

2017年河北省初中毕业生学业考试数学试题一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C. D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B. C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是( )A .(﹣3)2B .﹣3÷2C .0×(﹣2017)D .2﹣32.(3分)把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为( )A .1B .﹣2C .0.813D .8.133.(3分)用量角器测得∠MON 的度数,下列操作正确的是( )A .B .C .D .4.(3分)2×2×⋯×2︷m 个23+3+⋯+3︸n 个3=( ) A .2m 3n B .2m 3n C .2m n 3 D .m 23n5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A .B .C .D .12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是( )A .4+4﹣√4=6B .4+40+40=6C .4+√4+43=6D .4﹣1÷√4+4=6 13.(2分)若3−2x x−1= +1x−1,则 中的数是( ) A .﹣1 B .﹣2 C .﹣3 D .任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4 5 6 9 户数 4 5 2 1比较5月份两组家庭用水量的中位数,下列说法正确的是( )A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5二、填空题(本大题共3小题,共10分。

17~18小题各3分;19小题有2个空,每空2分。

把答案写在题中横线上)17.(3分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为m.18.(3分)如图,依据尺规作图的痕迹,计算∠α=°.19.(4分)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣√2,﹣√3}=;若min{(x﹣1)2,x2}=1,则x=.三、解答题(本大题共7小题,共68分。

解答应写出文字说明、证明过程或演算步骤)20.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.21.(9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分.,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(9分)发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23.(9分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重̂于合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD 点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;̂的长(结果保留π);(2)当BQ=4√3时,求QD(3)若△APO的外心在扇形COD的内部,求OC的取值范围.24.(10分)如图,直角坐标系xOy 中,A (0,5),直线x =﹣5与x 轴交于点D ,直线y =﹣38x ﹣398与x 轴及直线x =﹣5分别交于点C ,E ,点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.25.(11分)平面内,如图,在▱ABCD 中,AB =10,AD =15,tanA =43,点P 为AD 边上任意点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan ∠ABP :tanA =3:2时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在▱ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积.(结果保留π)26.(12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月)12成本y(万元/件)1112需求量x(件/月)120100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差很大,求m.2017年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•河北)下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣3【考点】1G:有理数的混合运算.【专题】11:计算题;511:实数.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•河北)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.13【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为8.13,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2017•河北)用量角器测得∠MON 的度数,下列操作正确的是( )A .B .C .D .【考点】IF :角的概念.【分析】根据量角器的使用方法进行选择即可.【解答】解:量角器的圆心一定要与O 重合,故选C .【点评】本题考查了角的概念,掌握量角器的使用方法是解题的关键.4.(3分)(2017•河北)2×2×⋯×2︷m 个23+3+⋯+3︸n 个3=( ) A .2m 3n B .2m 3n C .2m n 3 D .m 23n【考点】1G :有理数的混合运算.【分析】根据乘方和乘法的意义即可求解.【解答】解:2×2×⋯×2︷m个23+3+⋯+3︸n个3=2m3n.故选:B.【点评】考查了有理数的混合运算,关键是熟练掌握乘方和乘法的意义.5.(3分)(2017•河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④【考点】R5:中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故选:C.【点评】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.6.(3分)(2017•河北)如图为张小亮的答卷,他的得分应是()A .100分B .80分C .60分D .40分【考点】27:实数. 【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【解答】解:﹣1的绝对值为1,2的倒数为12, ﹣2的相反数为2,1的立方根为1,﹣1和7的平均数为3,故小亮得了80分,故选B .【点评】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.(3分)(2017•河北)若△ABC 的每条边长增加各自的10%得△A ′B ′C ′,则∠B ′的度数与其对应角∠B 的度数相比( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变【考点】S 5:相似图形.【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【解答】解:∵△ABC 的每条边长增加各自的10%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′,∴∠B′=∠B.故选D.【点评】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.8.(3分)(2017•河北)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.(3分)(2017•河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【考点】L8:菱形的性质.【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.【点评】本题考查了菱形对角线互相垂直平分的性质,熟练掌握菱形的性质是解题的关键.10.(3分)(2017•河北)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【考点】IH:方向角.【分析】根据已知条件即可得到结论.【解答】解:∵甲的航向是北偏东35°,为避免行进中甲、乙相撞,∴乙的航向不能是北偏西35°,故选D.【点评】本题主要考查的是方向角问题理解方向角的定义是解决本题的关键.11.(2分)(2017•河北)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.【考点】LE:正方形的性质;K6:三角形三边关系.【分析】利用勾股定理求出正方形的对角线为10√2≈14,由此即可判定A不正确.【解答】解:选项A不正确.理由正方形的边长为10,所以对角线=10√2≈14,因为15>14,所以这个图形不可能存在.故选A.【点评】本题考查正方形的性质、勾股定理等知识,解题的关键是利用勾股定理求出正方形的对角线的长,属于中考选择题中的压轴题.12.(2分)(2017•河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A .4+4﹣√4=6B .4+40+40=6C .4+√4+43=6 D .4﹣1÷√4+4=6 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【专题】27 :图表型.【分析】根据实数的运算方法,求出每个选项中左边算式的结果是多少,判断出哪个算式错误即可.【解答】解:∵4+4﹣√4=6,∴选项A 不符合题意;∵4+40+40=6,∴选项B 不符合题意;∵4+√4+43=6,∴选项C 不符合题意;∵4﹣1÷√4+4=418, ∴选项D 符合题意.故选:D .【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.(2分)(2017•河北)若3−2x x−1= +1x−1,则 中的数是( ) A .﹣1 B .﹣2 C .﹣3 D .任意实数【考点】6B :分式的加减法.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:∵3−2x x−1= +1x−1, ∴3−2x x−1﹣1x−1=3−2x−1x−1=2−2x x−1=2(1−x)x−1=﹣2, 故____中的数是﹣2.故选:B .【点评】此题主要考查了分式的加减运算,正确掌握分式加减运算法则是解题关键.14.(2分)(2017•河北)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4 5 6 9 户数 4 5 2 1 比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断【考点】W 4:中位数;VB :扇形统计图.【分析】根据中位数定义分别求解可得.【解答】解:由条形图知甲组的中位数为5+52=5(吨),乙组的4吨和6吨的有12×90360=3(户),7吨的有12×60360=2户,则5吨的有12﹣(3+3+2)=4户,∴乙组的中位数为5+52=5(吨),则甲组和乙组的中位数相等,故选:B.【点评】本题主要考查中位数和扇形统计图,根据扇形图中各项目的圆心角求得其数量是解题的关键.15.(2分)(2017•河北)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx (x>0)的图象是()A.B.C.D.【考点】G2:反比例函数的图象;HA:抛物线与x轴的交点.【分析】找到函数图象与x轴、y轴的交点,得出k=4,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±√3;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣1,﹣1),(0,1),(0,2),(1,1);共有4个,∴k=4;故选:D.【点评】本题考查了二次函数图象和性质、反比例函数的图象,解决本题的关键是求出k的值.16.(2分)(2017•河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5【考点】MM:正多边形和圆;R2:旋转的性质.【分析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于0.5小于等于1,由此即可判断.【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于0.5小于等于1,故选C.【点评】本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.二、填空题(本大题共3小题,共10分。

相关文档
最新文档