动物生物化学+8+糖类代谢 PPT课件

合集下载

糖代谢(共84张PPT)

糖代谢(共84张PPT)
XI. 乙酰辅酶A
反应列表

反应类型
1. 乌头酸酶
脱水
2. 乌头酸酶 3. 异柠檬酸脱氢酶 4. 异柠檬酸脱氢酶
水合 氧化 脱羧
5. α-酮戊二酸脱氢酶复合体 6. 琥珀酰辅酶A合成酶 7. 琥珀酸脱氢酶 8. 延胡索酸酶 9. 苹果酸脱氢酶 10. 柠檬酸合酶
氧化脱羧 底物水平磷酸化 氧化 水合 氧化 加成
O R C COO-
TPP-酶A(E1)
O R C S L SH
CoA SH
OH
S 酶B( E2 ) SH
O
CO2
R CH TPP
L S
L
R C S CoA
SH
FADH2
FAD 酶C(E3)
NAD+ NADH+H+
丙酮酸氧化脱羧反应简图
(2)三羧酸循环
丙酮酸氧化脱羧产物乙酰CoA与草酰乙酸(三羧酸
生成的NADH和FADH2 进入线粒体呼吸链氧化,生成ATP,是葡萄糖 分解代谢产生ATP的最主要途径。
葡萄糖分解代谢总反应式
C6H12O6 + 6H2O + 10NAD+ + 2FAD + 4ADP + 4Pi 6CO2 + 10
NADH + 10H+ + 2FADH2 + 4ATP
按照每分子NADH产生3分子ATP,1分子FADH2产生2分子ATP计算, 1分子葡萄糖分解代谢成CO2和水共产生38分子ATP
又与发酵紧密联系,又称糖酵解或无氧分解。 (2)三羧酸循环:丙酮酸 CO2 + H2O 。 此过程的第一个物质为三元羧酸-柠檬酸,通常称为三羧酸
循环或柠檬酸循环。分子氧是此系列反应的最终受氢体,又称 为有氧分解。

糖类代谢PPT课件

糖类代谢PPT课件

CH2OH O O PO32H H OH H H OH H OH
H2C O PO32O OH H H OH H H OH H OH
CH2 O PO32CH2OH O H HO H OH H OH
CH2 O PO32H H OH H2C O PO32O HO H OH
1-磷酸葡萄糖
6-磷酸葡萄糖
6-磷酸果糖
C4H8O4
C5H10O5 C6H12O6 C7H14O7 C8H16O8
例外:甲醛(CH2O) ,乙酸(C2H4O2),乳酸(C3H6O3); 脱氧核糖(C5H10O4),鼠李糖(C6H12O5)等。
糖的生物学功能
• 1. 能源:淀粉和糖原是重要的能源物质; • 2. 结构物质:植物细胞壁中的纤维素、细菌细胞 壁的肽聚糖; • 3. 在生物体内转变为其他物质: • 4. 识别信号分子:参与分子和细胞识别、细胞粘 附、糖复合物的定位和代谢等。
麦芽糖分子结构(葡萄糖α-1,4-葡萄糖苷)
CH2OH O H H OH H OH
CH2OH O OH H 1 H OH H H H OH
H O
4
H OH
β-半乳糖
α-葡萄糖
乳糖分子结构(葡萄糖β,α-1,4-半乳糖苷)
乳糖和麦芽糖有半缩醛羟基,因此具有还原性。 • 蔗糖没有游离的半缩醛羟基,是非还原糖。
常用单词、前缀和后缀
• 单词 – sugar, carbohydrate,saccharide… • 前缀 – Glycobiology, Glycoconjugate, Glycoprotein, Glycolipid… • 后缀 – -ose, -saccharide or -glycan • Glucose(葡萄糖),Fructose(果糖),Galactose (半乳糖), Sucrose(蔗糖)…

生物化学糖代谢PPT课件

生物化学糖代谢PPT课件
糖原是动物体能量的主要来源,葡萄糖在血液 中的含量较高时,就结合成糖原储存于肝脏中, 当血液中含糖量降低时,就分解为葡萄糖而供给 机体能量。 糖原是无色粉末,溶于水呈乳色,遇碘显棕至 紫色。
糖原 是动物体内葡萄糖的储存形式
纤维素 作为植物的骨架
β-1,4-糖苷键
纤维素
植物细胞壁含有高百分比的结构同多糖纤维素, 纤维素大约占生物圈中的有机物质的50%以上。 不象贮存多糖那样位于细胞内,纤维素和其它结 构多糖是由细胞内合成然后分泌出来的细胞外分 子。
脱支酶 磷酸化酶 G—1—P
(三)糖原的降解
糖原降解主要有糖原磷酸化酶和糖原脱支酶催
化进行。
糖原 +Pi
糖原 + G-1-P
( n残基)
(n-1残基)
磷酸葡萄糖变位酶
肝脏
G+Pi
(葡萄糖-6磷酸酶)
G-1-P
G-6-P
肌肉 进入糖酵解
糖原磷酸化酶:从非还原端催化1-4糖苷键 的磷酸解。
例 肝糖元的分解
α葡萄糖1,4糖苷键
+ 7H3PO4
α葡萄糖1,6糖苷键
糖原核心
磷酸化酶(别构酶)
ATP抑制-AMP激活
7 G-1-P +
糖原核心
1 G-1-P
转移酶 糖原核心
去分枝酶 + H3PO4
糖原核心
G-1-P
磷酸化酶+ H3PO4
去单糖降解
二、双糖的水解
(一)蔗糖的水解
1.转化酶 蔗糖 + H2O
转化酶
限速酶 /率低 3、受激素或代谢物的调节 4、常是在整条途径中催化初始反应的酶 5、活性的改变可影响整个反应体系的速度和方向

生物化学-糖类及其分解代谢(共58张PPT)

生物化学-糖类及其分解代谢(共58张PPT)
α-1,6糖苷键
淀粉的磷酸解
淀粉磷酸化酶 糖原磷酸化酶
细胞壁多糖的酶促降解
纤维素降解
果胶物质降解:原果胶,果胶,果胶酸
三、糖酵解
1.糖酵解途径(glycolysis) (Embden-Meyerhof-Parnas,EMP)
(1) EMP途径的生化历程
糖酵解过程
糖 原 a
b
1 -磷 酸 葡 萄 糖 1
二、双糖和多糖的酶促降解 重要中间代谢产物: 5-磷酸核糖和NADPH
生成乙酰辅酶A。 β-半乳糖苷酶
三羧酸循环不仅是产生ATP的途径,它产生的中间产物也是生物合成的前体。 整个代谢途径在胞液进行。 循环中底物上有4对氢原子通过4步氧化反应脱下,其中3对是在异柠檬酸、酮戊二酸及苹果酸氧化时用以还原NAD+,1对是琥珀酸氧化时用以 还原FAD 焦磷酸硫胺素(TPP)、硫辛酸、 可衍生许多其他物质
按照一个NADH能够产生3个ATP,1个FADH2能够产生 2个ATP计算,1分子葡萄糖在分解代谢过程中共产生38
个ATP:
4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
3. 丙酮酸羧化支路(回补途径)
三羧酸循环不仅是产生ATP的途径,它产生 的中间产物也是生物合成的前体。例如卟 啉的主要碳原子来自琥珀酰CoA,谷氨酸、 天冬氨酸是从α-酮戊二酸、草酰乙酸衍生 而成。一旦草酰乙酸浓度下降,势必影响 三羧酸循环的进行。
个糖单位切下来,故水解直链淀粉产物为麦芽糖,水 解支链淀粉为麦芽糖和极限糊精。 麦芽糖酶专一水解麦芽糖为两分子葡萄糖;
水解淀粉中的α-1,6糖苷键的酶是脱支酶(α-1,
6糖苷键酶)
前四步反应为三羧酸反应,后五步为二羧酸反应。 (1) EMP途径的生化历程 丙酮酸羧化支路(回补途径) 由琥珀酰CoA形成琥珀酸时偶联有底物水平磷酸化生成ATP 动物 大多数糖类化合物可用通式Cn(H2O)m表示,又称为碳水化合物; 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP β-淀粉酶:外切酶,只能从非还原端开始水解,以两个糖单位切下来,故水解直链淀粉产物为麦芽糖,水解支链淀粉为麦芽糖和极限糊精。 (1) 乳酸发酵(同型乳酸发酵)lactic fermation EMP pyr TCA

生物化学 --糖代谢(共32张PPT)

生物化学 --糖代谢(共32张PPT)
新陈代谢
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O

动物生物化学课件-糖代谢

动物生物化学课件-糖代谢

生理意义
动物机体迅速提供生理活动所需的能量 表皮、视网膜、神经、睾丸、肾髓质、血细胞等从无氧分
解获得能量 贫血、失血、休克等病理情况下,糖的无氧分解得到加强。
葡萄糖无氧分解途径中产生过多的乳酸会引起动物酸中毒。
指葡萄糖在有氧条件下彻底氧化 生成水和二氧化碳的过程。也称 为糖的有氧分解。
(一)来源
动物体内糖的来源主要由消化道吸收,其次通过糖的异生作用 非反刍动物,糖的主要来源是淀粉在消化道中被酶水解转变成
葡萄糖,然后通过小肠吸收 反刍动物, 丙酸是异生成葡萄糖的主要前体
(二)去路
分解供能 以肝糖原和肌糖原的形式暂时贮存于肝脏和肌肉中。 当有过多的糖摄入,可以转变为脂肪。 糖分解过程中的中间物可以通过提供“碳骨架”参与非必需氨
乳酸循环 (肌肉-肝脏-肌肉)
动物使役和剧烈运动时,肌肉中产生出大量乳酸。乳酸在肌肉组织中 不能利用,可以随血液运至肝脏再脱氢生成丙酮酸,后者既可以继续 经有氧分解供能,又可经异生作用再转变成葡萄糖,再释放进入血液 以补充血糖。这一过程称为乳酸循环。
它有助于清除体内多余的乳酸,防止发生由乳酸引起酸中毒。
丙酮酸脱氢酶系
2mol丙酮酸(3C)在丙酮酸脱氢酶复合体的催化下,氧化脱羧生 成2mol乙酰CoA(2C),2mol NADH+H+和2mol CO2
丙酮酸脱氢酶复合体: 3个酶 5个辅酶:TPP(焦磷酸硫胺素)、硫辛酸、CoA、FAD和NAD+
乙酰CoA进入三羧酸循环彻底氧化, 反应如下:
一次底物水平磷酸化(生成ATP) 二次脱羧(生成2molCO2) 三个不可逆,三个关键酶(柠檬酸合
酶、异柠檬酸脱氢酶和α-酮戊二酸脱 氢酶复合体) 四次脱氢(生成3mol NADH,1molFADH2=7.5+1.5 ATP=9ATP)

《糖类代谢》PPT课件

《糖类代谢》PPT课件

可逆反应,葡萄糖激酶是酵解过程中第一个调节酶。
精选课件ppt
10
(1)糖原分解生成6-磷酸葡萄糖
糖 原 (Gn)
磷酸化酶
H3PO4 糖 原 (Gn-1)
HO CH2
OH
O OH
O P O CH2
OH OH
OP O
OH
OH HO
OH OH
磷酸葡萄糖变位酶
1-磷酸葡萄糖
O
OH OH
(glucose-1-phosphate)
6-磷酸葡萄糖
(glucose-6-phosphate)
精选课件ppt
11
(2)6-磷酸葡萄糖转化成6-磷酸果糖(6-P-F)。
这是一个同分异构化反应,由磷酸葡萄糖异构酶所催化。 这一步酶促反应将羰基键C1移至C2,为C1磷酸化作了准 备。反应中间物是酶结合的烯醇化合物。
精选课件ppt
12
(3)F-6-P磷酸化生成1,6-二磷酸果糖(F-1,6-2P),催化此反应
甘油醛-3-磷酸氧化产生的高能中间物最后转化成甘油 酸-3-磷酸并产生ATP,这是酵解过程中第一次产生ATP的 反应,也是底物水平的磷酸化反应。 因为一分子葡萄糖产 生2分子三碳糖,因此共产生2分子ATP。
精选课件ppt
18
甘油酸-3-磷酸转变成甘油酸-2-磷酸,催化此反应的酶为 磷酸甘油酸变位酶。
第四章 糖代谢
精选课件ppt
生物化学 1
教 容学

糖在动物体的一般概况 糖的分解供能 磷酸戊糖途径 葡萄糖的异生作用 糖原 糖代谢各途径之间的联系
精选课件ppt
2
第一节 糖在动物体内的 一般概况


糖的生理功能 糖代谢概况

动物生物化学课件8 糖代谢

动物生物化学课件8 糖代谢

酵解的反应过程: 第一阶段 葡萄糖生成丙酮酸
注意,这个过程消耗了 ATP,反应不可逆。
注意,这个过程消耗了 ATP,反应不可逆。
当底物发生脱氢或脱水时,使其分子内 部能量重新分布而形成高能磷酸键(或 高能硫酯键),然后将高能键转移给 ADP(或GDP)生成ATP(或GTP)的 过程,称为底物水平磷酸化。
O
CH 2 OH O H H 4 OH H H OH
H 1 + 4
H OH
CH 2OH O H H 1 OH H H OH
O
O O P O O
细胞内糖原在磷酸化酶催化下形成大量葡萄糖 -1 -磷酸
Pi
糖原磷酸化酶
转移酶 脱支酶 α-1,6糖苷酶
H OH
CH2OH O H H OH H OH
H
磷酸葡萄糖 变位酶
1.糖在动物体内的一般概况
1.2 糖的代谢概况 动物体内糖的来源
非反刍动物 反刍动物
动物体内糖的代谢
1.糖在动物体内的一般概况
1.3 血糖 概念:血液中所含的葡萄糖。
消化吸收 异生作用 糖原分解
血糖的来源和去路
氧化供能
葡萄糖
贮存 转变成其他物质
1.糖在动物体内的一般概况
1.3 血糖 意义 反映机体的能量水平,糖的分解和利用的动 态平衡,对大脑、胎儿尤为重要 糖尿 血糖水平相对恒定,超过肾糖阈值,葡萄糖 随尿排出 激素的调节作用 胰岛素下调; 胰高血糖素、肾上腺素、糖皮质激素上调
2. 糖原的分解与合成
2.3 糖原合成
每个葡萄糖分子都须磷酸化成为6-P-葡萄糖,再 异构成为1-P-葡萄糖,然后进一步活化为UDPG。在 糖原引物的非还原端逐个加上葡萄糖基,同时释放 出UDP,糖原合成酶是这个反应的关键酶。由分支 酶催化糖链的分支。

糖类代谢PPT课件

糖类代谢PPT课件

吸收速率
不同糖类的吸收速率不同, 如葡萄糖的吸收速率较快, 果糖较慢。
吸收部位
小肠是主要的吸收部位, 但结肠也有一定的吸收功 能。
血糖的调节
胰岛素与胰高血糖素
饱腹感与饥饿感
胰岛素降低血糖,胰高血糖素升高血 糖。
饱腹感激素如GLP-1和饥饿感激素如 ghrelin对食欲的调节。
肝糖原与肌糖原
肝糖原分解为葡萄糖进入血液以维持 血糖稳定,肌糖原则储存葡萄糖。
感谢观看
THANKS
三羧酸循环过程中释放的能量为34分子ATP,其中1分子ATP来自乙酰 CoA与草酸乙酸结合的反应,其余33分子ATP来自其他三个步骤催化的 反应。
氧化磷酸化
氧化磷酸化定义
氧化磷酸化是线粒体内进行的一系列的氧化反应和磷酸化反应,是细胞产生能量的主要方 式。
氧化磷酸化步骤
氧化磷酸化包括两个步骤,分别是电子传递链和ATP合成酶催化的反应。电子传递链将 NADH和FADH2的电子传递给氧,生成H+,同时生成ATP。
02
糖原的合成需要限速 酶
糖原的合成酶是糖原合成的关键酶, 其活性受到多种因素的调节,如激素 、血糖水平等。因此,糖原的合成速 度受到限制。
03
糖原的合成与分解相 互制约
糖原的合成与分解是相互制约的过程 。在血糖水平升高时,糖原的合成增 加,而在血糖水平降低时,糖原的分 解加速。
蔗糖和淀粉的合成
蔗糖是植物体内主要的贮存光合产物 的形式,也是植物体内运输的主要形 式。蔗糖合成酶是蔗糖合成的关键酶。
化的反应。
三羧酸循环
01
三羧酸循环定义
三羧酸循环是线粒体内进行的一系列的氧化反应,是细胞产生能量的主
要方式。

生物化学完整——糖代谢ppt课件

生物化学完整——糖代谢ppt课件

细胞呼吸最早释放的CO2
完整版课件
30
丙酮酸脱氢酶复合体:位于线粒体内膜 上,原核细胞则在胞液中
丙酮酸脱氢酶复合体包括3种酶和6 种辅因子
E.coli丙酮酸脱氢酶系/复合体:
分子量:4.5×106,直径45nm,比核糖体稍大。

辅酶
每个复合物亚基数
丙酮酸脱氢酶(E1)
TPP
24
二氢硫辛酸乙酰转移酶(E2) 硫辛酸、CoA
同时进行脱氢和磷酸化作用,并引起分子内部能量重新
分配,生成高能磷酸化合物1,3-BPG ,脱下的氢为 NAD+ 接受。甘油醛-3-磷酸完整版脱课件氢酶的作用是负协同效1应6
3.2 高能磷酸基团的转移
+ ADP
+ ATP
1,3-BPG
3-PG
高能磷酸化合物1,3-BPG在磷酸甘油酸激酶作用
下,通过底物水平磷酸化转变为ATP;因为每1mol
•柠檬酸/ 三羧酸循 环TCA
顺乌头酸
苹果酸
H2O
•草酰乙酸
再生阶段
•氧化脱 羧阶段
异柠檬酸
NAD+
NADH +CO2
延胡索酸
FADH2
FAD
完整版课件
琥珀酸 GTP 琥珀酰CoA
-酮戊二酸
NAD+
NADH +CO325
TCA第一阶段:柠檬酸生成
草酰乙酸
O CH3-C-SCoA
CoASH
柠檬酸合成酶
一、糖代谢总论 二、糖的分解代谢 (1)糖酵解作用 (2)丙酮酸去路 (3)柠檬酸循环 (4)戊糖磷酸途径 (5)葡糖异生作用 (6)乙醛酸途径
三、葡聚糖(糖原、 淀粉)的代谢
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档